Эврика! Радость открытия. Архимед

Агиляр Эугенио Мануэль Фернандес

ГЛАВА 2

Эврика!

 

 

Родоначальником европейской науки считается математик Фалес из Милета: он часто упоминается как первый из философов, о котором сохранились исторические свидетельства. Через несколько веков после него возникло само понятие физики, причем особую роль в этом сыграл Аристотель. И все-таки у истоков того, что в наше время понимается под «физикой», стоит величественная фигура Архимеда.

Именно он, в сущности, первым применил математические и геометрические принципы, чтобы объяснить строение материального мира.

Имя Архимеда вошло в популярную культуру в связи с его исследованиями законов плавучести тел и рычага. Несложно вспомнить закон Архимеда из-за известной истории про сиракузского тирана Гиерона II и сразу возникающей в уме картинки с нагим ученым, кричащим: «Эврика!» А закон рычага, в свою очередь, ассоциируется со знаменитым утверждением, приписываемым Архимеду: «Дайте мне точку опоры, и я переверну Землю!»

В этой главе мы не только поближе познакомимся с некоторыми научными принципами, но и узнаем, правдивы истории об Архимеде или они являются мифами. Интересно, что хотя Архимед и оставил серьезный след в физической науке, она не была главной сферой его исследований и областью интересов. А с его подходом к исследованиям — в целом таким же, какой господствует в современной физике, — и использованием математического аппарата он стал первым в истории матфизиком в точном смысле этого слова. Ученый открыл новый способ исследования природы, непохожий на спекулятивные рассуждения, но основанный на научном подходе. Греческий математический мир излишне переоценивал дедуктивный метод, и Архимед полностью отказался от такой системы работы. Сиракузский мудрец сумел применить в своих исследованиях индукцию, основанную на опыте, и совместить ее с дедукцией.

Именно он изобрел научный метод, базирующийся на этих принципах. Скажем, работа с рычагом привела его к математическим результатам, которые мы рассмотрим в следующей главе. И если первый физический закон, сформулированный в Древней Греции, касался числовых соотношений между длиной струны и высотой звука, то второй из задокументированных физических законов был открыт через 300 лет после первого, и это был как раз закон рычага Архимеда. Так что он был первым математиком, который привлек современную ему геометрию к изучению физических явлений. Проведенное им исследование основывалось на том, что сегодня бы назвали интуитивной физикой, то есть близкой экспериментатору, имеющей дело с повседневными явлениями жизни — тем, с чем любой из нас встречается каждый день. Он реализовал блестящую идею — использовать принцип ceteris paribus, что с латыни переводится как «при равенстве всех прочих обстоятельств». Иными словами, Архимед заметил, что для изучения любой физической величины надо сфокусироваться исключительно на этой самой величине, упростив условие задачи с помощью предположения, что остальные величины на нее не влияют, то есть допустить, что они представляют собой константы. Для реализации данного метода ученый впервые в истории воспользовался представлением физических объектов как математических: например, рычаг в таком представлении стал балкой, не имеющей массы, а физические тела — идеальными геометрическими фигурами. Ну и, наконец, он не только, как известно, проявлял интерес к рычагам и плавающим телам, но и написал книгу «Исчисление песчинок», в которой отразился его интерес к астрономии. Кроме того, среди трудов Архимеда была и полностью утерянная к нашему времени работа «Катоптрика», где он рассуждал о свете. Мы еще вернемся к ней в последней главе, когда речь пойдет о некоторых из изобретенных им механизмов.

Известно, что греческий философ Аристотель написал несколько книг, посвященных физике, и среди них особняком стоит та, которая собственно и называется «Физикой». Этот термин пришел к нам из древнегреческого языка и означает «природа», ведь физика изучает природные явления. И хотя Аристотель внес значительный вклад в другие области науки, однако именно в физике его деятельность не способствовала прогрессу; а так как в Средние века почтение к нему было столь высоко, что все его доводы воспринимались без всякой критики, то можно сказать, что его работа в данной области даже вызвала регресс. В целом это было действительно проблемой для научного сообщества вплоть до XV — XVI веков: никто не осмеливался оспаривать идеи философа из Стагиры. Ситуация стала меняться только во время научной революции, когда люди вроде Галилео Галилея выдвинули более соответствующую действительности концепцию движения; а другие, такие как Исаак Ньютон, собрав воедино результаты многих исследований, показали, что на небе и на Земле все подчиняется одним и тем же законам природы.

Мы можем взять совершенные доказательства из книг Архимеда, нас не пугает сложность их чтения.

Кеплер (1571-1630), астроном и математик

У Архимеда можно было бы найти идеи, которые помогли бы справиться с влиянием аристотелевой физики, но он сам был на долгие века забыт. С легкой руки Аристотеля стали модными концепции тяжести и легкости: первое — это то, что испытывают тела, падающие на землю, а второе — плавающие в воздухе. Архимед же опроверг его теорию и ввел в своих работах понятие удельного веса, или плотности, важное для описания поведения плавающих тел. Согласно его концепции тело плавает, потому что его плотность меньше плотности среды.

В то же время он явно отказался от аристотелевской идеи, согласно которой пустоты не существует.

Из принципа плавания тел Архимеда можно было вывести, что плотные тела, имеющие больший объем при той же массе, содержат больше пустоты между составляющими их частицами. Это вполне согласовывалось с атомизмом Левкиппа и Демокрита, который существовал уже пару веков и послужил основой для многих абстрактных рассуждений. Но очевидная разница в том, что Архимед не оставил после себя ни одной строки, посвященной рискованным предположениям, напротив, он раз за разом использовал математику, чтобы доказать и поддержать свои утверждения, и это резко выделяет его из ряда греческих философов той поры.

 

Закон Архимеда и корона тирана Гиерона

Перед тем как поговорить о законе Архимеда, мы обратимся к истории, которую обычно вспоминают, когда речь заходит об этом открытии. После этого сформулируем данный закон. В конце мы приведем некоторые комментарии к трактату, где Архимед описал свои идеи о плавании тел.

Гиерон, тиран Сиракуз и родственник Архимеда, заказал некоему мастеру корону из золота, для покупки которого он выдал ему необходимую сумму. Однако, когда он получил заказанный головной убор, у него зародилось подозрение, что ювелир использовал не чистое золото, а его сплав с серебром, чтобы присвоить остаток. Именно тогда у тирана возникла счастливая мысль пригласить Архимеда, поделиться с ним подозрениями и выяснить, не могут ли его знания помочь разрешить эту проблему. Мудрец не ответил сразу, но пообещал подумать над задачей и попробовать найти способ ее решения. Однажды, принимая ванну в одной из городских бань, Архимед увидел, что при погружении в нее вода вылилась через край, и понял, как он может решить загадку короны. Радость его была такова, что он выскочил из ванны и побежал нагим по улицам Сиракуз, восклицая: «Эврика! Эврика!», что значило «Я нашел! Я нашел!» То, что он нашел, известно теперь как закон Архимеда. В результате ученый доказал, что ювелир пытался обмануть тирана. А в наши дни выражение «эврика» используется, когда говорится о внезапно найденном решении важной проблемы.

В действительности маловероятно, чтобы Архимед бегал по городу в таком виде, да еще крича, как безумный. И все- таки эта легенда, должно быть, основана на каких-то реальных фактах, ведь ее в деталях передают различные историографы. Самым ранним свидетельством мы обязаны римскому архитектору Витрувию, и здесь стоит привести наиболее важную его часть, взятую из трактата «Десять книг об архитектуре»:

«Что же до Архимеда, то из всех его многочисленных и замечательных открытий приводимое мною является, несомненно, доказательством прямо-таки безграничной его изобретательности. А именно, когда Гиерон, достигший царской власти в Сиракузах, после удачного завершения своих предприятий решил по обету бессмертным богам поместить в одном из храмов золотую корону, он заказал сделать ее за определенную плату и отвесил нужное количество золота подрядчику. В назначенный по договору срок тот доставил царю тонко исполненную работу, в точности, видимо, соответствовавшую весу отпущенного на нее золота. После же того как сделан был донос, что часть золота была утаена и при изготовлении короны в нее было примешано такое же количество серебра, Гиерон, негодуя на нанесенное ему оскорбление и не находя способа доказать эту покражу, обратился к Архимеду с просьбой взять на себя разрешение этого вопроса. Случилось так, что в то время как Архимед над этим думал, он пошел в баню и, садясь в ванну, заметил, что чем глубже он погружается в нее своим телом, тем больше через край вытекает воды. И как только это указало ему способ разрешения его вопроса, он немедля, вне себя от радости, выскочил из ванны и голый бросился к себе домой, громко крича, что нашел то, что искал; ибо на бегу он то и дело восклицал по-гречески: «Эврика! Эврика!»

Закон Архимеда изучают во всех школах мира — это один из физических постулатов, которые легко понять интуитивно. Любой человек испытывал уменьшение своего веса при погружении в бассейн, видел летящие воздушные шарики, смотрел на лодки, плавающие по морю, помнит кадры с подводными лодками, спускающимися в океанские глубины. Это только немногие примеры, в основе которых лежит закон Архимеда. Но в его эпоху многие понятия были еще неизвестны или только исследовались. Так, ему пришлось вводить понятие удельного веса (плотности), чтобы иметь возможность объяснить явление плавучести. Тем не менее он ничего не знал о понятии силы, которое в наши дни используется для изучения закона Архимеда, носящего теперь еще одно название: закон гидростатики. Есть много способов его формулировки, один из самых распространенных: «На всякое тело, полностью или частично погруженное в воду или иную жидкость, вертикально вверх действует выталкивающая сила, равная весу жидкости, вытесненной телом». Используя современную терминологию, выталкивающая сила и вес — это две силы, и надо было ждать времен Ньютона, чтобы получить серьезное и точное математическое описание этих величин. Однако закон Архимеда можно трактовать и с помощью геометрических инструментов или пользуясь понятием плотности.

Вес тела в воздухе всегда больше его веса в жидкости. Кажущийся вес в жидкости будет равен реальному весу минус выталкивающая сила. Так что способ вычислить выталкивающую силу F e , которой подвергается тело,состоит в том, чтобы измерить его вес в воздухе F p , затем в жидкости F' р и вычесть одно из другого: F e =F p -F' р .

Архимед знал, что тело, погружаясь в воду (здесь и далее под водой понимается любая среда, будь то жидкость или газ), должно вытеснить равное объему погруженного тела количество воды. Вот почему рассказ о ванной служит хорошей иллюстрацией для закона гидростатики: если поместить тело в ванну, полную воды, часть жидкости выльется, то есть отправной пункт такой: Vпогруженной части = Vвытесненной воды

С точки зрения приложения сил получается, что вода (или другая среда) действует выталкивающей силой на погруженное тело (см. рисунок на стр. 42). То есть сила FE по модулю равна весу Fp вытесненной воды. Это значит FE = FР(воды). Вес (сила действия тела на опору или подвес) вытесненной воды равен произведению ее массы на земное ускорение (значение которого у поверхности земли составляет примерно 9,8 м/с²): FР(воды) = mводы • g. Добавив математическую формулу расчета плотности, то есть dводы = mводы/Vводы , можно резюмировать: FР(воды) = Vводы • dводы • g. Мы уже говорили, что объем вытесненной воды равен объему погруженной части тела, из чего выводится FР(воды) = Vтела • dводы • g. Наконец, опустив нижние индексы, поскольку вес вытесненной воды равен выталкивающей силе, действующей на тело, мы можем сформулировать закон гидростатики с помощью уравнения FE= V • d • g, где FE — это выталкивающая сила, которую испытывает тело, измеряющаяся в ньютонах (Н, данная единица измерения названа в честь Ньютона); V — объем погруженной части тела, измеряемый в м³; d — плотность среды, измеряемая в кг/м³; a g — ускорение свободного падения.

От мифа к реальности

Как это бывает с любой легендой, история короны тирана Гиерона — отчасти правда, а отчасти миф. Можно утверждать, что элемент выдумки есть даже в самом методе, приписываемом Архимеду, с помощью которого он раскрыл обман хитрого ювелира.

Конечно, Архимед мог вывести ремесленника на чистую воду, но с помощью другого, более сложного метода, использовав для этого не только закон гидростатики, но и закон рычага. Посмотрим описание данного открытия, сделанное Марком Витрувием:

«Тогда, исходя из этого открытия, он, говорят, сделал два слитка одинакового веса с короной — один из золота, другой из серебра. Сделав это, он взял объемистый сосуд, наполнил его до самых краев водой и опустил в него серебряный слиток, при погружении которого вода вытекла в количестве, равном величине слитка. Вынув затем слиток, он долил воды, отмерив ее секстарием, так, чтобы она опять сравнялась с краями, как и раньше. Так он определил, что серебро по весу соответствует известному количеству воды. Проделав этот опыт, он подобным же образом опустил в наполненный сосуд золотой слиток и, вынув его, нашел посредством прежнего измерения, что воды убавилось не столько же, а меньше, насколько меньше был объем золотого слитка сравнительно с равным ему по весу серебряным. После же этого, вновь наполнив сосуд и опустив в то же количество воды саму корону, он нашел, что воды вытекло больше, чем при погружении золотого слитка такого же веса; и таким образом, исходя из того, что корона вытеснила больше воды, чем слиток, он показал примесь в золоте серебра и обнаружил покражу подрядчика».

Хотя метод теоретически совершенно правильный, заметим, что вряд ли Архимед пользовался именно таким способом, как описано выше. Сложность состоит в измерении объемов. Сначала для лучшего понимания проблемы упорядочим шаги, описанные Витрувием.

1. Архимед взял два куска материала, про весу идентичные короне, — кусок серебра (mр) и золота (mo).

2. Затем он погрузил серебро в определенное количество воды, из-за чего вылился некоторый ее объем Vp, который ученый измерил.

3. Потом он погрузил золото в такое же количество воды, отчего вылился объем Vo жидкости, который он также измерил.

4. Архимед обнаружил, что Vp больше, чем Vo.

5. Наконец, он опустил настоящую корону в то же количество воды, и она вытеснила объем Vo этой воды, который он тоже измерил.

Иллюстрация к легенде, согласно которой Архимед нашел решение задачи с короной Гиерона,когда находился в общественной бане. 1575 год.

Среди фраз, которые приписывают Архимеду, самая известная — «Дайте мне точку опоры,и я переверну Землю». Ее цитирует Папп Александрийский в VIII книге «Математического собрания». Рисунок воспроизводит гравюру из берлинского издания Фридриха Отто Хулча 1878 года.

6. Ученый выяснил, что объем V, вытесненный короной, больше, чем объем воды, вытесненной золотом, и меньше, чем объем, вытесненный серебром ( Vp > Vc > Vo). Это доказало, что в короне была примесь серебра, то есть она состояла не из одного золота.

Теперь давайте воспроизведем этот опыт на наиболее правдоподобном примере, исходя из реальных данных, которыми мы располагаем, и следуя изложенному выше алгоритму, чтобы выявить, если необходимо, противоречия. Мы помним, что, как было отмечено ранее, любой погруженный в воду предмет вытесняет количество воды, равное его объему. Объем предмета можно вычислить исходя из его плотности и массы по известной формуле: d = m/V.

1. Чтобы не мелочиться, возьмем в качестве примера самую большую из сохранившихся золотых корон эпохи Архимеда. Речь идет о «венце из Вергины» (город в нынешней греческой Центральной Македонии), датированном IV веком до н. э. Этот венец имеет массу 714 г и диаметр 18,5 см. Учитывая, что некоторые из его листьев утеряны, и для облегчения расчетов примем массу короны за 1000 г. Итак, для опыта у нас есть 1000 г серебра, 1000 г золота и корона аналогичного веса, состав которой и является предметом эксперимента.

2. Теперь, в качестве второго шага, мы опускаем 1000 г серебра в воду. Так как плотность серебра равна 10,5 г/см³, объем вытесненной воды будет 95,2 см³:

3. Третьим шагом будет погружение в воду 1000 г золота. Поскольку его плотность составляет 19,3 г/см³, вытесненный объем воды будет 51,8 см³:

4. Объем воды, вытесненной 1000 г серебра, больше, чем объем воды, вытесненной 1000 г золота, так как плотность серебра меньше, и та же его масса занимает больше места.

5. Наконец, в воду опускается корона, и замеряется количество вытесненной ею воды. Тут надо сделать еще одно добавление. Предположим, что к золоту короны примешано 30 % серебра.

6. После погружения короны в воду можно заметить, что она вытесняет большее количество воды по сравнению с золотом и меньшее — по сравнению с серебром. Согласно нашему предположению, 30% от 1000 г короны составляет серебро и 70 % — золото:

Объем воды, вытесненной короной (64,8 см³), больше, чем вытесненной золотом (51,8 см³), что могло бы доказать обман ювелира.

Но как измерить столь малые объемы? Заметьте: разница составляет всего 13 см³, что примерно равно объему пары орехов.

В истории предлагались разные методы измерения, рассмотрим два из них — измерить уровень оставшейся в сосуде воды или собрать вытесненную воду в другой сосуд. Первый вариант, по-видимому, невероятен для той эпохи и выглядит приемом, далеким от возможностей Архимеда. Согласно первому способу, после погружения короны и других металлов в сосуд вода поднимется на некоторую высоту. Если сосуд цилиндрический (см. рисунок), то и поднимающаяся вода имеет форму цилиндра. Предположим, диаметр сосуда равен 20 см, тогда поверхность воды имеет площадь 314 см². С этими данными мы можем вычислить высоту (А), на которую поднимется вода в каждом из случаев:

Объем цилиндра высчитывается умножением площади его основания на высоту.

Это означает, что разница в уровнях между короной из золота и короной из сплава составит (ho - hо = 0,4 мм), то есть меньше чем полмиллиметра! Напомним, что представленные расчеты приблизительны, но в любом случае от перемены изначальных допущений разница в результатах изменилась бы очень мало. Кроме того, допущения были сделаны таким образом, чтобы получить самые поддающиеся измерению величины. Возможно ли, чтобы Архимед смог измерить эту разницу? Вряд ли, ведь столь малая величина еще и сочетается с мениском, искривлением поверхности жидкости в сосуде из-за взаимодействия со стенками данного сосуда.

Итак, отвергнув первый вариант, некоторые ученые решили, что Архимед собирал вытесненную воду в отдельный сосуд, то есть приняли вариант Витрувия. Для этого он, вероятно, использовал водяные часы — клепсидру, то есть простой резервуар с небольшим отверстием, через которое вытекает вода. Эта гипотеза подкреплялась и тем фактом, что подобный инструмент измерения времени был широко распространен еще со времен Древнего Египта. Ведь и грек Ктесибий изобрел свои усовершенствованные водяные часы во времена Архимеда. Для использования метода клепсидры необходимо выполнить следующие шаги.

Шаг 1. Отверстие закрывается, и резервуар наполняется водой так, чтобы при опускании в него тела вода не перелилась через край.

Шаг 2. В резервуар погружается золотой слиток, по весу равный короне.

Шаг 3. Отверстие открывается, и вода вытекает через него, пока не перестанет течь.

Шаг 4. Слиток вынимается, и отверстие закрывается.

Шаг 5. В резервуар погружается корона.

Шаг 6. Отверстие открывается. Если вода вытекает из него, это значит, что корона по объему больше золотого слитка, то есть изготовлена из сплава и содержит другое вещество. Если вода доходит только до уровня отверстия, значит корона золотая.

Опытным путем доказано, что таким способом можно измерить разницу в 10 см³ — это и есть примерно тот объем, о котором идет речь. В любом случае в рассказе Витрувия ничего не говорится об использованных Архимедом средствах, а значит, у нас нет доказательств того, что он воспользовался именно таким методом. Тем не менее применение обоих упомянутых способов (замер высоты воды и клепсидра) вполне можно себе представить в эпоху Архимеда. Но любой исследователь в своей работе старается опираться на тексты самого математика, а не только на вторичные источники, как в случае с Витрувием или последующей литературой. Поэтому утверждение, что приведенные римским архитектором сведения могут быть и неверными, вовсе не означает презрения к таланту Архимеда; как раз наоборот, поскольку можно сделать предположение, что его гений пошел еще дальше. Ведь мы упоминали о его трудах, посвященных рычагу. Почему бы ему не использовать данный принцип и для решения задачи с короной? Давайте рассмотрим предположение, которое выдвигают многие специалисты. Как мы показали предыдущими расчетами, 1000 г чистого золота и корона весом 1000 г вытесняют разное по объему количество воды, а значит, разное и по массе. Мог ли Архимед измерить разницу в количестве воды в 13 г? Да, мог, но не измерением уровня воды и не методом клепсидры. Он мог бы измерить ее с помощью равноплечих весов, которые ученый применял на протяжении всей жизни.

КТЕСИБИЙ АЛЕКСАНДРИЙСКИЙ И КЛЕПСИДРА

Ктесибий из Александрии (285-222 до н. э.) в наше время считается отцом пневматики, так как он написал первый научный трактат о сжатом воздухе и использовании пневматических насосов. Список приписываемых ему изобретений и открытий включает в себя водяной орган, научное обоснование сифона и клепсидру: то есть он создал отличающиеся невиданной по тем временам точностью водяные часы, работа которых была основана на вытекавшей в специальное отверстие воде.

Реконструкция клепсидры конца V века до н. э. (фото: Marsyas).

В целом идея такова: если с двух сторон равноплечих весов разместить килограммовый слиток золота и килограммовую же корону, то весы, естественно, останутся в равновесии (рисунок 1).

Но если те же предметы будут при этом погружены в воду, весы больше не будут в равновесии, так как их вес в воде окажется разным (рисунок 2). Почему? Потому что согласно закону гидростатики выталкивающая сила, действующая на тело, равна весу вытесненной воды, который будет разным у двух предметов с разными объемами. То есть предмет с большим объемом (корона) в воде станет легче, чем предмет с меньшим объемом (слиток), так что весы наклонятся в сторону золотого слитка.

И такая процедура представляется вполне возможной для Архимеда, учитывая список его работ. Нужны были только жидкая среда и весы с достаточной чувствительностью, чтобы реагировать на разницу в несколько граммов, а все это в его распоряжении было. В самом деле, такие ученые, как Галилей, продемонстрировали, что данный метод работает.

РИС. 1

РИС. 2

Что и как плавает

Тело будет плавать на поверхности жидкости, если его плотность меньше плотности жидкости; станет тонуть, если его плотность выше; и останется висеть в равновесии, если их плотности равны. Это всем известное правило, впервые сформулированное Архимедом, можно продемонстрировать с помощью динамических процессов, сравнив выталкивающую силу среды и вес объекта, помещенного в нее. Если читатель в какой-то момент запутается, он может просто пропустить следующие строки, написанные только для того, чтобы изложить идеи Архимеда современным языком.

ВОДЯНОЙ ГИГАНТ

С водой связана интересная аномалия, из-за которой, собственно, и возможно существование океанов и в целом жизнь на Земле: в твердом состоянии ее плотность меньше, чем в жидком. Это значит, что лед может плавать на поверхности воды. Так происходит, к примеру, с айсбергами. Слово «айсберг» пришло из голландского языка через английский и означает «ледяная гора». Речь идет о гигантских кусках замерзшей пресной воды, дрейфующих в океане и постепенно опускающихся к низким широтам, куда их влекут течения. Значительная часть айсберга погружена в воду. При этом вес айсберга (Р) равен выталкивающей силе воды (Е), в которую он погружен и которая равна весу воды, вытесненной погруженной частью айсберга. Объем этой воды обозначим как (V s ).

Сила Объем Плотность Формула
Выталкивающая сила: Е Объем погруженной части: V s Морской воды: d a E=V s • d a • g
Вес айсберга: Р Объем всего айсберга: V c Льда: d l P=V c • d l • g

Действующая на айсберг выталкивающая сила равна Е = V s • d a • g, где d a — плотность соленой воды. С другой стороны, вес всего айсберга равен P=V c • d l • g, где d l — плотность айсберга, a V c — объем всего айсберга. Чтобы узнать соотношение видимой и подводной частей айсберга, достаточно вычислить отношение V s /V c . Нужно просто разделить выталкивающую силу на вес, учитывая, что они равны (Е = Р), так как айсберг находится в равновесии.

Надо отметить, что соотношение между погруженной частью айсберга и всем его объемом будет равно соотношению плотности айсберга и плотности воды, в которой он плавает. Плотность айсберга (то есть пресной воды в твердом состоянии) равна 0,92 г/см³, а плотность морской воды может различаться (зависит от ее температуры и степени солености), так что возьмем ее среднее значение: 1,03 г/см³.

Доля объема подводной части = 0,92/1,03 • 100 = 89,3 %.

Таким образом, подводная часть айсберга составляет почти 90 % от его объема.

Айсберги существуют благодаря тому, что вода в твердом состоянии имеет меньшую плотность, чем вода океанов. Если было бы иначе, то лед скапливался бы на дне.

Здесь будут приведены математические выкладки, базирующиеся на следующих величинах:

mc — масса тела;

ma — масса вытесненной воды (или другой среды);

d — плотность тела;

da — плотность воды;

V — объем погруженной части тела и вытесненной воды.

Тело тонет

Вес тела в воздухе больше выталкивающей силы:

Fp > FE → mc • g > V • da • g → V • dc >V • da  → dc > da.

Тело погружается, если его плотность больше плотности воды.

Тело плавает на поверхности

Вес тела в воздухе меньше выталкивающей силы:

Fp < FE → mc • g < V • da • g → V • dc < V • da → dc < da.

Тело плавает, если его плотность меньше плотности воды.

Равновесие

Вес тела в воздухе равен выталкивающей силе:

Fp = FE → mc • g = V • da • g → V • dc = V • da → dc = da.

Тело пребывает в положении равновесия, если его плотность равна плотности воды.

О плавающих телах

Основную часть своих идей о законе гидростатики Архимед изложил в трактате «О плавающих телах» — единственном труде на данную тему, который сохранился до наших дней. Возможно, это самая известная из книг Архимеда и, без сомнения, лучшее свидетельство его гениальности. Хотя во всех книгах ученого присутствует дедуктивный метод, видно, что он постоянно обращается к физической реальности, предвосхищая таким образом за 2000 лет научный экспериментальный метод, который станет развиваться лишь в XVI — XVII веках.

Именно осмысление и освоение наследия Архимеда заложило базу научной революции XVII века.

Александр Койре (1892—1964), историк науки

Трактат состоит из двух книг. Первая открывается краткой преамбулой, за которой следуют девять утверждений, а вторая содержит десять утверждений. В первой книге объясняется закон равновесия жидкостей и показывается, что вода принимает форму шара вокруг центра тяжести. Под таким центром Архимед понимает центр Земли. Он был согласен с Эратосфеном, что Земля имеет сферическую форму. Впервые в истории науки в данном трактате излагается концепция удельного веса и плотности, хотя сам оригинальный текст не содержит специальной терминологии для этих понятий. Далее разбираются три возможных положения тела в жидкости в зависимости от соотношения их плотностей: плотность тела равна плотности жидкости (утверждение 3), плотность тела меньше плотности жидкости (утверждения 4 и 6) и плотность тела больше плотности жидкости (утверждение 7). То, что сегодня известно как закон Архимеда, или закон гидростатики, формулируется в утверждениях 6 и 7. Во второй книге рассматриваются вопросы равновесия помещенных в жидкость параболоидов. Следует учитывать, что Архимед жил в Сиракузах, где главной частью города был торговый и военный порт, так что иногда его вдохновляли формы корпусов кораблей, которые он пытался моделировать с помощью известных ему геометрических фигур.

Как мы уже говорили раньше, первая книга открывается преамбулой, где выдвигается предположение, что жидкость сдавливается в вертикальном направлении той жидкостью, которая находится сверху. Эта гипотеза верна и получила подтверждение законом всемирного тяготения Ньютона, так как сама жидкость имеет вес и испытывает силу давления от той части жидкости, которая выше.

ПЕРЕМЕЩЕНИЯ ВВЕРХ И ВНИЗ В ЖИДКОСТИ

Многие рыбы обладают органом, который называется плавательным пузырем: он дает им возможность по своему усмотрению регулировать собственную плотность, чтобы подниматься или опускаться в толще воды, не двигая ни одним внешним мускулом. Механизм его действия основан на регулировании содержания газа в крови для поднятия вверх, ведь рыбы могут высвобождать кислород и углекислый газ, находящиеся в кровяном потоке. Часто в музеях и на научных выставках можно увидеть простую конструкцию, иллюстрирующую принцип работы этого замечательного продукта эволюции: бутылку с трубкой (рисунок 1). В бутылку может свободно проникать вода и выходить из нее. Внутрь нее вставлен воздушный шарик, к которому подведена трубка для подачи воздуха. Вся конструкция помещена в сосуд с водой, и когда шарик наполняется воздухом, общая плотность всей системы уменьшается, и бутылка всплывает. Когда воздух из шарика выходит, вода занимает освободившееся пространство, общая плотность всей конструкции увеличивается, и бутылка тонет.

РИС. 1

Это устройство не только схематически представляет работу рыбьего плавательного пузыря, но может иллюстрировать принцип, который используют подводные лодки.

РИС. 2

Чтобы сделать «водолаза» своими руками, понадобится только пластиковая бутылка, открытый с одной стороны цилиндрический сосуд (например, пробирка) и вода.

Чертенок Декарта

«Картезианский водолаз», или «чертенок Декарта», (рисунок 2) — это классическая игрушка для поклонников занимательной физики, которая представляет принцип всплытия и погружения субмарин. Она состоит из сосуда с водой, в которую помещен предмет, частично наполненный воздухом. Конструкция сделана так, что воду можно сжимать либо с помощью мембраны на крышке, либо просто надавливая на стенки сосуда. Согласно закону Паскаля это давление передается на все точки жидкости, таким образом воздействуя и на предмет и, соответственно, на заключенный в нем воздух. Так как воздух отличается высокой степенью сжимаемости, «чертенок» представляет собой систему, которая позволяет менять плотность предмета и тем самым управлять его погружением или всплытием.

Верны также и утверждения 1 и 2, в которых говорится, что поверхность жидкости в спокойном состоянии представляет собой шар с центром, расположенном в центре Земли: «Поверхность установившейся неподвижно жидкости имеет форму шара с тем же центром, что и у Земли». Утверждение 3 являет собой небывалый уровень абстракции: если у тела та же плотность, что и у жидкости, в которую оно погружено, то тело остается неподвижным в том месте жидкости, куда его поместили, то есть находится в состоянии статического равновесия. С другой стороны, если в жидкость погружается тело, плотность которого меньше плотности жидкости, то оно будет погружено в нее только частично. Этот вывод изложен в утверждении 4, а развивает его утверждение 5 (см. рисунок): объем жидкости, вытесненной погруженной частью тела, будет иметь вес, равный весу всего тела. Речь идет о явном предшественнике принципа равнодействия сил, который стал известным благодаря Ньютону. Простой способ понять его — это опустить в воду винную бутылку с примерно стаканом воды внутри: она погрузится частично.

В трактате «О плавающих телах» все доказательства чисто геометрические, как обычно и бывало в то время. Данный рисунок относится к утверждению 5 первой книги в издании Хита. Текст полон подобными рисунками, которые снабжаются пространными геометрическими комментариями. Они приводятся в качестве иллюстраций, ведь такие тексты трудны для восприятия, потому что изобилуют математическими терминами и символами.

В утверждении 6 говорится, что если к телу, находящемуся в жидкости с большей, чем у него, плотностью, приложить силу, на тело начнет действовать направленная вверх выталкивающая сила, которая заставит его всплыть и плавать на поверхности, уменьшив его вес. В утверждении 7 мы находим идею, согласно которой, если мы опустим тело в жидкость с меньшей, чем у него, плотностью, оно опустится на дно сосуда, хотя его вес тоже уменьшится. В обоих случаях Архимед показывает, насколько уменьшится вес тела: «На количество, равное весу жидкости, объем которой совпадает с объемом твердого тела». Это и есть, иными словами, знаменитый закон Архимеда.

ПОСИДЕТЬ НА ВОДЕ

Мертвое море — это большое озеро около 80 км в длину и не больше 16 км в ширину, расположенное на границе Израиля и Иордании. Главная его отличительная особенность состоит в том, что из-за очень высокого содержания солей вода в нем по плотности намного превосходит обычную морскую воду, доходя до 1240 кг/м³, что позволяет человеку без какого- либо труда лежать на ее поверхности. Как можно понять из его названия, в Мертвом море не может жить никакое живое существо, кроме некоторых видов оомицетов и высших грибов.

В Мертвом море купающиеся лежат на поверхности воды, как поплавки.

 

Закон рычага

Многие историки науки считают трактат Архимеда «О равновесии плоских фигур» началом математической физики. И это, несомненно, не преувеличение, хотя и у философов предыдущей эпохи можно найти рассуждения о рычаге. Так, примерно за век до Архимеда Аристотель писал об элементах рычага и сформулировал «закон равноплечего рычага», однако, насколько можно судить, данные выкладки не привлекли к себе особого внимания; впоследствии даже было высказано мнение, что они вставлены в текст философа позднейшим переписчиком. С другой стороны, интересны изыскания Архита Тарентского (430-360 до н. э.), которые, впрочем, не вышли за пределы чисто экспериментальных конструкций. Архимед, конечно же, не был первым, кто воспользовался рычагом, но он впервые описал его принцип, связав воедино математику и физику.

ТРУБА-ВЕСЫ

Одно из первых упоминаний закона рычага, хотя и не в научном смысле, мы находим в комедии «Мир» древнегреческого драматурга Аристофана (444-385 до н. э.), написанной в 421 году до н. э. В этом произведении автор выводит различных современных ему деятелей, включая Эврипида. Горожанин Тригей насмехается над торговцем оружием, советуя ему использовать трубу как неравноплечие весы.

Тригей Постой, дружок!

Жмет в мягком месте. Не куплю! Неси назад!

Торговец оружием А с этой боевой трубой что делать мне?

Ведь за нее я отдал шесть десятков драхм.

Тригей Сюда в воронку жидкого свинца нальем, прицепим

сверху небольшую палочку, и коттаб превосходнейший получится.

Торговец оружием Ты все смеешься?[ 1 Перевод А. Пиотровского.]

Исторические рассказы из первой главы нашей книги показывают, что использование рычага в повседневной жизни было для Архимеда обычным делом — как при постройке машин для обороны Сиракуз, так и при других работах. Уровень абстракции, до которого дошел Архимед при исследовании рычага, не имел до этого прецедентов: он устранил все привходящие характеристики, рассматривая исключительно идеальные весы, а все тела считая точечными объектами (он говорил о силе и о центре тяжести как о единственных физических свойствах тела). Таким образом, в своем трактате Архимед пользуется концепцией идеальных весов, хотя и не формулирует ее в чистом виде. Самые простые по конструкции весы представляют собой подвешенную за середину рейку с висящими с двух сторон чашками. Когда вес предметов, лежащих на чашках, равный, конструкция сбалансирована в равновесии. Само понятие «баланс» происходит от двух латинских слов — bis (два) и lanx (чаша). И, таким образом, весы представляют собой типичный равноплечий рычаг.

Р: сила. Эта приложенная сила может представлять собой определенный вес.

R:сопротивление. Сила, которая сопротивляется приложенной силе и тоже может выражаться в подвешенном весе.

В р : плечо силы. Участок рычага между точкой приложения силы и точкой опоры.

B R : плечо сопротивления. Участок рычага между точкой сопротивления и точкой опоры.

Простой рычаг (см. рисунок) состоит из жесткой балки, которая может свободно вращаться вокруг точки подвеса или опоры. В этой балке различают две части — плечо силы (к которому прикладывается усилие) и плечо сопротивления (на него передается усилие). Используется столь простой механизм следующим образом: нагружается одно плечо рычага или к нему прикладывается усилие, после чего достигается равновесие, или же система выводится из равновесия. Закон рычага устанавливает соотношение между силами, воздействующими на каждое плечо рычага, и длинами плеч: соотношение сил равно соотношению расстояний от точек приложения этих сил до точки опоры. Данная пропорция и есть одно из главных достижений Архимеда, который разработал следующую математическую формулу:

Р • Вр = R • Br.

Три рычага

В средней школе любой страны обычно изучают три типа рычагов. Поскольку рычаг включает в себя три различных элемента (плечо силы, опора и плечо сопротивления), то в зависимости от их взаиморасположения мы можем разделить рычаги на три типа. Примеры всех трех типов можно найти в строении человеческого тела (рисунок 3). Архимед в своих трактатах сформулировал закон рычага, но не классифицировал различные типы рычагов — возможно, это казалось очевидным. Тем не менее не лишним будет вспомнить данную классификацию.

В рычаге первого типа (рисунок 4) точка опоры расположена между плечами силы и сопротивления. Это именно тот рычаг, который встречается в текстах Архимеда. Примерами рычага первого типа могут служить весы, качели, клещи. В рычаге второго типа (рисунок 5) точка сопротивления находится между точкой приложения силы и точкой опоры. В качестве примеров такого рычага можно привести тачку, щипцы для орехов или открывалку для бутылок.

В рычаге третьего типа (рисунок 6) точка приложения силы находится между точкой сопротивления и точкой опоры. Примеры: степлер, антистеплер и щипчики для завивки ресниц.

РИС. 3

РИС. 4

РИС. 5

РИС. 6

О равновесии плоских фигур

Трактат «О равновесии плоских фигур» выделяется из числа других математических сочинений той эпохи: в нем нет определений. Отсюда возникла гипотеза, что трактат представляет собой краткое резюме некоторого очень важного труда. В том виде, в каком он дошел до нас, он состоит из двух книг. 

Первая книга начинается семью постулатами (некоторые авторы считают, что это аксиомы) и продолжается пятью утверждениями, в которых в скрытом виде используется принцип равновесия равноплечих весов, чтобы продемонстрировать различные положения о равновесии тел. Последние утверждения касаются центра тяжести треугольника, параллелограмма и трапеции.

Во второй книге в десяти утверждениях рассматривается равновесие сегмента параболы. Вторая книга тесно связана с трактатом о квадратуре параболы.

«Дайте мне точку опоры, и я переверну землю»

В VIII книге «Математического собрания» Папп рассказывает об Архимеде и о рычаге. По утверждению автора Архимед произнес следующую фразу: «Дайте мне точку опоры, и я переверну Землю». С помощью несложных вычислений мы увидим, что это невозможно, и странно, если Архимед допустил такую ошибку. Предположим, что для нашего предприятия мы используем рычаг первого типа, а Земля будет располагаться в 1 м от точки опоры. Сразу отметим, что у Земли нет веса, ведь она находится в космическом пространстве и не опирается ни на какую планету или иное космическое тело. Но предположим, к примеру, что мы поместили Землю на суперрычаг, который опирается на суперпланету. В случае если земля представляет собой материальную точку, отстоящую от точки опоры на 1 м, на каком расстоянии должен находиться Архимед, чтобы приложить силу к другому плечу рычага? Так как масса Земли примерно равна 6 • 1024 кг и с учетом предположения, что Архимед прикладывает усилие, равное 60 кг, расстояние от точки опоры должно быть следующим:

P • Bp=R • Br

Bp = 1 м  •  (6 • 1024 кг)/60 кг = 1023 м.

Если вы не привыкли к математическим формулам, этот результат может вас и не впечатлить, но подстановка привычных единиц длины показывает, что речь идет о 10 млн световых лет (10 16 )! Возраст нашей Вселенной около 13700 млн лет (1,37х10 10 ). Если мы будем считать Вселенную сферической, то от одного ее конца до другого получится 27 400 млн световых лет. Выходит, что всего 2740 таких рычагов покроют расстояние, равное диаметру Вселенной! Кроме того, как мы увидим, сам Архимед представлял Вселенную куда более маленькой, поэтому особенно странно, что он допустил такую ошибку в расчетах. Если он и правда произнес что-нибудь подобное, то, очевидно, только в метафорическом смысле, чтобы показать, насколько может увеличить силу рычаг.

Галилей схематичным рисунком проиллюстрировал задачу с короной. Такую схему он использовал в статье «Маленькие весы».

Галилей, последователь Архимеда

В 1586 году Галилео Галилей (1564-1642) написал очень короткую статью под названием «Маленькие весы», в которой проанализировал рассказ Витрувия о короне тирана Гиерона. Будучи большим знатоком трудов Архимеда и его научного наследия, Галилей довольно скептически отнесся к способу, которым, по представлениям римского архитектора, была решена эта задача. В качестве своего варианта он выдвинул идею гидростатических весов и в общих чертах развил ее меньше чем на пяти страницах, используя схему, показанную на рисунке. В статье Галилей объясняет, что нет причин подозревать Архимеда в проведении такого примитивного с научной точки зрения эксперимента, ведь в его распоряжении были способы гораздо более тонкие, чем просто перелившаяся через край вода. Далее он говорит, что его выкладки основаны на идеях самого Архимеда, содержащихся в трактатах о плавающих телах и о равновесии, а также упоминает об инструменте, которым пользовался Архимед, — гидростатических весах, хотя в наши дни изобретение этих весов часто приписывается самому Галилею. В данной работе он обращает внимание на то, как сложно на глаз различить столь малую разницу в уровнях воды. Тем самым Галилей провел биографическую реконструкцию, которую можно назвать безупречной.

Весы Мора-Вестфаля

Весы Мора-Вестфаля — это неравноплечие весы, используемые для определения плотности жидкостей. Научный принцип, на котором они основываются, учитывая, что это те же самые гидростатические весы,— это закон Архимеда. Они были изобретены немецким фармацевтом Карлом Фридрихом Мором (1806-1879).

Короткое плечо несет противовес, а с длинного свисает поплавок, и в него набирается жидкость, чью плотность предстоит измерить относительно плотности жидкости, в которую поплавок погружается.

Надо заметить, что он глубоко изучил научные труды Архимеда и всегда выказывал глубочайшее уважение к его методу работы и достижениям. Галилей цитирует Архимеда в своих книгах, например в «Диалоге о двух новых науках», «Пробирных дел мастере» и «Маленьких весах», а кроме того, упоминает его во многих письмах. Исследование движения тел, которым занимался Галилей, основано как раз на гидростатике Архимеда. Так, итальянский ученый представил себе движение в среде, которая оказывала все меньше сопротивления движущемуся телу. В итоге он пришел к своим выводам и сформулировал знаменитые уравнения движения в отсутствии воздуха, хорошо понимая, что в его время нельзя было в точности доказать их истинность из-за сопротивления реального воздуха при падении тела. Уравнения Галилея о движении описывают положение тела и его скорость в вакууме и могут быть с большой точностью применены в гравитационном поле: например, при сбрасывании тела с некоторой высоты. И все-таки воздух создает сопротивление падению, а это значит, что в реальных земных условиях они неверны. В 1971 году астронавт Дэвид Скотт уронил перо и молоток на поверхность Луны, чтобы убедиться, что они достигнут поверхности одновременно, учитывая отсутствие там атмосферы, а следовательно, и сопротивления воздуха. Таким образом уравнения Галилея были доказаны экспериментально. «Это показывает, что идеи господина Галилея верны»,— заметил Скотт после окончания знаменитого опыта. Его эксперимент стал жестом уважения к итальянскому ученому и, опосредованно, к его учителю — Архимеду.

 

Исчисление песчинок

Единственной работой Архимеда, которую можно назвать научно-популярной, является книга «Исчисление песчинок» (иногда ее называют также по-гречески — «Псаммит»), Открывается этот трактат посвящением Гелону Сиракузскому, сыну Гиерона II. Осознавая трудности, способные возникнуть у адресата с чтением научной книги, Архимед ободряет его словами: «Но я постараюсь объяснить тебе все с помощью геометрических построений, которые ты можешь понять...». После же долгих операций с гигантскими числами Архимед заканчивает изложение, вспомнив о людях, не слишком знакомых с математикой, и в заключение вновь обращается к Гелону: «Надеюсь, что и ты понял это все». Некоторые специалисты считают, что данная работа не слишком интересовала ни людей того времени, ни представителей последующих эпох, к тому же она была написана на сиракузском диалекте. Несмотря на это, само существование такой книги говорит о том, что Архимед был близко знаком с реальной жизнью, интересовался популяризацией науки и распространением знаний. В трактате он задается вопросом, сколькими песчинками можно было бы заполнить Сиракузы — бесконечно ли их количество? В тексте говорится, что нет. Затем ученый высчитывает, сколько песчинок бы вместила Сицилия, сколько понадобилось бы для наполнения всех гор Земли... И так вплоть до числа песчинок, необходимых для заполнения Вселенной. Архимед хочет показать Гелону, что даже их число не бесконечно.

Поэтому ясно, что количество песчинок, равное по размеру сфере неподвижных звезд, наличие которой предполагает Аристарх, меньше, чем 1000 мириад «восьмых» чисел.

Архимед о том, какое количество песчинок необходимо, чтобы заполнить Вселенную

В то время не существовало названий для чисел, обозначающих настолько большие количества. Поэтому Архимед взялся за реформу системы счисления, предложив внести в нее некоторые изменения, чтобы иметь возможность оперировать большими числами. Принципиальное ограничение древнегреческой числовой системы состояло в том, что для обозначения чисел использовались буквы, и это вносило в операции с большими числами настоящий хаос. С концептуальной точки зрения Архимед в своем трактате делает попытку приближения к нынешней числовой системе, которая позволяет нам записывать по желанию любые самые большие числа. «Исчисление песчинок» не нужно считать просто математическим развлечением — в этом труде ученый касается греческой астрономии и прямо упоминает своего отца, астронома Фидия, как мы увидим чуть позже. Архимед начинает «Исчисление песчинок» с пояснения, что он понимает под «миром», и излагает здесь мнение большинства астрономов: мир — это шар, в центре которого находятся Земля и Солнце. Он не поддерживает гелиоцентрическую гипотезу Аристарха Самосского (310-230 до н. э.). Но интересно, что он отвергает ее не потому, что считает невозможным движение Земли, как это делали последующие поколения астрономов, а из-за неувязки, описанной так:

«[...] [Аристарх Самосский] полагает, что Земля обращается вокруг Солнца по окружности круга, расположенной посредине между Солнцем и неподвижными звездами, а сфера неподвижных звезд имеет тот же центр, что и у Солнца, и так велика, что круг, по которому, как он предположил, обращается Земля, так же относится к расстоянию неподвижных звезд, как центр сферы к ее поверхности. Но хорошо известно, что это невозможно: так как центр сферы не имеет никакой величины, то нельзя предполагать, чтобы он имел какое-нибудь отношение к поверхности сферы».

Несмотря на то что Архимед легко заметил логическое несоответствие в приравнивании точки к поверхности, в данном случае он прячется за аргументацией ad logicam, то есть просто прибегает к уловке. То, что фраза неправильно построена, не значит, что аргументация Аристарха ошибочна. Так или иначе, он сообщает Гелону, что числа, которыми он будет оперировать, превосходят даже число песчинок, которыми можно было бы заполнить всю Вселенную. Затем он делает предположение, что земная окружность составляет 300 мириад стадиев, и напоминает: Земля больше Луны и меньше Солнца. Одна мириада — это 10000. Тем не менее сопоставление стадия с мерами длины нынешней Международной системы представляет собой некоторую проблему: в древности стадий не был неизменной единицей длины, он был разным. В любом случае здесь важна не точность измерения Земли, а стремление Архимеда показать, что он может записать любое число. В этой работе он рассуждает также о соотношении диаметров Солнца, Земли и Луны. Как раз здесь он упоминает своего отца:

«Таким образом, диаметр Солнца в 30 раз больше диаметра Луны и не более того, хотя среди прежних астрономов Евдосий считал, что он больше в 9 раз, мой отец Фидий — что в 2 раза, а Аристарх пытался доказать, что диаметр Солнца более чем в 18 раз больше диаметра Луны, но менее чем в 20».

Хотя можно отметить, что тема измерения небесных тел всегда была интересна астрономам, Архимед касается ее только походя, чтобы детально описать изготовление диоптра — инструмента, который греческие астрономы использовали для замеров положения звезд. Он вскоре заканчивает рассуждения о размерах, чтобы перейти к своей новаторской числовой системе. Что касается последней, по-видимому, до нас не дошел труд, о котором он пишет:

«Но я полагаю, что было бы полезным также поговорить о названиях чисел — среди прочего, чтобы не пропало то, что я написал в книге, посвященной Зевксиппу, поскольку по этому вопросу раньше никто ничего не говорил. На самом деле получается, что известные наименования чисел доходят до нескольких мириад. Здесь же называются числа до мириад мириад».

В итоге Архимед вводит последовательные возрастающие порядки чисел, замечая, что так можно обозначить любое число. Описав числовую систему, он выполняет ряд оценочных расчетов: например, он предполагает, что в одном маковом зернышке умещаются 10 000 песчинок. В конце концов он доходит до числа песчинок, которым можно было бы заполнить Вселенную. В нашей системе записи это было бы 1063, то есть единица и после нее 63 нуля.

 

Октады Архимеда

Предложенная Архимедом в «Исчислении песчинок» числовая система известна как система октад, и в свое время у нее был большой потенциал, хотя она и осталась неизвестна большинству математиков. Вплоть до эпохи Архимеда использовались следующие термины: единица, десяток, сотня, тысяча и мириада (10000). Он же предложил пойти дальше мириады. Дойдя до конца цифр, он решил разбить их на восемь разрядов — вышеперечисленные цифры и их произведения.

Архимед Математическая запись Название
Единица 1 = 10 0 Один
Десяток 10 = 10 1 Десять
Сотня 100 = 10 2 Сто
Тысяча 1000 = 10 3 Тысяча
Мириада (единица мириад) 10000 = 10 4 Десять тысяч
Десяток мириад 10-10000 = 10 5 Сто тысяч
Сотня мириад 100-10 000 = 10 6 Миллион
Тысяча мириад 1000-10 000 = 10 7 Десять миллионов
Мириада мириад 10000-10000 = 10 8 Сто миллионов

Таким образом, мы имеем систему, основой которой является 108 — число, именуемое октадой. Каждый раз при превышении этого цикла число переходит из одного разряда в другой со следующими названиями.

От 1 до 10 8 - 1 «Первые числа», первое число этого разряда — 1
От 10 8 до 10 16 -1 «Вторые числа», первое число этого разряда —10 8
От 10 16 до 10 24 - 1 «Третьи числа», первое число этого разряда —10 16
и так далее  

Следовательно, мы можем дойти до 108 в степени 108, и все это — числа «первого периода». Дальше счет может перейти ко второму периоду, третьему периоду и так далее. Наибольшее число, которое называет Архимед, это «мириадно мириадный» период, то есть

или же единица с 80 трлн нулей (80000 1012) ... Действительно невероятное число!

В заключении «Исчисления песчинок» Архимед приходит к утверждению, что во Вселенной может поместиться 1000 мириад восьмых чисел (1056) песчинок. Это значит, что число песчинок, которыми можно заполнить Вселенную, составляет 103 • 104 • 1056 = 1063.

Сегодня такие величины в некоторых областях науки и технологии обычны. Во Вселенной, например, содержатся 1082 протонов, а самое большое из имеющих название число — это гугол, то есть 10100 (1 и сотня нулей). Термин гугол придумал в 1938 году Милтон Сиротта, девятилетний внук американского математика Эдварда Казнера. Любопытный факт: название поисковой системы Google произошло как раз от английского написания слова «гугол» (googol). А в Калифорнии штаб-квартира Google называется Googleplex, что напоминает о гуголплексе — термине, который Казнер использовал для числа 10googol, то есть 10 в степени, которая выражается единицей со 100 нулями.