В предыдущей главе мы рассказали о величайших математических творениях за всю историю математики. Сегодня эту науку двигают вперед преимущественно профессионалы, но не исключительно они. Творить математику означает не только создавать великие теоремы, которые войдут в историю, но и ставить задачи, объяснять явления с математической точки зрения, разрабатывать практические методы, позволяющие применять математику в реальной жизни, использовать технологии для развития математики, поиска математических решений и, что самое важное, понимать, когда математический ответ на заданный вопрос является необходимым и достаточным. Творить математику способны многие. Возможно, выводы, к которым они придут, не будут чем-то новым для профессиональных математиков, однако труд любителей и профессионалов по сути ничем не отличается.

В этой главе мы расскажем о математическом творчестве в самых разных областях, большинство из которых далеки от академической среды. Приведенные нами примеры — результат того, что кто-то задал новые вопросы, попытался найти иное решение, придать новое значение уже известным понятиям и применить уже известные идеи в новом контексте. Творчество — это жизнь. Если мы задаемся вопросами из области математики, то мы творим математику.

С чего начать? В чем секрет математического творчества? Поиски ответов на эти вопросы можно начать в повседневной жизни. Мы рассмотрим некоторые явления, с которыми сталкиваются все, но лишь немногие подошли к ним с математической точки зрения. Далее мы отойдем от реальности и в итоге окажемся в чисто математическом мире.

Для того чтобы рассмотреть интересующее нас явление, объект или процесс с точки зрения математики, нужно задать объективные вопросы, ответы на которые будут определяться не нашими предпочтениями, вкусами или соображениями удобства, а требованиями четкости и измеримости. Так будет сделан первый выбор, касающийся точки зрения, которую следует принять.

Каждый день перед зеркалом

Первое, что мы делаем после пробуждения утром, — это идем в ванную, чтобы привести себя в порядок. Мы смотримся в зеркало, когда умываемся, бреемся, накладываем макияж, стрижемся. Мы смотримся в зеркало каждый день. Чего мы хотим от него? Совсем немногого: мы всего лишь хотим увидеть в нем свое лицо полностью. После завтрака и перед тем, как закрыть за собой дверь и отправиться по делам, мы мельком смотрим в зеркало, чтобы проверить, все ли в порядке. Чего мы хотим от зеркала на этот раз? Чтобы мы отразились в нем в полный рост.

Сколько раз мы совершали эти действия и сколько раз мы задавались вопросом, какие размеры должно иметь зеркало, чтобы в нем полностью отразилось наше лицо или мы сами в полный рост? Мы задаемся этим вопросом крайне редко, если вообще когда-нибудь думаем об этом. Представьте, что вы стоите перед зеркалом, в котором вы отражаетесь в полный рост. Какой должна быть минимальная высота такого зеркала? Начнем с того, что изобразим эту ситуацию на схеме с помощью точек и отрезков:

Схема показывает, какими должны быть минимальные размеры зеркала. Нужно определить, каким должно быть отношение размеров отражающей поверхности и отражающегося в ней лица. Для этого сделаем схему еще более условной: проведем вспомогательные линии, которые помогут решить задачу, и обозначим основные точки буквами:

Так как отражение R'S' симметрично исходному отрезку RS, и изображение в зеркале расположено на том же расстоянии от зеркала, что и оригинал, но по другую его сторону, получим RX = XR'. Кроме того, RX = RR'/2.

Помимо этого, треугольники OAY и OR'О' подобны, так как два их угла равны. Аналогично для треугольников OYB и OO'S'. Так как RX = RR'/2, коэффициент подобия этих треугольников равен 2, поэтому AY = R'O'/2 = RO/2, а также YB = O'S'/2 = OS/2.

Иными словами, АВ = AY + YB = RO/2 + OS/2 = (RO + OS)/2 = RS/2, так что высота зеркала должна быть равной минимум половине высоты лица. Высота, на которой следует повесить зеркало, равна BZ = YZ/2, то есть половине расстояния от глаз до подбородка. Аналогично, высота зеркала, в котором мы будем отражаться полностью, должна быть равна половине нашего роста, и такое зеркало следует повесить на высоте, равной половине расстояния от глаз до пола.

Взгляд в сторону горизонта

Выйдя из дома, некоторые из нас имеют счастливую возможность пойти на пляж и насладиться видом горизонта, глядя вдаль, на самый край земли, покуда хватает глаз. Кто-нибудь хоть раз, глядя на горизонт, думал о математике? Как правило, любуясь рассветом или закатом, мы задаемся другими вопросами: мы размышляем о прошлом и будущем, о красоте природы, о рыбаках, которые возвращаются из моря с дневным уловом, о том, что скрывается за линией горизонта, куда неожиданно быстро опускается горящее солнце, озаряющее наши жизни…

Но если мы посмотрим на горизонт взглядом математика, у нас возникнут совсем другие вопросы. Мы заметим, что когда мы наклоняемся, горизонт приближается, когда мы поднимаемся — горизонт отдаляется. Если мы сделаем полный оборот вокруг себя, то увидим, что горизонт круглый, поэтому мореходы в древности считали, что Земля круглая: в море, далеко от берега, они видели вокруг себя лишь круглый горизонт. Какое расстояние отделяет нас от горизонта? Каков его радиус? Какое расстояние отделяет нас от судна, которое виднеется на горизонте?

Это первый шаг, который нужно сделать на пути к математическому творчеству: нужно задаться вопросами о мире, где мы живем, о том, что мы видим или делаем, и ответы на эти вопросы должны выходить за рамки субъективного и стремиться к чему-то объективному. По сути, нужно взглянуть на мир с научной точки зрения.

* * *

ТЕОРЕМА ПИФАГОРА

Треугольник abc прямоугольный <=>  с 2 = а 2 + Ь 2 .

Это самая известная математическая теорема, которая ежедневно доказывается во множестве школ по всему миру. Однако доказательство, которое обычно приводится в учебниках, принадлежит не Евклиду (доказательство Евклида приведено в предложении 47 книги I «Начал»), а основано на разбиении квадрата на несколько фигур подобно головоломке.

В теореме Пифагора упоминаются площади, однако она традиционно используется для вычисления длин. Всегда доказывается прямая теорема (=>), обратная (<=) теорема не доказывается никогда, однако порой она также находит применение. В «Началах» обратная теорема приведена в следующем, 48-м предложении книги I.

* * *

С точки зрения математики Земля представляет собой сферу радиусом около 6370 километров. Горизонт — это наиболее удаленная часть поверхности планеты, видимая глазом. Создадим геометрическую модель этой ситуации. В ней горизонт определяется положением касательной к окружности.

Пусть Н(х) — расстояние до видимого горизонта, х — наш рост (точнее, расстояние от поверхности земли до уровня глаз), R — радиус Земли. Получим прямо угольный треугольник, для которого можно применить теорему Пифагора:

Горизонт, видимый человеком при х = 1,7 м, находится от него расстоянии Н = 4653,8 м (R = 6370 км).

Можно ли считать решение этой задачи математическим творчеством?

Создали ли мы что-то новое в математике? Мы применили известную теорему и получили формулу, которой ранее не существовало. Это первый, но не единственный и далеко не самый важный итог математического творчества, связанный с горизонтом. Суть творчества в данном случае описывается вопросом: сколько раз мы смотрели на горизонт и не задумывались о том, какое расстояние отделяет нас от него?

На втором плане находится созданная нами геометрическая модель, позволяющая применить математическую теорему. Только при взгляде на ситуацию с математической точки зрения мы представляем Землю как сферу, луч света — как прямую, наше тело — как кратчайшее продолжение радиуса сферы. Кроме того, мы свели трехмерную реальность к модели на плоскости, а сферу — к окружности.

* * *

ВБЛИЗИ ГОРИЗОНТА

В одном из своих произведений писатель Эдуардо Галеано расположил на горизонте утопию:

« Для чего нужна утопия? Она находится на горизонте. Если я подойду к горизонту на десять шагов, он отодвинется на десять шагов от меня. Для этого и нужен горизонт, — чтобы научиться ходить ».

С точки зрения математики эта цитата абсолютно верна, так как шаги откладываются на поверхности сферы:

* * *

Циклические узлы

В своей книге «Дух порядка. Исследование психологии декоративных искусств» австрийский историк искусства Эрнст Гомбрих описывает кельтские узлы. Их особенность заключается в том, что нить проходит через все выделенные точки на каждой стороне сетки с квадратными ячейками и возвращается в исходное положение.

Бесконечный узел — это узел, начало и конец которого совпадают:

Кельтские узлы не всегда являются бесконечными, или циклическими:

Возникает вопрос: почему одни узлы бесконечные, а другие — нет? Перед тем как начать поиск ответа, рассмотрим, как строятся такие узлы. Их основой является сетка с квадратными ячейками, на сторонах которых выбирается последовательность точек, через которые проходит нить узла:

За счет этого узлы можно описывать числом вершин на каждой из сторон сетки, через которые проходит нить узла. Первый из улов, представленных выше, — узел 3 x 2, второй — 3 x 3, последний — 6 x 4. Узел 3 x 2 располагается на сетке размером 6 х 4 и проходит через вершины 1–3–3 в горизонтальных рядах и через вершины 1–3 — в вертикальных рядах. Сетка 6 x 4 понимается как (1 + 2·2 + 1) х (1 + 2 + 1). Остальные узлы описываются аналогично. Узел 3 x 3 располагается на сетке 6 х 6 = (1 + 2·2 + 1) х (1 + 2·2 + 1), узел 6 x 4 — на сетке 12 х 8 = (1 + 2·5 + 1) х (1 + 2·3 +1).

Можно сказать, что ответ на вопрос, будет ли узел бесконечным, зависит от числа вершин, через которые проходит нить на каждой стороне сетки. Узел 3 х 2 является бесконечным, так как образован одной нитью. Узел 3 х 3 не является бесконечным, так как состоит из трех нитей. Узел 6 x 4 также не является бесконечным и состоит из двух нитей.

В чем же ключ к решению задачи? Нить смещается влево, вправо, вверх и вниз. Если бы мы не ограничивались одним прямоугольником, а продолжили узел дальше по вертикали и по горизонтали, то смогли бы понять суть проблемы. Рассмотрим узел (3 х 2):

Мы начинаем с точки 1, затем, сместившись на две единицы вправо, попадаем в 3, затем в 2 и наконец снова в 1. Получается числовая последовательность, которая циклически повторяется до бесконечности:

[1, 3, 2] = 1, 3, 2, 1, 3, 2, 1, 3, 2, 1…

На сетке размером (4 х 2) требуется два таких цикла:

В первом случае мы перепрыгиваем через две клетки. Полный цикл завершается после шести шагов, когда мы возвращаемся в исходную точку 1. Мы обошли все цифры 1, 2 и 3. Во втором случае для обхода всех цифр требуется два цикла:

Почему? Потому что 4 делится на 2. Если мы начинаем цикл в точке 1, то мы всегда будем проходить через точки 1 и 3 и никогда — через 2 и 4. Для этого потребуется новый цикл с началом в точке 2. В предыдущем случае цикл завершается после 6 = НОК (3, 2) этапов, и требуется всего один цикл, так как НОД (3, 2) = 1.

Это же происходит и в примере с сеткой 6 x 4, где НОД (6, 4) = 2 цикла, и на сетке 3 х 3, где число циклов равно 3 = НОД (3, 3). Подведем итог.

Теорема: На сетке размером ( m, n ) число циклов равно НОД ( m, n ).

Следствие 1: Если m и n — взаимно простые, то на сетке ( m, n ) имеется единственный бесконечный цикл.

Следствие 2: На сетке размером ( m, n ) число петель равняется 2 х ( m + n ).

Задача садовника: равносторонний треугольник как частный случай равнобедренного

При посадке деревьев в шахматном порядке саженцы располагаются в вершинах воображаемых равносторонних треугольников — это гарантирует, что все деревья будут располагаться друг от друга на одинаковом расстоянии:

Если математику дать задачу о построении подобной сетки с треугольными ячейками, он, скорее всего, начнет искать способ построения равносторонних треугольников, применимый на практике, и буквально со стопроцентной вероятностью предложит евклидово решение, приведенное в предложении 1 книги I «Начал».

Предложение 1 из «Начал» Евклида: построение равностороннего треугольника на данном отрезке  АВ .

Для этого построения нужно заменить циркуль веревкой, длина которой равна длине стороны искомого треугольника. Садовод должен обходить участок, проводя дуги окружностей и отмечая точки их пересечения.

Сначала он отметит точки на одной прямой, равноудаленные друг от друга:

Затем, использовав каждую из этих точек в качестве центра окружности, он проведет дуги, которые пересекутся в вершинах равносторонних треугольников:

В результате садовод определит, где нужно посадить деревья.

Так эту задачу решил бы математик. Однако, согласно Жиль-Альберу (1999), садоводы строят сетку из треугольных ячеек следующим образом:

«Посадка в шахматном порядке <…>. Чтобы определить, где следует сажать деревья, достаточно, чтобы один рабочий взял в руки рулетку и встал там, где нужно посадить первое дерево. Второй рабочий, взяв в руки конец рулетки, должен отойти на расстояние, равное желаемому расстоянию между деревьями (например, 5 м) и отмотать ленту длиной в два раза больше чем требуется (если деревья планируется посадить на расстоянии 5 м друг от друга, рабочий должен отмотать 10 м ленты рулетки). Третий рабочий должен взяться за середину ленты рулетки и отойти в сторону, натягивая ленту. Когда лента рулетки натянется полностью, третий рабочий окажется точно в том месте, где нужно посадить третье дерево».

Здесь равносторонний треугольник понимается как частный случай равнобедренного. Именно на этом примере можно оценить справедливость фразы: теоретическое решение практической задачи обычно является не лучшим практическим решением. Вот и в этом случае решение, предложенное профессиональным математиком, на практике не применяется. С математической точки зрения, напротив, практика не имеет значения. Не имеет значения и то, что в практическом решении равносторонний треугольник понимается иначе — для математика это не новость.

Тем не менее практически решил эту задачу не математик, а садовод. И практическое решение математической задачи — это результат математического творчества.

Задача лесничего: треть того, что мы видим, — вовсе не треть того, на что мы смотрим

При обрезке деревьев обычно удаляются ветви нижней его трети, и лесничему нужно на глаз определить эту часть дерева. Является ли треть того, что мы видим, третьей частью того, на что мы смотрим? Как правило, это не так:

Визуальное и реальное деление предмета на три части совпадают, только когда мы рассматриваем дугу окружности, находясь в ее центре. Как же лесничий решит задачу? Как визуально определить треть предмета, на который он смотрит?

Чаще всего точная высота дерева нам неизвестна. Если А 1 — угол зрения, под которым можно увидеть все дерево, а — уровень глаз, d — расстояние до основания дерева, то угол А 3 определяющий нижнюю треть дерева, вычисляется по формуле:

В чем заключается суть вопроса? В том, что видимая величина угла меняется в зависимости от точки, из которой мы смотрим на него. Видимая середина отрезка будет соответствовать его истинной середине только в том случае, если мы будем находиться на серединном перпендикуляре к этому отрезку:

При делении отрезка на три части подобная ситуация невозможна. Если бы она была возможна, то существовала бы точка X плоскости, такая, что при взгляде из нее трети Р 1 Р 2 , Р 2 Р 3  и P 3 P 4  отрезка Р 1 Р 4 были бы видны под одним и тем же углом (см. рисунок ниже). Следовательно, так как из точки X можно было бы увидеть под одним и тем же углом две половины P 1 P 3  точка X должна была бы располагаться на серединном перпендикуляре к отрезку P 1 P 3   (то есть на прямой, проходящей через Р 2 и перпендикулярной P 1 P 3 ). Это же было бы справедливо для серединного перпендикуляра к отрезку Р 2 Р 4 (прямой, проходящей через Р 3 и перпендикулярной Р 2 Р 4 ). Таким образом, точка X должна была бы располагаться одновременно на двух серединных перпендикулярах, которые параллельны между собой, так как они перпендикулярны одному и тому же отрезку P 1 P 4 , что невозможно:

За исключением случая, когда мы смотрим на дугу окружности, находясь в ее центре, треть того, что мы видим, — вовсе не треть того, на что мы смотрим.

Предупреждение для бухгалтера: округленная сумма значений не равна сумме округленных значений

Округление чисел выполняется по следующим правилам: если последний знак десятичной записи числа меньше 5, этот знак заменяется на 0, если же последний знак больше 5, то предыдущий знак увеличивается на единицу:

2,34 ~= 2,3;

2,37 ~= 2,4.

Ошибки округления в одну десятую, сотую или тысячную при работе с большими числами могут быть значительными. Если ошибка в одну сотую евро повторится на 300 миллионах счетов, общее расхождение составит 3 миллиона евро. В бухгалтерском учете подобное недопустимо. При составлении балансов даже сотые доли евро могут повлиять на итоговое значение округленной величины:

Имеем теорему:

Округленная сумма значений не равна сумме округленных значений.

Это утверждение можно подтвердить с помощью следующих таблиц:

Обратите внимание, с какой частотой в таблицах фигурируют числа 0, 1 и 2:

Почему мы не можем определить операцию округления так, чтобы 0, 1 и 2 распределялись более равномерно? Например, так, чтобы каждое из этих чисел фигурировало в таблице примерно в 33,3 % случаев. Эта ситуация представлена ниже: 0, 1 и 2 в таблице встречаются 33, 34 и 33 раза соответственно:

Расставляем продукты в холодильнике

Расположение продуктов в европейских холодильниках можно оптимизировать благодаря стандарту упаковок Gastronorm EN 631. Все упаковки, разработанные в соответствии с этим стандартом, имеют прямоугольную форму и обозначаются числовым кодом, указывающим соотношение размеров упаковки. Перечень кодов представлен ниже:

2/1 2/3 2/4 2/8 и 1/1 1/2 1/3 1/4 1/6 1/9.

Базовая упаковка обозначается кодом 1/1 и имеет размеры 530 х 265 мм.

Остальные упаковки получаются из базовой так, как показано на иллюстрации.

Таким образом, обозначение каждой упаковки выражает отношение ее размера и размера базовой упаковки 1/1:

2/1 = удвоенная упаковка 1/1;

2/4 = четверть 2/1 = половина 1/1;

2/8 = восьмая часть 2/1 = четверть 1/1;

2/3 = две трети 1/1;

1/2 = половина 1/1;

1/3 = треть 1/1;

1/4 = четверть 1/1;

1/6 = половина 1/3;

1/9 = треть 1/3.

Все эти равенства верны с точки зрения математики:

Следовательно, коды стандарта Gastronorm, по сути, представляют собой дроби, четко указывающие соотношение размеров упаковок. Чтобы узнать, скольким упаковкам формата 1/6 равна упаковка формата 2/3, достаточно выполнить деление:

Система Gastronorm подобна игре в тетрис и позволяет заранее рассчитать оптимальное расположение упаковок, например, на полке холодильника, при этом упаковки будут располагаться рядом друг с другом, подобно элементам головоломки.

Бесконечная книга и двумерный диск

Многие писатели прошлого и современности очень четко передают математические идеи, объясняют их и сопровождают примерами, что помогает лучше усвоить многие понятия и взглянуть на них по-новому. Чтобы проиллюстрировать это, обратим внимание на два рассказа: один из них принадлежит перу Хорхе Луиса Борхеса, второй — Итало Кальвино.

Большая часть творчества Борхеса посвящена парадоксальным ситуациям и объектам, которые тем не менее настолько логичны, что кажутся реальными: это пустыня, подобная лабиринту, где нет ни дверей, ни проходов, здание библиотеки невероятно сложной планировки и т. д. Описания подобных объектов в произведениях Борхеса содержат отсылки к математическим идеям.

В «Книге песка» этот аргентинский писатель говорит о книге с бесконечным числом страниц, при этом нельзя определить, какая из страниц книги первая, какая — последняя. Можно сказать, что бесконечность, описываемая Борхесом, является потенциальной и счетной, так как все страницы книги пронумерованы натуральными числами. Страниц в книге так много, что ее невозможно открыть еще раз на только что прочитанной странице, — именно так писатель проводит различие между конечным и бесконечным:

«Я наугад раскрыл книгу… Я обратил внимание, что на четной странице стояло число, скажем, 40514, а на следующей, нечетной, — 999. Я перевернул ее — число было восьмизначным. На этой странице была маленькая, как в словарях, картинка: якорь, нарисованный пером, словно неловкой детской рукою.

И тогда незнакомец сказал:

— Рассмотрите хорошенько, вам больше никогда ее не увидеть.

В словах, а не в тоне, звучало предостережение.

Я заметил страницу и захлопнул книгу. И тут же открыл ее. Напрасно я искал, страница за страницей, изображение якоря…

<…>

— …Ее владелец не умел читать… Он объяснил мне, что его книга называется Книгой Песка, потому что она, как и песок, без начала и конца».

Если бы книга была конечной, то как бы много страниц в ней ни было (например, N), вероятность снова открыть ее на определенной странице была бы небольшой, но не нулевой. В бесконечной книге эта вероятность равна нулю:

Страницы «Книги песка» вполне могли быть пронумерованы натуральными числами: 1, 2, 3, … При такой нумерации книгу нельзя было бы открыть на последней странице, но можно было бы открыть на первой, однако в рассказе говорится, что у книги нет ни начала, ни конца. В попытках найти начало или конец книги герою все время попадались новые и новые страницы:

«Он попросил меня найти первую страницу. Я положил левую руку на титульный лист и плотно сомкнутыми пальцами попытался раскрыть книгу.

Ничего не выходило, между рукой и титульным листом всякий раз оказывалось несколько страниц. Казалось, они вырастали из книги.

— Теперь найдите конец.

Опять неудача; я едва смог пробормотать:

— Этого не может быть.

<…>

— Не может быть, но так есть. Число страниц в этой книге бесконечно.

Первой страницы нет, нет и последней. Не знаю, почему они пронумерованы так произвольно. Возможно, чтобы дать представление о том, что члены бесконечного ряда могут иметь любой номер. <…> Если пространство бесконечно, мы пребываем в какой-то точке пространства. Если время бесконечно, мы пребываем в какой-то точке времени».

Так как в книге нет первой страницы, наша гипотеза о натуральных числах ошибочна. На каком множестве чисел отсутствует первый элемент? На множестве положительных рациональных чисел, то есть на множестве конечных или периодических десятичных дробей. Это множество не только бесконечное и счетное (его элементы можно сосчитать), но на нем также нет первого и последнего числа, ведь первого положительного рационального числа после нуля не существует. Если бы это число, назовем его А, существовало, то мы всегда могли бы разделить его пополам и получить A/2 — положительное рациональное число, меньшее А:

0 < А/2 < A

Первым рациональным числом должно быть A/2. Но это вновь неверно, так как A/4 еще меньше, А/8 — еще меньше. Таким образом, между данным рациональным числом (обозначающим первую страницу «Книги песка») и нулем (обозначающим обложку книги) может уместиться бесконечно много рациональных чисел (страниц книги). Мы можем пронумеровать страницы книги рациональными числами, заключенными между 0 и 1. Но у нее не будет ни первой страницы, ни последней.

Что хотел сказать Борхес, когда написал, что мы находимся в одной из точек бесконечного пространства и времени? Возможно, что мы не можем увидеть его концов или пределов. Если бы пространство и время были конечными, можно было бы вести речь о половинах, третях, соотношениях и расстояниях от концов, но если пространство и время бесконечны, эти рассуждения теряют смысл.

То, что Борхес четко представлял себе бесконечность и ее связь с различными измерениями пространства, становится очевидным уже в начале рассказа: «Линия состоит из множества точек, плоскость — из бесконечного множества линий; книга — из бесконечного множества плоскостей; сверхкнига — из бесконечного множества книг…»

* * *

ХОРХЕ ЛУИС БОРХЕС (1899–1986)

Хорхе Луис Борхес — один из самых выдающихся писателей XX века. Его произведения сложно привязать к какому-то конкретному жанру: их в равной степени можно отнести к рассказам, эссе, поэзии и фантастике. Фантазия Борхеса не лишена логики. В его рассказах содержатся прекрасные и доступные описания научных и математических идей, понятные широкой публике. К подобным произведениям относятся «Вавилонская библиотека», «Фунес памятливый», «Аналитический язык Джона Уилкинса» и «Сад расходящихся тропок». Некоторые считают, что в последней Борхес предвосхитил некоторые открытия квантовой механики.

На реверсе аргентинской монеты достоинством в 2 песо, выпущенной в 1999 году в честь столетия со дня рождения Хорхе Луиса Борхеса , изображен лабиринт, упоминаемый во многих произведениях писателя.

* * *

В еще одном его произведении главную роль играют не числа, а измерения.

«Диск» — это короткий рассказ, в котором алчный дровосек убивает зашедшего к нему путника, после чего много лет ищет оброненный его жертвой магический диск — диск Одина, у которого всего одна сторона:

«— Я иду путями изгнанника, но я король, ибо у меня есть диск. Показать тебе его?

Он разжал костлявый кулак. В нем ничего не было. Ладонь была пуста.

Только сейчас я вспомнил, что до этого он не разжимал его ни разу.

Пристально глядя на меня, он сказал:

— Можешь коснуться.

С некоторой опаской я дотронулся кончиками пальцев до его ладони.

Я почувствовал холод и увидел, как что-то сверкнуло. В то же мгновение его пальцы сомкнулись. Я ждал. Незнакомец продолжал, как если бы он говорил с ребенком:

— Это диск Одина. У него есть только обратная сторона. Подобного ему нет на всей земле. Пока я владею им, я король.

— Он из золота? — спросил я.

— Не знаю. Это диск Одина. И у него одна-единственная сторона».

У трехмерного диска три стороны. Две из них имеют форму круга, третья — это полоса, их соединяющая, которую мы можем развернуть в виде прямоугольника.

Двумерные предметы не имеют толщины. Математическое творение Борхеса состоит в том, что он доказал, что у диска Одина нет толщины, так как у него нет одной из боковых сторон. Дровосек никак не может найти диск, потому что он, скорее всего, упал невидимой гранью вверх.

Улицы Доротеи

Отсылки к математике содержатся и во многих произведениях Итало Кальвино:

«Космикомические истории», «Раздвоенный виконт», «Незримые города». Так, его совершенно нематематический роман «Незримые города» содержит множество связей с различными математическими идеями. На страницах романа Марко Поло описывает города своей империи Кубла-хану. Каждый город носит женское имя, и мы выбрали в качестве примера фразу из описания города Доротея:

«О городе Доротее можно повествовать двояко: либо рассказывая о том, что над ее стенами вздымаются четыре башни, а к семи воротам ведут подъемные мосты, переброшенные через ров; четыре канала с водой зеленого цвета пересекают город и делят его на девять кварталов, в каждом из которых находится по триста домов и семьсот дымоходов…»

При описании архитектурных элементов города Кальвино использует конкретные величины: четыре башни, семь ворот, четыре канала с водой зеленого цвета, девять кварталов, 300 домов и 700 дымоходов. Неизбежно возникает желание провести некоторые расчеты. Так, всего в Доротее 9·300 = 2700 домов и 9·700 = 6300 дымоходов, что означает, что во многих домах больше двух дымоходов.

Не будем сосредотачивать внимание на этих вычислениях, а обратимся к топологическому аспекту описания, которое гласит, что «четыре канала с водой зеленого цвета пересекают город и делят его на девять кварталов».

Допустим, что каналы имеют форму прямых линий. Существует множество способов разделить город на девять кварталов четырьмя каналами. Можно проложить каналы так, что город окажется разделенным на одиннадцать кварталов, как показано на следующих рисунках:

Возникает вопрос: каково максимальное число кварталов, на которые можно разделить город прямыми улицами или каналами? Иными словами, каково максимальное число областей, на которое можно разделить часть плоскости n отрезками?

Чтобы ответить на этот вопрос, обратим внимание, что одна улица делит город всего на два района, а максимальное число районов образуется тогда, когда новая прямолинейная улица пересекает все существующие районы:

При прокладке первой улицы образуется один новый район, при прокладке второй улицы — два, третьей — три и т. д. Таким образом, при прокладке n-й улицы образуется n новых районов. Следовательно,

Иными словами, максимальное число районов В(n) равно сумме n и числа районов, полученных на предыдущем этапе, В(n — 1):

При подобном расположении улиц город будет выглядеть примерно так:

Образующаяся кривая — так называемая эвольвента В(n) для n —>  кривая — гипербола, которая описывается уравнением:

х2  + у2 + 2ху — 4у = 0.

Если же улицы необязательно должны быть прямыми, то максимально возможное число районов будет равно В(n) = 2n. На следующем рисунке изображен план города, который делится шестью улицами на 64 района:

Порядок среди хаоса: теорема  Вариньона

Теорема Вариньона — это знаменитая теорема планиметрии, описывающая удивительный феномен. В классификации Дьёрдя Пойа это задача на доказательство.

Эта теорема иллюстрирует два важных принципа: во-первых, доказательство, которое не объясняет явление, не является достаточным, во-вторых, цель творческого подхода в математике заключается в том, чтобы понять явление, а для этого необходимо всестороннее доказательство. Иными словами, иногда «доказать» не означает «объяснить».

Выберем четыре произвольные точки плоскости Р, Q, R, S и соединим их отрезками, образуя четырехугольник. Обозначим середины его сторон точками А, В, С, D. Соединим эти точки так, чтобы получился второй четырехугольник внутри первого. Замечаете ли вы нечто особенное?

Повторите построение для других исходных точек, и вы увидите то же самое.

Перед нами — необычная ситуация. Кажется, что геометрия не подчиняется здравому смыслу. Какую бы форму ни имел исходный четырехугольник, для него всегда будет выполняться утверждение:

четырехугольник, вершины которого совпадают с серединами сторон произвольного четырехугольника, является параллелограммом.

Мы обнаружили порядок среди хаоса. Первое, что нужно сделать в подобных ситуациях — постараться объяснить увиденное. Быть может, доказательство поможет нам найти такое объяснение, а может быть, и нет. Рассмотрим векторный и алгебраический подход к этой теореме. Нужно доказать, что точки А, В, С и D, которые являются серединами сторон произвольного четырехугольника PQRS, определяют параллелограмм. Иными словами, нужно доказать, что векторы АВ → и DC → равны, то есть их можно разложить на одинаковые составляющие. Пусть исходные точки имеют следующие координаты: P(p 1 , р 2 ), Q(q 1 , q 2 ), R(r 1 , r 2 ) и S(s 1 , s 2 ). Найдем координаты первого из рассматриваемых векторов и покажем, что они равны координатам второго вектора:

Теорема доказана. Объясняет ли это доказательство суть увиденного нами? Нет. Перед нами пример того, как логика доказывает, но не объясняет. В данном случае логика не объясняет, потому что из доказательства мы не можем понять, почему ситуация складывается именно так, а не иначе. Вернемся в начало доказательства и обратим внимание на часть исходной фигуры:

Возможно, в этом контексте она покажется вам знакомой. Проведем вспомогательную линию — единственно возможную для завершения рисунка:

Результат построения — треугольники APD и QPS. Так как точки А и D — середины сторон PQ и PS соответственно, то отрезок AD параллелен QS, а его длина в два раза меньше длины QS. Последнее утверждение известно как теорема о средней линии — она заслуживает отдельного упоминания, так как не столь очевидна, как может показаться.

Проведя аналогичные рассуждения для вершины R исходной фигуры, получим, что отрезок ВС параллелен QS. Так как AD и ВС параллельны QS, они параллельны между собой, а четырехугольников CD — параллелограмм.

Несомненно, только в геометрическом контексте теорема наполняется смыслом, а объяснить ситуацию помогает доказательство, в котором используется теорема Фалеса.

Однако, подобно творцам от математики, не следует останавливаться на этом.

Пауль Матуссек, которого мы цитировали в первой главе, говорил, что творческий ум работает постоянно. Так, прямым следствием этой теоремы является то, что стороны параллелограмма ABCD параллельны диагоналям четырехугольника PQRS. Можно задать и другие вопросы: что произойдет, если мы будем делить стороны исходного четырехугольника не пополам, а на три, четыре и более частей?

Здесь в игру вступают компьютерные программы для рисования и обработки геометрических фигур, которые позволяют наглядно представить ситуацию и могут навести на новые вопросы. Рисунки ниже были сделаны с помощью программы, позволяющей произвольно перемещать вершины исходного четырехугольника. При этом возникают весьма необычные четырехугольники и параллелограммы:

Нельзя избавиться от ощущения, что некоторые из этих фигур представляют собой изображения трехмерных многогранников на плоскости. Теорема Вариньона покидает пределы плоскости и выходит в пространство. Современные технологии помогли нам сломать незримые границы, поставленные исходной формулировкой задачи. Как следствие, возникли новые вопросы: верна ли теорема Вариньона, если стороны исходного четырехугольника пересекаются? А если одна из вершин четырехугольника совпадает с какой-либо из остальных и таким образом четырехугольник превращается в треугольник? Какими свойствами будет обладать этот треугольник и каким будет соотношение между ним и параллелограммом внутри него? При каких условиях теорема будет выполняться в пространстве, если мы заменим четырехугольник многогранником, а параллелограмм — параллелепипедом?

Степени двойки нельзя представить как сумму последовательных натуральных чисел

2000 год был объявлен Международным годом математики. В мире прошли многочисленные конгрессы, а в научных и учебных центрах состоялись различные мероприятия, посвященные математике. Эта дата навела автора на новый вопрос:

можно ли представить число 2000 в виде суммы последовательных натуральных чисел?

Так появилась теорема о числах, которая ранее не была известна автору этой книги и его коллегам. Год публикации первого издания этой книги — 2010. Это число достаточно круглое, чтобы можно было вновь задаться вопросом:

можно ли представить число 2010 в виде суммы последовательных натуральных чисел?

Оно не является суммой двух последовательных натуральных чисел:

2010 = 1005 +1005 = 1004 +1006.

Однако его можно представить как сумму трех или четырех последовательных чисел:

2010 = 669 + 670 + 671.

2010 = 501 + 502 + 503 + 504.

Можно ли представить любое натуральное число в виде суммы последовательных натуральных чисел? Очевидно, что всякое натуральное число можно представить как сумму одного последовательного числа — самого себя. Запишем сумму k последовательных натуральных чисел:

(n + 1) + (n + 2) +… + (n + k) = k·n + (1 + 2 + … + k).

Сумма чисел в скобках рассчитывается по формуле из предыдущей главы:

В нашем случае:

С одной стороны, если k — четное, то 2n + k также будет четным, а 2n + k + 1 будет нечетным. С другой стороны, если k — нечетное, то k + 1 четное, и 2n + k + 1 также будет четным.

В любом случае один из множителей в знаменателе будет нечетным.

Следовательно, сумма последовательных чисел имеет как минимум один нечетный делитель. Это означает, что в виде суммы последовательных натуральных чисел можно представить только числа, имеющие нечетный делитель. Так как у чисел, являющихся степенями 2, нет нечетных делителей, имеем следующую теорему:

только числа, которые являются степенями 2, нельзя представить как сумму последовательных натуральных чисел.

Приведя подобные слагаемые в суммах последовательных чисел, увидим, откуда появляется этот нечетный множитель:

Если число слагаемых n нечетное, этим нечетным множителем будет n, если же число слагаемых n четное, то этим нечетным множителем будет 2n + 1. В любом случае один из сомножителей будет нечетным.

* * *

КАРЛ ФРИДРИХ ГАУСС (1777–1855)

Этот немецкий математик, который родился в Брауншвейге и умер в Гёттингене, был вундеркиндом. Он получил хорошее образование благодаря не отцу, а матери. Гаусс никак не мог решить, что ему следует изучать — философию или математику. В начале весны 1796 года он сделал выбор в пользу математики, и наука весьма благодарна ему за это, так как Гаусс в итоге стал одним из величайших математиков всех времен. Несомненно, на его решение повлиял тот факт, что в тот самый весенний день ему удалось построить с помощью циркуля и линейки правильный 17-угольник. Как математик Гаусс совершил много важных открытий, но этим успехом он гордился больше всего — настолько, что попросил высечь этот многоугольник на своем надгробии, на что мастер возразил, что высечь эту фигуру будет очень сложно и ее будет почти невозможно отличить от окружности.

Портрет Гаусса .

Этот немецкий математик доказал, что правильный 17-угольник можно построить с помощью циркуля и линейки.