Итак, допустим существование неделимых отрезков пространства и интервалов времени. Рассмотрим следующую схему, на которой каждая клетка таблицы представляет неделимый блок пространства. Имеется три ряда объектов А, В и С, занимающих по три блока пространства, причем первый ряд остается неподвижным, а ряды В и С начинают одновременное движение в направлении, указанном стрелками:

Ряд С, утверждает Зенон, за неделимым момент времени прошел одно неделимое место неподвижного ряда А (место А1). Однако за то же самое время ряд С прошел два места ряда В (блоки В2 и В3). Согласно Зенону, это противоречиво, т. к. должен был встретиться момент прохождения блока В2, изображенный на следующей схеме:

Но где в это промежуточное положение находился ряд А? Для него просто не остается соответствующего места. Остается либо признать, что движения нет, либо согласиться с тем, что ряд А делим не на три, а на большее количество мест. Но в последнем случае мы вновь возвращаемся к допущению о бесконечной делимости пространства и времени, снова попадая в тупик апорий Дихотомия и Ахилл. При любом исходе движение оказывается невозможным. Известный английский физик-космолог и философ Дж. Уитроу следующим образом прокомментировал сложившуюся ситуацию:

Апория Стадий, “несмотря на все ее остроумие, решается довольно просто, т. к., если пространство и время состоят из дискретных единиц, в этом случае относительные движения должны быть таковы, что переходы типа 0 → 1 – АА могут случаться в последующие моменты. Отрицание Зеноном этой возможности основывается не на логическом законе, а просто на ошибочной апелляции к “здравому смыслу”, т. к. в действительности он молчаливо предполагает постулат непрерывности, который несовместим с гипотезой, принятой в начале рассуждения. Как это ни странно, но если мы примем такие гипотезы, то движение будет представлять собой прерывную последовательность различных конфигураций, как в кинофильме, и ни в какой момент времени не будут существовать промежуточные конфигурации. Переход электрона с одной орбиты на другую рассматривается в элементарной теории атома Бора именно как переход такого типа” .

Мы считаем, что сказанное Уитроу верно. Промежуточное положение (0/1) с логической точки зрения вовсе не обязано наличествовать в какой-то момент времени, поскольку предположение о его отсутствии непротиворечиво . Другой вопрос, что наши привычные представления о движении, опирающиеся интуицию непрерывности, оказываются неадекватными в дискретном случае. В этом отличие дискретной ситуации от ситуации с бесконечной делимостью пространственных и временных интервалов. Утверждение, что ряд ½1, ½2, ½3,…, ½n завершится, логически противоречиво, если n не ограничено. Аналогичным образом, необычная вычислительная машина Германа Вейля никогда не сможет завершить вычисления в какой-то момент времени из-за неограниченного числа шагов процесса пересчета множества натуральных чисел. Можно, используя понятие предела, просуммировать упомянутый ряд и получить единицу, или, вводя трансфинитные числа, допустить выполнение в ходе вычислений количества шагов, равного первому бесконечному числу ω. Такие построения уже будут непротиворечивыми. Но они обладают существенным, на наш взгляд, изъяном.

Осмысливая принципы, лежащие в основе теории множеств (которая может, как известно, рассматриваться в качестве фундамента современной математики), Дж. Р. Шенфилд указывает на “следующий фундаментальный вопрос: если дана совокупность S шагов, то существует ли шаг, следующий за каждым шагом из S?” Рассматривая случаи, когда S состоит из единственного шага или из бесконечной последовательности шагов Sn, Si,…, он отвечает на поставленный вопрос утвердительно: “В первых двух случаях мы отчетливо можем представить себе ситуацию, когда все шаги из S уже осуществлены” . Применим эти рассуждения к апории Ахилл. Ряд ½1, ½2, ½3,…, ½n,… не может быть завершен, т. к. у него отсутствует последний элемент. Но представим себе, что Ахилл уже побывал в каждой из точек, которая следует за всеми точками бесконечного ряда и является концом пути. Движение, таким образом, завершено. Проблема, однако, в том и заключается, каким образом получилось так, что Ахилл побывал во всех точках не имеющего конца ряда ½1, ½2, ½3,…, ½n,…? Если уже “дано”, то и говорить не о чем – апория разрешается, фактически, путем постулирования наличия решения .

Логически все это непротиворечиво (вопреки мнению самого Зенона). Но здесь процесс движения, содержащий, по условию задачи, бесконечное число шагов, сводится, по сути, к трем шагам: на шаге 1 вводится ряд точек ½1, ½2, ½3,…, ½n,…, на шаге 2 постулируется, что Ахилл побывал в каждой из этих точек, а на шаге 3 делается вывод о завершении движения в конечной точке, не принадлежащей рассматриваемому ряду. В результате как бы “пересчитан” ряд, упорядоченный по типу ω+1. По видимости речь идет о бесконечном по числу шагов процессе, тогда как на деле процесс при таком подходе завершается за три шага. Сказанное приобретает бóльшую наглядность, если обратиться к симметричной ситуации с апорией Дихотомия. Здесь вначале движущееся тело поместим в точке старта. Затем добавим к имеющейся точке старта совокупность точек, упорядоченный по типу ω*, получив тем самым линейный порядок типа 1+ω*, и, на последнем шаге, постулируем, что тело побывало в каждой из точек ряда ω*. Значит, движение успешно началось, хотя между точкой старта и любой из последующих точек лежит бесконечное множество промежуточных точек. Снова перед нами процесс из трех шагов, и снова вопрос о принципиальной возможности пересчета бесконечного порядкового типа 1+ω* обходится путем постулирования преодоления бесконечности за один шаг.

Легко представить себе совокупности, упорядоченные по типам ω+1 и 1+ω*, в качестве данностей. Но вообразить процесс пошагового получения этих совокупностей элемент за элементом, в соответствии с порядком на них, логически невозможно. Неизбежно на каком-то шаге либо а) будет нарушен порядок прохождения элементов (наряду с движениями от предыдущих точек к последующим придется вводить скачки от последующих точек к предыдущим), либо б) потребуется постулировать переход не от элемента к элементу, а от совокупности элементов к элементу или наоборот. Первая альтернатива ускользнула от внимания исследователей и потому требует особого разбора, который будет проведен в дальнейшем.

Что касается второй альтернативы, то именно она реализуется в рассмотренных псевдорешениях парадоксов движения. Между тем, в апориях Зенона движение понимается как переход от точки к точке, но ни в коем случае не как переход от совокупности точек к точке или обратно. Проблема в том, можно ли, двигаясь от одной точки пути к другой, завершить движение, и в том, можно ли, попав в какую-то точку, найти другую точку, куда нужно попасть на следующем шаге, что необходимо для начала процесса движения. Если же вместо переходов от точки к точке в процессе движения нам рекомендуют переходить от множества точек к отдельным точкам или от отдельных точек к множествам точек, то поставленная проблема подменяется другими. Кроме того, если в процессе движения мы должны посетить бесконечное количество точек, то и сам этот процесс неизбежно оказывается содержащим бесконечное число шагов. Как было показано, переходы от совокупностей точек к точкам и обратно могут совершаться за конечную последовательность шагов. Просто на одном из этих шагов обязательно будет использована бесконечная совокупность точек, введенная как актуальная данность, но не полученная в процессе поэтапного конструирования структура. В этом и заключается изъян предлагаемого разрешения апорий.