Коль скоро египетские пирамиды представляют как «ключ» к далекой звездной системе Сириуса, необходимо окончательно разобраться — могли бы те же самые сведения быть получены на Земле, тем более что гипотеза «зашифрованного послания» (в виде пирамид) не уделяет этому ни строчки.

В официальной науке двойная система Сириуса была предсказана Ф. В. Бесселем в 1844 году, когда было вычислено, что время обращения спутника Сириуса должно быть равно примерно 50 годам. В 1862 году американец А. Кларк увидел этот спутник. Он оказался «не слабый», 7-й звездной величины, но заметить его мешала яркость Сириуса А. Простым глазом увидеть спутник, мягко говоря, сложновато.

Однако же есть настораживающие моменты. Изучая систему Сириуса, астроном Д. Я. Мартынов пришел к выводу, что Сириус В в одно из первых столетий нашей эры взорвался как сверхновая звезда. До момента же взрыва Сириус В был красным гигантом, что обусловливало цвет всей системы Сириуса. После взрыва Сириус В превратился в белый карлик с радиусом в 40 раз меньшим, чем у Солнца, с массой, примерно равной солнечной, но с плотностью, превосходящей солнечную в 6,4 х 10,4 раза. Взрывы подобного рода, хотя и редко, но с Земли наблюдаются. Так, в ряде китайских хроник рассказывается о появлении в июле 1054 года «звезды-гостьи», превосходящей по яркости Венеру, которая через несколько месяцев погасла.

Любопытно, но если доверять данным М. Гриоля и Ж. Дитерлен, то какие-то предки догонов наблюдали взрыв Сириуса В (подчеркнем, опять же с Земли).

Члены Ава, тайного общества масок (олубару) рассказали, что «вскоре после появления людей на Земле» спутник Сириуса, звезда «По толо», внезапно вспыхнул, затем начал тускнеть и через 240 лет стал совершенно невидим. Из европейских или восточных источников об этом событии, однако, ничего не известно. Поэтому отметим, что есть, как минимум, пять составляющих, способных оказать существенное влияние на наблюдение: состояние наблюдателя, объекта наблюдения, среды и места наблюдения, расстояния, прибора.

1. Наблюдатель. Известная разрешающая способность — человеческого глаза в среднем составляет одну угловую минуту, теоретический (дифракционный) предел для глаза, видимо, около 12 угловых секунд. Некоторые люди могут приближаться к этому пределу. Так, мать Кеплера видела фазы Венеры, где максимальный угловой размер 25–30 угловых секунд. Нынешнее же угловое расстояние спутника Сириуса от главной звезды — около 7,6 секунды дуги. В то же время известно, что после специальной подготовки (физической, психической, химической) человек способен видеть несколько «острее». Например, судя по китайским хроникам, спутник Юпитера, Ганимед, был открыт без всякого телескопа (как у Галилея), невооруженным глазом более чем 2000 лет назад, в 364 году до нашей эры.

2. Среда и место наблюдения. Отнюдь не все участки нашей планеты удобны для наблюдения, они далеко не равноценны. Скажем, созвездия зодиака, по которым ежедневно проходит Солнце (эклиптика), удобнее наблюдать на экваторе. «Быть может, отсюда и возникла легенда, будто эфиопы, обитатели экваториального пояса, изобрели астрономию?» — писал в 1881 году французский исследователь Буше-Леклерк. Заметим, что в горах, где воздух чист и разрежен, местное нагревание или охлаждение окружающих предметов способно дать легкий «линзовый эффект» приближения дальнего объекта, облегчая наблюдение.

3. Состояние объекта, здесь — Сириуса. Взаимообращение Сириуса А и Сириуса В вызывает изменения в наблюдаемом с Земли свечении. Теоретически, если считать наиярчайший Сириус «пупом мира» и постоянно за ним наблюдать, такие изменения можно заметить. Изменение блеска Сириуса, например за XIXXX векв, разбиралось некоторыми авторами (скажем, в статье А. Архипова «Наблюдали ли догоны Сириус?»). Сириус все же, видимо, менял и цвет. Согласно Горацию, Сенеке, Птолемею Сириус называли «Красной звездой», Рубиолой, еще в 577 году. Древние римляне, даже принося ему в жертву собак, следили, чтобы те были с рыжей шерстью. Ныне же Сириус — звезда класса «А» (белые звезды), самая яркая звезда нашего неба.

4. Способ наблюдения. Исследования истории науки постоянно сдвигают даты тех или иных открытий. Так, еще в 1267 году Роджер Бэкон высказал мысль, что стеклянные сегменты шара могут помочь людям со слабым зрением. При этом он ссылался на арабского астронома Ибналь-Хайтама. В Констанцском соборе сохранилась каменная фигура Гиппократа (ок.460–377 гг. до нашей эры) 1270 года, держащего в левой руке стекло для чтения. Есть также указания, что в значительно более давние времена богатые люди применяли для увеличения отшлифованные драгоценные камни.

Могли использоваться не только линзы, но, видимо, и зеркала. «Не так давно на весьма представительном научном собрании французский исследователь Арнольд Лебеф сделал сообщение о сенсационной находке зарубежных археологов, — указал кандидат физико-математических наук Э. И. Кучеренко в 1989 году. — Ими были найдены остатки древнего телескопа-рефлектора с диаметром зеркала 60 см. Изготовленное из меди, идеально отполированное и посеребренное, оно заставило ученых поволноваться. Время изготовления — V век до нашей эры! Можно ли в это поверить?» Лебеф, исследуя источники той эпохи, нашел-таки у одного автора примерно такие строки (цитирую по памяти): «Теперь с Луною общаюсь я по-свойски — беру на дно зеркала и разглядываю все подробности лунного ландшафта…»

Однако, оказывается, и стеклянные телескопы не обязательны. Значительное увеличение дает обычная камера-обскура, прообраз нынешнего фотоаппарата. В применении к звездам ее описал в 1589 году И. Б. Порта в книге «Магия натуралис». Изображения двух звезд, не различимых простым глазом, в камере-обскуре значительно раздвигаются. От чечевичного стекла (линзы) действие камеры улучшалось еще более.

Наблюдение увеличенного изображения осуществимо и с помощью жидкостного зеркала, как в опытах американского физика Р. Вуда в 1908 году на вращающемся сосуде с ртутью. Хорошие увеличения и фотографии были получены кандидатом физико-математических наук В. П. Васильевым на воде. В статье «Второе рождение гидрооптики» он писал: «Действительно, представим себе, что в центре пещеры находится водоем, а над этим водоемом в своде пещеры проделано отверстие. Вода, втекающая в водоем, кружится в медленном водовороте… С помощью такого телескопа вблизи экватора можно и без плоского зеркала видеть солнечные пятна, наблюдать Луну, как объемное тело сферической формы… различать двойные звезды и спутники Солнечной системы. Так не такому ли телескопу (а не мифическим пришельцам на летающих тарелках) древние были обязаны своими астрономическими познаниями, глубина и точность которых до сих пор ставит в тупик многих историков науки?»

5. Расстояние. Однако вышесказанное — еще не все. Со времен Древнего Египта Сириус сместился почти на 1,5 лунного диска. Разбегаются и другие звезды. Так, в период Раннего Царства (XXXI–XXIX века до нашей эры) Большая Медведица была с прямой ручкой ковша. Это можно рассчитать, но можно и видеть ее изображение на одной из пирамид. Однако Сириус задает и другие «загадки»: согласно одним авторам, он приближается, согласно другим — удаляется. По Б. А. Воронцову-Вельяминову (1952 г.), он «приближается к Солнцу на 8 км за каждую секунду», по другим источникам скорость приближения 16 км/с, 11 км/с и так далее.

Может быть, так оно и есть, и мы нарочно не даем точного ответа, но почему-то хочется доверять Камиллу Фламмариону, пользовавшемуся данными английского астронома Рюггинса, всю жизнь занимавшегося движением звезд: «Сириус имеет годовое телескопическое перемещение, которое равняется дуге в 1′33, это значит, что Сириус в течение года перемещается на 248 миллионов лье перпендикулярно к лучу зрения: в то же время эта звезда удаляется от нас со скоростью 35 километров в секунду, что за один год составляет 268 миллионов лье».

Интересно, что даже схема движения Сириуса в параллелограмме скоростей по К. фламмариону прямо противоположна, например, схеме, представленной в современном учебном пособии «Астрофизика».

Кому же верить? Кстати, согласно В. А.-Варсанофьевой: «Сириус удаляется от нас со скоростью 46 км в секунду» (1945 г.).

Поэтому, если ради интереса взять, что Сириус все же удаляется (а находится он на расстоянии 83 х 10 км), то несложный подсчет даст удаление его за 5000 лет, со времен Древнего Египта: 60 сек х 60 мин х 24 ч х 365 дней х 5000 лет х 46 км/с = 7253280000000. Колоссальное число! Для сравнения Луна — на расстоянии «всего лишь» 380000 км от Земли. И поэтому Сипиус, быть может, удалился на 7,2 х 10 км, то есть почти на световой год, равный 9,46 х 10 км (0,307 парсека).

Тогда для его наблюдения и не нужно было оптических приборов…