Нефть XXI. Мифы и реальность альтернативной энергетики

Арутюнов В. С.

Глава 4. Смогут ли возобновляемые источники обеспечить мировую экономику?

 

 

В предыдущем разделе мы рассмотрели среднесрочные, до 2035 года прогнозы мировой энергетики, согласно которым в ближайшие 20 лет ведущая роль ископаемых источников энергии сохранится практически на сегодняшнем уровне. Делать сколько-нибудь точные прогнозы на более отдаленный период серьезные специалисты не рискуют, учитывая современные темпы технологического развития и высокую вероятность появления совершенно неожиданных технологий. Однако промышленная энергетика с очень высокой стоимостью ее объектов и связанными с этим длительными сроками их эксплуатации, достигающими 50 лет и более, является, как мы уже отмечали, одной из наиболее консервативных и «материализованных» технологических отраслей, жестко привязанной к реальным источникам энергии и уже существующей громадной инфраструктуре. У нас пока нет никаких физических или технологических оснований прогнозировать появление в ближайшие десятилетия принципиально новых альтернативных источников энергии, помимо тех, которые мы рассмотрели выше. И в любом случае даже при появлении каких-либо новых источников потребуются десятилетия для вытеснения и замены ими существующей энергетической структуры. Поэтому вполне можно рискнуть и попытаться представить в самых общих чертах перспективы возобновляемых источников на несколько ближайших десятилетий и даже на вторую половину этого века.

На что же реально мы можем делать ставку, какие источники необходимо развивать в первую очередь, куда, прежде всего, нужно направить усилия и достаточно ограниченные ресурсы человечества, чтобы не только мы, но и наши потомки были обеспечены энергией в необходимом объеме? Попробуем сопоставить существующие источники энергии по таким важнейшим параметрам, как общий объем доступных ресурсов и возможность их технологически эффективного и экономически выгодного использования в энергетике.

 

4.1. Общий объем ресурсов

Согласно последним оценкам (BP Statistical Review of World Energy, 2015), при нынешних темпах потребления мир располагает запасами традиционных ресурсов нефти и газа еще на несколько десятков лет, а угля – не менее чем на 100 лет (рис. 57). Этот прогноз получен простым делением доказанных запасов соответствующего ресурса на его текущую годовую добычу. Поскольку учитываются только доказанные запасы, этот прогноз не учитывает огромные нетрадиционные ресурсы газа, о которых мы говорили выше и практическая разработка которых уже началась. Но, с другой стороны, он не учитывает и постоянный рост потребления энергоресурсов, а это очень существенный фактор. Даже при том, что до конца века эффективность использования энергоресурсов в мировой энергетике должна возрасти на 75 %, ожидаемое мировое потребление энергии к 2100 году должно увеличиться минимум на 57 % по сравнению с уровнем 1990 годом. Это потребует соответствующего увеличения годового потребления ресурсов и, следовательно, приведет к сокращению прогнозируемых сроков их исчерпания.

Рис. 57. Отношение запасов ископаемых топлив к их годовой добыче для различных регионов (Источник: BP Statistical Review of World Energy, 2015)

Достижения последних лет в области добычи нетрадиционных ресурсов углеводородов, значительно расширивших ресурсную базу мировой энергетики, мы уже обсуждали. С учетом перспектив создания технологий для освоения новых видов нетрадиционных ресурсов, прежде всего природного газа, вполне можно рассчитывать на то, что ископаемые источники смогут обеспечить потребности мировой энергетики на протяжении всего текущего столетия и без привлечения альтернативных источников. А если бы удалось освоить добычу природного газа из газовых гидратов, что технически выглядит вполне реальным, то этих ресурсов хватило бы человечеству еще на сотни лет.

Но почему мы так беспокоимся об остающемся в нашем распоряжении объеме ископаемых ресурсов? Ведь согласно громким декларациям энтузиастов альтернативной энергетики, у человечества есть «вечные» возобновляемые источники энергии, такие как постоянно воспроизводимая биомасса и непрерывно падающий на поверхность нашей планеты поток солнечного излучения. Давайте оценим реальный объем этих ресурсов.

Даже по самым скромным оценкам ежегодно на Земле образуется более 200 млрд т сухой зеленой массы растений (ежегодная первичная продукция биосферы). Это в 20 раз превышает общий объем потребляемых человечеством ископаемых топлив. При сжигании этой биомассы можно получить до 5001021 Дж энергии. А полное количество биомассы на нашей планете на порядок выше – до 2•1012 т в пересчете на сухое вещество.

Однако гигантский объем зеленой массы, производимой биосферой, не означает реальную возможность ее использования в производственной деятельности человечества. Стабильность условий в биосфере нашей планеты, поддерживающей на протяжении более 2 млрд лет, после образования кислородной атмосферы, практически постоянными все основные параметры, обусловлена высокой интенсивностью биосферных процессов, в которых потоки вещества и энергии внутри системы на несколько порядков превышают потоки на входе и выходе из нее. Согласно оценкам (Горшков, 1995), человечество не нарушает равновесие биосферы до тех пор, пока оно поглощает менее 1 % первичной продукции биоты. Однако уже сейчас потребление чистой первичной продукции биосферы, произведенной на суше, непосредственно в виде пищи, корма для животных и топлива, превысило 10 % и продолжает увеличиваться. Так как КПД преобразования солнечной энергии зелеными растениями составляет в среднем немногим более 1 %, то даже использование практически всей доступной продукции биосферы, с учетом реальных потерь, не сможет покрыть ближайших энергетических потребностей человечества. А попытка реализации такого проекта приведет к гибели естественных экосистем и потере равновесия глобальных биосферных процессов.

Таким образом, низкая плотность потока первичной энергии (солнечной радиации на земной поверхности) и низкий КПД преобразования этой энергии зелеными растениями перечеркивают все надежды на глобальную роль возобновляемой «зеленой» энергетики. Как показали результаты моделирования глобальных процессов развития цивилизации, при современном уровне энергопотребления развитых стран за счет возобновляемых источников энергии на Земле может существовать не более 500 млн человек (Моисеев, 1997), что в десять раз ниже уже достигнутой численности населения нашей планеты.

А как же с энергией солнечного излучения, которое является единственным первичным источником внешней энергии, поступающей на Землю? Верхней границы атмосферы Земли за год достигает колоссальный поток солнечной энергии – ~5,6*1024 Дж. Эта величина примерно в 50 000 раз превышает ежегодную потребность человечества в энергии. Правда, примерно 35 % этой энергии атмосфера Земли отражает обратно в космос. Остальная энергия расходуется на нагрев земной поверхности, испарительно-осадочный цикл в атмосфере, образование волн в морях и океанах, воздушных и океанских течений и ветра, а также процессы фотосинтеза. В ходе всех этих процессов высокопотенциальная энергия солнечной радиации ультрафиолетового и видимого диапазона превращается в низкопотенциальную энергию нагретой поверхности Земли (средняя температура земной поверхности примерно 20°С), испускаемую нашей планетой в виде инфракрасного излучения обратно в космическое пространство. Так может быть этот источник позволит решить проблемы мировой энергетики? К сожалению, тоже нет. И вот почему.

 

4.2. Плотность потока энергии

Когда энтузиасты начинают сравнивать поток падающего на Землю солнечного излучения, энергию, переносимую в атмосфере нашей планеты воздушными потоками (ветром), энергию приливов в Мировом океане или объем биомассы, производимый ежегодно биосферой, с современным потреблением энергии мировой экономикой, то от открывающихся перспектив использования этих колоссальных ресурсов захватывает дух. Но «черт сидит в деталях». Далеко не всякую и далеко не всю энергию можно использовать практически. И одним из наиболее важных параметров, определяющих практическую применимость различных источников энергии, является плотность потока переносимой ими энергии.

Количество энергии, рассеянной в окружающем нас пространстве, действительно огромно. Но попробуйте ее извлечь. История физики хранит огромное множество хитроумных проектов получения энергии «из ничего», разбившихся о гранит Закона сохранения энергии и Второго закона термодинамики. Альтернативные источники энергии не нарушают эти законы. Но, как правило, используемая ими энергия относится к категории «низкопотенциальной энергии», т. е. энергии, имеющей небольшой энергетический потенциал или низкую удельную плотность энергии в единице используемого энергоносителя (источника энергии). Для того чтобы представить себе, как отличаются низкопотенциальная энергия, в изобилии рассеянная в окружающем нас пространстве, и высокопотенциальная энергия, используемая в традиционной энергетике, достаточно сопоставить поток энергии, переносимый дуновением ветерка, или тепла, переносимого ласковыми солнечными лучами, с концентрированной энергией в камере сгорания газовой турбины или в атомном реакторе.

Именно проблема сбора и использования низкопотенциальной или, как минимум, не очень концентрированной энергии, которой оперируют все без исключения альтернативные источники, и является главным препятствием на пути к их промышленному использованию. Рассмотрим это на примере солнечной энергетики, безусловно, крупнейшего и важнейшего из альтернативных источников энергии.

Солнечное излучение характеризуется плотностью потока энергии излучения, т. е. потоком энергии, падающим за единицу времени на единицу поверхности. Общая мощность потока энергии солнечного излучения, падающего на Землю, примерно 1,74 1017 Вт. Через площадку в 1 м2, расположенную перпендикулярно потоку излучения на входе в атмосферу Земли, проходит поток солнечного излучения, равный 1367 Вт/м2. Эта величина называется солнечной постоянной. Из-за поглощения при прохождении атмосферы Земли максимальный поток солнечного излучения на уровне моря на экваторе примерно 1000 Вт/м2. Однако среднесуточное значение потока солнечного излучения через единичную горизонтальную площадку из-за смены дня и ночи и изменения угла солнца над горизонтом как минимум в три раза меньше. В умеренных широтах зимой это значение еще в два раза меньше. Таким образом, даже на экваторе с площади в 1 кв. км с использованием крайне сложного и дорогостоящего оборудования при практически предельном для современных условий КПД преобразования солнечной энергии в 30 % можно получить мощность всего лишь в 90 МВт. Это соответствует небольшой районной электростанции и в 20 раз ниже мощности типовой промышленной ТЭЦ. Мы уже не говорим о суточном и годовом непостоянстве производимой энергии и, соответственно, необходимости дорогостоящих систем соответствующей мощности для ее аккумуляции.

Точно так же главным препятствием, ограничивающим возможный вклад биоэнергетики в мировую экономику, является крайне низкая плотность потока энергии, получаемой при сельскохозяйственном производстве биотоплива (табл. Х).

Таблица Х. Плотность потока тепловой энергии, получаемой в среднем за год с единицы площади для различных источников биотоплива (de Castro et al., 2013)

На самом деле даже эти оценки завышены, и средней оптимистичной оценкой является значение всего 0,073 Вт/м2. Эта энергия в десять тысяч раз меньше энергии падающего на эту же площадь потока солнечного излучения. Для сравнения, преобразование солнечной энергии фотовольтаическими солнечными электростанциями в Испании соответствует получению энергии с плотностью потока около 4,8 Вт/м2, что примерно в 40 раз выше.

Но и создание искусственных фотопреобразующих систем с мощностью, необходимой для промышленной энергетики, столь же нереально. И дело не только в необходимости изъятия из хозяйственной деятельности и естественных экосистем огромных площадей в сотни тысяч квадратных километров, что соответствует площади крупнейших западноевропейских государств. И даже не в фантастических объемах капитальных затрат на их оснащение сложным инженерным оборудованием. Для реализации подобных грандиозных проектов в распоряжении человечества нет необходимого количества даже самых дешевых конструкционных материалов. Например, запасы алюминия в земной коре меньше, чем необходимо для создания самых простейших нагревательных устройств мощности, необходимой для обеспечения современных энергетических потребностей человечества. Отечественные специалисты обратили на это внимание еще тридцать лет назад (Легасов, Кузьмин, 1981), но, к сожалению, энтузиасты «глобальной роли» альтернативной энергетики продолжают игнорировать даже столь очевидные факты.

Если же сравнивать биоэнергетику и солнечную энергетику с точки зрения плотности потока преобразуемого солнечного излучения, то КПД реальных фотохимических преобразователей (около 25 %) не принципиально отличается от КПД преобразования солнечной энергии некоторыми сельскохозяйственными культурами, достигающего 5–7 % (например, кукурузой). Но при этом сельскохозяйственное производство требует значительно меньших капитальных затрат, хотя именно из-за низкой плотности усваиваемого потока первичной энергии оно в большинстве районов мира остается дотационной сферой экономики. А реальная солнечная энергетика является одним из самых дорогих источников энергии, и, несмотря на многолетние декларативные усилия в этой области, занимает незначительное место в энергобалансе даже наиболее развитых стран мира. Достаточно отметить, что только что введенная в строй крупнейшая в мире солнечная электростанция (рис. 47) по мощности в два раза уступает всего одной типовой газовой турбине, которых только в США сейчас устанавливается примерно 100 в год.

Таким образом, возможности всех альтернативных источников энергии, включая солнечную, ветровую и биоэнергетику, вклад которых даже в энергетику наиболее технологически развитых стран, несмотря на многолетние усилия и многомиллиардные затраты, не превышает 2—3-х процентов, принципиально ограничены прежде всего из-за крайне низкой плотности потока преобразуемой ими энергии. Низкая плотность потока первичной энергии (солнечной радиации на земной поверхности) и низкий КПД преобразования этой энергии зелеными растениями перечеркивают все надежды на глобальную роль возобновляемой «зеленой» энергетики. Именно из-за низкой плотности потока первичной энергии (солнечной радиации на земной поверхности) и низкого КПД ее преобразования зелеными растениями сельскохозяйственное производство даже в наиболее развитых странах относится к наименее рентабельной (а точнее, просто убыточной) области человеческой деятельности, поддерживаемой за счет дотаций из других источников.

 

4.3. Отношение затраченной и полученной энергии

Еще один важный аспект, который обычно не любят обсуждать энтузиасты альтернативной энергетики – это реальная энергетическая отдача источника. Для того чтобы получить энергию из любого источника, всегда требуются определенные затраты энергии на обеспечение самого процесса получения энергии. Совершенно очевидно, что затраты энергии на добычу, транспорт и переработку энергетического сырья, получение и преобразование энергии, изготовление и обслуживание оборудования должны быть меньше энергии, получаемой в итоге конечным потребителем. Поэтому отношение полученной полезной энергии к затраченной на ее получение может рассматриваться как некий аналог КПД, но не для отдельного процесса, а для всей энергетической цепочки. Эта цепочка должна учитывать все процессы, например, для нефтяной отрасли «от нефтяной скважины до автомобильного колеса» (from well to wheel). Это отношение показывает «энергетическую эффективность» данного источника энергии. Пока оно не имеет устоявшегося русскоязычного аналога, а английская аббревиатура EROEI от Energy Return On Energy Invested (отношение энергии полученной к энергии затраченной), часто сокращаемая до EROI – Energy Return On Invested, не очень удобна для произношения. Этот показатель должен учитывать все затраты, включая производство, обслуживание в течение всего срока эксплуатации и утилизацию отработанного оборудования, используемого для получения, переработки и транспортировки энергии, восстановление и рекультивацию нарушенных природных объектов, затраты на ликвидацию аварий и экологического ущерба окружающей среде. Если для некоторого источника энергии показатель EROEI меньше единицы, то такой ресурс превращается из источника в «потребителя» энергии и не может рассматриваться как ее первичный источник.

Экономика всегда стремится в первую очередь использовать энергетические ресурсы с наиболее высоким EROEI, поскольку они дают больше всего энергии при наименьших усилиях. Но по мере исчерпания высококачественных невозобновляемых ресурсов в дальнейшем приходится переходить на ресурсы со всё меньшим значением EROEI. Например, когда впервые была начата промышленная добыча нефти, то в среднем энергии, содержащейся в одном барреле нефти, было достаточно, чтобы найти, извлечь и переработать 100 баррелей нефти. За прошедшее столетие это соотношение постепенно снизилось до 20–30 получаемых баррелей при добыче традиционной нефти и до 3–5 получаемых баррелей на один затраченный при добыче тяжелой нефти (рис. 58). То есть при добыче тяжелой нефти уже примерно 20–30 % содержащейся в ней энергии идет на обеспечение самого процесса добычи и ее первичной подготовки.

Рис. 58. Средние значения EROEI для различных видов топлива

В 2006 году EROEI ветровой энергетики в Северной Америке и Европе составлял примерно 20, что способствовало быстрому росту ее использования. Совершенно иная картина наблюдается при получении биотоплив. Даже при производстве этанола из сахарного тростника, являющегося наиболее эффективным сырьем для производства биотоплива, EROEI не превышает 5. В остальных случаях он близок к единице (табл. XI). То есть фактически производство биотоплива даже нельзя рассматривать как получение энергии – это лишь ее перераспределение из одного вида в другой.

Таблица XI. Значения EROEI для различных источников биотоплива (de Castro et al., 2013)

Постоянное увеличение затрат энергии на добычу и переработку традиционных энергоресурсов приводит к постоянному и достаточно быстрому снижению EROEI в мировой энергетике (рис. 59).

Рис. 59. Тенденции изменения EROEI для мировой добычи нефти и газа

Разумеется, при сопоставлении различных источников энергии помимо EROEI необходимо учитывать очень многие параметры: надежность, доступность, удобство использования, энергонасыщенность и другие. Например, нефть энергонасыщенна и легко транспортируема, а энергия ветра непостоянна и производится локально. Но в любом случае при понижении коэффициента EROEI основных источников энергии экономике становится труднее получать энергию, а ее ценность относительно других ресурсов и товаров повышается. Таким образом, показатель EROEI является крайне, если не наиболее важным при сравнении энергетических альтернатив. Рис. 60, демонстрирующий EROEI различных источников энергии, а также его изменение со временем, наглядно показывает, почему непрерывно растет себестоимость энергоресурсов и поставляемой энергии, почему основой мировой энергетики являются ископаемые топлива, а не солнечная энергетика, имеющая EROEI лишь немного выше единицы, почему биотоплива – биоэтанол и биодизель, имеющие в большинстве стран EROEI всего 1,2–1,5 (табл. XI), никогда не смогут стать первичным источником энергии для мирового автотранспорта.

Поскольку на получение самой энергии требуются значительные производственные усилия и энергетические затраты, при снижении EROEI получение одного и того же количества чистой энергии занимает всё большую долю экономики. Поэтому непрерывное снижение EROEI из-за истощения наиболее эффективных невоспроизводимых ресурсов представляет собой одну из серьезнейших экономических проблем. По оценкам, пороговое значение EROEI, при котором человечество еще может продолжать свое развитие, находится в районе 3, что однозначно исключает биотопливо, да и солнечную энергетику (рис. 60), из числа перспективных источников энергии.

Рис. 60. Значения EROEI (на примере США) для различных источников энергии и его изменение по мере истощения наиболее эффективных ресурсов

 

4.4. Себестоимость получения энергии с учетом полного жизненного цикла оборудования

Другим важнейшим параметром, напрямую влияющим на решение о строительстве того или иного энергетического объекта, является стоимость производимой энергии, которая, в свою очередь, помимо стоимости сырья зависит от стоимости применяемого энергетического оборудования и сроков его эксплуатации. Как и при расчете EROEI, при расчете себестоимости получаемой энергии необходимо учитывать все затраты на приобретение энергетического сырья, строительство всех необходимых объектов для получения из него энергии и ее транспортировки потребителю, эксплуатационные расходы в течение всего срока эксплуатации оборудования, расходы на его демонтаж и утилизацию после завершения эксплуатации. То есть все затраты на получение энергии в течение всего жизненного цикла данного энергетического оборудования.

При производстве электроэнергии для сравнения экономической эффективности различных источников в качестве такой меры принимают нормализованную стоимость получаемой электроэнергии (levelized cost of electricity – LCOE), которая определяется как стоимость капитальных и операционных расходов на получение электроэнергии в течение всего жизненного цикла оборудования, деленная на полный объем энергии, полученный за этот период. Фактически величина LCOE может рассматриваться как ценовая граница безубыточности поставки данного вида энергии.

Именно эта величина определяет экономическую эффективность использования различных источников энергии. И различия в этой величине пока далеко не в пользу альтернативных источников энергии (рис. 61), что и определяет в конечном итоге их пока невысокую привлекательность для потребителя и невысокий реальный масштаб использования, который в значительной степени поддерживается государственными субсидиями.

Пока практически все альтернативные источники энергии с точки зрения экономики заметно проигрывают традиционным источникам, что является важным, но не единственным фактором, определяющим их невысокий вклад в энергетику. Поэтому имеет смысл более подробно рассмотреть проблемы, сдерживающие использование важнейших альтернативных источников энергии и их дальнейшие перспективы.

Рис. 61. Нормализованная стоимость производства электроэнергии на основе различных источников, в евро/кВтч

 

4.5. Реальные перспективы возобновляемой энергетики

 

4.5.1. Солнечная энергетика – колоссальные затраты

Безусловно, солнечная энергетика является важнейшим и потенциально наиболее перспективным альтернативным источником энергии. Хотя она, как мы уже отмечали, из-за низкой плотности потока солнечной энергии на земной поверхности вряд ли сможет выступать в качестве крупного промышленного источника энергии и, тем более, заменить ископаемые энергоносители, ее роль в локальной энергетике может быть достаточна заметна.

В качестве одного из аргументов в пользу грядущей глобальной роли солнечной энергетики часто приводят такой расчет. Поверхность самых больших пустынь мира имеет общую площадь около 20 млн км2 (только площадь Сахары 7 млн км2). На эту площадь за год поступает около 5 1016 кВтч солнечной энергии. При эффективности преобразования солнечной энергии в электрическую, равной 10 %, достаточно использовать всего 1 % территории пустынных зон для размещения солнечных электростанций, чтобы обеспечить современный мировой уровень энергопотребления. На первый взгляд, расчет выглядит очень убедительно. Но давайте оценим стоимость такого проекта. У нас есть вполне реальный пример лучшей и крупнейшей в мире на сегодняшний день солнечной электростанции Ivanpah мощностью 392 МВт (рис. 45), стоимость строительства которой составила 2,2 млрд долл., или 5612 долл. за кВт установленной мощности. Поскольку станция генерирует энергию только днем, годовая выработка электроэнергии составит всего 1079 ГВтч, поэтому реальная средняя мощность электростанции будет всего 123 МВт. Соответственно, удельные капитальные затраты составят 17 870 долл./кВт установленной мощности. Это не просто дорого, это фантастически дорого. Например, 1 кВт установленной мощности на АЭС стоит 2000–4000 долларов. А на тепловых электростанциях, работающих на газе, 1 кВт установленной мощности стоит 500—1000 долларов, т. е. в 18–36 раз дешевле. При этом выработка электроэнергии осуществляется постоянно и не зависит от погодных условий. Кроме того, в этом расчете мы не учли стоимость систем аккумулирования энергии и передачи ее на тысячи километров из пустынных районов в промышленные центры потребления. Но и этим недостатки солнечной энергетики не исчерпываются. Как мы уже отметили, принято считать, что лучшее место для их размещения – пустыни. Но при этом возникают очень серьезные проблемы с эксплуатацией, связанные с неизбежным запылением и повреждением солнечных элементов песчаными бурями. Это означает огромные затраты, в том числе пресной воды на их отмывание от пыли, в этих безводных регионах.

Теперь вспомним, что установленная мощность всех источников энергии на Земле уже превысила 3,65 ТВт = 3,65 1012 Вт. Если эти источники заменить на расположенные в пустынях солнечные электростанции типа Ivanpah, то их сооружение обойдется мировой энергетике в 66 трлн долл., что превышает ВВП всей мировой экономики. Но есть еще более серьезное чисто физическое ограничение. 1 % от площади пустынь – это 200 тыс. км2, треть территории Франции. И всю эту громадную территорию необходимо будет покрыть сложными инженерными сооружениями. У мировой экономики нет не только производственных мощностей для изготовления такого объема сложного инженерного оборудования, но даже сырья для производства соответствующего количества конструкционных материалов. Мы уже не говорим о перспективах удвоения потребления энергии до конца столетия.

Приведенные выше аргументы, демонстрируя несостоятельность претензий солнечной энергетики на глобальную роль в мировом энергобалансе, никоим образом не перечеркивают ее роль в качестве важного локального источника энергоснабжения. В таблице XII приведены характерные величины потоков солнечного излучения для полюсов и экватора Земли.

Даже на большей части территории РФ, кроме побережья Северного Ледовитого океана, пиковое значение солнечного излучения составляет около 900 Вт/м2, или около 1 кВтч в час через стандартное окно на солнечной стороне дома в солнечный день, что позволяет реально использовать эту энергию, по крайней мере, в коммунальном хозяйстве.

Таблица XII. Характерные потоки солнечного излучения для различных зон Земли

Что касается экологической чистоты солнечной энергетики, то тут тоже далеко не все так просто и однозначно. Конечно, в местах расположения солнечных панелей при выработке электроэнергии не производится никаких вредных отходов. Но само производство основы солнечных элементов – кремния – достаточно вредное производство. И парадокс солнечной энергетики в том, что чистая энергия требует грязного производства оборудования. Кроме того, после окончания срока службы солнечных панелей, содержащих вредные компоненты, например, кадмий, их утилизация также связана с экологическими проблемами.

Что касается солнечных станций термического типа, то здесь проблемы связаны с большими площадями затененных земель. Это приводит к сильным изменениям почвенных условий, растительности и т. д. Нежелательное экологическое действие в районе расположения станции вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями. При этом изменяются тепловой баланс, влажность, направление ветров; в некоторых случаях возможны перегрев и возгорание систем, использующих концентраторы, со всеми вытекающими отсюда последствиями. Неизбежные во время длительной эксплуатации утечки низкокипящих жидкостей в солнечных энергетических системах могут привести к загрязнению питьевой воды. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами.

В качестве потенциального направления развития солнечной энергетики, позволяющего обойти сложности и ограничения наземных станций, часто рассматривают идею создания орбитальных солнечных станций с развертыванием солнечных панелей в космосе. Пока перспектива реализации таких проектов промышленного масштаба, видимо, еще более отдаленная, чем термоядерной энергетики. Среди главных проблем – передача энергии от космической электростанции на Землю.

 

4.5.2. Ветроэнергетика – низкая мощность и нестабильность

Главные проблемы ветровой энергетики – это непостоянство вырабатываемой энергии и высокая стоимость ветрогенераторов. Несмотря на снижение затрат на строительство ветрогенераторов в море в 2010-х годах, офшорная ветроэнергетика остается одним из наиболее дорогих источников электричества. Стоимость производства электроэнергии на офшорных ветроэлектростанциях колеблется от 200 до 125 долл./МВтч. Однако крупные компании-производители оборудования надеются снизить к 2020 году стоимость оффшорной электроэнергии до уровня ниже 120 долл./МВтч.

Другой проблемой остается низкая единичная мощность ветрогенераторов. Для обеспечения установленной мощности в 1000 МВт, соответствующей типовой тепловой ТЭЦ, необходимо 660 больших ветряков, занимающих площадь в 375 квадратных миль. Как отмечают специалисты, если даже довести ветряки до размера небоскребов, для полного обеспечения потребностей Нью-Йорка будет достаточно «всего» 13 тыс. таких гигантов. Но номинальная мощность ветряной электростанции – это максимальный показатель ее генерации, достижимый в том случае, если сильный ветер вращает лопасти постоянно. А поскольку у природы бывает и безветренная погода, фактическая мощность составляет не более 26 % от проектной. Таким образом, вышеназванные цифры следует умножить на четыре.

Сооружение ветроэлектростанций окупается в среднем лишь лет через 10 после введения их в эксплуатацию. Причем экономически оно оправдано при среднегодовой скорости ветра свыше 5 м/с. На большей части территории России таких ветров нет. Поэтому развивать ветроэнергетику целесообразно в основном на Крайнем Севере, побережьях и островах северных и восточных морей.

Самые ветреные зоны России – Кольский полуостров, Обская губа и северная часть побережья Дальнего Востока, где среднегодовая скорость ветра равна 11–12 м/сек. Но даже при наличии благоприятных природных условий высокая стоимость и непостоянство производства энергии делают ветровые электростанции всего лишь вспомогательным источником энергии.

Ветроэнергетика, несмотря на формальную «чистоту» вырабатываемой энергии, на самом деле не лишена экологических и климатических проблем. Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков, как в Европе, это замедление может оказывать заметное влияние на локальные и даже глобальные климатические условия. В частности, снижение средней скорости ветров способно сделать климат региона намного более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Отбор энергии ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, исследования в этой области только разворачиваются, и пока нет количественных оценок воздействия широкомасштабной ветровой энергетики на климат, хотя уже можно заключить, что оно не столь пренебрежимо мало, как полагали ранее.

Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветровой энергетической установки величиной 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов – 300 м связано с низкочастотными колебаниями, передающимися через почву и вызывающими ощутимое дребезжание стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса. Засилье ветряков в Европе уже начинает восприниматься как негативное явление. В 2005 году Министерство энергетики ФРГ, где работает 15 тысяч ветроэнергоустановок различной мощности, выпустило доклад, в которой признало энергию ветроэлектростанций слишком дорогой.

Разумеется, и у ветроэнергетики, и у солнечной энергетики есть свои области применения, где они с блеском выигрывают конкуренцию. Например, солнечные батареи и ветряки успешно используются в автономных источниках энергии в тех местах, где невозможно использовать энергию от других источников. Есть регионы, где количество солнечных дней позволяет оправдать строительство более или менее крупных солнечных электростанций. Ветровые установки могут быть с успехом применены в ненаселенных местах, где постоянно дует сильный ветер, например на острове Кергелен в Южном полушарии, который постоянно находится под воздействием антарктических штормов. Но строить на их основе базовую энергетику невозможно. В этом отношении они абсолютно проигрывают более надежным и мощным тепловым и атомным электростанциям, которые вырабатывают электроэнергию в базовом режиме, т. е. круглосуточно и круглогодично.

 

4.5.3. Биотопливо – возможен ли ренессанс?

Современная биомасса Земли в пересчете на сухое вещество составляет примерно 2 400 млрд т, т. е. на порядок превышает ее ежегодный прирост. При этом на биомассу океана приходится всего 3,2 млрд т, т. е. почти в 1000 раз меньше. Это связано с меньшей эффективностью фотосинтеза океана, так как эффективность использования энергии Солнца на площади океана равна 0,04 %, а на суше – 0,1 %. Однако удельная продуктивность океанических биоценозов настолько высока, что ничтожная по сравнению с сушей фитомасса океанов создает ежегодно чистую продукцию, сопоставимую с чистой продукцией суши. В океанах ежегодно образуется 55 млрд т растительной массы, что составляет почти треть общей биопродукции планеты. А суммарная масса живого вещества, произведенного на Земле за последний миллиард лет, превышает всю массу земной коры, что, конечно, не может не впечатлять, и вызывает энтузиазм у поклонников «зеленой энергетики». Биомасса на суше распределена очень неравномерно, ее объем возрастает от полюсов к экватору, причем более 99 % биомассы приходится на зеленые растения, а животные и микроорганизмы составляют менее 1 % (табл. XIII).

Таблица XIII. Распределение живого вещества на планете

Из потока излучения, падающего непосредственно на поверхность, около 40 % приходится на участки Земли, покрытые растениями, а также на водоемы с содержащейся в них растительностью. С учетом того, что растения способны поглощать лишь определенную часть солнечного спектра, а также потерь энергии радиации вследствие отражения и других причин и низкого КПД фотосинтеза, составляющего в среднем около 1 %, в продуктах фотосинтеза ежегодно запасается лишь незначительная часть падающей на поверхность Земли солнечной энергии. Кроме создания чистой продукции, живой покров суши использует захваченную им энергию Солнца для процесса дыхания, энергетические затраты на которое составляют около 30–40 % энергии, расходуемой на создание чистой продукции. Таким образом, биосфера использует на процессы жизнедеятельности лишь небольшую часть падающего на Землю потока солнечной радиации.

Но как мы отмечали, человечество уже потребляет в виде пищи, корма для животных и топлива более 10 % первичной продукции биосферы, в то время как сохранение равновесия биосферы требует, чтобы эта величина не превышала 1 %. При этом из-за эрозии почвы в результате интенсивного земледелия, горнопромышленных разработок, расширения селитебных зон, промышленного и гидротехнического строительства площадь пахотных земель, которая достигает почти 10 % поверхности суши, постоянно сокращается. А население нашей планеты, несмотря на все меры, предпринимаемые в развивающихся странах для стабилизации населения, уже превысило 7 млрд человек и продолжает ежегодно увеличиваться на 80 миллионов. То есть площадь пашни в расчете на одного жителя Земли, а следовательно, и душевое производство продовольствия, непрерывно сокращаются. И это в условиях, когда каждый седьмой человек в мире (т. е. ~1 млрд человек) страдает от хронического голода и недоедания, и только в Африке от голода каждый день умирает свыше 15 000 человек.

Вследствие постоянной эрозии и довольно быстрого расхода такого практически невосполнимого ресурса, как почва, а также большого объема ископаемого топлива и производимых из ископаемого сырья минеральных удобрений, без которых невозможно многолетнее эффективное возделывание высокоурожайных монокультур, строго говоря, биотоплива, получаемые в результате интенсивного сельскохозяйственного производства, вообще не могут считаться возобновляемым ресурсом. Технические культуры, в т. ч. кукуруза, приводят к значительно большей эрозии почвы, чем зерновые или фуражные культуры, и резко увеличивают потребление крайне дефицитной воды на орошение. Проведенные в США в штате Огайо исследования показали, что продолжительное выращивание кукурузы как монокультуры увеличивает скорость эрозии почвы в девять раз по сравнению с последовательным чередованием посевов кукурузы и пшеницы.

Таким образом, человечество стоит на пороге острейшего продовольственного кризиса, вызванного продолжающимся ростом населения и одновременным сокращением основной базы для производства продовольствия – пахотных земель. В этих условиях вряд ли имеет смысл серьезно обсуждать глобальные перспективы использования сельскохозяйственной продукции для расширения топливной базы мировой энергетики. Только крупнейшие мировые производители продовольствия, такие как США, Бразилия и некоторые европейские страны, могут позволить себе направлять значительную долю своего избыточного производства сельскохозяйственных культур на производство топлива и другой непищевой продукции (рис. 62). Или изымать значительную долю пахотных земель для производства непродовольственных культур: только выполнение плана ЕС по переводу к 2020 году 10 % автомобильного парка на биодизель потребует выделения для этой цели 4,5 млн гектаров земли – площадь, эквивалентная размерам Дании.

Рис. 62. Потребление кукурузы на производство биоэтанола в США (Источник: USDA – Министерство сельского хозяйства США)

Если при этом и не страдает население самих стран-производителей сельхозпродукции, то этого нельзя сказать о населении остальных, особенно беднейших стран, традиционно получавших продовольственную помощь. Ведь на производство этанола в США пошла большая часть того зерна, которое ранее шло на экспорт, в том числе на продовольственную помощь другим странам. В результате уже в 2006 г., сразу после начала массового производства биоэтанола в США, мировая цена на кукурузное зерно увеличилась в три раза. Это поставило в очень тяжелое положение и без того голодающее население многих слаборазвитых стран.

Использование пищевого сырья для производства топлива стало одним из главных факторов наблюдаемого в последние годы резкого роста мировых цен на продовольствие. Этот рост цен происходит на фоне прогнозов о возможном удвоении к 2030 году мирового спроса на продукты питания. Помимо увеличения численности населения рост спроса на продукты питания связан и с повышением уровня жизни в развивающихся странах, где заметно увеличивается потребление продукции животноводства, отрасли, потребляющей большие объемы зерна.

Проводимая рядом промышленно развитых стран политика поощрения производства биотоплив путем предоставления их производителям различных субсидий на закупку сырья не только сокращает продовольственные ресурсы, но и взвинчивает цены на продукты питания. Согласно оценкам Международного энергетического агентства (МЭА), в 2009 году правительственная поддержка производителей биотоплива во всем мире составила около 20 млрд долларов, основная часть которой пришлась на США и страны ЕС. МЭА прогнозирует дальнейшее увеличение объема субсидий – до 45 млрд в год в 2010–2020 годах и до 65 млрд в год в 2021–2035 годах.

Только в США, где треть выращиваемой кукурузы используется для получения биоэтанола, объем субсидий составляет около 6 млрд долларов в год. Господдержка, выражающаяся в льготном налогообложении производителей биотоплива, составляет в настоящее время 45 центов за галлон (3,6 литра) при цене галлона бензина на уровне двух долларов. Дополнительные 10 центов помощи получают небольшие производители, а величина импортных пошлин составляет 54 цента за галлон. Сейчас в США идет бурная дискуссия о целесообразности продления льгот производителям биотоплива.

Критики развития биотопливной индустрии справедливо отмечают, что растущий спрос на биотопливо вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных. По оценкам, в результате биотопливного бума число голодающих на планете к 2025 году возрастет до 1,2 млрд человек. Ведь для производства этанола всего на одну заправку джипа (100 л) требуется около 450 фунтов кукурузы. Этого количества достаточно для питания одного человека «третьего мира» в течение почти года.

Таким образом, в случае реализации планов администрации США по расширению производства биотоплива, только для американских автомобилей потребуется объем сельхозпродуктов, достаточный для пропитания более чем миллиарда людей.

Но самое главное, производимый из зерна этанол не является экономически и энергетически эффективной альтернативой бензину. Замена только 10 % необходимого к 2020 г. США бензина этанолом потребует шестой части всех земель, занятых в стране под зерновые. Если даже в США будут задействованы все доступные ресурсы биосырья, что практически нереально, это позволит удовлетворить не более 50 % потребности американского рынка в автомобильном топливе (рис. 63).

Рис. 63. Потребность США в автомобильном топливе по сравнению с возможностями получения синтетического топлива из биомассы

Не выдерживает критики и энергетический аспект получения биотоплив. Американские оппоненты широкого внедрения возобновляемых топлив рассчитали, что на получение этанола из зерен кукурузы требуется на 29 % больше энергии, чем содержится в полученном топливе. А для того, чтобы использовать в качестве сырья для производства этанола скошенную траву (сено), потребуется уже на 50 % больше энергии ископаемого топлива, чем содержится в полученном топливе (Арутюнов, 2008). То есть для большинства видов биотоплива значение показателя EROEI балансирует около 1 (рис. 62, табл. XI), а для некоторых видов оказывается даже меньше. Иными словами, затраты энергии при получении биотоплива могут быть выше, чем содержащаяся в нем энергия.

Хотя сторонники биотоплива оспаривают эти оценки, даже по данным явно неравнодушных к этому вопросу экономистов Министерства сельского хозяйства США прибавка в энергосодержании составляет всего 34 %, да и то благодаря последним технологическим достижениям в этой области. Согласно результатам, полученным в Калифорнийском университете в Беркли, энергетический баланс биоэтанола все-таки положителен, но доля действительно возобновляемой энергии, полученной за счет энергии солнца, составляет всего от 5 до 26 %. Остальное покрывается за счет энергии ископаемых топлив. Если принять среднюю величину «зеленой» энергетической добавки к затраченному ископаемому топливу равной 16 %, то декларированная администрацией США 15 %-ная добавка биоэтанола к бензину обеспечит в нем долю возобновляемой энергии всего 2,4 %. Причем этот с таким трудом обеспеченный вклад возобновляемой энергии в топливный баланс США будет съеден всего за три года общим ростом потребления бензина.

В последнее время сторонники «зеленой» энергетики делают в своих планах и декларациях упор на биотоплива второго и третьего поколения, то есть на использование непищевых отходов сельскохозяйственного производства и промышленное выращивание водорослей. Однако непищевые сельскохозяйственные отходы дают значительно более низкую отдачу с единицы площади, требуют более высоких расходов на сбор и подготовку сырья, а главное, содержат в основном целлюлозу и лигнин, промышленная переработка которых в биотопливо, несмотря на многолетние интенсивные исследования, пока осуществляется только в экспериментальных масштабах. Поэтому экономическая и тем более энергетическая эффективность использования такого сырья представляется еще более проблематичной.

Что касается водорослей, то основными аргументами в их пользу являются более высокая эффективность фотосинтеза, на уровне 6–8 % по сравнению в среднем с 1–2 % для наземных растений, а также отсутствие необходимости в использовании сельскохозяйственных угодий. Однако, во-первых, эффективность фотосинтеза кукурузы составляет около 7 %, т. е. практически не уступает водорослям, что, тем не менее, не делает производство из нее биоэтанола экономически и энергетически эффективным. А во-вторых, использование морских и океанских акваторий для промышленного производства биомассы на основе специально выведенных штаммов водорослей должно быть полностью исключено из-за возможных глобальных катастрофических экологических последствий. И даже использование для их производства изолированных природных водоемов не может исключить серьезные экологические последствия. Кроме того, так же, как и в сельском хозяйстве, объем и рентабельность такого производства в конечном счете будут определяться объемом и стоимостью вносимых удобрений и немалыми затратами традиционного топлива на сбор, подготовку и переработку полученного сырья.

Таким образом, ни энергетический, ни экономический аспекты промышленного сельскохозяйственного производства биотоплив в глобальных масштабах не выдерживают серьезной критики. Но, может быть, все окупается экологическими преимуществами «зеленой» энергетики? Однако «зеленое» на первый взгляд топливо оказывается совсем не таким уж «зеленым» при более строгом анализе. Ведь для компенсации земель, изымаемых для производства непродовольственных культур, будут нужны новые посевные площади. Это потребует сведения лесов, что приведет к уменьшению способности биосферы перерабатывать углекислый газ в кислород – таким образом, в противоположность декларируемым целям, концентрация углекислого газа в атмосфере только вырастет, а не уменьшится. В Индонезии и Малайзии для создания пальмовых плантаций для производства биодизеля была вырублена немалая часть тропических лесов. То же самое произошло на Борнео и Суматре. Поэтому, как показал ряд проведенных в последнее время исследований, с точки зрения снижения антропогенного выброса диоксида углерода, являющегося основным парниковым газом, оптимальной стратегией является максимальное снижение производства биотоплив и использование высвобождающихся площадей для посадок лесов, являющихся наиболее эффективными поглотителями СО2 из атмосферы.

Кроме того, сторонники тезиса об «экологической чистоте» биотоплив, как правило, не учитывают выбросы, образующиеся при производстве, обслуживании и последующей утилизации огромного и быстро выходящего из строя парка механизмов, необходимых для выращивания, сбора и переработки растительного сырья. Необходимо также учитывать огромный объем сжигаемого при этом традиционного топлива. То есть приводимые оценки экологических преимуществ биотоплив, мягко говоря, некорректны. Согласно имеющимся данным, при корректном расчете по всему жизненному циклу с учетом используемого для их производства оборудования и традиционных топлив, кукурузное и рапсовое топливо создает на 50–70 % больше парниковых газов, чем традиционный бензин и дизтопливо. При этом повышение эффективности использования традиционного бензина всего лишь на 3 % привело бы к экономии большего количества углеродного топлива, чем использование всего производимого в мире этанола.

Спорным остается и тезис о меньшей токсичности выхлопа автомобилей, использующих топливо с биодобавками. Безусловно, добавка к бензину кислородсодержащих соединений, таких, как этанол, увеличивает полноту сгорания топлива, снижая выбросы оксида углерода, ароматических углеводородов и частиц сажи. Но при этом в выхлопе появляются альдегиды (формальдегид и ацетальдегид) и ряд других соединений, наносящих живым организмам не меньший ущерб, чем ароматические углеводороды.

Разумеется, использование для производства энергии всевозможных бытовых и сельскохозяйственных отходов, особенно там, где они концентрируются в промышленных масштабах, или где такая концентрация экономически выгодна, необходимо и должно развиваться. Производство биотоплив, безусловно, будет продолжаться в особо благоприятных климатических условиях, например в Бразилии. Но добиваться их широкого внедрения в России, которая до сих пор импортирует до половины потребляемого продовольствия, и при этом, по самым скромным оценкам, из-за неэффективного использования бесполезно теряет до трети добываемого ископаемого топлива, вряд ли целесообразно.

Промышленное производство биотоплива в России в настоящее время в основном ограничено производством пеллет – топливных гранул, получаемых из отходов лесодобычи и деревообработки. Это самое дешевое биосырье, которое только можно себе вообразить. При этом теплотворная способность пеллет практически такая же, как у угля – ~19 МДж/кг, а сами пеллеты сравнительно дешевы. Этот бизнес в основном ориентируется на экспорт в Скандинавию, Италию и Германию. Более 100 российских заводов производят почти 1 млн тонн пеллет, из которых подавляющая часть идет на экспорт. Однако сейчас этот рынок практически полностью насыщен. Как в случае с любыми биотопливами, транспортировка на большие расстояния, выше несколько сот километров, делает производство пеллет нерентабельным. Внутренний же рынок пеллет практически не развивается. ТЭЦ, которые бы использовали пеллеты в промышленных масштабах, в стране пока нет. Поэтому даже во многих лесных регионах производство пеллет оказалось нерентабельным. Там выгоднее сжигать в котельных непосредственно первичные отходы лесопереработки. На основе отходов животноводства и растениеводства в различных регионах развивается местное производство биогаза. Видимо, эти направления и являются наиболее разумными для отечественного производства биотоплив.

Правда, в прессе и даже в научных изданиях регулярно публикуются утверждения, что «Россия обладает крупнейшими в мире возобновляемыми запасами биомассы, пригодной для использования в энергетических целях, доступные запасы которой эквивалентны 300 млрд кВтч электроэнергии». К сожалению, эти публикации никогда не сопровождаются экономическим анализом тех затрат, которые необходимы для того, чтобы собрать эту биомассу с необъятных российских просторов, транспортировать за сотни километров к пунктам переработки и превратить в биотопливо или непосредственно энергию.

Что же в итоге? Мы приходим к вполне определенному выводу, что фундаментальные характеристики известных нам возобновляемых источников энергии: их общий энергетический потенциал, характерная плотность потока энергии, отношение получаемой энергии к энергозатратам на ее получение и себестоимость получаемой энергии не позволяют в обозримой перспективе рассчитывать на глобальную роль этих источников в мировой энергетике.

Несколько веков назад человечество начинало свою промышленную революцию, целиком полагаясь на «экологически чистые» возобновляемые источники энергии – биотопливо (дрова), энергию воды и ветра. Реалии технологического развития еще два века назад убедительно показали, что интенсивное промышленное производство не может базироваться на этих источниках из-за низкой плотности потока производимой ими энергии. И тем более этот путь, уже давно показавший свою экономическую и технологическую несостоятельность, не может стать панацеей для многократно выросшего и более энерговооруженного человечества.