Французский математик Седрик Виллани совсем не похож на обычного университетского профессора. Красивый и худощавый, с мальчишеским лицом и волнистыми волосами до шеи, он скорее напоминает денди «Прекрасной эпохи» или участника претенциозной студенческой рок-группы. Виллани всегда одет в костюм-тройку с накрахмаленным белым воротником, галстук лавальер (галстук, завязанный в большой вычурный бант) и сверкающую брошь в форме тарантула. «Мне же нужно было что-то с этим сделать, — сказал он по поводу своей внешности. — Это произошло инстинктивно».

Я впервые встретился с Виллани в 2010 году в индийском городе Хайдарабаде, на Международном конгрессе математиков, который проводится один раз в четыре года. Из трех тысяч его участников именно Виллани был в центре внимания — и не из-за изысканного внешнего вида, а потому что на церемонии открытия ему вручили медаль Филдса. Филдсовская премия и медаль — это высший знак отличия в области математики. Виллани вел образ жизни поп-звезды: где бы ни появился, его просили дать автограф и сфотографироваться. Однажды мне удалось поговорить с ним, и я спросил, есть ли у знаменитых математиков поклонницы. «Знаете, в мире математики они несколько стеснительны, так что вряд ли будут мне досаждать, — засмеялся он. — К сожалению».

Медаль Филдса вручается на каждом Международном конгрессе математиков двум, трем или четырем ученым не старше 40 лет. (В Хайдарабаде эту премию получили также Элон Линденштраусс из Израиля, Станислав Смирнов из России и Нго Бао Тяу из Вьетнама.) Ограничение по возрасту объясняет первоначальную мотивацию, лежавшую в основе создания премии, идею которой предложил канадский математик Джон Филдс. Однако Филдсовская премия приносила такую известность и признание, что, начиная с присуждения первых двух премий в 1936 году, стал формироваться культ молодости, подразумевающий, что, если вам исполнилось 40 лет, вы уже не можете рассчитывать на получение столь высокой награды. Это несправедливо, поскольку многие математики добиваются самых больших успехов после сорока. С другой стороны, обладателям Филдсовской премии приходится прилагать много усилий к тому, чтобы снова сосредоточиться на работе, так как слава влечет за собой и другие обязанности. Математическое сообщество не воздает должное за достижения всей жизни так, как это делает физическое и химическое сообщество посредством Нобелевской премии.

Первый Международный конгресс математиков прошел в 1897 году в Цюрихе. На втором конгрессе, состоявшемся в 1900 году в Париже, немецкий математик Давид Гильберт сделал доклад, в котором перечислил 23 нерешенные математические задачи, тем самым определив направление развития этой дисциплины на ближайшую сотню лет. Математики приезжают на Международный конгресс, чтобы оценить и осмыслить свои достижения, а объявления о присуждении Филдсовской премии содержат краткое описание самых интересных работ. Например, Линденштраусс получил медаль Филдса «за результаты по жесткости относительно мер в эргодической теории и за их применение в теории чисел», Смирнов — «за доказательство конформной инвариантности двумерной перколяции и модели Изинга в статистической физике», а Тяу — «за доказательство фундаментальной леммы в теории автоморфных форм новыми алгебро-геометрическими методами». Возможно, эти формулировки поразили вас не меньше, чем меня, когда я услышал их на конгрессе. На самом деле многим его участникам тоже было трудно понять все это даже после того, как они выслушали разъяснительные доклады. Британский математик Тимоти Гауэрс, лауреат Филдсовской премии за 1998 год, написал в своем блоге: «Если хотите произвести впечатление на друзей, постарайтесь сделать вид, что понимаете [работу Нго]. Если кто-то спросит вас, в чем основная идея его работы, вы можете ответить так: “Ну, самая глубокая его идея состояла в том, что расслоение анизотропной частицы Хитчина в формуле следа — это стек Делиня-Мамфорда”. Если это не произведет должного эффекта, тогда упомяните в разговоре об “искаженных пучках” — они здесь будут явно к месту». Передовые достижения в области математики настолько сложны в концептуальном плане, что во всем мире найдется не более нескольких сотен человек, способных понять, что именно сделал каждый из обладателей медали Филдса. Что касается работы Нго, математика, специализирующегося на самых абстрактных концепциях, таких людей еще меньше.

Однако краткое описание работы Виллани оказалось более доступным для понимания, чем остальные. Он был удостоен Филдсовской премии «за доказательство нелинейности затухания Ландау и сходимости к равновесию в уравнении Больцмана». Здесь, по крайней мере, было нечто понятное даже для неспециалиста в данной области. Уравнение Больцмана, которое австрийский физик Людвиг Больцман вывел в 1872 году, описывает поведение частиц газа и является одним из самых известных в классической физике. Как оказалось, Виллани — не только ценитель галстуков XIX столетия, но и поклонник ученого мирового уровня тех времен.

Уравнение Больцмана, известное под названием «дифференциальное уравнение с частными производными», выглядит так:

Если вы изучали исчисление в школе, вы увидите в этой формуле ряд знакомых символов, особенно таких, как вытянутый символ ∫ или изогнутый символ ∂. Если вы не изучали этот предмет, не волнуйтесь — немного позже я вам объясню, что значат все эти символы. Исчисление — это важнейшее интеллектуальное достижение эпохи Просвещения, и присуждение Филдсовской премии Седрику Виллани свидетельствует о том, что в данной области до сих пор осуществляются передовые математические исследования. Мы с вами еще вернемся к этому вычурно одетому французскому математику и его уравнению, но для того, чтобы вооружиться необходимыми концептуальными и терминологическими инструментами, нам понадобится сначала перенестись с юга Индии на Сицилию, примерно в III столетие до нашей эры.

На лицевой стороне медали Филдса находится портрет бородатого Архимеда, заслужившего репутацию самого выдающегося математика Античности. Однако Архимеда чаще всего вспоминают в связи с его вкладом в физику. Например, когда он выскочил из ванной с возгласом «Эврика!», это было не математическое открытие, а прорыв в области гидростатики, получивший название «закон выталкивающей силы», или «закон Архимеда». К числу наиболее известных изобретений Архимеда относится гигантский крюк, с помощью которого древние греки топили корабли римлян, пытавшихся захватить его родной город Сиракузы, а также винт, вращая который вручную можно было поднимать воду. Историк Плутарх писал, что сам Архимед считал сооружение машин «низменным и грубым» и был «околдован геометрией». Когда Архимед принимал ванну и его не одолевали мысли о физике, «он продолжал чертить геометрические фигуры на золе очага и даже на собственном теле, натертом маслом и благовониями, проводил пальцем какие-то линии, отдавшись во власть великого наслаждения, которое испытывал от изучения геометрии».

Изначальная задача геометрии состояла в расчете площади. (Термин «геометрия», или «измерение земли», впервые использовал историк Геродот, описывая метод, который изобрели египетские сборщики налогов для расчета площади земель, затопленных ежегодными разливами Нила.) Как мы знаем, площадь прямоугольника равна произведению его ширины на высоту; исходя из этого, можно сделать вывод, что площадь треугольника равна половине произведения его основания на высоту. Древние греки нашли различные методы вычисления площади более сложных фигур. Среди них самым значительным достижением была «квадратура параболы» Архимеда, или метод вычисления площади фигуры, ограниченной параболой и прямой. Как показано на рисунке ниже, Архимед сначала нарисовал большой треугольник, вписанный в параболу, а затем на его сторонах построил новые треугольники. На каждой из двух сторон треугольников меньшего размера он построил еще меньшие треугольники, и так далее, придерживаясь условия, что три вершины каждого треугольника должны находиться на параболе. Чем больше треугольников рисовал Архимед, тем сильнее их совокупная площадь приближалась к площади параболического сегмента. Если бы этот процесс продолжался и дальше, бесконечное количество треугольников полностью покрыло бы требуемую площадь.

Квадратура параболы

Далее Архимед доказал, что если площадь большого треугольника равна Т, то площадь каждого из двух треугольников меньшего размера составляет , а площадь каждого из четырех треугольников, построенных на их сторонах, равна и т. д. Другими словами, площадь параболического сектора, представляющая собой сумму всех треугольников, — это бесконечный ряд:

или

или

В заключение Архимед доказал, что сумма этого ряда равна . Следовательно, чтобы вычислить площадь между прямой и параболой, достаточно начертить треугольник, измерить длину его основания и высоту, рассчитать площадь и умножить полученный результат на . Я не буду приводить здесь доказательство Архимеда, а вместо этого покажу рисунок, который содержит в себе это доказательство. Математические схемы такого типа называются доказательством без слов. Приведенный ниже рисунок — пожалуй, мой самый любимый в этой книге, и он гласит, что

Посмотрите на этот рисунок и попытайтесь понять почему. (А если не сможете, откройте Приложение 6.) Если это уравнение верно, тогда общая площадь равна:

Что и требовалось доказать.

Квадратура параболы Архимеда — самый наглядный пример применения метода последовательных исчерпываний: суммирование последовательности площадей малых фигур, приближающихся к площади большой фигуры. Доказательство этого метода считается наиболее значительным достижением Архимеда, поскольку отображает первую «современную» трактовку математической бесконечности. За две сотни лет до Архимеда философ Зенон предостерегал против использования такого понятия, как бесконечность, в серии парадоксов. В самом знаменитом из них, «Ахиллес и черепаха», демонстрировалось, что сложение бесконечного количества величин приводит к абсурдному результату.

Представьте себе, говорил Зенон, что Ахиллес пытается догнать черепаху. Когда атлет достигнет того места, где она была, когда он начал свой бег, черепаха проползет немного дальше. Когда он доберется до второй позиции, черепаха снова продвинется дальше. Ахиллес может продолжать свой бег сколько угодно, но каждый раз, когда он будет достигать того места, где находилась черепаха, она уже будет немного впереди. Зенон утверждал, что если рассматривать движение как бесконечное количество рывков на протяжении бесконечного количества интервалов, то быстроногий Ахиллес никогда не догонит неповоротливую черепаху. Древние греки так и не смогли развязать логические узлы Зенона, поэтому математики всячески избегали концепции бесконечности в своей работе. Даже Архимед, использовавший метод последовательных исчерпываний, никогда не называл всеобъемлющую сущность именем «бесконечный ряд» так прямо, как это делаю я. Но различия касались исключительно терминологии, а не самой идеи. Архимед был первым мыслителем, создавшим аппарат для работы с бесконечным рядом, имеющим конечный предел. Это было важно не только для покорения площадей гораздо более сложных фигур, чем парабола, но и для начала концептуального пути к исчислению. Архимед стал первым из тех атлантов, на плечи которых обопрется в свое время Исаак Ньютон.

Если бесконечность — это самое большое число, тогда какое число самое маленькое? В XVII столетии математики ввели новую концепцию под названием «бесконечно малая величина» — величина, которая меньше любой другой действительной величины, но все же больше ноля.

Бесконечно малая величина была и чем-то, и ничем: достаточно большая для применения в математике, но и достаточно малая, чтобы исчезнуть, когда вам это необходимо. Рассмотрим в качестве иллюстрации окружность, изображенную на рисунке ниже. В нее вписан двенадцатиугольник — фигура с 12 сторонами, состоящая из 12 идентичных треугольников с общей вершиной, совокупная площадь которых примерно равна площади круга. Если я построю в этой окружности многоугольник с большим числом сторон, содержащий большее количество более узких треугольников, их совокупная площадь еще сильнее приблизится к площади круга. Если я продолжу увеличивать количество сторон, в предельном случае я получу многоугольник с бесконечным количеством сторон, содержащих бесконечное количество бесконечно узких треугольников. Площадь каждого такого треугольника представляет собой бесконечно малую величину, но их совокупная площадь равна площади круга.

В предыдущих главах мы уже дважды встречались с немецким астрономом Иоганном Кеплером. Это именно он понял, что планеты движутся по эллиптическим орбитам, и это он побывал на одиннадцати свиданиях, прежде чем нашел вторую жену. Когда Кеплер сделал предложение будущей фрау К., оставался такой пустяк, как организация свадебной церемонии. Покупая вино, ученый увидел, что виноторговцы определяют объем полной бочки вина, вставляя в нее по диагонали прут через наливное отверстие, расположенное посредине боковой стороны бочки. Это был грубый, приближенный метод, и он совсем не понравился Кеплеру, поскольку прут одной и той же длины подходил для бочек разных размеров, как показано на рисунке ниже.

Измерение объема винных бочек

Кеплер начал размышлять над тем, как точнее вычислить объем бочки, для того чтобы определить, в бочке какой формы было бы больше всего вина при фиксированной длине прута. Вдохновленный идеями Архимеда, Кеплер разработал метод, в соответствии с которым разделил каждую бочку на бесконечное количество бесконечно малых фигур, объем которых можно было рассчитать. Затем он доказал, что для прута длиной l, проходящего от наливного отверстия до дальнего угла бочки, бочка будет иметь максимальный объем, если ее ширина равна . Кеплер оказался первым представителем целого поколения математиков, использовавших бесконечно малые величины в процессе вычисления площадей и объемов. Среди математиков разных стран, от Англии до Италии, начался бурный рост активности в этой области, что отображало самый значительный сдвиг в математической культуре со времен древних греков — ярых приверженцев концепций, имеющих логический смысл. Теперь же логическая строгость была отброшена, уступив место тому, что давало результаты. Бесконечно малые величины представляли собой нечто неопределенное, что существовало и не существовало одновременно. Но никто не собирался отказываться от них.

Бесконечно малые величины позволили разработать чрезвычайно эффективный метод определения касательной — линии, которая касается кривой в определенной точке, но не пересекает ее. Представьте, что нам необходимо найти касательную в точке Р к кривой, изображенной на рисунке ниже. Стратегия построения касательной состоит в том, чтобы провести приближенную прямую в соответствующей точке, а затем улучшать приближение до тех пор, пока она не совпадет с искомой прямой. Мы можем сделать это, нарисовав линию, проходящую через точку Р и пересекающую кривую в расположенной рядом точке Q, а затем смещать эту точку все ближе и ближе к точке Р. Когда точка Q совпадет с точкой Р, полученная линия будет касательной к данной кривой в точке Р.

Аппроксимация касательной

Как мы уже знаем, градиент прямой линии — это отношение расстояния, покрытого прямой по вертикали, к расстоянию по горизонтали, а градиент кривой в определенной точке — это градиент касательной в этой точке. Касательные интересовали математиков только из-за градиентов. На представленном выше рисунке градиент линии, проходящей через точки P и Q, равен ∆y/∆x. (Греческая буква ∆ («дельта») — это математический символ, которым обозначаются малые приращения.) По мере приближения точки Q к точке Р значение ∆y/∆x приближается к градиенту касательной в точке Р. Но здесь возникает одна проблема. Если точка Q действительно совпадет с точкой Р, тогда ∆y = 0 и ∆x = 0, а это значит, что градиент кривой в точке Р равен 0/0. Но ведь это некорректная математическая операция! Арифметические правила запрещают деление на ноль! Проблему можно решить, удерживая точку Q на бесконечно малом расстоянии от точки Р. Сделав это, мы сможем сказать, что, когда точка Q приближается к точке Р на бесконечно малое расстояние, значение ∆y/∆x становится бесконечно близким к градиенту кривой в точке Р.

В 1665 году Исаак Ньютон, недавно окончивший Кембридж, вернулся в дом своей матери в Линкольншире. «Черная смерть» уничтожала город за городом по всей Британии. Университет закрыли, чтобы защитить его персонал и студентов. В доме матери Ньютон устроил себе небольшой кабинет и начал записывать свои математические идеи в огромный дневник, который назвал «черновиком». На протяжении следующих двух лет Ньютон вел образ жизни отшельника и, ни на что не отвлекаясь, вывел новые теоремы, которые легли в основу Philosophiae Naturalis Principia Mathematica — опубликованного в 1687 году трактата, изменившего наше понимание физической Вселенной в большей степени, чем любая другая работа до или после этой книги. В ней Ньютон описал систему законов природы, объясняющую, почему различные объекты, от падающих с дерева яблок до планет, вращающихся вокруг Солнца, двигаются именно так, а не иначе. Однако открытия, сделанные Ньютоном в физике, требовали столь же фундаментального прорыва в математике. Он формализовал работу по бесконечно малым величинам, выполненную за предыдущие полстолетия, объединив ее результаты в общую систему с унифицированными обозначениями. Ньютон назвал ее методом флюксий, но она получила известность под названием «исчисление бесконечно малых величин», а сейчас ее часто называют просто исчислением.

Движущееся тело меняет свое положение в пространстве, а его скорость представляет собой изменение этого положения во времени. Если тело перемещается с фиксированной скоростью, оно меняет свое положение на фиксированную величину за каждый промежуток времени. Движущийся с постоянной скоростью автомобиль, покрывающий 60 миль с 16 до 17 часов, движется со скоростью 60 миль в час. Ньютон хотел решить другую задачу: как вычислить скорость тела, перемещающегося не с постоянной скоростью? Предположим, тот же автомобиль движется не с постоянной скоростью 60 миль в час, а то ускоряет, то замедляет движение из-за транспортного потока. Один из методов расчета скорости этого автомобиля, например в 16:30, сводится к измерению отрезка пути, который он проедет с 16:30 до 16:31, что позволит определить расстояние, пройденное за минуту. (Для того чтобы получить скорость в милях в час, нам останется просто умножить это расстояние на 60.) Однако это значение представляет собой среднюю скорость за эту минуту, а не мгновенное значение скорости в 16:30. Мы можем взять еще более короткий промежуток, скажем путь, который проедет автомобиль с 16:30 до 16:30 и одна секунда, что даст нам расстояние за секунду. (Для того чтобы получить скорость в милях в час, необходимо умножить это расстояние на 3600.) Но это тоже всего лишь средняя скорость в данную секунду. Мы можем и дальше сокращать промежутки, но так и не получим мгновенное значение скорости до тех пор, пока этот промежуток не окажется меньше любого другого — другими словами, пока он не станем равным нулю. Но если промежуток равен нулю, автомобиль не движется!

Эта цепочка рассуждений должна показаться вам знакомой, поскольку я уже использовал ее выше, когда объяснял, как вычислить градиент точки на кривой. Для того чтобы определить градиент, мы делим бесконечно малую величину (длину) на другую бесконечно малую величину (еще одну длину). Для того чтобы вычислить мгновенное значение скорости, мы также должны разделить бесконечно малую величину (расстояние) на другую бесконечно малую величину (время). С математической точки зрения эти две задачи идентичны. Метод флюксий Ньютона был методом вычисления градиентов, который позволил рассчитывать мгновенное значение скорости движущихся объектов.

Посмотрим, как Ньютон применил этот метод для вычисления градиента кривой y = x2 — давно знакомой нам параболы. Изложенные ниже объяснения носят специальный характер, но, если вы будете читать медленно, вам не трудно будет их понять. К концу вы увидите, как Ньютон использовал бесконечно малые величины для выведения формулы градиента каждой точки на этой прямой.

Вычисление градиента кривой y = x2

Для начала выполним те же действия, что и немного выше, в процессе построения касательной: возьмем произвольную точку Р, построим в ней приближенную касательную, которая проходит через другую точку Q, расположенную недалеко от Р вдоль кривой. Затем приблизим точку Q на бесконечно малое расстояние от Р. Градиент касательной в точке Р — и есть градиент кривой в этой точке. Давайте введем новый символ о и обозначим им расстояние по горизонтали между точками Р и Q, как показано на рисунке выше. Если координаты точки Р — (x, x2), то координаты точки Q — (x + o, (x + o)2). Следовательно, вертикальное расстояние между точками P и Q составляет (x + o)2 − x2, стало быть, градиент прямой равен отношению расстояния по вертикали к расстоянию, покрытому по горизонтали:

В этом выражении можно раскрыть скобки:

И свести к такому уравнению:

Что равно:

2x + o

Когда точка Q приближается к точке Р на бесконечно малое расстояние, значение о становится бесконечно малым, а значит, градиент — бесконечно близким к 2x. Ньютон утверждал, что мы можем позволить точке Q совпасть с точкой Р и что, когда это действительно произойдет, мы можем отбросить бесконечно малое значение о и с уверенностью заявить, что градиент в точке Р равен 2x. Как только бесконечно малая величина выполнит свою работу, она может уйти со сцены.

Другими словами, градиент кривой y = x2 в точке с координатой х на горизонтали равен 2x.

Если вся эта алгебра показалась вам слишком сложной, вы все равно можете оценить значимость достижений Ньютона. Он выделил самое важное свойство кривой (ее градиент) и вывел формулу 2x, позволяющую вычислять градиент в любой точке кривой. Обозначив градиент символом y´, мы можем записать новое уравнение: y´ = 2x, которое еще известно как производная исходной кривой.

Верхний левый график на представленном ниже рисунке — это кривая y = x2, а непосредственно под ним — ее градиент, y´ = 2x, являющийся прямой линией. Когда x равен 1, кривая имеет значение 1, а градиент равен 2. Когда x равен 2, кривая имеет значение 4 и градиент равен 4. Эта кривая повышается в форме параболы, а градиент — в форме прямой линии. А теперь забудьте о геометрии и подумайте о математике. Оба графика описывают поведение движущегося объекта. Если исходная кривая отображает положение объекта во времени, то производная — мгновенное значение скорости. Эти графики показывают, что за 1 единицу времени объект проходит 1 единицу расстояния, а его скорость — 2. За 2 единицы времени объект проходит 4 единицы расстояния, а его скорость равна 4 и т. д. По сути, верхняя кривая моделирует позицию объекта в момент его падения под воздействием силы тяжести: пройденное расстояние пропорционально квадрату истекшего времени. Воспользовавшись методом исчисления, Ньютон показал, что мгновенное значение скорости падающего объекта увеличивается по линейному закону.

Градиент параболы, изображенной на верхнем левом рисунке, — прямая линия, а градиент кривой А — кривая В

Я выбрал кривую y = x2, потому что ее производная вычисляется достаточно просто, но метод Ньютона применим ко всем гладким кривым при условии наличия уравнения, описывающего соответствующую кривую. На верхнем рисунке справа показана еще одна кривая, а ниже — кривая ее градиента, или производной. Но здесь я опустил уравнения этих кривых и просто назвал их А и В — мне хотелось бы, чтобы вы прочувствовали всю красоту данной трансформации. Градиент кривой А в каждой ее точке изображен на нижнем графике в виде кривой В. Давайте совершим путешествие по кривой А слева направо. Эта кривая повышается, достигает вершины, опускается, доходит до нижней точки, а затем снова поднимается. Другими словами, градиент имеет положительное значение, достигает нуля в тот момент, когда кривая на мгновение становится горизонтальной, затем принимает отрицательное значение, повышается до нуля и снова становится положительным. Но ведь именно это и происходит с кривой В! Сначала она проходит в области положительных значений, затем пересекает горизонтальную ось, переходит в область отрицательных значений, а потом снова врывается в положительную плоскость. (Пунктирные вертикальные линии показывают соответствие между важными точками верхней кривой и нулевыми значениями градиента.) Когда я впервые увидел такую кривую вместе с кривой градиента, я был поражен. Мне казалось настоящим волшебством то, что изменение величины, заданное одной кривой, идеально отображается другой кривой.

Концепция бесконечно малых величин позволила разработать метод определения градиентов, а также найти способ вычисления площадей. Мы уже видели, как Архимед рассчитывал площадь, ограниченную параболой и прямой, суммируя площадь треугольников все меньшего размера, а также как математики эпохи Возрождения усовершенствовали эту методику, разделив площадь на бесконечно малые сегменты. Метод флюксий Ньютона делает возможным определение площади под кривой посредством разделения этой площади на бесконечное количество бесконечно малых вертикальных полос.

Например, зная уравнение кривой С, изображенной на рисунке ниже, с помощью исчисления мы можем вывести уравнение заштрихованной области А между началом координат и точкой х на горизонтальной оси.

Следовательно, при наличии той или иной кривой исчисление предоставляет нам две возможности: вывести уравнение ее градиента или уравнение площади под ней. Но вот что интересно: эти две процедуры носят взаимно обратный характер! Градиент и площадь — это, по сути, одно и то же явление, рассматриваемое под разными углами. Такой поворот сюжета достоин мультсериала «Скуби-Ду»: в последнем акте этой математической драмы оказывается, что два разных персонажа на самом деле представляют собой один и тот же объект. Этот результат, получивший название «основная теорема исчисления», стал одним из самых неожиданных открытий XVII столетия.

Если не вдаваться в детали, эта теорема гласит, что если площадь под кривой С равна А, то градиент кривой А равен С. Чтобы было понятнее, вспомните о том, что кривые, площади и градиенты записываются в виде уравнений. С — это кривая, которая также имеет свое уравнение. С помощью исчисления мы можем вывести уравнение А для площади, лежащей под этой кривой. Основная теорема исчисления гласит, что производная (или градиент) уравнения А равна С.

Давайте посмотрим, как это работает, когда С — это прямая y = 2x, представленная на рисунке ниже. Площадь треугольника равна произведению половины основания на высоту. (Мы могли бы вывести эту формулу с помощью бесконечно малых величин, но нам не нужно этого делать, поскольку она уже известна.) Следовательно, площадь А под линией от 0 до х равна х/2 × 2x, или x2, что дает уравнение площади под линией А = x2. Но это же уравнение описывает и кривую на рисунке справа — параболу. Вспомните размещенный немного выше график, на котором показано, как определение градиента кривой дает возможность перейти от кривой к прямой линии. На рисунках ниже показано, как вычисление площади под кривой позволяет перейти от прямой к параболе. Следовательно, градиент и площадь — это две стороны одной медали.

Вычисление площади под прямой y = 2x и ее отображение в виде кривой

Исчисление позволяло Ньютону взять уравнение, определяющее положение объекта, и вывести из него другое уравнение, описывающее мгновенное значение скорости этого объекта. Кроме того, благодаря исчислению он мог взять уравнение мгновенного значения скорости объекта и вывести из него другое уравнение, описывающее его положение. Исчисление предоставляло в распоряжение Ньютона те математические инструменты, с помощью которых он разработал законы динамики. Ньютон называл переменные своих уравнений флюентами, а градиенты — флюксиями и обозначал их буквами и с точками сверху.

Когда после двух лет пребывания в Линкольншире Ньютон вернулся в Кембридж, он никому не рассказал о методе флюксий, о чем впоследствии очень сожалел. На континенте над созданием аналогичной системы работал Готфрид Лейбниц, немец по рождению, являющийся человеком вне границ — юристом, дипломатом, алхимиком, инженером и философом. Кроме того, еще и математиком, который придавал большое значение системе обозначений. Символы, введенные им для своей системы, были более понятны, чем символы Ньютона, — именно их мы и используем до сих пор.

Лейбниц ввел обозначения dx и dy для бесконечно малой разности между значениями x и y. Градиент, который представляет собой отношение одной бесконечно малой разности к другой, он записывал как dx/dy. Поскольку Лейбниц употреблял слово difference («разность»), вычисление градиента было обозначено термином «дифференцирование». Кроме того, Лейбниц ввел напоминающий вытянутую букву s символ ∫ для обозначения расчета площади. S — это сокращение от слова summa («сумма»), поскольку, как мы уже видели, площадь рассчитывается как сумма бесконечно большого количества бесконечно малых величин. По рекомендации своего друга Иоганна Бернулли Лейбниц назвал этот метод calculus integralis — интегральное исчисление, а расчет площади стал известен как интегрирование. Преимущество такого длинного (и поддающегося расширению) символа состоит в том, что рядом с ним можно указать значения на горизонтальной оси, ограничивающие рассчитываемую площадь. В таком случае площадь А, показанная на рисунке с кривой С, записывается так:

что читается как «интеграл по С от 0 до x». Введенный Лейбницем символ ∫ — самый величественный символ в математике, напоминающий форму резонаторного отверстия в виолончели или скрипке.

Более двух десятилетий Лейбниц и Ньютон вели уважительную дружескую переписку по поводу бесконечно малых величин. Когда Лейбниц первым опубликовал детали своей системы исчисления, все предположили, что он изобрел ее самостоятельно. Но в 1699 году, через несколько лет после того, как Ньютон обнародовал свой метод флюксий, молодой швейцарский математик, живший в Англии, обвинил Лейбница в краже идей Ньютона. Через пять лет появилась реакция на это заявление: в журнале Acta Eruditorum вышла статья (по всей вероятности, написанная Лейбницем) с предположением о том, что это Ньютон совершил плагиат. Такие перепалки между британским и континентальным научным сообществом становились все ожесточеннее, и эта вражда заполнила все последующие годы жизни Лейбница и Ньютона. Споры по поводу приоритета были в то время далеко не редкостью, но ни в один из них не были вовлечены ученые такого масштаба, и ни один не стал столь гневным и продолжительным. Эта вражда не закончилась даже после их смерти. Великобритания, где из чувства национальной гордости использовали флюксии Ньютона вместо дифференциалов, оказалась изолированной от европейских научных достижений на протяжении лучшей части столетия. Только когда англичане приняли систему обозначений Лейбница и перешли, как писал Огастес де Морган, «от эпохи флюксий с точечными обозначениями к эпохе исчисления с его деизмами», Британия восстановила свой статус в математике.

В 1891 году немецкая компания Bahlsen начала выпускать прямоугольное масляное печенье с зубчатыми краями под названием Leibniz — по имени самого известного выходца из Ганновера. По случайному совпадению в тот же год один булочник из Филадельфии сделал свое первое пирожное Fig Newton — рулет с инжирным кремом, названный в честь города Ньютона в штате Массачусетс. Так что в наши дни спор «Ньютон против Лейбница» протекает разве что во время чаепития.

Как мы уже знаем, исчисление состоит из двух процедур: дифференцирование (вычисление градиента) и интегрирование (вычисление площади). Если говорить в общих чертах, то градиент — это скорость изменения одной переменной величины по отношению к другой, а площадь — мера того, в каком количестве накапливается одна переменная величина в зависимости от другой. Таким образом, исчисление предоставляет ученым возможность моделировать поведение величин, меняющихся в зависимости друг от друга. Этот удивительный инструмент позволяет объяснить физический мир, поскольку во Вселенной все, от крохотных атомов до самых больших галактик, находится в постоянном движении.

Зная зависимость между двумя переменными величинами, мы можем описать их с помощью уравнения, воспользовавшись символами для обозначения дифференцирования и интегрирования. Уравнение с переменными х и у, в котором присутствует выражение dx/dy, называется простейшим дифференциальным уравнением. Если в уравнении присутствует больше двух переменных, скажем х, у и t, скорость изменения записывается как ∂x/∂y или ∂x/∂t. Это уравнение называется дифференциальным уравнением с частными производными, поскольку такие его члены, как ∂x/∂y, говорят нам о том, как одна переменная меняется в зависимости от другой, но не от всех переменных. Дифференциальные уравнения с частными производными наиболее распространены в прикладной математике, поскольку позволяют ученым делать прогнозы. Зная, как две величины меняются с течением времени, мы можем предсказать их состояние в любой момент в будущем. Уравнения Максвелла, объясняющие поведение магнитных и электрических полей; уравнение Шредингера, лежащее в основе квантовой механики; уравнения поля Эйнштейна, представляющие собой основу Общей теории относительности, — все это дифференциальные уравнения с частными производными.

Первое уравнение такого типа описывало поведение скрипичной струны в момент ее поперечного колебания — задача, которая десятилетиями не давала ученым покоя. Это уравнение открыл в 1746 году Жан Лерон Д’Аламбер, известный математик своего времени. Д’Аламбера, появившегося на свет в результате непродолжительной связи артиллерийского генерала с бывшей монахиней, сразу же после рождения подбросили на ступеньки расположенной рядом с собором Парижской Богоматери Круглой церкви святого Иоанна в Париже (Saint Jean Le Rond), в честь которой ему и дали имя Жан Лерон. Воспитанный в семье стекольщика, Д’Аламбер смог наперекор всему стать постоянным секретарем Французской академии. Он был не только серьезным математиком, но и ярым защитником ценностей эпохи Просвещения, кроме того, общественным деятелем, желанным гостем аристократических салонов и одним из редакторов «Энциклопедии», для которой написал вступление и более тысячи статей.

Д’Аламбер был прообразом французского ученого-интеллектуала, роль которого в наше время с удовольствием играет Седрик Виллани.

Во второй раз я встретился с Виллани в Париже. С 2009 года он возглавляет Институт Анри Пуанкаре — элитный французский математический институт, расположенный среди университетских зданий в Латинском квартале Парижа. В кабинете ученого царит уютный беспорядок из книг, бумаг, кофейных чашек, наград, головоломок и геометрических фигур. Внешность Виллани совсем не изменилась со времени нашей первой встречи на Международном конгрессе математиков два года тому назад: бордовый галстук, синий костюм-тройка и металлический паук, сверкающий на отвороте пиджака. Седрик сказал, что этот образ сформировался еще тогда, когда ему было двадцать с лишним лет. Сначала он носил рубашки с широкими рукавами, затем с кружевами, после чего пришел черед цилиндра… «Это был своего рода научный эксперимент, в ходе которого постепенно возникло ощущение “это и есть я”». А что насчет паука? Виллани нравится его неоднозначность. «Одни считают, что паук — это материнский символ. По мнению других, паутина — это символ Вселенной, или паук — великий архитектор мироздания, своего рода способ персонифицировать Бога. Пауки не оставляют людей безразличными. Реакция наступает мгновенно». «Паук — это архетип, имеющий множество разных интерпретаций, — подумал я, — подобно тому как математика — абстрактный язык, имеющий множество областей применения».

Дифференциальные уравнения с частными производными — и есть область научных интересов Виллани. Он утверждает, что, хотя этим уравнениям уже почти триста лет, их «по-прежнему понимают достаточно плохо. Создается впечатление, что за каждым уравнением с частными производными стоит своя теория. Существует множество подразделов таких уравнений при совсем небольшой общей базе и полном отсутствии общей классификации. Многие пытались их классифицировать, но даже лучшие специалисты потерпели неудачу». Дифференциальное уравнение с частными производными, которому Виллани посвящает большую часть своего времени, — это уравнение Больцмана, ставшее темой его докторской диссертации, а впоследствии — частью той работы, за которую он получил Филдсовскую премию. Виллани и сейчас относится к этому уравнению с любовью и нежностью. «Это как первая любовь, — признаётся он. — Это первое уравнение, на которое смотришь и думаешь, что оно самое прекрасное в мире». Полюбуйтесь им еще раз:

Уравнение Больцмана относится к области статистической механики — раздела математической физики, изучающего зависимость между микроскопическим поведением отдельных молекул и макроскопическими свойствами, такими как температура и давление. Это уравнение описывает, как рассеивается облако газа, посредством анализа вероятности нахождения его молекул в определенной точке, при определенной скорости и в определенное время. Данная модель исходит из предположения о том, что частицы газа движутся по законам Ньютона, но в случайных направлениях, и описывает последствия их столкновений посредством теории вероятностей. Виллани показал на левую часть уравнения: «Это частицы, двигающиеся по прямой». Затем на правую часть: «А здесь описаны их столкновения. Бац! Бац!» Он несколько раз стукнул кулаками друг о друга. «В уравнениях такого типа часто бывают напряженные отношения между их разными членами. Уравнение Больцмана — идеальный случай для изучения, поскольку разные его члены описывают разные феномены и обитают в совершенно разных математических мирах».

Если бы вы сняли на видео, как одна частица газа отталкивается от другой, и показали его кому-то из своих друзей, он не смог бы определить, в прямом или обратном порядке вы прокручиваете отснятый материал, так как законы Ньютона обратимы во времени. Но если вы снимете газ, распространяющийся из лабораторного стакана в окружающую среду, зритель сразу же сможет сказать, в каком направлении проигрывается видео, поскольку газ не способен снова втянуться в стакан. Больцман нашел математическое обоснование кажущегося противоречия между макро- и микроскопическим поведением частиц газа посредством введения новой концепции — концепции энтропии. Энтропия — это мера хаоса, в более формальном смысле — количество вероятных позиций и скоростей частиц в любой момент времени. Больцман доказал, что энтропия всегда увеличивается. Виллани открыл, с какой скоростью она увеличивается, прежде чем достичь совершенно неупорядоченного состояния.

Уравнение Больцмана имеет ряд достаточно простых областей применения, таких как самолетостроение, где оно помогает определить, что происходит с самолетами, когда они пролетают сквозь скопления газов. Именно практическая полезность уравнения Больцмана заинтересовала Виллани, когда он приступил к написанию докторской диссертации. Но по мере углубления в изучение уравнения Больцмана его красота все больше пленяла Виллани. Он сравнивает уравнение со скульптурой Микеланджело: «Небезупречное, утонченное и элегантное, но очень человечное, многое испытавшее, пронизанное силой энергии мироздания. В этом уравнении можно услышать рев частиц, наполненных яростью». Виллани добавил, что предпочитает потратить годы на анализ хорошо известных уравнений, пытаясь найти в них нечто новое, чем изобретать новые концепции. «Именно это мне нравится, и именно это — одна из составляющих общей позиции, которая гласит: “Послушайте! Физика высоких энергий, бозон Хиггса, теория струн или что-то в этом роде — все это очень увлекательно, но не забывайте, что мы до сих пор не до конца понимаем ньютоновскую механику”. Остается еще много, очень много нерешенных задач». Он показал мне дифференциальное уравнение с частными производными в какой-то книге. «У этого уравнения есть гладкие решения? Никто, черт возьми, не знает этого!» Он пожал плечами и нахмурил лоб.

На стене позади Виллани висит портрет его любимой певицы Катрин Рибейро, исполняющей песни в стиле «прогрессивный рок», — руки вытянуты в стороны, кулаки сжаты. На столе стоит бюст французского математика Анри Пуанкаре, бородатого и мрачного. «Именно в этом состоит принцип двойственности, приводящий все в движение, заставляет думать», — объясняет Виллани. У Пуанкаре, который жил на рубеже XIX и XX веков, была репутация последнего математика, в совершенстве владеющего всеми разделами своей дисциплины, — это одна из причин того, почему в его честь назван институт, возглавляемый Виллани. В наше время, по утверждению ученого, один человек способен понять лишь треть областей математики, да и то в самом общем смысле. В совершенстве никто не может овладеть более чем пятью процентами знаний о математике. По мере расширения сферы, которую охватывает эта наука, башни ее знаний становятся все выше и шире, а это значит, что каждый математик должен выбрать область специализации как можно раньше. В итоге математика становится дисциплиной, где чрезвычайно большую роль играет сотрудничество. Стереотипное представление о математиках как об эксцентричных отшельниках больше не соответствует действительности, если когда-либо вообще так было на самом деле. «Математика часто оказывается на стыке разных областей, а в этом случае лучше брать двух специалистов, по одному с каждой стороны». Виллани убежден, что сейчас в математике наступил период активного перекрестного обогащения. «Сначала у вас есть одна область, затем она делится на две, каждая из них проходит процесс специализации, после чего вы получаете ряд различных подобластей и т. д. Затем они снова пересекаются. Когда происходит такое скрещивание после специализации, это очень интересно. Мы живем во времена, когда разные области математики объединяются между собой, а также пересекаются с другими научными областями, причем сейчас этот процесс проходит гораздо эффективнее, чем в прошлом».

Анри Пуанкаре чаще всего вспоминают в связи со сформулированной им в 1904 году и известной под названием «гипотеза Пуанкаре» гипотезой о топологических свойствах сферы. (Она слишком сложна для того, чтобы объяснить ее на доступном для понимания языке одним или даже несколькими предложениями.) Почти целое столетие эта гипотеза была одной из самых знаменитых нерешенных задач в математике, и только в 2002 году 36-летний россиянин разместил ее доказательство в одном из интернет-архивов. К тому времени, когда другие математики проверили правильность его расчетов, Григорий Перельман прекратил заниматься математикой. Он стал затворником, жил с матерью в квартире на окраине Петербурга — и вернул к жизни стереотип эксцентричного отшельника. В 2006 году все математическое сообщество было потрясено отказом Перельмана от Филдсовской премии под предлогом, что он не нуждается ни в каком признании, кроме одного: чтобы люди поняли, что его доказательство правильно. Этот поступок повлек за собой самую горячую полемику за все время, прошедшее с момента учреждения премии в 1936 году. В 2010 году Математический институт Клэя присудил Перельману премию в размере 1 миллион долларов за доказательство гипотезы Пуанкаре, но он отказался и от нее. Невостребованная награда Перельмана, стеклянная табличка на каменной основе, стоит сейчас на полке в кабинете Виллани, а призовые деньги направлены на финансирование новой кафедры в Институте Анри Пуанкаре.

«Перельман — настоящая загадка», — сказал Виллани. Я спросил, читал ли он доказательство Перельмана. «Приложив немного усилий, я смог в нем разобраться. Это не так уж далеко от моей области, — ответил Виллани. — Многие считают, что, если в математике есть доказательство, мы должны быть готовы сразу же определить его правильность или ошибочнось. Но это совсем не так». По словам Виллани, для того чтобы понять ход мыслей Перельмана, требуется много времени.

Перельман — один из шести россиян — лауреатов Филдсовской премии начиная с 1994 года. За этот период в России было больше ее обладателей, чем в любой другой стране. Франция занимает второе место — у нее пять обладателей премии. Однако если включить в этот список бельгийца, который работал во Франции, а также вьетнамца и русского, имеющих французское гражданство, то Франция выйдет в лидеры по количеству математиков, получивших Филдсовскую премию, — 8 из 18. Кроме того, все французские обладатели премии работают в Париже. В этом городе больше профессиональных математиков, чем в любом другом. «Около тысячи [математиков] живут здесь, — сказал Виллани. — Потрясающая цифра!» Одна из причин того, почему во Франции столько лауреатов премии, — первоклассная система образования: все эти математики, кроме одного, учились в престижнейшем учебном заведении — Высшей нормальной школе, в которой на курс математики принимают всего 41 или 42 студентов в год. Однако история также играет в этом свою роль. Великая (или последняя) теорема Ферма, декартова система координат, треугольник Паскаля, преобразования Фурье — вся история математики испещрена именами французов, являющихся предметом национальной гордости Франции. Но ни один из обладателей Филдсовской премии не стал в своей стране такой публичной фигурой, как Седрик Виллани во Франции.

Недавно Виллани вступил в дискуссию с несколькими физиками по поводу Николя Карно (1796–1832), который первым сформулировал теоретические основы работы паровой машины. «У Карно ни на секунду не возникало желания построить такую машину. Ему не было до этого дела! — воскликнул Виллани. — Да, он был французом! Англичане стремятся построить машину, а французы хотят понять ее на теоретическом уровне. И так было всегда!» Так будет и впредь. Да здравствуют различия!

Интегрирование — это раздел исчисления, связанный с расчетом площади, поэтому, когда в 1876 году шотландский инженер Джеймс Томас изобрел устройство для ее измерения, он назвал его «интегратором». Это устройство было усовершенствованной версией планиметра — научного инструмента XIX столетия, которым чаще всего пользовались геодезисты для вычисления площадей фрагментов карты, имеющих неправильную форму. Планиметр состоял из механизма с колесом и диском, закрепленного на рычаге таким образом, чтобы после перемещения иглы по периметру измеряемой области механизм давал точное значение ее площади.

Томпсон показал схему интегратора младшему брату Уильяму, впоследствии ставшему лордом Кельвином, и тот сразу же разглядел потенциал устройства в плане механизации вычислений. Поскольку интегрирование — одна из составляющих дифференциального уравнения, Кельвин понял, что интеграторы можно использовать и в качестве одного из элементов устройства для решения дифференциальных уравнений. Кельвин стразу же применил интеграторы в своем «гармоническом анализаторе приливов» — изобретенном им аппарате для расчета времени наступления приливов.

В 1927 году на основании идей Кельвина по применению ряда интеграторов для решения дифференциальных уравнений Вэнивар Буш из Массачусетского технологического института сконструировал так называемый дифференциальный анализатор — вычислительный прибор, предназначенный исключительно для решения дифференциальных уравнений. Это огромное устройство весом 100 тонн состояло из восьми механических интеграторов, установленных на платформе величиной с комнату, и стало первым, способным делать сложные математические расчеты, опередив первые цифровые электронные компьютеры на целое десятилетие.

Дифференциальный анализатор представлял собой аналоговое вычислительное устройство, поскольку его механические составляющие были функционально подобны взаимодействиям в той физической системе, которую он моделировал. Устройство Буша служило основой многих аналоговых компьютеров вплоть до 70-х годов ХХ столетия, когда в результате наступления цифровой эры и аналоговые вычислительные устройства, и логарифмические линейки вышли из употребления.

Мы с вами уже знаем, что исчисление было рабочим инструментом Ньютона при открытии законов движения и всемирного тяготения. Математические нововведения позволили ему создать логически связную совокупность формул, описывающих зависимость между силами, действующими на объект, и его положением, скоростью и ускорением. В книге «Математические начала натуральной философии» Ньютон ввел новую концепцию — центростремительной силы, «под действием которой тела притягиваются, или продвигаются, или любым другим способом стремятся к определенной точке как к центру». Именно эта сила заставляет тела двигаться по кругу. Представьте себе теннисный мяч, привязанный к шнуру. Возьмите конец шнура в руку, поднимите над головой и начинайте вращать мяч так, чтобы он описывал в воздухе круги. Шнур тянет мяч к центру под действием центростремительной силы.

Центростремительная сила рассчитывается по формуле , где m — это масса тела, v — его скорость, r — радиус окружности (см. рисунок ниже). В каждый момент времени скорость мяча перпендикулярна шнуру, а центростремительная сила воздействует на шнур, притягивая его к центру. В «Началах» Ньютон уделял особое внимание центростремительным силам, воздействующим на планеты. Однако в XVIII веке эта сила вызывала большую обеспокоенность у транспортных инженеров.

Теннисный мяч движется по кругу под действием центростремительной силы

На первых железнодорожных линиях использовались только прямые и круговые участки пути. Такое сочетание создавало определенные проблемы, поскольку, когда поезд переходил с прямого на круговой участок, пассажиры испытывали неприятные ощущения — их начинало резко клонить в сторону. На поезд, движущийся по прямому участку с постоянной скоростью, не воздействуют никакие силы. Но, когда он переходит на круговой участок, он подвергается действию центростремительной силы. Так как она направлена внутрь, это и вызывало у пассажиров ощущение, будто их выталкивает наружу. (На самом деле пассажиров наружу ничто не выталкивает. Они переходят с прямой траектории на круговую, а поскольку система ориентиров в вагоне остается прежней, возникает иллюзия, будто какая-то сила выталкивает их наружу.)

«После полувека железнодорожных перевозок мы все еще используем на путях только прямые линии и круги, — писал американский инженер Эллис Холбрук в 1880 году. — Создается впечатление, что железнодорожники принимают такое варварское сочетание как должное, даже не задавая вопросов по поводу того, что здесь не так». Холбрук нашел следующее решение: делать между прямым и круговым участками переходную кривую, на которой поезд, двигающийся с постоянной скоростью, находится под воздействием центростремительной силы, линейно увеличивающейся на протяжении определенного периода. Поскольку центростремительная сила рассчитывается по формуле , где m и v — это константы, для того чтобы эта сила росла по линейному закону, переходная кривая должна иметь кривизну .

Прежде чем вернуться к кривой Холбрука, давайте более внимательно рассмотрим концепцию . Математики называют эту величину кривизной окружности с радиусом r, которая представляет собой меру отклонения окружности от прямой линии. На рисунке ниже изображены две окружности: маленькая окружность с радиусом r и большая с радиусом R; обе касаются пунктирной линии в одной точке. Кривизна малой окружности больше кривизны большой окружности, поскольку она сильнее отклоняется от прямой. Для того чтобы понять концепцию кривизны окружности, можно представить ее себе как меру «стянутости»: чем меньше радиус окружности, тем сильнее она стянута, а значит, ее кривизна больше.

Чем меньше радиус окружности, тем больше ее кривизна

Кривизна окружности с радиусом r равна в любой точке окружности. С другой стороны, кривизна кривой (такой как на нижнем рисунке) постоянно меняется по мере перемещения по ней. Для того чтобы вычислить кривизну кривой в любой ее точке, необходимо построить «наиболее подходящую» окружность, которая касается кривой и максимально приближена к ней в этой точке. Я нарисовал максимально приближенные окружности в точках А и В. Поскольку радиусы этих окружностей — а и b, кривизна кривой в точке А равна , в точке В — . Чтобы понять концепцию максимально приближенной окружности, можно представить себе, что кривая — это дорога. Вы едете по ней на автомобиле, и у вас заклинивает руль, скажем, в точке А. Если вы продолжите движение, его траектория и будет представлять собой максимально приближенную окружность в точке А.

Таким образом, идея Холбрука состояла в том, чтобы делать часть дороги в форме кривой, кривизна которой увеличивается линейно по мере перемещения по этому участку, поскольку именно на такой кривой объект находится под воздействием центростремительной силы, растущей по линейному закону. Возможно, Холбрук даже не знал о том, что, по сути, описывает знаменитую кривую, впервые изученную Леонардом Эйлером в XVIII столетии. Речь идет о кривой под названием «клотоида», которая изображена на рисунке ниже.

Клотоида

Начиная с конца XIX века клотоида (или, скорее, ее центральный фрагмент) стала стандартной переходной кривой на железных дорогах. Представьте себе, что участок прямой дороги трансформируется в такую кривую в точке 0 и далее следует вдоль нее. Кривизна постепенно увеличивается до тех пор, пока не сравняется с кривизной кругового участка. Когда в ХХ столетии на доминирующие позиции вместо поезда вышел автомобиль, клотоида по той же причине превратилась в основной элемент проектирования дорог. Это самая подходящая кривая для езды на автомобиле между прямым и круговым участками дороги. Сеть автомагистралей — живой музей клотоид. Эти характерные кривые до сих пор используются в качестве формы поворотов на автомагистралях, скользких дорогах и особенно часто — на многоуровневых дорожных развязках с множеством переходов от прямых к круговым участкам. Если бы вы были инопланетянином, пролетающим на низкой высоте над сельской местностью, испещренной автомобильными дорогами и железнодорожными путями, вы вполне могли бы прийти к выводу, что клотоида — любимая кривая человечества.

Клотоида также решила проблему проектирования аттракционов, позволив найти ответ на вопрос, какова самая безопасная форма американских горок с мертвой петлей. В середине XIX века парижский инженер М. Клавьер сконструировал аттракцион, на котором одна вагонетка съезжала вниз по прямому участку, а затем делала резкий кувырок вдоль петли высотой почти четыре метра, прежде чем выйти на прямой участок поменьше, ведущий вверх к конечной остановке. Во Франции было построено несколько таких «подвесных железных дорог», но вскоре все их закрыли из-за большого количества травм шеи, полученных людьми в момент перехода с прямого на круговой участок. После этого более ста лет организаторы аттракционов считали, что сделать безопасную мертвую петлю невозможно.

Аттракцион с мертвой петлей. Гавр, 1846 год

Из журнала: L’Illustration, 1846

Так продолжалось до тех пор, пока в 1970-х годах немецкий инженер Вернер Штенгель не проанализировал проблему и не пришел к выводу, что ее может решить клотоида. Штенгель сконструировал первый современный аттракцион с мертвой петлей под названием Great American Revolution, который начал функционировать в 1976 году в парке аттракционов Six Flags Magic Mountain. Вагонетка спускается вниз по слегка наклоненному прямому участку трассы, после чего переходит на участок клотоиды и движется по нему до тех пор, пока радиус кривой не достигнет значения 7 метров; в этот момент вагонетка начинает делать петлю, как показано на рисунке ниже. Вагонетка находится на круговом участке с радиусом 7 метров примерно до половины полного оборота, а затем зеркальная версия первой клотоиды подхватывает вагонетку и возвращает на прямой участок. «Это очень мягкий переход, — сказал Штенгель. — Изменение силы позволяет сделать эффектную американскую горку, но оно должно быть приемлемым для организма».

Аттракцион Great American Revolution сразу же обрел такую популярность, что даже получил дань уважения в стиле семидесятых, став темой фильма-катастрофы Rollercoaster (в русском прокате — «Русские горы»), в котором преступники планируют взорвать бомбу в день открытия аттракциона. С тех пор во всем мире было открыто около двухсот аттракционов такого типа, построенных по тому же принципу, что и аттракцион Штенгеля. Аттракцион в форме перевернутой капли, сконструированный с применением клотоиды, — это и современный символ нашей ненасытной жажды захватывающих приключений, и памятник математике Исаака Ньютона. Клотоида — механическая кривая, получившая второе воплощение в виде стального монстра, поражающего воображение.

Оригинальный чертеж аттракциона Great American Revolution, выполненный Вернером Штенгелем

© Вернер Штенгель

Физические законы Ньютона проросли из крохотного зерна бесконечно малых величин — величин, которые меньше всего остального, но больше нуля. Однако, несмотря на их плодотворную роль в создании новой науки, концепцию малых величин подвергали критике за внутреннюю противоречивость. «Что это за… крохотные приращения? — упорствовал философ и епископ Джордж Беркли. — Это и не конечные величины, и не бесконечно малые величины, и даже не ничто. Почему бы нам не называть их призраками величин, ушедших в мир иной?». Резкие замечания Беркли вызывали ропот среди ученых, вполне справедливо считавших исчисление величайшим математическим достижением эпохи Просвещения. Но все же священник был в какой-то мере прав. Хотя концепция бесконечно малых величин и обеспечивала получение правильных ответов, она не была до конца продуманной с научной точки зрения. Полемика, которую спровоцировал Беркли, поставила математиков на путь переоценки ценностей и самокритики. Какие концепции приемлемы, а какие — нет? В какой мере математика должна соответствовать здравому смыслу?