Предлагаю вам решить головоломку. Однажды я поднялся на гору, переночевал на вершине, а на следующий день спустился вниз по тому же маршруту. Есть ли такая точка, в которой я был в одно и то же время в разные дни?

Подумайте об этом секунду.

Или две.

Ответ: да. Представьте себе, что оба путешествия происходят в один день. Если я одновременно поднимаюсь вверх и спускаюсь вниз, неизбежно наступит момент, когда я столкнусь с самим собой, и тогда значения времени и высоты совпадут.

Если вы примете аргумент о том, что в оба дня должен быть момент времени, когда я находился на одной высоте, я доволен: мое доказательство сделало свое дело. Математическое доказательство — это всего лишь инструмент, используемый одним человеком для того, чтобы убедить другого человека в истинности математического утверждения — а я вас убедил

Однако более требовательного математика могут не удовлетворить мои доводы. Он может отбросить их по причине недостаточной строгости. Где доказательство того, что я столкнусь сам с собой? Давайте нарисуем график, отображающий мое восхождение от подножия горы на высоте А к ее вершине на высоте В, а также наложим на него маршрут моего спуска на следующий день, как показано на рисунке ниже. Теперь вопрос стоит по-другому: существует ли точка, в которой эти две линии пересекутся? Большинство читателей ответят: конечно же, есть! Но придирчивого математика мне так и не удалось убедить.

До конца XVIII века считалось, что если кривая поднимается от высоты А до высоты В, то она обязательно должна пройти каждую точку между А и В. На интуитивном уровне это утверждение кажется очевидным. В действительности оно согласуется с тем, как определялась тогда непрерывная кривая. Однако, когда математики внимательнее проанализировали свойства непрерывности, они пришли к выводу о необходимости более четких определений. Утверждения, которые воспринимались раньше как нечто само собой разумеющееся, были переведены в категорию теорем, требующих доказательства на основании еще большего количества исходных предположений. К их числу относилось и приведенное выше утверждение о том, что непрерывная кривая с минимальным значением А и максимальным значением В обязательно должна пройти все промежуточные значения; сейчас оно известно как теорема о промежуточном значении. Но ее доказательство настолько сложное, что его изучают только в университетах, хотя его будет достаточно, чтобы убедить нашего дотошного друга. В итоге он согласится с тем, что две кривые на представленном выше графике пересекаются в определенной точке, поскольку это утверждение вытекает из доказательства за несколько шагов.

Маршрут восхождения на вершину горы и спуска к ее подножию

Эксперименты — движущая сила науки. Доказательства — движущая сила математики. Существует множество способов проведения экспериментов, так же как и множество методов доказательств математических утверждений. В этой главе мы рассмотрим некоторые из них. Кроме того, проанализируем, как изменилось отношение к доказательствам, и пообщаемся с анонимным членом тайного общества, исповедующего математическую строгость. Но сначала давайте перекусим.

Теорема о промежуточном значении может показаться очевидной, но у нее есть ряд интересных следствий. Одно из них — теорема о блинах, которую я предпочитаю описывать в менее сладких выражениях. Если вы рассыплете на столе соль (или подадите блины), мы можем доказать наличие прямой, которая делит соль (или блинчик) на две части равной площади, причем прямая может быть проведена под каким угодно углом. Метод, с помощью которого это делается, представлен на рисунке ниже. Сначала нарисуйте за пределами пятна соли прямую под любым углом и назовите ее Х, а затем перемещайте ее в направлении соли, параллельно к исходному положению. Прямая пересечет пятно соли в точке А, когда она еще не покрывает площадь пятна, и оставит соль позади в точке В, когда все пятно пройдено. Пересеченная площадь пятна соли меняется непрерывно по мере того, как прямая проходит это пятно, перемещаясь из точки А в точку В. Согласно теореме промежуточного значения, эта прямая обязательно попадет в позицию, в которой пройденная площадь составляет ровно половину общей площади. Наше доказательство не указывает, где именно проходит линия раздела, а только говорит о том, что она однозначно существует.

Теорема о соли

А теперь давайте рассыплем на столе соль и перец. Здесь мы тоже можем доказать наличие прямой, разделяющей их на две части равной площади. Начнем с определения прямой Х, которая делит пополам пятно соли и не касается перца, как показано на рисунке ниже. Затем повернем прямую по часовой стрелке, не забывая следить за тем, чтобы она постоянно разбивала пятно соли на две равные части. Мы знаем, что это можно сделать, поскольку, как было показано выше, деление пятна соли пополам происходит под любым углом. Наша прямая касается пятна перца в точке А и выходит за его пределы в точке В. Покрытая площадь пятна перца увеличивается непрерывно от ноля до максимума, а значит, прямая обязательно пройдет ту точку, в которой она тоже делит пятно перца на две равные части. На рисунке пятна соли и перца расположены отдельно, но, даже если бы они пересекались, всегда найдется прямая, которая разделит их на две части равной площади.

Теорема о соли и перце

В период между Первой и Второй мировыми войнами математики из Львова (тогда Польша) регулярно встречались в Шотландском кафе и обсуждали там такие математические «лакомства», как теорема о блинах. Один из членов группы Гуго Штейнгауз как-то задал вопрос о том, можно ли расширить эту теорему на три измерения. «Можем ли мы положить кусок окорока под нож мясорезки так, чтобы мясо, жир и кости были разрезаны ровно пополам?» — спросил он. Его друг Стефан Банах доказал, что это возможно, воспользовавшись теоремой, названной именами двух других участников группы — Станислава Улама и Кароля Барсука. Впоследствии вывод Банаха получил известность под названием «теорема о бутерброде с ветчиной», поскольку он эквивалентен утверждению о том, что можно разрезать бутерброд с ветчиной поровну одним движением ножа таким образом, что каждый слой хлеба и ветчины будет разделен поровну независимо от их исходного положения и формы.

Математики, которые собирались в Шотландском кафе, записывали в толстую тетрадь все обсуждаемые во время встреч вопросы, а когда уходили домой, отдавали ее на хранение метрдотелю. Эта тетрадь, впоследствии получившая название «Шотландская книга», представляет собой уникальный продукт совместной работы, и не только из-за того, как она написана. (Эта тетрадь так и не была издана в виде книги, но некоторые из записанных в ней задач были опубликованы впоследствии в журналах.) Штейнгауз, Банах и Улам были выдающимися математиками, образовавшими самую талантливую троицу ученых, когда-либо существовавшую где бы то ни было. В 1941 году, через несколько дней после того, как Штейнгауз записал в этой тетради, как оказалось, последнюю задачу, немецкие войска оккупировали Львов. Штейнгауз, который был евреем, скрылся и пережил войну в небольшом городке возле Кракова под именем умершего лесника. В эти годы он восстановил по памяти большинство известных ему математических задач и работал над новыми, в том числе и еще над одной, связанной с едой.

Штейнгауз хотел найти самый справедливый способ разделить пирог между людьми, когда каждый стремится получить как можно больший кусок. Когда на пирог претендует всего два человека, с давних времен используется следующий подход: один режет, другой выбирает. При таком подходе тот, кто режет пирог, заинтересован разделить его на максимально равные части, поскольку если между двумя частями будет заметная разница, ему достанется меньшая часть. Штейнгауз первым решил задачу о том, как справедливо разделить пирог между тремя людьми. (Описание ее решения можно найти в Приложении 7.) После Штейнгауза математические методы разрезания пирога легли в основу целой области знаний, имеющей практическое применение в экономике и политике. Существует много разных вариантов решения этой задачи, в зависимости от того, сколько людей принимает участие в дележе пирога и как они оценивают его разные фрагменты. Один оригинальный способ, найденный в 1960-х годах, подразумевает использование движущегося ножа. Нож размещается рядом с пирогом, а затем медленно передвигается над ним. Когда кто-то выкрикнет «Стоп!», нож разрезает пирог в этом положении, а отрезанный кусок получает тот, кто первым крикнул «Стоп!». Затем нож продолжает движение, отрезая куски оставшимся претендентам.

Гуго Штейнгауза помнят за две самые распространенные пищевые метафоры в математике: теорему о бутерброде с ветчиной и справедливое разрезание пирога. Он постоянно думал о еде. К сожалению, именно еды ему не хватало на протяжении всей жизни.

Один из самых распространенных методов доказательства — доказательство от противного, когда истинность утверждения подкрепляется доводами, что в случае, если оно ложное, это приводит к противоречию. Например:

Теорема. Все числа интересны.

Доказательство. Предположим, это утверждение ошибочно, а значит, есть очень скучные числа. Если бы это действительно было так, существовало бы самое малое скучное число. Однако сам факт наличия такого числа делает его интересным. Другими словами, термин «самое малое скучное число» противоречит сам себе. В этом и состоит несоответствие. Это утверждение не может быть ложным, стало быть, оно должно быть истинным.

Древнегреческий мыслитель Аристотель одним из первых изучил сущность доказательства. Он разработал систему логических рассуждений, призванную определить, приводят ли истинные предпосылки к истинным выводам. Аристотель занимался философией, но все же идея о том, что истина переходит от предпосылок к выводам посредством логической дедукции, оказала значительное влияние на математику. В действительности, начиная со времен Древней Греции, математика изучает именно то, как истинные предпосылки приводят к истинным выводам через доказательства.

В III столетии до нашей эры Евклид написал «Начала», основополагающий трактат по геометрии, отличающийся характерным литературным стилем и построенный в соответствии с принципиально новой концептуальной схемой. Евклид начал с небольшого набора предполагаемых истин, или аксиом, и вывел из них все остальные истины, или теоремы. Его способ систематизации знаний обозначается термином «аксиоматический метод».

Для начинающих геометров трактат «Начала» был своего рода кулинарной книгой. В нем указан список ингредиентов: определения 26 терминов и 10 предположений, которые разрешается считать истинными, — например, о том, что между двумя точками можно провести прямую линию. Затем Евклид рассказывает о блюдах, которые намерен приготовить (теоремы), и приводит пошаговые инструкции относительно того, как это сделать (доказательства). Первая теорема касается построения «равностороннего треугольника на заданной конечной прямой», вторая — «как от данной точки провести прямую, равную данной прямой». В каждом доказательстве Евклид использует только перечисленные в начале книги предположения, и каждый очередной шаг логически вытекает из предыдущего. Метод, сводящийся к формулировке исходных предположений, после которой следует постепенное построение знаний посредством теорем и доказательств, стал стандартной схемой для всех последующих математических трудов.

В одной из самых известных теорем, изложенных в трактате «Начала», используется доказательство от противного.

Теорема. Существует бесконечно много простых чисел.

Доказательство. Во-первых, обратите внимание на следующее. Доказательство нельзя читать так же бегло, как прозу. Вполне нормально, если понадобится его перечитать несколько раз, прежде чем оно станет понятным. Во-вторых, давайте разберемся, что именно пытается сделать Евклид. Простые числа (2, 3, 5, 7, 11, 13 …) — это числа, которые больше единицы и делятся только на себя и 1. Евклид покажет нам, что, если эта теорема ошибочна, мы получим противоречие. Точнее говоря, он докажет, что при существовании конечного количества простых чисел можно создать еще одно простое число, что противоречит утверждению о том, что количество таких чисел конечно. Эта теорема не может быть ошибочной, значит, она должна быть верной.

Шаг 1. Пусть a, b, c… k — фиксированное множество простых чисел.

Шаг 2. Умножим все числа этого множества, чтобы получить число a × b × c ×… × k. Назовем это число М.

Шаг 3. Увеличим его на единицу, чтобы получить М + 1.

Шаг 4. Является ли М + 1 простым числом?

(1) Если М + 1 — простое число, то мы добились своей цели найти простое число, не входящее в исходное множество.

(2) Если М + 1 — не простое число, то должно существовать простое число p, на которое оно делится. В таком случае p — это либо одно из простых чисел исходного множества, либо нет. Если нет, у нас есть новое простое число. Если да, нам известно, что М делится на p, поскольку М делится на все числа исходного множества. Но теперь у нас возникла ситуация, когда на p делится и число М, и число М + 1, что невозможно, поскольку эти два числа разделяет только одно число — 1, которое не является простым.

Отсюда следует вывод: либо М + 1 — это новое простое число, либо М + 1 делится на новое простое число. В любом случае задача Евклида выполнена. Он доказал, что конечное множество не покрывает всю совокупность простых чисел.

В доказательстве Евклида применен принцип, который обозначается термином reductio ad absurdum — «приведение к абсурду», когда абсурдный вывод демонстрирует ошибочность предпосылки. На шаге 4 (2) абсурдный вывод состоит в том, что на p должно делиться как число М, так и число М + 1, а ошибочная предпосылка в том, что число p принадлежит конечному множеству простых чисел. В книге A Mathematician’s Apology преподаватель Оксфордского университета Годфри Гарольд Харди писал, что доказательство Евклида «остается таким же актуальным и значимым, как и тогда, когда оно было открыто — две тысячи лет не оставили на нем никаких следов». Это короткое и точное доказательство, не требующее никаких дополнительных концепций, кроме сложения, умножения и деления. «Приведение к абсурду, которое так любил Евклид, — один из лучших инструментов математика, — добавил Харди. — Это гораздо более эффективный прием, чем любой шахматный гамбит. Шахматист может пожертвовать пешкой или даже более значимой фигурой, а математик ставит на кон игру».

Приведение к абсурду — это также один из любимых приемов комедиантов. Ирония используется для того, чтобы добиваться все более и более абсурдных выводов, тем самым все сильнее подчеркивая нелепость исходного предположения, — этот прием известен как сатира.

На самом деле я считаю, что сформулированное Евклидом доказательство бесконечности множества простых чисел комично само по себе. Для того чтобы найти новое простое число, Евклид должен сначала создать число М, которое не только до нелепости большое, но и представляет собой точную противоположность того, что он ищет, поскольку число М делится на каждое известное простое число. Затем, прибавив наименьшее число 1, Евклид переворачивает ситуацию с ног на голову. Мельчайший дополнительный элемент расшатывает почву под ногами огромного, мегаделимого монстра М и составляющих его простых чисел, беспощадно раскрывая их ограниченность. Подобно саркастической фразе, прозвучавшей в фильме Wayne’s World («Мир Уэйна»), Евклид говорит: «Эта группа простых чисел включает в себя все числа… нет!»

В математике много шутников.

Как только мы, люди, обретаем способность держать ручку в руках, мы начинаем машинально рисовать что-то на бумаге. Самый распространенный способ — в случайном порядке начертить на листе бумаги продольные и поперечные линии и заштриховывать образовавшиеся сегменты. Этот способ особенно хорош тем, что позволяет разместить рисунок так, чтобы заштрихованные сегменты имели общие стороны только с незаштрихованными, и наоборот. Подобный тип рисунка называется двухцветным, поскольку содержит всего два цвета. Чтобы доказать, почему мы можем выполнить такой рисунок в двух цветах, необходимо ввести еще один распространенный математический инструмент — доказательство методом индукции.

В философии и эмпирической науке индукция — это принцип, который гласит, что если событие наблюдалось много раз в прошлом, то можно предположить, что оно снова произойдет в будущем. Например, Солнце восходит каждое утро с незапамятных времен. Следовательно, было бы логично предположить, что оно взойдет и завтра. Мы не можем доказать, что Солнце завтра взойдет, но можем быть уверены в этом. Однако в математике мы не можем делать какие-то предположения исключительно на основании прошлого опыта.

Рассмотрим пять кругов, представленных на рисунке ниже. В первом случае на линии окружности есть только одна точка, во втором две, в третьем три, в четвертом четыре и в пятом пять. Давайте соединим точки прямыми линиями и посчитаем, сколько секторов получилось в каждом круге. Эти круги разделены на 1, 2, 4, 8 и 16 секторов. Закономерность поразительна: это ведь последовательность, в которой каждое число в два раза больше предыдущего! Можно ли сделать предположение, что если соединить шесть точек на окружности, то количество секторов составит 32?

Подсчитайте количество секторов в каждом круге и попробуйте догадаться, что будет дальше

Категорическое НЕТ! В случае шести точек будет 31 сектор, а по мере дальнейшего увеличения количества точек на линии окружности — 57, 99, 163, 256, 386... Закономерность здесь есть, но это не последовательность, в которой каждое число в два раза больше предыдущего. Ни в коем случае не следует делать выводы на основании ограниченного количества наблюдений, какими бы многообещающими эти выводы ни казались.

В математике доказательство методом индукции — это способ выяснить, когда закономерность будет продолжаться до бесконечности. Если у нас есть последовательность таких утверждений:

1)-первое утверждение верно;

И

2)-если n-е утверждение верно, то утверждение n + 1 тоже верно;

то мы можем сделать вывод, что все эти утверждения верны.

Доказательство методом индукции аналогично падению костяшек домино. Если их поставить в ряд и n-я костяшка упадет, она толкнет костяшку n + 1, а значит, для того чтобы упали все костяшки, достаточно всего лишь опрокинуть первую костяшку.

Но вернемся к исходной задаче. Для того чтобы доказать, что машинальный рисунок может быть двухцветным, нам необходимо доказать, что:

1)-рисунок, состоящий из одного ряда, может быть двухцветным;

2)-если рисунок, состоящий из n рядов, может быть двухцветным, то и рисунок с количеством n + 1 рядов тоже будет двухцветным.

Доказать истинность первого утверждения очень просто: достаточно провести через всю страницу прямую линию и заштриховать область с одной стороны. А вот для того, чтобы доказать истинность второго утверждения, понадобится немного поразмышлять.

Начнем доказательство с рассмотрения n + 1 линий, как показано на схеме 1 ниже. (Очевидно, что для иллюстрации данного примера для числа n нужно выбрать какое-то значение, поэтому мы должны проследить за тем, чтобы наше доказательство было применимо к любому числу n.)

Если удалить одну линию, у нас получится рисунок с количеством линий n, показанный на схеме 2. Предположим, рисунок с количеством линий n можно сделать двухцветным, как на схеме 3. Теперь давайте восстановим линию, убранную на первом шаге (схема 4), и с одной ее стороны поменяем цвет на противоположный, другими словами — белые фрагменты сделаем заштрихованными, а заштрихованные — белыми. В результате каждый сектор над линией расположен рядом с сектором под линией, имеющим другой цвет. Следовательно, у нас пролучился двухцветный рисунок с количеством линий n + 1 (схема 5).

Доказательство теоремы о двухцветном рисунке методом индукции

Иными словами, мы продемонстрировали, что второе утверждение истинно. Процесс доказательства методом индукции завершен: все рисунки могут быть двухцветными. (Это доказательство распространяется только на рисунки, образованные посредством вычерчивания линий на квадратном листе. То же самое касается и любого фигурного рисунка с «завитушками», когда перо начинает и прекращает двигаться в одной и той же точке, но по мере перемещения может рисовать петли, спирали и пересечения любой сложности. Однако это утверждение требует более сложного доказательства.)

Труд Евклида «Начала» стал самым важным текстом в истории математики, и не только потому, что он раскрыл информацию о простых числах, треугольниках и т. д., но и благодаря тому, как именно это было сделано. Красота этого текста состоит в его строгости. Евклид весьма скрупулезен. Он ничего не упрощает, не дает никаких оценок и не делает заявлений, которые не может доказать. Если вы согласитесь с тем, что десять исходных предположений Евклида верны, то вы должны принять и истинность всех 465 теорем, сформулированных в книге. «Начала» — это образец применения аксиоматического метода, свидетельство силы дедуктивного мышления.

Говорят, что «Начала» Евклида переиздавались на протяжении большего периода и в большем количестве экземпляров, чем любая другая книга, за исключением Библии. Это очень уместное сравнение, поскольку более двух тысячелетий труд Евклида считался священным текстом, а аксиоматический метод принимался в качестве догмы. Однако в XVII веке появились первые признаки «нечестивости». Евклид полагался на аксиомы и определения, которые по самой своей сути не требовали доказательств и, разумеется, не содержали внутренних противоречий. Но, как мы видели в предыдущей главе, бесконечно малой величине, или величине, которая представляет собой одновременно и нечто, и ничто, свойственна именно такая внутренняя противоречивость. Ньютон и его современники использовали концепцию бесконечно малых величин, поскольку она позволила им доказать множество новых теорем, хотя им и приходилось закрывать глаза на противоречие с догматами Евклида, которые это за собой влекло.

Однако со временем математики поняли: для того чтобы исчисление было свободно от внутренних противоречий, оно должно опираться на более прочный фундамент. Было решено положить в основу исчисления не бесконечно малые величины, а нечто более надежное — концепцию предела. После упрощения исходных предположений и уточнения определений родился новый раздел математики — математический анализ. Сейчас этим термином обозначаются все области, связанные с исчислением, непрерывностью и бесконечными процессами. Одним из первых знаковых достижений математического анализа стала теорема о промежуточном значении, о которой шла речь в начале главы, гласящая, что непрерывная кривая покрывает все точки, расположенные между ее минимумом и максимумом.

Присущая XIX столетию склонность к научной строгости нашла свое отражение не только в математическом анализе, но и в других областях, в частности в евклидовой геометрии. Внимательно проанализировав «Начала», немецкий математик Мориц Паш сделал невероятное открытие: в рассуждениях Евклида есть прорехи, которые до сих пор никто не заметил, несмотря на то что «Начала» — наиболее изученный учебник по математике за всю историю. Евклид считал само собой разумеющимся, что, если три разные точки лежат на одной прямой, значит, одна из них находится между двумя другими. Однако если бы Евклид придерживался собственных стандартов, ему следовало бы сформулировать это утверждение в виде аксиомы. Евклид совершил неосмотрительную ошибку, позволив своим глазам воздействовать на дедуктивный процесс. В 1899 году Давид Гильберт предложил новую, усовершенствованную евклидову систему, содержащую 21 постулат.

Числа тоже были тщательно проанализированы по-новому. Числа — это ядро всей математики, по сути — всей науки. Но что такое число и почему 1 + 1 = 2?

В 1879 году немецкий математик Готлоб Фреге опубликовал свой труд Begriffsschrift («Исчисление понятий»), в котором представил тщательно проработанную, имеющую собственные обозначения систему исчисления, позволяющую определить истинность и ложность утверждений. Это было рождение математической логики — использования математических рассуждений для анализа других математических рассуждений.

Фреге хотел дать четкий ответ на вопрос «Что такое число?». Для решения этой задачи он позаимствовал у своего современника Георга Кантора концепцию множества. В математике часто бывает так, что на первый взгляд простое слово означает нечто сложное. Но только не в случае с множеством. Множество — это всего лишь совокупность объектов, обладающих одним и тем же свойством. Множеством может быть ящик яблок, пелотон (лидирующая группа) велосипедистов или звездная галактика.

Фреге разработал систему, в которой числа определяются как множества, аксиомы записываются с использованием его системы исчисления понятий, а истинность арифметических законов может быть доказана. Он планировал свести арифметику к системе не допускающих двойного толкования логических операций, в основу которой положены исходные предположения, лишенные внутренних противоречий, — например «отрицание отрицания утверждения А означает утверждение А». Работа с такими концепциями, как числа и сложение, не вызывает никаких трудностей, поэтому вы можете подумать, что задача Фреге была не особо сложной. Но на самом деле она потребовала огромных умственных усилий. В отличие от всех своих предшественников, использовавших числа и арифметические операции в качестве кирпичей для строительства здания математики, Фреге сделал подкоп непосредственно под ее фундамент.

Готлоб Фреге опубликовал свою теорию в книге The Basic Laws of Arithmetic («Основные законы арифметики»), первый том которой вышел в 1893 году. Однако, когда второй том уже находился в типографии, Фреге узнал весьма неприятную новость. Профессор философии Кембриджского университета Бертран Рассел прислал ему письмо, в котором указывал на одно противоречие. Поскольку задача сведения арифметики к логике состояла в создании системы, полностью лишенной противоречий, найти хотя бы одно несоответствие было равносильно катастрофе. Фреге быстро написал к книге дополнение: «Вряд ли ученый может столкнуться с чем-либо более нежелательным, чем разрушение основ в тот момент, когда работа уже завершена». С тех пор слово «нежелательный», которое использовал тогда Фреге, называют величайшим преуменьшением в истории математики.

Рассел открыл проклятие самореференции (самоотносимости).

Ниже приведены некоторые из моих любимых утверждений, ссылающихся на самих себя.

предложение должно начинаться с большой буквы.

В вопросе «быть или не быть» скомбинированы два предложения.

В этом предложении !!! преждевременно поставлен знак препинания

Однако самое древнее самоотносимое предложение приписывают критянину Эпимениду, который сказал: «Все критяне лжецы». Эпименид не только ссылается сам на себя, но и сам себе противоречит. Если он говорит правду, значит, он лжет, а если лжет, тогда говорит правду. Высказывание Эпименида (которое назвали «парадоксом лжеца») получило множество новых интерпретаций. Дайте ответ «да» или «нет» на такой вопрос: «Будет ли следующее слово, которое вы скажете, словом “нет”?»

Бертран Рассел понял, что парадокс самореференции нанесет серьезный удар по проекту Фреге и, возможно, даже погубит его. Преимущество использования множеств в качестве основы арифметики состоит в том, что эту концепцию легко понять: множество — это просто совокупность объектов. Однако Рассел изобрел такое множество:

Множество всех множеств, которые не содержат себя в качестве своего элемента.

Большинство множеств не содержат себя в качестве своего элемента. Множество туфель не является туфлей. Но некоторые множества все же являются исключениями. Например, множество концепций — это тоже концепция. А теперь посмотрим на множество Рассела. Содержит ли оно себя? Если предположить, что да, мы придем к выводу, что не содержит, а если предположить, что нет, то мы сделаем вывод, что содержит! Это множество имеет противоречие. Рассел провел аналогию с брадобреем одной деревни, на стене дома которого висела табличка: «Я брею всякого, кто сам не бреется». Кто же бреет брадобрея? Если он сам бреется, значит, он не побреет себя, а если он сам не бреется, значит, он себя побреет. Мы имеем бесконечный цикл рассуждений, противоречащих друг другу.

Парадокс Рассела демонстрирует, что множества в том виде, как их представлял себе Фреге, нельзя использовать в качестве прочной основы для арифметики. Самореференция со свойственной ей внутренней противоречивостью способна испортить всю систему. Однако, вместо того чтобы отбросить проект Фреге как ошибочный, Рассел стал его величайшим сторонником. Мечта о том, чтобы поставить математику на надежную логическую основу, была слишком заманчивой, чтобы от нее отказываться. На протяжении следующих десяти лет Рассел вместе с Альфредом Нортом Уайтхедом работал над усовершенствованием этой системы. Рассел и Уайтхед согласились с предположением Фреге о том, что множество может стать подходящей основой для чисел. Но, чтобы избавиться от парадоксов самореференции, они создали строгую иерархию множеств. На ее первом уровне находятся объекты, такие как книги или кошки. На втором — множества объектов первого уровня, такие как книги на моей полке или кошки на моей улице. На третьем — множества объектов второго уровня, такие как полки с книгами по математике или лондонские кошки, сгруппированные по улицам. Парадокс Рассела не может возникнуть, поскольку то или иное множество может быть только членом множества верхнего уровня, а значит, не может содержать само себя.

Рассел и Уайтхед ввели систему обозначений, определения и аксиомы, чрезвычайно строго и тщательно сформулированные. Стремление ученых к простоте и понятности разъяснений привело к написанию одного из самых сложных и неудобочитаемых текстов за всю историю математики. Только на 379-й странице авторы смогли доказать, что 1 + 1 = 2. Когда они предложили опубликовать книгу Principia Mathematica («Принципы математики»), издатель отказался это делать, поскольку не смог найти читателей, способных ее понять. Написание этой книги потребовало таких огромных умственных усилий, что Рассел больше никогда ничего не писал по математике или логике.

Польский специалист в области логики Альфред Тарский предложил иерархию языка (во многом напоминающую иерархию множеств Рассела), которая позволяет решить парадокс лжеца. В соответствии с ней существует язык уровня 1 и метаязык уровня 2 для описания утверждений на языке уровня 1, а также метаязык уровня 3 для описания утверждений на языке уровня 2 и т. д. Истинность или ложность утверждений можно описывать только на метаязыке следующего уровня, поэтому утверждение не может приписывать истинность или ложность самому себе. Как объяснил однажды Рассел, если бы Эпименид заявил: «Я говорю неправду уровня n», это действительно была бы ложь, но ложь уровня n + 1.

Комедианты используют метаязык так же, как и логики. Если шутка не удалась, всегда можно выйти из ситуации с юмором, отпустив шутку по поводу неудавшейся шутки.

Книга Principia Mathematica так и остается непрочитанной. Тем не менее предпринятая в ней попытка создать свободную от парадоксов аксиоматическую основу арифметики была с энтузиазмом подхвачена другими учеными. Аксиоматическая теория множеств считается величайшим интеллектуальным достижением начала XX столетия, приведшим к появлению замечательных работ в области математики, логики и философии. Стандартная система аксиом получила название ZFC (сокр. от имен математиков Эрнста Цермело (Ernst Zermelo) и Авраама Френкеля (Abraham Fraenkel)) с аксиомой выбора. Аксиома выбора гласит, что при наличии бесконечного количества множеств, каждое из которых содержит не менее одного элемента, можно создать новое множество, включающее по одному элементу из каждого множества. На первый взгляд эта аксиома кажется вполне справедливой, хотя на самом деле она крайне противоречива. Одна из самых горячих дискуссий в теории множеств касалась именно того, стоит ли включать эту аксиому в систему, потому что из-за этого начнут происходить весьма странные вещи.

Стефан Банах, польский математик, который доказал теорему о бутерброде с ветчиной в Шотландском кафе, а также Альфред Тарский, специалист в области логики, предложивший расселовскую иерархию языка, доказали, что если считать аксиому выбора истинной, то истинной будет и следующая теорема:

Шар можно разделить на конечное количество фрагментов, из которых можно собрать две идентичные копии исходного шара.

Эта теорема более известна как «парадокс Банаха — Тарского». Слово «парадокс» используется здесь потому, что на первый взгляд теорема противоречит законам физики, хотя в ее доказательстве нет логических противоречий. В физическом смысле собрать два шара из фрагментов одного невозможно, поскольку эти фрагменты представляют собой не цельную структуру, а совокупность бесконечного количества точек. Тем не менее теорема поражает воображение. Из нее следует, что любой шар можно разделить на части и составить из них любой другой объект, а значит, из горошины можно сделать солнце. (Несмотря на столь невероятные выводы, сейчас большинство математиков принимают аксиому выбора.)

Если суть шутки состоит в неожиданных выводах, то парадокс Банаха — Тарского — самая смешная теорема в математике.

В конце 1970-х, когда мне было около восьми лет, мы перешли на уроках математики от чисел к множествам. Я хорошо помню, как это происходило. Овал с несколькими точками олицетворял собой одно множество, а второй овал с несколькими точками — другое множество. Нам следовало соединить точки одного множества с точками другого, что показывало, в каком множестве больше точек. Я так и не понял, в чем смысл этих упражнений, и мне кажется, учителя тоже не понимали. Примерно через год на уроках перестали говорить о множествах, и я снова встретился с ними уже на втором курсе университета. Если вы учились в школе в 60-х, 70-х или 80-х годах XX века, вполне вероятно, что вас тоже кратко знакомили с теорией множеств. Присутствие этой дисциплины в учебной программе связано с именем Николя Бурбаки, самого плодовитого математика ХХ столетия.

В 1939 году Бурбаки опубликовал свою первую книгу из масштабной серии под названием Éléments de Mathématique («Начала математики»). «В прошлом считалось, что каждый раздел математики зависит от интуитивных знаний в этой области, на которых основаны концепции и истины, — писал он. — Однако в наши дни, как известно, можно, логически говоря, вывести практически всю человеческую математику из одного источника — теории множеств». Название этой серии содержало отсылку к Евклиду. Подобно тому как труд Евклида «Начала» формализовал математические знания древних греков в рамках системы аксиом, основанной на свойствах точек и линий, «Начала математики» Бурбаки формализовали современные математические знания в рамках аксиоматической системы, построенной на свойствах множеств. Выбор слова mathématique (в единственном числе, в отличие от английского mathematics) подчеркивал убежденность Бурбаки в единстве этой области знаний. Серия «Начала математики» состояла из десятков книг общим объемом около 7000 страниц, причем не только по теории множеств, но и по таким дисциплинам, как алгебра, математический анализ и топология. Кроме того, Бурбаки была свойственна одна отличительная особенность, которая делала его уникальным среди современников. Такого человека не существовало.

В начале 30-х годов ХХ века несколько молодых французских математиков пришли к выводу, что университетские учебники устарели, и решили вместе написать новые. Они взяли для своей группы псевдоним Николя Бурбаки, по имени Шарля Дени Бурбаки — французского генерала, который в 1862 году отказался от греческого престола, а после унизительного поражения во Франко-прусской войне пытался застрелиться, но промахнулся. Ученые, вошедшие в состав этой группы, заявили о том, что Николя Бурбаки родом из Полдавии — страны, которая упоминается в книге о приключениях Тинтина The Blue Lotus. Группа приняла кодекс секретности и ввела возрастное ограничение 50 лет. Подобно польским математикам, собиравшимся в Шотландском кафе во Львове примерно в тот же период, входившие в группу Бурбаки ученые получали удовольствие, смешивая веселье и науку. Во время одной из регулярных встреч в сельской местности несколько членов группы отправились к местному озеру и, раздевшись донага, прыгали в воду с криками «Бурбаки!»

Однако подход Бурбаки к математике был совершенно серьезным. Группа разработала метод написания книг, согласно которому на создание одной книги требовалось несколько лет. После долгих дискуссий по поводу содержания каждого тома кто-то из членов группы составлял черновой вариант текста книги. На следующем собрании текст вычитывался буквально построчно, причем каждую строку должны были одобрить все члены группы. Стиль изложения материала тоже был уникальным. Цель всей серии книг состояла в том, чтобы вывести все из исходных принципов, не прибегая к каким бы то ни было физическим или геометрическим интуитивным данным. Иллюстрации не использовались, поскольку члены группы считали, что они могут вводить в заблуждение. «Строгость для математика — то же самое, что мораль для человека», — сказал один из основателей группы Андре Вейль. В книгах серии не было аналогий, отступлений, опущений, рисунков или упражнений для читателей. Требование об аксиоматической чистоте было настолько жестким, что в первой книге понадобилось две сотни страниц на определение числа 1, да и то в сокращенной форме. (В книге говорится, что на представление числа 1 в расширенной форме понадобилось бы много тысяч символов. В 1999 году британский специалист по теории множеств А. Р. Д. Матиас заявил, что на самом деле метод Бурбаки требует 4 523 659 424 929 символов и 1 179 618 517 981 связей между ними.)

У серии книг «Начала математики» была хорошо продуманная структура. Каждая книга могла содержать ссылки только на материал предыдущих книг и не должна была ссылаться на книги других авторов, что позволяло построить огромную логическую систему на основании лишь одной теории множеств. Хотя члены группы были очень молоды, все они уже добились значительных успехов в математике и самостоятельно опубликовали ряд работ. Андре Вейль, брат философа и общественного деятеля Симона Вейля, был, пожалуй, самым талантливым членом группы. В 1939 году, когда вышла первая книга серии «Начала математики», разразилась война, и Вейль уехал в Финляндию. Полиция произвела обыск в его квартире в Хельсинки и нашла там письмо, написанное по-русски (в котором шла речь исключительно о математике), и стопку визитных карточек, принадлежащих Николя Бурбаки, члену Королевской академии наук Полдавии. После этого Вейль был депортирован по обвинению в шпионаже. По возвращении во Францию его посадили в тюрьму за то, что он не явился для прохождения службы в армии. Но Вейлю понравилось сидеть в тюрьме. «Моя математическая работа продвигается лучше, чем в самых смелых мечтах, что меня немного беспокоит, — писал он жене. — Если я могу так хорошо трудиться только в тюрьме, не придется ли мне устраивать так, чтобы каждый год попадать сюда на два-три месяца?»

Вторая книга серии «Начала математики» вышла в свет в 1940 году, а третья — в 1942-м. После перерыва по причине войны в конце десятилетия было опубликовано еще несколько томов. Поскольку прежние члены группы достигли возрастного предела, в состав группы были включены новые члены. К 1950-м годам книги Бурбаки заняли доминирующие позиции в университетской математике во Франции и сохраняли за собой этот статус на протяжении следующих двух десятилетий. Эта математическая «секта» начала напоминать мафию, поскольку ее действующие и бывшие члены (в том числе ряд самых блестящих французских математиков) занимали высшие должности в университетах. После перевода книг Бурбаки на английский язык они оказали существенное влияние и на англоязычный мир.

Лучшее время для группы Бурбаки наступило в период эскалации холодной войны. Правительства стран Запада осознали, что им необходимо полностью изменить систему преподавания естественно-научных дисциплин, для того чтобы не отставать от Советского Союза, только что запустившего в космос первый спутник. Идеология бурбакизма, гласившая, что абстрактные формальные системы важнее интуиции и решения задач, просочилась из университетов в школы. Политики и представители системы образования решили, что ответом на красную угрозу станет включение теории множеств в учебную программу. Преподавание математики было реорганизовано, в результате чего поколение школьников 1960-х и 1970-х годов изучало «новую математику» в лице теории множеств.

Со временем влияние Бурбаки в университетских аудиториях и школьных классах ослабло. Например, такие области исследований, как фракталы, полностью зависят от компьютеров и визуального отображения, поэтому пристрастие Бурбаки к структуре устарело. За последние десятилетия математика развивалась благодаря взаимодействию с другими науками, а не за счет самоизоляции от них. В итоге школьникам больше не преподают теорию множеств. Однако вопреки сообщениям о кончине Николя Бурбаки, которому скоро исполнится восемьдесят лет, он живет и здравствует.

Сейчас ядро группы состоит из пяти математиков. Я встретился с одним из них в кафе у Люксембургского сада в Париже. Кодекс секретности по-прежнему действует, поэтому мне разрешили рассказать только о том, что этот член группы носит бороду и был одет в рубашку пурпурного цвета и соломенную шляпу. Кроме того, он выдающийся ученый, известный профессор. Я спросил, сколько людей знают о его участии в группе Бурбаки. «Большинству моих коллег это хорошо известно, но я не признал бы этого. Многие не принимают наши идеи, — сказал он. — Некоторые заявляют, что группа Бурбаки бесполезна и должна прекратить свою деятельность».

Последняя книга из серии «Начала математики», посвященная алгебре, вышла в свет в 2012 году, а новая (о топологии) готовится к публикации в настоящее время. Группу Бурбаки обвиняют в том, что ее пристрастие к строгости фактически нанесло ущерб французской математике. Книги, публикуемые группой, трудны для восприятия, а значит, их нельзя эффективно использовать в качестве учебных пособий. Кроме того, они не оставляют места для творчества и интуиции. «Даже мои ближайшие коллеги убеждены в том, что это не те книги, которые нужны нынешним математикам», — признался мне человек в пурпурной рубашке. Я спросил его, согласен ли он с этим мнением. «Ответ неочевиден. Очевидно лишь то, что такая работа — когда мы собираемся все вместе, вычитываем строку за строкой и каждый имеет возможность высказать свои возражения и исправить ошибки — позволяет получить в итоге нечто особенное и, будем надеяться, стоящее. Идеи, изложенные в этих книгах, — это совокупный продукт многих людей. Математики не могут делать все исключительно своими силами».

Я спросил, не считает ли он устаревшим тот уровень строгости, которого придерживаются бурбакисты. «Думаю, такая строгость уместна сейчас даже в большей мере, чем раньше, — ответил он. — Существует разница между строгостью и сухостью. Мы стараемся быть строгими, но не сухими». В действительности этот член группы уверен в том, что современные университетские учебники кое-чем обязаны Бурбаки. «Сейчас признание того, что доказательство не является достаточно строгим по стандартам книги, — общепринятая практика. В каком-то смысле тот уровень строгости, которого придерживаются математики, именно такой [как у Бурбаки]». В то же время этот член группы согласен с критическими замечаниями в адрес первой книги. «Некоторые книги Бурбаки — просто хорошие. Некоторые чрезвычайно хорошие. Но теория множеств — полная ерунда». Когда я напомнил ему о том, как группа Бурбаки определяет единицу, было заметно, что ему неприятно об этом говорить. «Эта часть не выдерживает критики. Не нужно знать, что такое единица. Нужно знать, что можно делать с единицей».

Тем не менее мой собеседник сказал, что очень гордится членством в группе Бурбаки. Ему тридцать лет, и он как раз стал профессором, когда получил первое приглашение от Николя Бурбаки присутствовать на следующем собрании, которое предполагалось провести в шато у Луары. Он объяснил, что большинство математиков принимают такие приглашения, хотя немногочисленные женщины, получившие его, ответили отказом. Сейчас, будучи полноправным членом группы, этот человек считает своим историческим долгом помочь ей завершить ту работу, ради которой она была создана, — довести до конца публикацию книг серии «Начала математики». Запланировано выпустить четыре последние книги серии. Мой собеседник понимает, что эти книги вряд ли увидят свет до того, как ему исполнится пятьдесят лет и он выйдет из состава группы. Но он считает, что возрастное ограничение — это хорошо, поскольку поддерживает жизнеспособность группы.

Теория множеств — это один из подходов к построению основы для математики. Другой подход находится сейчас в процессе формирования и подразумевает использование компьютеров. Система для проверки доказательств — это элемент программного обеспечения, проверяющий правильность логических выводов, имеющихся в доказательстве. Хотелось бы верить, что когда-нибудь компьютеры смогут доказать любое математическое утверждение. Если вы захотите убедиться в том, что теорема верна, вам будет достаточно просто нажать кнопку.

Первой крупной теоремой, доказанной с помощью компьютера, стала теорема о четырехцветной карте, или теорема о четырех красках. Мы с вами уже удостоверились, что любой машинальный рисунок может быть двухцветным, другими словами, что мы можем заштриховать его фрагменты так, чтобы две смежные области всегда были разных цветов. В 1852 году проживающий в Лондоне выходец из Южной Африки Френсис Гатри раскрашивал карту графств Англии. Он обнаружил, что для раскраски карты таким образом, чтобы соседние графства имели разные цвета, достаточно четырех красок. Эксперименты показали, что четырех цветов хватает и для того, чтобы раскрасить так любую карту. Однако больше столетия никто не мог это доказать, пока в 1976 году Кеннет Аппел и Вольфганг Хакен из Иллинойского университета не сделали это, воспользовавшись суперкомпьютером для проверки всех вероятных конфигураций карт. Математики отреагировали неоднозначно. В принципе должна существовать возможность проверить каждую строку доказательства. Но компьютер выполнил слишком большой объем вычислений, для того чтобы можно было их все проверить, а это противоречило эталону доказательства теорем, использовавшемуся со времен Евклида. Однако помимо сугубо философских возражений против такого метода доказательства теорем существовали и другие претензии практического плана. В программах всегда есть ошибки. Разве могли Аппел и Хакен быть полностью уверены в том, что в их программе их нет? Нет, не могли. На самом деле в их доказательстве до сих пор находят новые компьютерные ошибки, хотя все обнаруженные ошибки были исправлены. В 1995 году группа исследователей Принстонского университета составила усовершенствованное компьютерное доказательство теоремы о четырехцветной карте. А в 2004 году Джордж Гонтье из исследовательской лаборатории компании Microsoft в Кембридже (Англия) проверил его с помощью специальной программы, определяющей корректность доказательств, хотя для этого ему пришлось перевести все концепции на специальный язык программирования, который понимала эта программа. Но тогда возникает следующий вопрос: разве можно быть уверенным в том, что такая программа-помощник не содержит ошибок? Нет, полной уверенности в этом нет, однако ее уровень все же выше, чем в случае исходных доказательств, поскольку эта программа была многократно протестирована при выполнении многих других задач. В настоящее время доказательство теоремы о четырех красках — одно из наиболее тщательно проверенных в математике.

После первоначального сопротивления автоматизированным доказательствам теорем со временем большинство математиков все же приняли их. Некоторые даже мечтают о том, что однажды все теоремы будут переведены на универсальный компьютерный язык для проверки доказательств, что позволит создать гигантскую формализованную систему, содержащую все доказуемые математические знания, в которой каждое утверждение строго выводится из совокупности базовых строк компьютерного кода. Когда это произойдет, мы все должны, раздевшись донага, прыгнуть в озеро с криками «Бурбаки!».

Компьютеры изменили ход доказательства теорем. Кроме того, они стали катализатором для формирования новой, захватывающей области математики.