E=mc2. Биография самого знаменитого уравнения мира

Боданис Дэвид

В 1905 году, выведя свое знаменитое уравнение Е=mc

2

, Альберт Эйнштейн подарил миру мощный источник энергии и открыл новые пути к познанию Вселенной. И теперь, более ста лет спустя, блестящий популяризатор науки Дэвид Боданис увлекательно и просто рассказывает об этом великом открытии. Герои его захватывающей, как детектив, книги — выдающиеся физики, среди которых Фарадей, Резерфорд, Ферми, Оппенгеймер, Гейзенберг и конечно же гениальный Эйнштейн.

 

Предисловие

Некоторое время назад я прочитал в киножурнале интервью с актрисой Камерон Диаз. Под конец разговора интервьюерша спросила у нее, существует ли нечто такое, что ей хотелось бы узнать, и актриса ответила, да — ей хотелось бы узнать, что на, самом-то деле, означает E=mc2. Обе рассмеялись, потом Диаз пробормотала, что говорила серьезно, на том интервью и закончилось.

«Думаешь, она и вправду говорила серьезно?» — спросил один из моих друзей, когда я прочитал это место вслух. Я пожал плечами, однако все, кто присутствовал в той комнате — архитекторы, два программиста и даже один историк (моя жена!) — твердо стояли на своем. Они точно знали, что имела в виду актриса: им и самим хотелось бы понять, что, собственно, означает прославленное уравнение.

И я задумался. Все знают, что E=mc2 - штука очень важная, но не знают, как правило, что она означает, и огорчаются этим, поскольку уравнение так коротко, что кажется удобопонимаемым.

Существует множество книг, написанных в стараниях объяснить его, но кто из нас, не кривя душой, скажет, что понял хотя бы их? Большинству читателей они представляются просто собранием странных картинок — все эти маленькие поезда, ракеты и вспышки света остаются для них полной загадкой. Даже объяснения, полученные из первых рук, и те помогают далеко не всегда, что и обнаружил Хаим Вейцман, который в 1921 году пересекал вместе с Эйнштейном Атлантику: «Эйнштейн объяснял мне свою теорию каждый день, — рассказывал Вейцман, — и довольно быстро убедил меня в том, что действительно ее понимает».

И я сообразил, что можно воспользоваться другим подходом. Общие обзоры теории относительности терпят неудачу не потому, что они плохо написаны, но потому, что они представляют собой попытки объять слишком многое. Вместо того, чтобы писать еще один такой обзор, не говоря уж о биографии Эйнштейна, — темы это интересные, но заезженные до смерти, — я мог бы просто рассказать об уравнении E=mc2. Задача выполнимая, поскольку это уравнение составляет лишь часть куда более пространных трудов Эйнштейна. А кроме того, оно в значительной мере стоит особняком.

И как только мои мысли пошли в этом направлении, мне стало ясно, каким путем следует двигаться. Вместо того, чтобы возиться с ракетами и вспышками света, я могу просто написать биографию E=mc2. Биография, как всем известно, подразумевает рассказ о предках, детстве, взрослении и зрелых годах их предмета. То же и с уравнением.

Соответственно, эта книга начинается с истории каждой из частей уравнения — символов E, m, c, = и 2 . Рассказывая об этих «предках» уравнения, я сосредотачиваюсь на одном человеке или одной группе ученых — на тех, чья работа оказалась особенно важной для понимания этих терминов.

Прояснив происхождение символов, можно приступить к рассказу о «рождении» уравнения. Вот тут в книге появляется Эйнштейн: его служба в бюро патентов в 1905 году, круг его чтения и размышлений, приведших к тому, что все эти символы сплелись в уравнение, которое мгновенно заняло в его уме положенное место.

Если бы уравнение и его «работа» оставались исключительной собственностью Эйнштейна, наша книга просто продолжала бы рассказывать о его жизни после 1905 года. Однако вскоре после того, как он совершил свое великое открытие, его начали интересовать совсем другие вещи, поэтому книга уходит от жизни Эйнштейн в сторону и обращается к другим физикам, на сей раз экспериментаторам — таким как шумный, играющий в регби Эрнест Резерфорд и тихий Джеймс Чедвик, бывший военнопленный, — к людям, чьи совместные усилия которых открыли в атоме структуры, которые допускают, в принципе, использование огромной энергии, описываемой уравнением.

В любом другом веке превращение этих теоретических открытий в практическую реальность потребовало бы очень долгого времени, однако детальное понимание того, как можно использовать уравнение Эйнштейна, сложилось уже в 1939 году, как раз в начале величайшей из войн двадцатого век. Большой центральный раздел книги посвящен достижению нашим уравнением совершеннолетия в ходе бешеной гонки ученых, обосновавшихся в Соединенных Штатах, и других, работавших в нацистской Германии, — и те, и другие пытались первыми создать смертоносную, позволявшую контролировать всю планету бомбу. История эта нередко изображается так, точно победа Америки была неизбежной просто-напросто вследствие ее промышленного превосходства, выясняется, однако, что немцы подошли к успеху гораздо ближе, чем представляется многим. Даже и в день Д, в июне 1944 года, начальник штаба армии США Джордж Маршалл позаботился о том, чтобы снабдить некоторые из высаживавшихся во Франции частей счетчиками Гейгера, — в виде меры предосторожности на случай использования нацистами радиоактивного оружия.

В последних главах книги мы поворачиваемся к войне спиной — начинается «зрелость» уравнения. Мы увидим, как уравнение E=mc2 становится душой и сердцем многих медицинских приборов, таких, например, как позитронные томографы, применяемые для обнаружения опухолей; как оно начинает работать в привычных нам бытовых приборах вроде телевизоров и детекторов дыма. Однако еще более значительной становится его власть, простирающаяся далеко во вселенную, где оно позволяет объяснить рождение звезд и способность нашей планеты обогревать себя; возникновение черных дыр и то, чем закончит наш мир. А в самом конце книги содержатся детальные пояснения, предназначенные для читателей, которых интересуют более глубокие сведения из области математики и истории — дальнейшие развернутые сведения можно найти на веб-сайте davidbodanis.com.

Истории, рассказанные в книге, повествуют в такой же мере о любви, страсти и мщении, в какой и о бесстрастных научных открытиях. Мы встретимся с Майклом Фарадеем, юношей из бедной лондонской семьи, отчаянно ищущим наставника, который позволил бы ему добиться лучшей жизни; с Эмилией дю Шатле, женщиной, попавшей не в то столетие и пытающейся отыскать место, в котором ей не придется терпеть насмешки над ее умом. Мы узнаем о Кнуте Хаукелиде и команде молодых норвежцев, вынужденных убивать своих соотечественников ради того, чтобы отвратить зло гораздо большее, которым грозят им нацисты; о Сесилии Пэйн, англичанке, погубившей свою карьеру тем, что она осмелилась предсказать участь, которая ожидает Солнце через 6 миллиардов лет; и о девятнадцатилетнем брамине по имени Субрахманьян Чандрасекар, обнаружившем, пока он плыл, страдая от удушающей жары, по Аравийскому морю, нечто еще более страшное. И все эти истории, наряду с кое-какими сведениями об Исааке Ньютоне, Вернере Гейзенберге и других ученых, помогут нам яснее понять каждую из составных частей нашего уравнения.

 

Часть 1. Рождение

 

Глава 1. Бернское бюро патентов, 1905

Из «Собрания документов Альберта Эйнштейна», ТОМ 1:

13 апреля 1901

Профессору Вильгельму Оствальду [2] ,

Лейпцигский университет,

Лейпциг, Германия

Досточтимый герр профессор!

Пожалуйста, досточтимый герр профессор, простите отца, набравшегося смелости обратиться к Вам в интересах своего сына.

Начну с того, что скажу Вам: моему сыну Альберту 22 года и он… глубоко несчастен нынешним отсутствием у него серьезного положения, а уверенность в том, что он избрал для своей карьеры ложный путь и оказался за бортом, с каждым днем укореняется в нем все сильнее и сильнее. В добавление к этому, его подавляет мысль, что он является бременем для нас, людей со скромными средствами…

Я взял на себя смелость обратиться [к Вам] с почтительной просьбой… послать ему, если этой возможно, несколько слов ободрения, которые вернули бы ему радость по отношению и к жизни, и к работе.

Если бы Вы могли, в добавление к этому, предоставить ему, начиная с этой или следующей осени, место ассистента, моя благодарность не знала бы границ…

Я также позволю себе упомянуть о том, что мой сын ничего об этом моем необычном шаге не знает.

Остаюсь, досточтимый герр профессор,

преданным вам

Германом Эйнштейном

Профессор Оствальд на это письмо не ответил

Мир, каким он был в 1905 году, кажется нам далеким, однако он обладал немалым сходством с нынешним. Европейские газеты жаловались на засилье американских туристов, а американские — на засилье иммигрантов. Представители старшего поколения повсеместно жаловались на непочтительность молодежи, а политиков Европы и Америки тревожили бурные события, происходившие в России. Существовали курсы новомодной «аэробики», входившие в моду вегетарианские сообщества и призывы к сексуальной свободе (которым давали опор традиционалисты, стоявшие за семейные ценности) — и много чего еще.

1905-й был также годом, в котором Эйнштейн написал ряд статей, навсегда изменивших наши представления о Вселенной. До той поры, он вел — внешне — приятную и тихую жизнь. В детстве его нередко интересовали задачи по физике, теперь он был недавним выпускником университета, отличавшимся добродушием и покладистостью, которые позволили ему обзавестись множеством друзей. Он был женат на своей талантливой однокурснице по имени Милева, а заработок, который давала служба в государственном патентном бюро, позволял ему посещать по будним вечерам и воскресеньям пивные или совершать долгие прогулки — и, главное, у него было более чем достаточно времени для размышлений.

Письмо отца никакого результата не возымело, однако университетский друг Эйнштейна Марсель Гроссман смог подергать за нужные ниточки и в 1902 году раздобыть для Эйнштейна место в патентом бюро. Помощь Гроссмана оказалась необходимой не столько потому, что из университета Эйнштейн вышел с необычайно низкими оценками — наспех зазубрив весьма полезные конспекты Гроссмана, он смог получить средний балл 4,91 — при общем среднем, равном 6, — но и потому, что один из его профессоров, гневавшийся на Эйнштейна за шуточки и пропуски занятий, из чистой злобы написал ему характеристику, с которой никакую работу получить было невозможно. Преподавателей, с которыми Эйнштейн сталкивался за годы учебы, вечно раздражало его непослушание, а преподававший ему в средней школе греческую грамматику Йозеф Дегенхарт ухитрился даже навсегда войти в исторические труды, заявив: «из вас никогда не выйдет ничего путного». А несколько позже, в разговоре о том, что самое лучшее для Эйнштейна это уйти из школы, Дегенхарт пояснил: «Ваше присутствие в классе разрушает уважение учеников к учителю».

Внешне Эйнштейн производил впечатление человека уверенного в себе, со смехом говорившего о том, что всякий, кто наделен властью, похоже, получает удовольствие, принижая его. Годом раньше, в 1904-м, он подал просьбу повысить его в должности, переведя из патентных служащих третьего класса в служащие второго. Его начальник, доктор Халлер, эту просьбу отклонил на том основании, что, хоть Эйнштейн и «продемонстрировал вполне приличные достижения», следует, однако же, подождать «до тех пор, когда он полностью освоит профессию инженера-механика».

На самом же деле, отсутствие какого-либо успеха становилось серьезной проблемой. Эйнштейну и его жене пришлось отдать их первого ребенка, дочь, родившуюся еще до того, как они поженились, на воспитание, теперь же они старались вырастить второго на невеликое жалование служащего бюро патентов. Эйнштейну было двадцать шесть лет. Ему не хватало средств даже на то, чтобы помочь жене хотя бы частично возобновить ее научные занятия. Действительно ли он так умен, как уверяла обожавшая его младшая сестра Майя?

Ему удалось напечатать несколько статей по физике, однако особого впечатления они не произвели. Эйнштейна неизменно интересовали существующие между различными явлениями связи общего характера — в самой первой своей статье, опубликованной в 1901 году, он попытался показать, что силы, управляющие жидкостью, которая поднимается по соломинке для питья, в фундаментальном отношении подобны тем, о которых трактуют ньютоновские законы тяготения. Однако добиться того, чтобы эти общие связи заработали, ему не удавалось, и почти никаких откликов от других физиков он не получал. В письме к сестре Эйнштейн гадал, удастся ли ему это когда-либо вообще.

Даже часы, которые он проводил в бюро патентов, работали против него. Ко времени окончания рабочего дня единственная в Берне научная библиотека уже закрывалась. А как пробиться в науку, если у тебя нет возможности хотя бы знакомиться с последними ее достижениями? Когда на службе выпадали свободные минуты, Эйнштейн записывал кое-что на листах бумаги, которые держал рабочем столе, в ящике, который он шутливо называл своей кафедрой теоретической физики. Однако Халлер не спускал с Эйнштейна глаз и потому ящик этот по большей части оставался закрытым. В сравнении с друзьями, которыми он обзавелся в университете, Эйнштейн все больше и больше отставал от науки. Он разговаривал с женой о том, чтобы оставить Берн и попытаться найти место школьного учителя. Однако и эта возможность гарантированной отнюдь не была — четыре года назад он уже предпринял такую попытку, но постоянного места получить так и не смог.

А затем, в прекрасный, по воспоминаниям Эйнштейна, весенний день 1905 года он встретился со своим лучшим другом, Мишелем Бессо. («Я очень любил его, — писал Эйнштейн, — за острый ум и простоту».) Они совершили долгую прогулку по окрестностям города. Как правило, друзья болтали при таких встречах о работе в патентном бюро, о музыке, однако на этот раз Эйнштейну было не по себе. То, о чем он размышлял в последние месяцы, начинало складываться в единую картину, и все же, существовала некая тонкость, которую он никак не мог уловить. Она не далась ему и в тот вечер, зато утром следующего дня он вдруг проснулся, ощущая «величайшее волнение».

Сочинение первого чернового наброска статьи — тридцати с чем-то страниц — потребовало пяти-шести недель. Эйнштейн послал ее в «Annalen der Physik», однако еще несколько недель спустя понял, что статья эта требует добавления. И вскоре в тот же физический журнал были посланы три дополнительных страницы. Позже он признался еще одному другу, что был не вполне уверен и в точности этого дополнения: «Идея занятна и увлекательна, но я не знаю, не посмеется ли над нею Господь, не сыграл ли он со мной злую шутку». Впрочем, в написанном им никакой неуверенности не ощущалось: «Результаты электродинамических исследований, опубликованные мною недавно в этом журнале, привели к очень интересному заключению, которое я и хочу изложить». За этим следовало четыре абзаца.

Так появилось на свет E=mc2.

 

Часть 2. Предки E=mc

2

 

Глава 2. Е — это энергия

Слово «энергия» на удивление молодо, проследить происхождение нынешнего его смысла удается лишь до середины 1800 годов. И дело вовсе не в том, что до той поры никто не осознавал, что вокруг нас существуют самые разные силы — потрескивание статического электричества, буйные ветра, срывающие паруса с мачт. Просто всем казалось, что эти силы никак одна с другой не связаны. Не существовало понятия «энергии», которое охватывало бы их все.

Одним из людей, сыгравших важнейшую роль в изменении этого понятия, был Майкл Фарадей, очень толковый подмастерье переплетчика, которому однако же не хотелось заниматься всю жизнь одним лишь переплетным делом. Впрочем, в Лондоне 1810-х это занятие не только позволяло избежать бедности, но и обладало еще одним редкостным преимуществом: «Там было столько книг, — годы спустя говорил Фарадей другу, — и я их читал». Впрочем, чтение это было, что сознавал и сам Фарадей, фрагментарным — несколько страниц из одной книги, несколько из другой. Но иногда, оставаясь вечерами в одиночестве, он прочитывал при свече или лампе целые тетрадки из шестнадцати, а то и тридцати двух ожидавших переплета страниц.

Он мог так и остаться переплетчиком, однако в георгианской Англии существовала хоть и малая, но все же не нулевая социальная мобильность. Когда Фарадею было двадцать лет, один из посетителей мастерской предложил ему билеты на лекции, читавшиеся в «Королевском институте». Сэр Гемфри Дэви рассказывал там об электричестве, о скрытых силах, которые должны существовать под внешней оболочкой видимого мира. Фарадей отправился на лекции и понял, что ему выпала удача увидеть жизнь намного лучшую, чем та, какую он вел, работая в мастерской. Но как в эту жизнь войти? Ни в Оксфорде, ни в Кембридже он не учился, да и того, что мы именуем теперь средней школой, тоже почти не посещал. Денег у Фарадея было ровно столько, сколько мог дать ему работавший кузнецом отец, — то есть не было никаких, — а в друзьях у него состояли такие же бедняки, как он.

Зато он умел красиво переплетать книги. У Фарадея издавна завелась привычка делать, если выпадала такая возможность, заметки, вот он и принес в мастерскую свои записи лекций Дэви. Там он переписал их заново, присоединив к ним зарисовки демонстрационных приборов, которыми пользовался Дэви. Затем переписал получившуюся рукопись еще раз — все эти черновики хранятся ныне, как святые реликвии, в подвальном архиве лондонского «Королевского института», — взял кожу, шило, гравировальные инструменты и переплел все в роскошную книгу, которую и послал сэру Гемфри Дэви.

Дэви написал Фарадею, что хочет увидеться с ним. Молодой человек понравился ученому, и тот после нескольких приводивших Фарадея в уныния неудачных попыток все же нашел для него место лабораторного ассистента.

На старых товарищей Фарадея по мастерской это могло произвести сильное впечатление, однако новое его положение было вовсе не тем идеалом, к которому он стремился. Временами Дэви обращался с ним как дружелюбный наставник, временами же, — Фарадей писал об этом друзьям, — впадал в раздражение и отталкивал его. И это особенно огорчало Фарадея, ибо в науку он пришел благодаря доброму участию Дэви, его словам о том, что, если человек достаточно искусен и способен видеть то, что было доселе скрыто, он может связать весь наш опыт в единое целое.

Дэви понадобилось несколько лет, чтобы проникнуться к Фарадею окончательной симпатией, и как раз в эту пору молодого ученого попросили разобраться в удивительном открытии, сделанном в Дании. До того времени все знали, что между электричеством и магнетизмом нет и не может быть никакой связи. Электричество было чем-то таким шипящим и потрескивающим, исходящим из батарей. Магнетизм — невидимой силой совсем иного рода, притягивавшей стрелки навигаторских компасов или заставлявшей куски железа липнуть к магнитному железняку. Никакого отношения к батареям и электрическим контурам магнетизм не имел. И тем не менее, некий копенгагенский лектор обнаружил ныне, что если пропустить по проводу электрический ток, стрелка лежащего поверх провода компаса слегка сдвинется в сторону.

Объяснить это явление никому не удавалось. Как может сила скрытого в металле электричества выскочить наружу и повернуть стрелку магнитного компаса? И вот, когда к Фарадею, которому шел уже третий десяток лет, обратились с просьбой — попробовать выяснить, как это происходит, в письмах его немедленно зазвучали гораздо более веселые нотки.

Он начал ухаживать за девушкой («Вы знаете меня хорошо или даже лучше, чем я сам, — писал он ей. — Знаете мои прежние предубеждения, нынешние мысли — знаете мои слабости, мое тщеславие, весь мой ум»), и девушке его ухаживание понравилось: в середине 1821 года, когда Фарадею уже исполнилось двадцать девять лет, они вступили в брак. Он стал официальным членом церкви, к которой многие годы принадлежали его родные. То была мирная, буквалистская секта, именовавшаяся «зандеманианцами» — по имени Роберта Зандемана, который перевез ее в Англию. И самое главное, у Фарадея появилась возможность произвести впечатление на сэра Гемфри Дэви: отплатить ему за изначальную веру в малообразованного молодого переплетчика и пробиться, наконец, сквозь необъяснимые барьеры, которые Дэви воздвиг между ними.

Как это ни странно, ограниченность формального образования Фарадея сильно сыграла ему на руку. Такое случается не часто, потому что, когда некая научная проблема достигает достаточно высокого уровня разработки, отсутствие образования не позволяет людям со стороны даже подступиться к ней. Двери закрываются, статьи становятся непонятными. Однако в те ранние дни понимания сути энергии все было иначе. Большинству студентов, будущих ученых, втолковывали, что любое сложное движение раскладывается на сочетание толчков и притяжений, которые распространяются по прямым линиям. Поэтому для них были лишь естественными попытки отыскать какие-то направленные по прямой притяжения между магнитами и электричеством. Однако этот подход не показывал, каким образом электрическая сила воздействует, пронизывая пространство, на магнетизм.

А поскольку Фарадею мысли о прямых линиях никто не внушал, он обратился, как к источнику вдохновения, к Библии. Зандеманианцы веровали в совсем иную геометрическую фигуру: в круг. Люди святы, говорили они, и каждый из нас имеет обязательства перед другими, на святости нашей природы и основанные. Я помогу тебе, ты поможешь еще кому-то и так оно будет продолжаться, пока не замкнется круг. И этот круг — понятие вовсе не отвлеченное. Фарадей в течение многих лет проводил значительную часть своего свободного времени либо в церкви, рассуждая об этих круговых отношениях, либо в работе, посвященной благотворительности и взаимопомощи.

К исследованиям взаимосвязи электричества и магнетизма он приступил в конце лета 1821 года — за двадцать лет до того, как родился изобретатель телефона Александер Грэхем Белл; за пятьдесят до рождения Эйнштейна. Фарадей вертикально установил на столе магнит. Вера, в которой он был воспитан, внушала ему мысль о вихре завивающихся вокруг магнита незримых круговых линий. Если он прав, свободно подвешенный проводник будет втянут в эти таинственные круги, как лодчонка в водоворот. Фарадей подключил проводник к батарее.

И сразу же совершил величайшее открытие своего века.

Впоследствии, как уверяет апокрифическая история, — после всех его докладов, после того, как Фарадей стал членом «Королевского общества», — тогдашний премьер-министр спросил у него, какая от его открытия может быть польза, и Фарадей ответил:

— Ну как же, премьер-министр, настанет день и вы сможете облагать его налогом.

То, что открыл в своей подвальной лаборатории Фарадей, стало основой электрического двигателя. Вращающийся по кругу свободно свисающий проводник особо на этот двигатель не похож. Однако у Фарадея имелся всего лишь маленький магнит да и энергия в провод подавалась очень малая. Увеличьте ее и проводник будет все с тем же усердием описывать все те же круги, которые Фарадей навоображал в пустом на взгляд воздухе. В конце концов, вы сможете прицепить к такому проводу какой-нибудь тяжелый предмет и провод потащит его за собой — вот, собственно, так электродвигатель и устроен. И не важно, вращает ли он весящий не больше пера компьютерный диск или накачивает в реактивный двигатель тонны топлива.

Шурин Фарадея, Джордж Барнард, запомнил, каким тот был в миг открытия: «Когда провод начал вращаться, он вдруг вскричал: “Ты видишь, Джордж, видишь, видишь?…” Я никогда не забуду восторга на его лице и блеска в глазах!».

Глаза Фарадея блестели потому, что ему было лишь двадцать с небольшим лет, а он уже совершил великое открытие, которое, казалось, подтверждало истинность глубочайших идей его веры. Потрескивание электричества и безмолвная сила магнитного поля, — а теперь еще и быстрое кружение медного провода, — все они были связаны. С ростом количества электричества, наличный магнетизм убывает. Незримые вихри Фарадея представляли собой туннель, канал, по которому магнетизм может перетекать в электричество и наоборот. Полная концепция «энергии» пока еще сформулирована не была, однако открытие Фарадея, связавшее два разных вида энергии, приблизило ее создание.

То был наивысший взлет его жизни, — и именно тогда сэр Гемфри Дэви обвинил Фарадея в том, что идею тот украл у него.

Дэви начал рассказывать о том, как он лично обсуждал сей предмет с разными учеными, которые занимались исследованиями этого явления, — с людьми, получившими настоящее образование, — а Фарадей, надо полагать, просто подслушал их разговоры.

Россказни эти были лживыми, Фарадей пытался протестовать, просил — именем прежней дружбы — позволить ему объясниться, однако Дэви был непреклонен. Последовали намеки еще более грубые, пусть и высказывались они уже другими людьми, не самим Дэви: чего же еще и ожидать от столь молодого, лишенного основательного образования человека, низкого, к тому же, происхождения, как не попыток обманным путем выбиться из подмастерьев в люди? Прошло несколько месяцев и Дэви отступился, однако извинений он так и не принес и клевета осталась висеть в воздухе.

В своих заметках и личном дневнике Дэви часто писал о том, сколь важно помогать молодым людям. Беда состояла в том, что сам он попросту не мог подвигнуть себя на это. Вся эта история сводится к обычному противостоянию людей молодых и старых. Дэви был старше Фарадея всего-то лет на десять с небольшим. Однако Дэви нравилось, когда его изображали главой британской науки, а время, которое он проводил вне лаборатории, упиваясь вместе с своей весьма чувствительной к положению в свете женой хвалами лондонского высшего общества, лишь делало эти хвалы более лживыми. Он отнюдь не возглавлял новейшие исследования. Переписываясь с континентальными мыслителями, он сознавал, что получение письма от столь видного члена «Королевского института» должно производить на них внушительное впечатление, однако от предложения каких-либо свежих идей воздерживался.

Этого не замечал почти никто, но Фарадей замечал. Он походил на Дэви больше, чем кто-либо другой. Обоим пришлось начинать свой путь в науку со ступени, находившейся на уровень ниже, чем у их ученых современников. Фарадей не считал нужным просить за это прощения, а вот Дэви изо всех сил старался скрыть свое прошлое. И тихое присутствие рядом Фарадея, служило постоянным напоминанием о том, что пришлось пережить им обоим.

Фарадей никогда не сказал о Дэви ни одного дурного слова. Однако в течение нескольких лет после того, как были произнесены обвинения в плагиате, отзвуки которых долго еще носились в воздухе, он осмотрительно воздерживался от исследований, относившихся к переднему краю науки. И вернулся к работе лишь после смерти Дэви, последовавшей в 1829 году.

Фарадей дожил до преклонных лет, став со временем очень видным членом «Королевского института». Его восхождение было типичным для перехода науки из рук джентльменов в руки профессионалов. Клевета Дэви была давно забыта. Фарадей совершил еще несколько открытий, приобрел огромную славу, к нему часто обращались с письменными просьбами, подобными вот такой, например:

28 мая 1850

Дорогой сэр!

Мне пришла в голову мысль, что очень многим людям было бы весьма полезно иметь на столах, за которыми они завтракают, некий отчет о Ваших последних лекциях… Я был бы чрезвычайно рад возможности… отпечатать его в моем новом предприятии…

С великим уважением и почтительностью остаюсь, дорогой сэр, Вашим верным слугой

Чарльзом Диккенсом.

Впрочем, в последнее десятилетие своей жизни Фарадей, подобно Дэви, лишился возможности следить за новейшими результатами исследований. Однако концепция энергии уже вела собственную жизнь. Все на первый взгляд раздельные мировые силы медленно и величаво соединялись, дабы создать шедевр Века Виктории: огромное, единое царство Энергии. С тех пор, как Фарадей показал, что связаны даже электричество и магнетизм — два элемента, считавшиеся совершенно различными, — сообщество ученых проникалось все большей уверенностью в том, что и для всех прочих форм энергии может быть подобным же образом установлено существование глубоких связей. Существовала энергия химическая, выделявшаяся при взрыве пороха, существовала тепловая энергия трения, которая высвобождается, когда шаркаешь подошвой по земле, — и между ними тоже имелась связь. Когда порох взрывается, высвобождаемая при этом энергия, которая порождает взрывную волну и заставляет камни лететь по воздуху, должна быть в точности той, какая покоилась в химическом обличии внутри заряда.

Совсем не трудно проглядеть всю необычность концепции энергии, которую помогли создать труды Фарадея. Все выглядело так, точно Бог, творя вселенную, сказал: я собираюсь разместить в моей вселенной количество энергии, равное Х. Я позволю звездам расти и взрываться, планетам кружить по их орбитам, пусть люди строят огромные города, пусть сражаются и эти города разрушают, и пусть затем уцелевшие создают новые цивилизации. Пусть будут пожары, и кони, и волы, тянущие за собой телеги; пусть будет уголь и паровые машины, и фабрики, и даже мощные локомотивы. И все же, во всей этой последовательности событий, даже при том, что типы энергии, наблюдаемые людьми, будут меняться, даже при том, что энергия будет иногда выглядеть как тепло, согревающее мышцу человека или животного, а иногда, как сила водопада или извержение вулкана: несмотря на все это разнообразие, полное количество энергии останется тем же, что и в начале. То количество, которое я сотворил изначально, не изменится. Оно не станет меньшим и на одну миллионную долю.

В таком изложении все это выглядит чистой воды тарабарщиной — религиозными представлениями Фарадея о единой вселенной, в которой распространяется лишь одна единственная сила. Чем-то вроде слов Оби-Ван Кеноби из «Звездных войн»: «Сила это энергетическое поле, создаваемое всем живым; она связует галактику воедино».

И все же это правда! Когда вы в тишине ночного дома захлопываете дверцу буфета, энергия проявляется в скользящем движении дверцы, но точно такое же количество энергии уходит из ваших мышц. А когда дверца, наконец, закрывается, энергия ее движения не исчезает, она просто переходит в подрагивание буфета, возникающее после удара дверцы, в тепло, порождаемое трением ее скрипучих петель. И если вам приходится слегка упереться ногами в пол, чтобы не поскользнуться, захлопывая дверцу, Земля чуть сходит с орбиты, подпрыгивая вверх ровно настолько, насколько это необходимо, чтобы уравновесить ваше движение.

Равновесие во всем. Измерьте химическую энергию, скрытую в груде угля, потом спалите его в паровозной топке и измерьте энергию ревущего пламени и летящего вперед паровоза. Ясно, что форма энергии изменяется, разные системы и выглядят очень по-разному. Однако полное ее количество остается в точности тем же самым.

Работа Фарадея была частью самой успешной исследовательской программы, какую знал девятнадцатый век. Каждое количественное преобразование энергии, обнаруженное Фарадеем и другими учеными, теперь можно было просчитать и промерить. И когда это делалось, результаты всякий раз подтверждали, что полное количество энергии осталось не измененным — оно «сохранилось». Что и получило название Закона сохранения энергии.

Все было связанным, все опрятно уравновешенным. В последнее десятилетие жизни Фарадея Дарвину, похоже, удалось доказать, что Богу вовсе не требовалось создавать живые виды, населяющие нашу планету. Представления же Фарадея о неизменности энергии часто воспринималась как удовлетворительная альтернатива: доказательство того, что длань Господня действительно коснулась нашего мира и все еще остается в нем действующей силой.

Вот эта концепция сохранения энергии и преподавалась в кантональной школе города Аарау, что в северной Швейцарии, когда в 1895 году, через двадцать лет после смерти Фарадея, Эйнштейн поступил в нее, чтобы подготовиться к университетским экзаменам. Эйнштейн оказался в ней не по собственному почину, — он уже бросил в Германии вполне достойную среднюю школу и торжественно заявил себе, что школьной учебы с него хватит, — просто он провалился на вступительных экзаменах в Федеральную высшую техническую школу Цюриха, единственного университета, в который принимали людей без свидетельства о среднем образовании. Один из тамошних дружелюбных преподавателей счел Эйнштейна обладающим кое-какими достоинствами, и ректор, вместо того, чтобы сразу указать ему на дверь, посоветовал Эйнштейну поучиться в этой тихой северной школе, — обучение там велось неформально и индивидуально.

Когда Эйнштейн, наконец, поступил в Высшую техническую, — после первого упоительного романа с восемнадцатилетней дочерью его домохозяина в Аарау, — лекции по физике все еще читались там, как викторианское евангелие, главным в котором была всеохватывающая энергия. Однако Эйнштейну казалось, что его учителя не понимают сути того, о чем говорят. Энергия не была для них живой темой, требующей попыток понять, что она означает, прочувствовать те основные религиозные идеи, которыми руководствовались Фарадей и другие. Нет, для большинства их энергия и ее сохранение были просто формализмом, установленным набором правил. В то время бóльшая часть Западной Европы купалась в самодовольстве. Европейские армии были самыми мощными в мире; европейские идеи «явственно» превосходили идеи всех прочих цивилизаций. И если европейские мыслители объявили сохранение энергии истиной, так нечего было и лезть к ним с вопросами.

Эйнштейн же при всей покладистости, какую он проявлял во множестве иных отношений, самодовольства не переносил. Он перестал посещать многие университетские курсы — учителя, так относившиеся к делу, ничему его научить не могли. Ему требовалось нечто более глубокое и обширное. Тот же Фарадей и иные викторианцы, смогли ведь расширить концепцию энергии настолько, что она охватила, как им тогда казалось, все возможные силы.

Другое дело, что тут-то они и ошиблись.

В то время Эйнштейн этого еще не сознавал, однако он уже вышел на правильный путь. В Цюрихе было множество кофеен, и он проводил в них послеполуденные часы, попивая кофе со льдом, читая газеты, валяя дурака с друзьями. Однако потом наступали тихие минуты, в которые Эйнштейн, размышляя о физике, энергии и многом ином, начинал улавливать намеки на то, чем не ладны воззрения, которые ему преподают. Все те типы энергии, которые различили установившие их взаимную связь викторианцы, — химическая, энергия огня, электрических искр и пороховых зарядов, — это лишь крошечная часть того, что, возможно, существует на самом деле. В девятнадцатом столетии царство энергии считалось огромным, однако пройдет лишь несколько лет, и Эйнштейн обнаружит источник энергии, в сравнении с которым даже самые лучшие, самые востребованные источники, открытые викторианскими учеными, покажутся карликами.

Он обнаружит место, в котором кроется гигантская энергия и в которое никто до него даже не думал заглядывать. И прежние уравнения для поддержания мира в равновесии уже не понадобятся. Количество энергии, которое Бог дал нашей вселенной, окажется не зафиксированным раз и навсегда. Энергии может быть и побольше.

 

Глава 3. =

Большинство основных типографских символов, какие мы используем, утвердились под конец Средневековья. В Библии четырнадцатого столетия нередко можно было увидеть текст, походивший на телеграмму:

В НАЧАЛЕ СОТВОРИЛ БОГ НЕБО И ЗЕМЛЮ ЗЕМЛЯ ЖЕ БЫЛА БЕЗВИДНА И ПУСТА И ТЬМА НАД БЕЗДНОЮ

В разное время происходили изменения, обращавшие большинство букв из прописных в строчные:

В начале сотворил Бог небо и землю земля же была безвидна и пуста и тьма над бездною

Другое изменение сводилось к тому, что в тексте появлялись кружочки, обозначавшие главные места, на которых можно было переводить дыхание:

В начале сотворил Бог небо и землю. Земля же была безвидна и пуста и тьма над бездною.

Использовались также и закорючки помельче — для обозначения таких же мест, но уже не главных:

Земля же была безвидна и пуста, и тьма над бездною.

Когда по конец 1400-х появилось книгопечатание, основные символы довольно быстро заняли свои места. Тексты начали наполняться странными символами? и совсем новыми значками!. Все это немного походило на то, как стандарт Windows вытеснял в персональных компьютерах прочие операционные системы.

Утверждение символов менее значимых потребовало несколько большего времени. Сейчас мы воспринимаем их как нечто само собой разумеющееся, — настолько, что, к примеру, смаргиваем на каждой точке, какая стоит в конце предложения. (Присмотритесь к любому читающему что-то человеку и вы сами увидите это.) А между тем, это реакция целиком и полностью заученная.

(א)

Более тысячи лет в одном из главных населенных пунктов мира в качестве знака сложения использовался символ, показывавший приближающегося к вам человека (который тем самым «добавлялся» к вам), а в качестве значка вычитания —. Эти египетские символы вполне могли получить широкое распространение и утвердиться, как то случилось с арабскими. Те же финикийские символы стали основой еврейских א и ב — «алеф» и «бет», — как и греческих α и β, — «альфа» и «бета», образовавших основу нашего «алфавита».

Во всю середину 1500-х у предприимчивых людей еще сохранялась возможность установить собственные значки для оставшихся неоформленными символов менее значительных. В 1453-м Роберт Рекорде, ретивый автор английских учебников, попытался ввести новый значок «+», приобретший некоторую популярность на Континенте. Книга, которую он по этому поводу написал, не принесла ему состояния, и в следующем десятилетии он предпринял новую попытку, на сей раз с символом, имевшем некоторые корни в старых текстах по логике и способном, как он был уверен, взять верх над другими. Рекорде попробовал даже — в лучшем стиле беззастенчивой рекламы — указать на его экономическую целесообразность: «…и дабы избегнуть утомительного повторения одних и тех же словес: это равно тому, я устанавливаю две параллели, или линии равной длинны, а именно ========, поелику никои две вещи не могут быть более уравнены…».

Судя по всему, и это новшество Рекорде особенно не обогатило, поелику ему пришлось яро соперничать со столь же вразумительным // и даже с причудливым символом “[;”, каковой отстаивали могучие немецкие печатни. Полный набор предлагавшихся возможностей, если представить их внедренными в наше уравнение, выглядит так:

e || mc 2

e->mc 2

e.æqus. mc 2

e][mc 2

И наконец, мое любимое

е============ mc 2

Победа Рекорде оставалась отнюдь не явственной до наступивших поколение спустя времен Шекспира. Только тогда педанты и школьные учителя начали все чаще использовать знак равенства для обозначения того, что разумеется само собой, однако еще оставались мыслители, у которых имелись идеи получше. Если я говорю 15+20=35, это не так уж и интересно. А вот представьте, что я говорю вам:

(сместитесь на 15 градусов на запад)

+

(на 20 градусов на юг)

=

(и вы найдете пассаты, которые за 35 дней донесут вас через Атлантику до нового континента)

А теперь я сообщу вам некую новость. Хорошее уравнение это не просто вычислительная формула. И не весы, показывающие, что два элемента, которые вы полагали почти равными, и вправду равны. Нет, ученые начали использовать знак = как некий телескоп, позволяющий усматривать новые идеи, устройство, привлекающее внимание к новым, неожиданным областям. Дело попросту в том, что уравнения писались символами, а не словами.

Именно так Эйнштейн и использовал «=» в его написанном в 1905 году уравнении. Викторианцы полагали, что им удалось обнаружить все возможные источники энергии: химическую, тепловую, магнитную и так далее. А в 1905-м Эйнштейн сказал: Нет, существует еще одно место, в которое вы не заглядывали, там ее куда больше. Его уравнение было подобно телескопу, наставленному на это укромное место, находившееся отнюдь не в далеком космосе. Оно находилось рядышком — под самым носом всех его профессоров.

Эйнштейн обнаружил источник энергии там, где никто его попросту не искал. Источник, скрытый в самом веществе.

 

Глава 4. m — это масса

В течение долгого времени с концепцией массы происходило примерно то же, что и с концепцией энергии до того, как Фарадей и иные ученые девятнадцатого столетия завершили свою работу. Людей окружало вещество самое разное — лед, камень, ржавое железо, — однако оставалось неясным, как они связаны друг с другом, если связаны вообще.

В наличие некой великой связи между ними ученым помогало верить то, что в 1600-е годы Исаак Ньютон сумел доказать: все планеты, луны и кометы, какие мы наблюдаем, можно описать как детали некоей созданной Богом огромной машины. Единственная проблема состояла в том, что это величественное видение представлялось далеко отстоящим от заурядного, пыльного и плотного вещества, с каким нам приходится иметь дело здесь, на Земле.

Для того, чтобы установить применимость начертанной Ньютоном великой картины к нашей грешной Земле, — то есть показать, что различные типы вещества, нас окружающего, воистину взаимосвязаны и весьма основательно, потребовался человек, обладавший приверженностью к дотошной точности, готовый тратить время на промеры даже крошечных изменений весов и размеров. К тому же, он должен был обладать романтичностью, достаточной для того, чтобы вдохновиться грандиозной картиной Ньютона, — иначе с чего бы он стал изыскивать лишь смутно подозреваемые связи между любыми видами материи?

Вот это странное сочетание — откупщик с душой, способной воспарять в небеса, — можно считать точным портретом Антуана Лорана Лавуазье. Именно он, и никто иной, был человеком, впервые показавшим, что все по-видимому различные куски дерева, камня и железа, какие только есть на земле — все обладатели «массы» — являются, на самом деле, частями единого целого.

Присущий ему романтизм Лавуазье продемонстрировал в 1771 году, когда спас тринадцатилетнюю дочь своего старого друга Жака Польза от вынужденного брака с неотесанным, угрюмым, но при этом устрашающе богатым человеком. Причина, по которой он знал Польза достаточно хорошо для того, чтобы прийти на помощь его дочери, Мари Анне, состояла в том, что Польза был его начальником. А спас он Мари Анну способом довольно простым — взял да и женился на ней сам.

Брак их оказался очень удачным, несмотря на разницу в возрасте и на то, что вскоре после того, как красивый двадцативосьмилетний Лавуазье спас Мари Анну, ему пришлось с головой уйти в ошеломительно скучную финансовую работу, которую он исполнял для Польза в организации, именовавшейся «Генеральным откупом».

Откупаться там ни от кого особенно не приходилось, организация эта занималась, почти монопольно, сбором налогов для правительства Людовика XVI. Суммы, которые откупщики собирали сверх требуемых правительством, они могли оставлять себе. Занятие это было исключительно прибыльным, но так же и исключительно безнравственным, в течение многих лет привлекавшим стариков, достаточно богатых, чтобы купить соответственную должность, но не способных к сколько-нибудь дотошному ведению учета или наведению организационного порядка. Работа Лавуазье как раз и состояла в том, чтобы поддерживать в рабочем состоянии эту огромную систему, в которой перемешивались, словно мутовкой, налоги.

Этим он и занимался в течение примерно двадцати следующих лет, понуро сгибаясь над письменным столом все долгие рабочие часы по шесть дней в неделю. Только в остававшееся свободным время — два часа поутру, а затем весь выходной, — и мог он предаваться научным занятиям. И этот единственный день недели он называл «jour de bonheur» — «днем счастья».

Не всякий, возможно, сможет понять, в чем это «счастье» состояло. Опыты, которые ставил Лавуазье, нередко напоминали обычную его бухгалтерскую работу, разве что времени отнимали гораздо больше. И тем не менее, настал момент, когда Антуан с неразумным восторгом, которым славятся юные любовники, сказал своей молодой жене, что она может помочь ему в постановке опыта, по-настоящему важного. Он собирался последить за медленно сгорающим или просто ржавеющим куском металла и выяснить, станет ли тот в итоге весить меньше или же больше.

(Прежде, чем двигаться дальше, читателю стоило бы попробовать догадаться, что произойдет с ржавеющей железкой — представьте себе старое крыло или низ вашего автомобиля, — сколько он будет весить, когда проржавеет -

а) меньше,

б) столько же,

в) больше,

— чем прежде? Запомните ваш ответ.)

Большинство людей, наверное, скажет — даже сегодня, — что весить она будет меньше. Однако Лавуазье, будучи сухим бухгалтером, ничего на веру не принимал. Он построил полностью герметичный аппарат и установил его в особой гостиной своего дома. Молодая жена помогала ему — в техническом черчении она была сильнее мужа да и в английском языке тоже. (Что впоследствии, когда началось соперничество с учеными, работавшими по другую сторону «Канала», и пригодилось.)

Они помещали в занимавший всю гостиную аппарат самые разные металлы, по возможности герметично закрывали его и нагревали, а то и разжигали под ним огонь, чтобы ускорить коррозию. А когда аппарат остывал, доставали из него повредившийся, или заржавевший, или обгоревший металл и взвешивали, аккуратно промеряя также количество истекшего — возможно — из аппарата воздуха.

Всякий раз результат у них получался один и тот же. В современных понятиях, они обнаружили, что проржавевший образчик металла не теряет веса. Он даже не сохраняет вес прежний. Он становится тяжелее.

Результат получился неожиданный. Приращение веса происходило не за счет пыли или чешуек металла, осыпавшегося с самого аппарата, — Лавуазье и его жена ставили свои опыты очень тщательно. В происходившем участвовал, скорее, воздух: то, чем мы дышим, состоящее из различных газов. Некоторые из них, надо полагать, оседали на металл и впитывались им. Это и объясняло обнаруженное Лавуазье прибавление веса.

Что происходило на самом деле? Общее количество вещества оставалось прежним, однако кислород, бывший одним из овевавших металл газов, покидал воздух. Но при этом он не исчезал. Он просто связывался металлом. Измерьте вес воздуха, и вы обнаружите, что он уменьшился. Измерьте вес металла и вы увидите, что он возрос — ровно на столько же, насколько убавился вес воздуха.

С помощью своего скрупулезно-дотошного механизма взвешивания Лавуазье показал, что материя может переходить из одной формы в другую, но при этом она и не исчезает, и не возникает. То было одним из важнейших открытий 17 столетия, стоявшим на одном уровне с пониманием энергии, на полвека позже достигнутым Фарадеем в подвале «Королевского института». И в этом случае все выглядело так, точно Бог, создавая вселенную, сказал: я собираюсь снабдить царство мое определенным количеством массы, я позволю звездам расти и взрываться, я позволю горам зарождаться, и сталкиваться, и изнашиваться под воздействием ветра и льда, я позволю металлам ржаветь и рассыпаться. И все-таки, полное количество массы в моей вселенной никогда не изменится и на миллионную долю грамма, никогда, даже если вы прождете целую вечность. Если вы взвесите город, а после его разрушат осаждающие, и дома его сгорят в пожаре, и если затем вы соберете весь дым, и пепел, и обломки бастионов, и уцелевшие кирпичи и взвесите это, изменений начального веса не будет. Ничто не исчезнет по-настоящему, даже вес мельчайшей пылинки.

Заявление о том, что все физические объекты обладают свойством, которое именуется «массой» и непосредственно воздействует на характер их движения, произвело сильное впечатление, хоть Ньютон и говорил о том же еще под конец 1600-х. Однако собрать достаточное количество детальных данных, позволяющих точно показать, как могут комбинироваться и разделяться частицы этих объектов? Именно этот следующий шаг и сделал теперь Лавуазье.

Всякий раз, как ученые Франции совершали открытия подобного уровня, правительство приближало их к себе. Случилось это и с Лавуазье. Можно ли использовать кислород, природу которого он помог прояснить, для построения более производительных доменных печей? Лавуазье был членом Академии наук и теперь получил средства, которые позволяли выяснить это. Можно ли использовать водород, который он посредством тщательных измерений выделил из воздуха, для поддержки флотилии воздушных шаров, способной оспорить превосходство Британии в воздушном пространстве? Лавуазье получил субсидии и контракты и на это.

В любое другое время все это гарантировало бы супругам Лавуазье безбедную жизнь. Однако полученные им субсидии, почести и награды исходили от короля Людовика XVI, а уже через несколько лет Людовику предстояло погибнуть вместе с женой, многими его министрами и богатыми приверженцами.

Лавуазье мог бы и избежать участи прочих жертв. Наиболее беспощадный период Революции продлился всего несколько месяцев, и многие из ближайших приспешников Людовика просто пересидели его в тишине и покое. Однако Лавуазье не способен был отказаться от пристрастия к точным измерениям. Оно составляло часть его бухгалтерской натуры и суть совершенных им научных открытий.

Оно же его и сгубило.

Первая из совершенных им ошибок выглядела достаточно безобидно. Членов Академии наук вечно донимали люди, к числу их не принадлежавшие, и еще задолго до Революции один из таких людей, родившийся в Швейцарии доктор, настоял на том, что один лишь прославленный Лавуазье и наделен мудростью и познаниями, которые позволят ему здраво судить об изобретении доктора. Придуманное доктором устройство было чем-то вроде раннего инфраскопа и позволяло регистрировать колебания тепловых волн, которые поднимались над пламенем свечи, над пушечным ядром, а в одном памятном случае, представившемся доктору, когда он сумел заманить в свои покои посланца Америки, и над макушкой лысого Бенджамина Франклина. Так вот, Лавуазье и Академия изобретение это отвергли. По сведениям Лавуазье структура тепловых волн, которую выявлял доктор, не допускала точного измерения, а для Лавуазье неточность была анафемой. И этого многообещающий швейцарец — доктор Жан-Поль Марат — не забыл ему никогда.

Следующая ошибка была еще теснее связана с одержимостью Лавуазье точными измерениями. Людовик XVI помогал Америке средствами, необходимыми для ведения революционной войны с Британией, а центральной фигурой, способствовавшей поддержанию этого альянса, был все тот же Бенджамин Франклин. Однако рынка облигаций в ту пору не существовало, и Людовик обратился за деньгами к «Генеральному откупу». Но налоги и без того уже были высоки. Откуда же было «Генеральному откупу» взять новые деньги?

В каждый переживавшийся Францией период некомпетентного правления, — а преемники, появившиеся у Людовика в 1930-х, давали ему сто очков вперед, — почти всегда находилась небольшая группа технократов, решавшая, что, поскольку никто из официальных властей никакой ответственности брать на себя не желает, этим придется заняться им, технократам. Вот и у Лавуазье появилась идея. Вспомните об измерительном аппарате, стоявшем некогда в его гостиной, — том, с помощью которого он и Мари Анна смогли точно отслеживать все прибыли и убыли вещества. Почему бы не расширить его — все пуще и пуще, — пока он не охватит весь Париж? Если удастся отслеживать прибыли и расходы города, сообразил Лавуазье, можно будет обложить их налогом.

Когда-то Париж окружала самая настоящая стена, однако построили ее еще в средние века и для целей налогообложения она давно уже стала бесполезной. Заставы ее разваливались, а некоторые участки стены и вовсе обрушились, отчего контрабандисты просто-напросто переступали через нее без особых трудов.

Лавуазье решил построить новую стену, крепкую, позволявшую останавливать, обыскивать и принуждать к уплатите налога всякого, кто въезжает в Париж или выезжает из него. Обошлась она — по нынешним расценкам — в несколько сот миллионов долларов и стала Берлинской стеной своего времени. В два метра высотой, основательной каменной кладки, с дюжиной крепких застав и шедшей вдоль нее патрульной дорогой, по которой разъезжала вооруженная конная охрана.

Парижане эту стену попросту ненавидели и, когда началась Революция, она стала первым крупным сооружением, на которое они набросились — за два дня до штурма Бастилии: парижане крушили ее топорами, огнем и голыми руками и почти сравняли с землей. Главный же виновник был известен всем; как говорилось в антиправительственной прокламации: «Каждый подтвердит, что мсье Лавуазье из Академии наук это и есть тот “добрый патриот”, которому мы обязаны… изобретением, обратившим французскую столицу в тюрьму…».

Впрочем, он мог пережить и это. Страсти толпы недолговечны, а Лавуазье поспешил показать, что стоит на ее стороне. Ведь это он управлял пороховыми заводами, осуществлявшими снабжение Революционной армии; он постарался убедить Академию наук дать доказательство ее нового, реформистского настроения, избавившись от роскошных гобеленов, которые украшали отведенные ей в Лувре покои. И казалось, что все ему удалось, — пока не появился человек из его прошлого, ничего прощать не склонный.

К 1793 году Жан-Поль Марат стал главой ведущей фракции Национальной Ассамблеи. Отказ, полученный от Лавуазье, заставил его пережить годы нищеты: кожа Марата иссохла от незалеченной вовремя болезни, подбородок был небрит, волосы запущены. Лавуазье же, напротив, был все еще хорош собой — и кожа у него была гладкая, и тело крепкое.

Марат не стал убивать его сразу. Вместо этого он постарался, чтобы гражданам Парижа постоянно напоминали о стене, этом живом, масштабном, суммарном символе всего, что было ненавистно Марату в высокомерной Академии. Он был великолепным оратором — подобным Дантону и, в недавней истории, Пьеру Мендес-Франсу, — одним из лучших среди рожденных Францией («Я — гнев, чистый гнев народа и потому он слушает меня и верит мне»). Единственным проявлением владевшей им нервозности, почти не замечаемым слушателями, которые видели лишь его самоуверенную позу — правая рука упирается в бедро, левая небрежно выброшена вперед и лежит на столе перед ним, — было легкое постукивание одной ступни об пол. Обвиняя Лавуазье, Марат обратился в воплощение того самого принципа, который Лавуазье же и продемонстрировал. Ибо, разве не верно то, что все пребывает в равновесии? Если вы уничтожаете, как вам представляется, нечто в одном месте, оно, на самом-то деле, не уничтожается. Оно просто возникает где-то еще.

В ноябре 1793 года Лавуазье дали знать, что его ожидает арест. Он попытался укрыться в заброшенной части Лувра, бродил там по пустым кабинетам Академии, однако спустя четыре дня сдался и отправился — вместе с отцом Мари Анны — в тюрьму Порт-Либр.

Выглядывая в окно тюрьмы («Наш адрес: коридор первого этажа, номер 23, камера в самом конце»), он мог видеть огромный классический купол Обсерватории, архитектурного памятника более чем столетней давности, ныне закрытого по приказу революционеров. И, по крайней мере, ночами, когда стража приказывала задуть в камере Лавуазье свечи, над этим куполом различались звезды.

Его переводили из одной тюрьмы в другую, окончательный суд состоялся 8 мая. Несколько подсудимых просили дать им слово, однако судья лишь смеялся над ними. В зале суда стоял на полке, глядя на обвиняемых сверху вниз, бюст Марата. После полудня двадцать восемь прежних миллионеров из «Генерального откупа» отвезли на место, которое называется ныне площадью Согласия. Руки их были связаны за спинами. К помосту, на котором возвышалось орудие доктора Гильотена, вела крутая лесенка. Большинство осужденных вело себя спокойно, хотя одного старика «взвели на эшафот в состоянии самом плачевном». Польза был казнен третьим, Лавуазье четвертым. Одно обезглавливание отделялось от другого примерно минутой, уходившей не на то, чтобы очистить лезвие гильотины, но на уборку уже безголового трупа.

Труды Лавуазье дали возможность сформулировать закон сохранения массы. Лавуазье сыграл центральную роль в демонстрации того обстоятельства, что нас окружает огромный, взаимосвязанный мир физических объектов. Субстанции, которые заполняют нашу вселенную, можно сжигать, сдавливать, резать на лоскуты и разбивать молотком в мелкие дребезги, однако они не исчезают. Разные их виды, окружающие нас, просто комбинируются или рекомбинируются. Но при этом полное количество массы остается все тем же самым. И это в совершенстве отвечало тому, что позже обнаружил Фарадей: аналогичному преобразованию энергии. Точное взвешивание и химический анализ Лавуазье позволили ученым начать отслеживать, как эти преобразования совершаются на практике, — примерно в той же манере, в какой он выяснил, каким образом молекулы кислорода выпадают из воздуха и оседают в железе. Само дыхание — процесс во многом схожий, оно представляет собой механизм переноса кислорода из внешней среды внутрь тела.

К середине 1800-х ученые приняли представления об энергии и массе как о двух отдельных накрытых куполами городах. Один был образован из огня, соединяющих батареи потрескивающих проводов и вспышек света — и представлял собой царство энергии. Другой состоял из деревьев, скал, людей, планет и был царством массы.

Каждое из них выглядело чудесным, волшебно уравновешенным миром; каждое непостижимым образом гарантировал, что полное количество того, из чего он состоит, останется неизменным, даже при том, что формы, в коих являло себя его содержимое, варьировались почти безгранично. Если вы пытались избавиться в любом из царств от чего-то, ему на смену неизменно являлось — в этом же царстве — что-то другое.

Но при этом все считали, что два царства никак не связаны. Не было ни туннелей, ни проломов в замкнутых куполах, позволявших связать одно царство с другим. Именно этому и учили Эйнштейна в 1890-х: энергия и масса суть вещи разные, никакого отношения одна к другой не имеющие.

Впоследствии Эйнштейн показал, что учителя его ошибались, однако показал не так, как можно было бы ожидать. Принято думать, что наука строится постепенно, на основе того, что уже известно. Повозился человек с телеграфом и получил телефон; изобрел другой человек аэроплан с пропеллером, его изучили как следует, и построили самолеты более совершенные. Однако в случае по-настоящему глубоких проблем такой пошаговый подход не работает. Эйнштейн установил, что между двумя царствами существует связь, однако сделал это без изучения экспериментов, в которых взвешивалась масса и выяснялось, что какая-то малая часть подевалась невесть куда — может, удрала, чтобы обратиться в энергию. Вместо этого он пошел путем, казавшимся несусветно окольным. Он, вроде бы, просто махнул рукой и на энергию, и на массу, и сосредоточился на том, что было по всей видимости никак с ними не связано.

Он начал присматриваться к скорости света.

 

Глава 5. с — это celeritas

«с» отличается от того, что мы рассматривали до этой минуты. «Е» это огромная область энергии. «m» — материальная начинка вселенной. А «с» — всего лишь скорость света.

Эта непритязательная, использованная для ее поименования буква обязана, по-видимому, своим происхождением периоду, предшествовавшему середине 1600-х, времени, когда Италия была центром мировой науки, а латынь — ее, науки, языком. Латинское слово «celeritas» означало попросту быстроту, проворство.

Настоящая глава посвящена рассмотрению того, почему «с» стала играть столь важную роль в формуле Е=mc2, того, как именно эта скорость, выбор которой может показаться произвольным, оказалась способной управлять связью между всей массой и всей энергией, какая только есть во вселенной.

Долгое время даже измерение скорости света считалось делом невозможным. Почти все были убеждены, что свет распространяется с бесконечной скоростью. А если так, никакое использование скорости его распространения в имеющих практическое применение уравнениях было невозможным. Прежде чем ее удалось хоть как-то использовать, прежде чем Эйнштейн смог додуматься до возможности использования «с», кто-то должен был установить, что свет распространяется с конечной скоростью, а сделать это было отнюдь не легко.

Первым человеком, ясно понявшим, как можно измерить скорость света, был Галилей — это произошло задолго до того, как его, престарелого и почти ослепшего, определили под домашний арест. Впрочем, ко времени, в которое он опубликовал свои соображения на этот счет, Галилей был уже слишком стар, чтобы ставить опыты самостоятельно, да к тому же и у Инквизиции имелся строжайший приказ следить за каждым его шагом. А это создавало для него и его друзей помехи далеко не малые. Когда через несколько лет после кончины Галилея, члены Флорентийской академии получили, наконец, возможность ознакомиться с его трудами, им дали понять, что они могут поставить придуманный Галилеем опыт.

Сама идея опыта была проста, как и все, что делал Галилей. Двум добровольцам с фонарями надлежало встать летним вечером на холмах в миле друг от друга. Они должны были открывать один за другим заслонки своих фонарей и измерять время, которое понадобится свету, чтобы пересечь разделявшую их долину.

Задуман опыт был вовсе не плохо, однако техника того времени была слишком скудна, чтобы с ее помощью удалось получить сколько-нибудь однозначные результаты. Галилей и при постановке других своих опытов понимал, что экспериментаторам надлежит дышать размеренно, поскольку для измерения коротких промежутков времени они использовали биения собственных пульсов. Однако в тот вечер добровольцы, расположившиеся, скорее всего, где-то в холмах под Флоренцией, обнаружили, что свет распространяется слишком быстро. Они наблюдали лишь мгновенно, как им казалось, следовавшие одна за другой вспышки. Опыт можно было счесть не удавшимся, многие увидели в его результате лишь очередное доказательство того, что свет распространяется с бесконечной скоростью. Однако флорентийцы не вывели из этого, что Галилея ошибся. Нет, Академия пришла к заключению, что следует дождаться будущих времен, когда найдется человек, который сумеет измерить скорость распространения столь быстрых импульсов света.

В 1670 году, через несколько десятилетий после случившейся в 1642 году кончины Галилея, в Париж приехал, чтобы занять пост директора только что созданной Парижской обсерватории Жан Доминик Кассини. Ему надлежало присматривать за возведением множества новых зданий обсерватории и его нередко видели на улицах, занимающимся именно этим — неподалеку от тени, отбрасываемой тюрьмой Порт-Либр, той самой, в которой в следующем веке Лавуазье предстояло дожидаться казни, — однако самая важная задача Кассини состояла в том, чтобы вдохнуть жизнь в науку Франции. Имелись у него и личные причины добиваться того, чтобы его новое учреждение преуспело, поскольку звали его, на самом-то деле, не Жаном Домиником, а Джованни-Доменико. И был он не французом, но итальянцем, недавно прибывшим в Париж со своей родины, и хоть король стоял на его стороне, а средства, необходимые для работы, были ему гарантированы, кто мог знать, как долго все это продлится?

Кассини направил своих посланцев в легендарную обсерваторию Уранибург, размешавшуюся на острове, который находится в Датском проливе, невдалеке от замка Эльсинор. Цель их состояла в точном определении координат Уранибурга, что помогло бы навигаторам правильно промерять расстояния, а кроме того, этим людям было получено поискать и завербовать искусных исследователей, работавших в других обсерваториях. Основатель обсерватории Уранибург Тихо Браге проводил некогда наблюдения, на которых основывали свои труды Кеплер и даже Ньютон. Браге создал обсерваторию невообразимо роскошную — центральный замок ее окружали парки с экзотическими деревьями, искусственными каналами и рыбными садками, все это было оборудовано системой внутренней связи, смахивающей на теперешний интерком, и вращавшимися автоматами, повергавшими в ужас местных крестьян, — ходили даже слухи о том, что в обсерватории установлены туалеты с автоматическими сливными бачками.

Правая рука Кассини, Жан Пикар, добрался до Уранибурга в 1671 году, приплыв туда по мглистым водам из Копенгагена. Сказочная эта твердыня поначалу восхитила его, а затем разочаровала, поскольку он обнаружил, что она — всего лишь руина былого величия. Основатель обсерватории был личностью по-настоящему сильной и, когда он умер, заменить его оказалось некем. При появлении здесь Пикара, все в обсерватории пребывало в состоянии разрухи — рыбные садки затянула ряска, астрономические инструменты и звездный глобус давным-давно украли, от главного здания осталось лишь несколько камней, из которых состоял некогда его фундамент.

Тем не менее, Пикар произвел измерения, а возвращаясь в Париж, прихватил с собой одаренного датчанина двадцати одного года — Оле Ремера. Другие, оказавшись на месте Ремера, возможно, стали бы заискивать перед великим Кассини, ибо тот был признанным мировым авторитетом во всем, что касалось планеты Юпитер и в особенности орбит, по которым вращались вокруг Юпитера его спутники. Однако, хоть мы и считаем сейчас Данию страной довольно маленькой, в то время она правила империей, в состав которой входила изрядная часть северной Европы, и Ремер был человеком самоуверенным и гордым в мере достаточной для того, чтобы попытаться создать себе имя.

Трудно поверить в то, что Кассини так уж обрадовало появление этого выскочки. На то, чтобы обратиться из Джованни-Доменико в Жана Доминико, у него ушло изрядное время. Он провел множество наблюдений за спутниками Юпитера и намеревался использовать их результаты для поддержания своей мировой известности. А что если Ремер воспользуется его открытиями и попробует, опираясь на них, доказать, что выводы, которые сделал из них Кассини, решительно не верны?

Причину, по которой это было возможным, составляла проблема, связанная с самым близким к Юпитеру спутником, называемым Ио. Предполагалось, что период его обращения составлял 42½ часа, однако Ио никак не желал честно придерживаться установленного для него расписания. Иногда он двигался немного быстрее, иногда немного медленнее. И сколько-нибудь понятный порядок в его поведении отсутствовал.

В чем тут было дело? Решить эту проблему, настаивал Кассини, можно, лишь проведя новые измерения и расчеты. Связанное с ними напряжение сил способно было вконец вымотать директора обсерватории и, разумеется, оно требовало увеличения числа ее сотрудников и оборудования, выделяемых ей средств, а к тому же, могло повлечь за собой повышенное и малоприятное внимание публики, однако при необходимости первого можно было добиться, а со вторым смириться. Что же касается Ремера, то ему представлялись необходимыми не сложные измерения, с которыми способны справиться лишь опытные, пожилые администраторы. Нет, для решения проблемы Ио требовались блестящий ум и вдохновение, и именно это он, молодой и новый здесь человек, способен был предоставить в распоряжение обсерватории.

Что, собственно, Ремер и сделал. Все — в том числе и Кассини, считали, что проблема связана с тем, как движется Ио. Возможно, орбита его неустойчива; возможно, окружающие Юпитер облака и иные помехи в разное время затмевают Ио по-разному. Ремер же подошел к проблеме с другого конца. Кассини провел наблюдения Ио и наблюдения его показали, что в орбите этого спутника Юпитера присутствует некая неправильность. Но зачем же предполагать, что неправильность эта возникает так далеко от нас, рядом с Юпитером? Вопрос, считал Ремер состоит не в том, как движется Ио.

Он состоит в том, как движется Земля.

Кассини полагал последнее несущественным. Разумеется, он мог когда-то размышлять о неких иных возможностях, как размышляли о них почти все прочие астрономы, однако при этом был убежден, что свет распространяется мгновенно. Это же и дураку понятно. Разве опыт, придуманный самим Галилеем, не показал, что свидетельства противоположного отсутствуют?

Эти доводы Ремер оставил без внимания. Предположим — только предположим, — что свету все же требуется некоторое время, чтобы пройти огромное расстояние, отделяющее Землю от Юпитера. Что это может означать? Ремер представил себе, как он стоит над солнечной системой, ожидая, когда Ио впервые засветится, выйдя из-за Юпитера, и свет его понесется к Земле. Летом, к примеру, когда Земля находится относительно близко к Юпитеру, путь, проходимый светом, будет короче, и на Земле Ио увидят несколько раньше. А вот зимой Земля уйдет на другую сторону солнечной системы. И времени, чтобы достичь ее, световому сигналу потребуется больше.

Ремер просмотрел накопившиеся за многие годы результаты наблюдений Кассини и к концу лета 1676 года у него уже имелось решение: не просто интуитивные представления, но точное число добавочных минут, которые требуются свету, чтобы пройти добавочное расстояние, возникающее, когда Земля удаляется от Юпитера.

Что мог он сделать с этой находкой? По протоколу Ремеру следовало позволить Кассини представить ее как результат собственных трудов — ну и скромно покивать, когда директор обсерватории сделает, докладывая о них, паузу, дабы отметить, что он не смог бы осуществить их без помощи вот этого молодого человека, дальнейшая карьера которого заслуживает пристального внимания.

Ремер этим путем не пошел. В августе он через посредство почтенного журнала, который читали все серьезные астрономы, бросил Кассини вызов. Астрономия наука точная и даже инструменты семнадцатого столетия были достаточно хороши, чтобы установить: Ио должен выйти из-за Юпитера под вечер 9 ноября текущего года. Из рассуждений Кассини следовало, что спутник можно будет увидеть в 5.27 пополудни. Предсказание это было получено экстраполяцией времени, в которое Ио был ясно виден в последний раз, что как раз в августе и случилось.

Ремер заявил, что предсказание Кассини ошибочно. В августе, объяснил он, Земля находилась к Юпитеру ближе, чем будет находиться в ноябре. В 5.27 Ио никто не увидит — свет, сколь бы быстро он ни распространялся, все еще будет находиться в пути, поскольку ему придется пройти большее, нежели в августе, расстояние. Ни к 5.30, ни даже к 5.35 он все еще не успеет пересечь солнечную систему. 9 ноября спутник станет виден лишь в 5.37.

Порадовать астрономов можно разными способами. Открытие суперновой, к примеру, вещь хорошая, продление правительственного субсидирования — тоже, получение пожизненной должности и того лучше. Однако яростная свара двух выдающихся коллег? Это источник просто-напросто райского наслаждения. Ремер бросил свой вызов отчасти из гордости, но отчасти и потому, что знал: как политик, Кассини значительно превосходит его. Ремер мог добиться признания своих заслуг, только сделав предсказание настолько внятное и недвусмысленное, что Кассини и его приспешникам не удастся, когда станет ясной их неправота, отвертеться от этого факта.

Предсказание было обнародовано в августе. 9 ноября обсерватории Франции да и всей Европы нацелили телескопы на Юпитер. Часы показали 5.27 пополудни. Ио видно не было.

5.30 — Ио все еще нет как нет.

5.35.

А затем спутник появился — если быть точным, в 5 часов, 37 минут и 49 секунд.

И Кассини заявил, что ошибка его отнюдь не доказана! (Изображать свои оплошности, как достижения люди научились задолго до эпохи телевидения.) У Кассини имелось множество сторонников, — и они, как то и положено, приняли его сторону. Кто и когда говорил, что Ио ожидается в 5.25? Один только Ремер, заявили сторонники. А кроме того, всем же известно, что указать точное время появления Ио не удавалось никогда. Расстояние до него огромное, толком разглядеть его трудно, — возможно, потому, что облака, плавающие в верхних слоях атмосферы Юпитера создают дымку, которая искажает точную картину, а возможно, по той причине, что сколько-нибудь определенные наблюдения затруднены большим углом наклона его орбиты. Сказать трудно.

В обычных рассказах из истории науки предполагается, что такого просто не может быть. Ремер поставил безупречный опыт, сделал ясное предсказание, и тем не менее, астрономы Европы не пожелали признать, что свет распространяется с конечной скоростью. Сторонники Кассини победили, официальная точка зрения, согласно которой скорость света есть величина загадочная, неизмеримая и никакого воздействия на астрономические измерения не оказывает, устояла.

Ремер сдался, вернулся в Данию и провел там многие годы на посту директора копенгагенского порта. Новые эксперименты, убедившие астрономов в его правоте, были поставлены лишь пятьдесят лет спустя — после того, как миновали два поколения, а Жан Доминик Кассини скончался. Полученное в них значение скорости света было близким к лучшим из современных его оценок, дающих примерно 300000000 м/сек. (На самом деле, скорость света несколько меньше, однако для удобства мы будем использовать на протяжении всей этой книги значение округленное — 300 миллионов метров в секунду.)

Чтобы продемонстрировать, насколько велика эта скорость, довольно сказать, что, развив ее, вы можете добраться от Лондона до Лос-Анджелеса за 1/20 секунды. Это и объясняет, почему в эксперименте Галилея не удалось установить время, за которое свет пересекает долину под Флоренцией, — слишком мало было расстояние.

А вот еще одно сравнение: Мах 1 это скорость звука, составляющая около 300 м/с. Реактивный «Боинг 747» развивает скорость немного меньшую, чем Мах 1. Космический шаттл может набирать после первого включения двигателей больше Мах 20. Астероид или комета, которая пробила океанское дно и погубила динозавров, имела в момент столкновения скорость, равную Мах 70.

«с» равна Мах 900000.

Столь огромная скорость приводит к возникновению множества любопытных эффектов. Если человек, сидящий ресторане за несколько столиков от вас, ссорится с кем-то по телефону, вам кажется, что вы слышите произносимые им слова в тот самый миг, в какой они срываются с его губ. Однако звук распространяется в воздухе всего лишь с малой скоростью, равной Мах 1, тогда как радиосигналы, которые генерирует сотовый телефон, летят со скоростью света. Женщина, с которой разговаривает этот человек, — даже если она находится в сотнях километров от вас, — услышит его слова до того, как они проковыляют по воздуху несколько метров и доберутся до ваших ушей.

Чтобы понять, почему Эйнштейн включил в свое уравнение именно скорость света, нам необходимо повнимательнее приглядеться к внутренним свойствам самого света. Мы оставляем позади эпоху Кассини и Ремера и перебираемся в конец 1850-х, в период, предшествующий Гражданской войне в Америке, — в то время, когда пожилой уже Майкл Фарадей вступил в переписку с Джеймсом Клерком Максвеллом, худощавым шотландцем, которому не исполнилось еще и тридцати лет.

Для Фарадея эта пора была трудной. Память его слабела, нередко ему приходилось начинать день с чтения пространных записей, посвященных тому, что он должен сделать сегодня. Хуже того, Фарадей сознавал, что великие физики мира, почти каждый из которых закончил элитарный университет, так и продолжают смотреть на него сверху вниз. Они принимали его практические лабораторные открытия, но и не более того. Для среднего физика электричество, протекающее по проводнику, мало чем отличалось от текущей по трубе воды: все считали, что после того, как была разработана, наконец, математика, лежащая в основе этого процесса, он перестал отличаться от того, что описывали Ньютон и множество его владеющих математическими методами последователей.

Фарадей, между тем, продолжал размышлять о странных кругах и линиях, исходя из воспринятых им в юности религиозных представлений. Пространство, окружающее любое проявление электромагнетизма, считал он, пронизано загадочным «полем», порождающим то, что интерпретируется нами как электрический ток и его подобия. Фарадей настаивал на том, что временами эту сущность можно едва ли не увидеть, — к примеру, в узорах, которые образуют насыпанные вокруг электромагнита металлические опилки. Однако никто Фарадея не слушал — за недавно появившимся исключением: молодым шотландцем по фамилии Максвелл.

На первый взгляд, эти двое были людьми совершенно разными. За годы исследований у Фарадея накопилось 3000 датированных сжатых заметок, посвященных его опытам, которые начинались каждый день в ранние утренние часы. О Максвелле же рассказывают следующее: когда его уведомили, что каждый студент Кембриджского университета обязан являться на церковную службу, начинавшуюся в 6 утра, он, вздохнув, сказал: «Да, наверное, я смогу не ложиться спать до столь позднего часа». Кроме того, Максвелл был лучшим, вероятно, математиком из всех теоретических физиков девятнадцатого столетия, а Фарадей с трудом справлялся с любыми математическими выкладками, выходившими за пределы обычного сложения и вычитания.

Однако на уровне более глубоком они обладали немалым сходством. Несмотря на то, что Максвелл вырос в большом баронском поместье, находившемся в сельской местности северной Шотландии, родовым именем его было до недавнего времени самое заурядное «Клерк» и только наследство родственника с материнской стороны позволило его семье присоединить к этому имени отдающее гораздо большим благородством «Максвелл». Когда юного Джеймса отправили на учебу в одну из закрытых школ Эдинбурга, другие ее ученики, те, что были покрепче и кичились своим городским происхождением, измывались над ним — неделю за неделей и год за годом. Джеймс никогда не выражал по этому поводу никаких гневных чувств — он лишь однажды спокойно заметил: «Они никогда не понимали меня, зато я их понимал». В душе Фарадея также сохранились раны, нанесенные ей в 1820-х сэром Гемфри Дэви, а закончив день блестящей по ораторскому мастерству публичной лекцией в «Королевском институте», он неизменно погружался в тихое, созерцательное одиночество.

Пока молодой шотландец и пожилой обитатель Лондона переписывались — и позже, когда они, наконец, встретились, — им удалось установить отношения, которые ни того, ни другого почти ни с кем больше не связывали. И дело тут было не только в сходстве их личностей — Максвелл оказался математиком настолько великим, что ему удалось проникнуть взглядом под внешнюю простоту неуклюжих рисунков Фарадея. Детская их неловкость, над которой посмеивались ученые менее одаренные, Максвелла не остановила. («Продолжая исследования Фарадея, я проникался его методом… который также был математическим, хоть и не получил выражения в общепринятых математических символах».) Максвелл отнесся к сделанным Фарадеем грубым наброскам силовых линий со всей серьезностью. И он, и Фарадей были людьми глубоко религиозными, оба видели в этих рисунках возможное проявление имманентного присутствия Бога в нашем мире.

Еще в 1821 году да и во многих последующих его исследованиях Фарадей показывал пути, которыми электричество может обращаться в магнетизм — и наоборот. В конце 1850-х Максвелл развил эту идею, впервые полностью объяснив то, чего так никогда и не поняли ни Ремер, ни Галилей.

Максвелл сумел понять: то, что происходит внутри светового луча, есть разновидность возвратно-поступательного движения. Когда луч света отправляется в путь, можно говорить о том, что в нем порождается некоторое количество электричества, которое, распространяясь, создает некоторое количество магнетизма, а оно, опять-таки распространяясь, порождает новый всплеск электричества — и так далее, словно развертывается некий плетеный кнут. Электричество и магнетизм как будто совершают крошечные стремительные скачки, перекувыркиваясь друг через друга, пребывая, по словам Максвелла, «во взаимных объятиях». Свет, который Ремер видел несущимся через солнечную систему, а Максвелл — ударяющим в каменные башни Кембриджа, представляет собой просто последовательность таких вот быстрых, напоминающих чехарду прыжков.

То был высший взлет науки девятнадцатого столетия — уравнения Максвелла, содержавшие резюме его проникновения в сущность электромагнетизма, стали одним из величайших теоретических достижений всех времен. И все же, сам Максвелл всегда оставался не вполне довольным тем, что он создал. Потому что — как, собственно говоря, переплетаются в волне света эти странные, отдающие чехардой скачки? Этого Максвелл не знал. Как не знал и Фарадей. Никто не мог объяснить это явление раз и навсегда.

Гениальность Эйнштейна состояла в том, что он сумел повнимательнее приглядеться к играющим в чехарду волнам света — даже при том, что делать это ему пришлось практически в одиночку. Впрочем, уверенности в своих силах ему было не занимать: проведенная им в Аарау окончательная подготовка к учебе в высшей школе дала блестящие результаты, к тому же и воспитание, полученное Эйнштейном в семье, подталкивало его к тому, чтобы с сомнением относиться к любому авторитету. К 1890-м, студенческим годам Эйнштейна, уравнения Максвелла уже преподносились в качестве общепринятой истины. Однако ведущий профессор Высшей технической школы Цюриха, в которой учился Эйнштейн, к теоретической физике относился пренебрежительно и теорию Максвелла преподавать своим студентам попросту отказывался. (Именно негодование, порожденное этим обстоятельством в Эйнштейне, и привело к тому, что он с издевкой именовал профессора «герром Вебером», а не «герром профессором Вебером», как то было положено, — непочтительность, за которую Вебер отомстил, отказавшись выдать Эйнштейну надлежащее рекомендательное письмо, что привело к нескольким годам его изоляции в патентном бюро.)

Когда Эйнштейн прогуливал занятия, отправляясь вместо школы в кофейню, он нередко прихватывал с собой работы Максвелла. Так начинались его исследования, посвященные открытому Максвеллом удивительному поведению световых волн. Если свет, размышлял Эйнштейн, представляет собой такую же волну, как и все прочие, то, наверное, можно, устремившись следом за ним, его нагнать.

Проиллюстрировать эту проблему можно примером из сёрфинга. Когда вы только оказываетесь в воде и стараетесь, чтобы никто на берегу не заметил, до чего вы перепуганы, волны просто прокатываются мимо вас. Однако, стоит вам заставить себя встать на доску, и вы начинаете скользить с ней к берегу, а несущая вас волна представляется вам неподвижно стоящей под вами и вокруг вас. Если же вы достаточно храбры — или безрассудны — для того, чтобы проделать подобный фокус в огромных приливных волнах Гавайев, вся свертывающаяся в трубу волна кажется вам просто покоящейся за вашей спиной, над головой и повсюду вокруг вас.

Полное понимание проблемы пришло к Эйнштейну лишь в 1905 году. Световые волны отличаются от всех прочих. Водяная волна, которую оседлывает серфер, может казаться ему неподвижной, поскольку все ее составляющие занимают относительно друг друга устойчивое положение. Именно поэтому вы можете, стоя на доске, оглянуться и увидеть нависшую над вами пелену воды. А вот свет ведет себя иначе. Световая волна поддерживает себя в состоянии движения только благодаря тому, что одна ее составляющая, двигаясь вперед, подпитывает своей энергией другую. (Электрическая составляющая, устремляясь вперед, «выдавливает» из себя магнитную, затем магнитная составляющая расходует энергию на создание нового «всплеска» электрической, после чего весь цикл повторяется.) Если вам начинает казаться, что вы развили скорость, достаточную для того, чтобы удерживаться вровень со световым потоком, приглядитесь повнимательнее и вы увидите: та составляющая, которую вы, по вашему мнению, того и гляди нагоните, питает своей энергией другую, все еще уносящуюся от вас.

Попытка нагнать луч света и увидеть его словно бы неподвижно стоящим на месте, равносильна заявлению: «Желаю увидеть размытые дуги, которые описываются мячами жонглера, но чтобы сами мячи при этом не двигались». Так не бывает. Увидеть размытые очертания жонглерских мячей можно лишь тогда, когда они летят по воздуху, и летят быстро.

Эйнштейн пришел к выводу, что свет может существовать, лишь как стремительное движение световой волны. Мысль эта таилась в работах Максвелла более сорока лет, однако никто ее там не обнаружил.

Это новое понимание природы света изменило все, ибо скорость света стала фундаментальным пределом любой скорости, какую можно развить в нашей вселенной — быстрее не способно двигаться ничто.

Тут легко впасть в заблуждение. Если вы уже движетесь со скоростью 299999999 м/с, разве не можете вы добавить в двигатель топлива и развить скорость чуть большую — 300000000, а там и 300000001 м/с — и обогнать свет? Ответ состоит в том, что нет, не можете, и нынешнее состояние земной техники тут решительно ни при чем.

Чтобы понять это, следует помнить, что скорость света есть не просто число, она связана с физическим процессом. Если я скажу вам, что -273 (отрицательное 273) это самое малое из существующих чисел, вы ответите мне, что я заблуждаюсь, и будете совершенно правы: число -274 меньше, — 275 еще меньше и так можно продвигаться до бесконечности. Но предположим, что мы говорим о температуре. Температура вещества это показатель активности движения частиц, из которых оно состоит, и существует некая точка, при достижении которой, частицы эти вибрировать перестают вообще. Это происходит примерно при -273 градусов по Цельсию, и по этой причине -273 и называют «абсолютным нулем», — если речь идет о температуре. Чистые числа могут быть и меньшими, а вот физические показатели не могут: ни монета, ни снегоход, ни гора не способны вибрировать еще слабее, если они уже полностью перестали вибрировать.

То же и со светом. 300000000 м/с, число, измеренное Ремером для, распространявшегося от Юпитера света, представляет собой еще и утверждение о том, на что похож сам свет. То есть о физическом «явлении». Свет всегда будет подобием чехарды — электричество «выскакивает» из магнетизма, затем магнетизм из электричества, и оба они стремительно улетают от всего, что пытается их нагнать. Именно поэтому скорость света и составляет высший предел любых скоростей.

Мысль интересная, может сказать циник, но даже если верхний предел скорости существует, нам-то что с того? Как может влиять его существование на движение тел во вселенной? Ну поставьте на шоссе щит с надписью: «Внимание: скорость, превышающая 300000000 м/с достигнута быть не может!» — машины все равно будут проноситься мимо него так, точно его там нет.

Ой ли? Именно здесь вся аргументация Эйнштейна делает полный круг и возвращается к своему истоку: здесь он показывает, что удивительные свойства света — то обстоятельство, что он по самой природе своей неизменно ускользает от нас и потому его скорость представляет собой верхний предел любой другой, — наконец-то, по-настоящему соотносится с природой энергии и массы. Чтобы понять, как это происходит, давайте рассмотрим пример, являющийся производным от того, которой приводил сам Эйнштейн.

Предположим, что некий космический корабль летит со скоростью, очень близкой к скорости света. При нормальных обстоятельствах, когда он движется медленно, подкачка энергии в двигатели корабля позволяет увеличить его скорость. Однако, когда скорость эта почти достигает скорости света, все изменяется. Лететь еще быстрее корабль попросту не может.

Пилот корабля не желает смириться с этим и начинает лихорадочно щелкать переключателями на пульте управления двигателем, стараясь разогнать корабль посильнее. И, разумеется, видит, как любой луч света, замеченный им впереди корабля, уносится от него на полной скорости «с». Что, собственно говоря, видит и любой другой наблюдатель. Как ни старается пилот, догнать свет его кораблю не удается. Но что же происходит?

Представьте себе компанию студентов, забившуюся в телефонную будку, представьте их лица, приплющенные к ее стеклянным стенкам. Представьте парад с вьющимся над ним надувным шаром, соединенным с насосом, отключение которого по какой-то причине оказывается невозможным. Шар начинает раздуваться и приобретает размеры намного большие тех, какие для него были задуманы. Примерно то же происходит и с космическим кораблем. Двигатели его ревут, перекачивая энергию, однако скорость корабля от этого не возрастает, поскольку ничто не может перемещаться быстрее света. Но ведь и энергия попросту исчезнуть тоже не может.

В результате, энергия, накачиваемая в двигатель, «сжимается» и обращается в добавочную массу. Сторонний наблюдатель видит, как начинает расти масса корабля. Поначалу совсем немного, однако по мере того, как продолжается подкачка энергии, масса все увеличивается и увеличивается. Корабль словно бы «раздувается».

Звучит довольно нелепо, и тем не менее, у сказанного имеются экспериментальные подтверждения. Если начать разгонять протоны, обладающие в неподвижном состоянии «единицей» массы, то поначалу они будут, как вы и ожидаете, набирать скорость. Однако затем, когда эта скорость приблизится к световой, наблюдатель обнаружит изменения, происходящие с самими протонами. Это явление наблюдается в ускорителях, расположенных под Чикаго, в ЦЕРНе (европейском центре ядерных исследований), который находится неподалеку от Женевы, — да, собственно, и везде, где работают физики. Сначала протоны, «раздуваясь», приобретают массу, равную двум единицам, — становятся в два раза тяжелее, чем были в начале эксперимента, — затем равную трем и так далее, — масса продолжает расти, пока в протоны накачивается энергия. При скорости, составляющей 99,9997 процентов «с», протоны становятся в 430 раз тяжелее, чем были. (При этом из окрестных электростанций забирается такая энергия, что эксперименты подобного рода приходится назначать на поздние ночные часы, — дабы от местных жителей не посыпались жалобы на перебои со светом.)

А происходит следующее: той энергии, которая накачивается в протоны или в наш воображаемый космический корабль, приходится обращаться в добавочную массу. Как и утверждает уравнение: «Е» может превращаться в «m», а «m» в «Е».

Это и объясняет присутствие «с» в уравнении. В нашем примере, в котором вы пытаетесь подобраться к скорости света, связь между массой и энергией становится особенно ясной. Число «с» есть просто-напросто коэффициент преобразования, показывающий, как работает эта связь.

Всякий раз, как вы связываете две развивавшихся независимо одна от другой системы, возникает необходимость в некотором коэффициенте преобразования. Чтобы перевести температуру из градусов Цельсия в градусы Фаренгейта, вы умножаете ее величину по Цельсию на 9/5 и затем прибавляете 32. Для перехода от сантиметров к дюймам используется другое правило: сантиметры умножаются на 0,3937.

Коэффициенты преобразования выглядят произвольными, но лишь потому, что они связывают друг с другом отдельно развивавшиеся системы. Дюймы, к примеру, появились в средневековой Англии и имели своей основой длину большого пальца человека. Большие пальцы это превосходная портативная мерка, поскольку даже от наибеднейшего бедняка можно ожидать, что он принесет их с собой на рынок. Сантиметр же приобрел популярность столетия спустя, во время Французской революции, его определили как одну миллиардную расстояния от экватора до северного полюса, измеренного вдоль проходящего через Париж меридиана. Нет ничего удивительного в том, что согласование двух этих систем сопряжено с некоторыми затруднениями.

Энергия и масса также рассматривались в течение веков как вещи совершенно различные. Представления о них развивались, не соприкасаясь друг с другом. Энергия мыслилась в лошадиных силах или в киловатт-часах; массу измеряли в фунтах, килограммах, тоннах. Связывать эти единицы никому в голову не приходило. Никто и в мыслях не имел того, до чего додумался Эйнштейн: энергия и масса могут «естественным» образом переходить одна в другую, как мы уже видели на примере космического корабля, а связывающим их коэффициентом преобразования является «с».

Читатель, возможно, гадает, когда же мы доберемся до теории относительности. Отвечаем: мы уже вовсю пользуемся ею! Все наши разговоры об ускоряющемся космическом корабле и возрастающей массе представляют собой центральные моменты статьи, опубликованной Эйнштейном в 1905 году.

Работа Эйнштейна изменила две отдельных системы взглядов, которые ученые построили на основе посвященных законам сохранения трудов девятнадцатого столетия. Энергия не сохраняется, масса тоже — однако это не означает, что вокруг нас царит хаос. Нет, просто существует единство более высокого порядка, ибо имеет место связь между тем, что происходит в царстве энергии, и тем, что происходит в отдельном на первый взгляд царстве массы. Количество приобретаемой массы всегда уравновешивается эквивалентным количеством теряемой энергии.

Лавуазье и Фарадей увидели только часть истины. Энергия не стоит особняком, точно так же, как масса. Неизменно постоянной оказывается сумма энергии и массы.

И это стало окончательным расширением отдельных законов сохранения, которые полагали установленными ученые восемнадцатого и девятнадцатого столетий. Причина того, что эффект, о котором мы говорим, оставался незамеченным, что до Эйнштейна никто о его существовании не подозревал, состоит в том, что скорость света слишком уж превосходит скорость любого привычного нам движения. Для пешехода этот эффект остается очень слабым да, собственно, для локомотива или реактивного самолета тоже, однако он существует и для них. И, как мы еще увидим, связь энергии и массы пронизывает весь наш современный мир: в большинстве самых обычных веществ кроется подрагивающая, готовая к употреблению энергия.

Установление связи энергии и массы через посредство скорости света было открытием великого значения — осталось, однако, прояснить еще одну деталь. Известная карикатура изображает Эйнштейна стоящим у доски и перебирающим одну возможность за другой: Е=mc1, Е=mc2, Е=mc3… На самом-то деле, заниматься этим ему не пришлось и на квадрат «с» он напал вовсе не случайно.

Так почему же коэффициент преобразования оказался равным с2?

 

Глава 6. 2 — это «в квадрате»

Возведение числа в «квадрат» — процедура древняя. Чтобы устлать каменными плитами участок земли, вдоль одной стороны которого их умещаются четыре, а вдоль другой тоже четыре, требуется вовсе на не восемь плит. Их требуется 16.

Значок, обозначающий это действие — умножение числа на него же, — претерпел с ходом времени едва ли не столько же изменений, сколько их выпало в западном книгопечатании на долю знака равенства. Но по какой причине этот значок появляется в физических уравнениях? История представляющего энергию движущегося тела уравнения, для которого из всех прочих возможностей был выбран именно «квадрат», заставляет нас снова вернуться во Францию начала 1700-х — во время, лежащее где-то посередке между эпохами Ремера и Лавуазье.

К февралю 1726-го драматург Франсуа-Мари Аруэ, которому исполнился уже тридцать один год, окончательно уверовал в то, что ему удалось пробиться в самые высокие круги Франции. Провинциал по происхождению, он удостаивался денежных подарков короля, был вхож в дома аристократов, а в один прекрасный вечер даже получил приглашение отобедать в поместье герцога де Сюлли. Во время этого обеда вошедший в залу слуга объявил, что у ворот поместья мсье Аруэ ожидает некий господин.

Аруэ вышел за ворота и, надо полагать, еще успел узнать карету шевалье де Рогана, — неприятного, но фантастически богатого дворянина, которого он несколько дней назад публично высмеял, когда они вместе присутствовали на представлении в «Комеди Франсез», — однако тут лакеи де Рогана, принялись избивать Аруэ, а сам де Роган, сидя в карете, с наслаждением «наблюдал, — как он впоследствии писал, — за их трудами». Аруэ каким-то образом удалось вырваться, убежать в ворота и вернуться в дом де Сюлли. Однако вместо сочувствия, а то и возмущения содеянным его встретили там лишь насмешки. Де Сюлли и его гости были позабавлены: человек, имеющий в обществе подлинный вес, указал нелепому борзописцу его место. Аруэ поклялся отомстить: он вызовет де Рогана на дуэль и убьет его.

А вот это было уже делом серьезным. Семейство де Рогана перемолвилось с властями, полиция начала охоту на Аруэ и вскоре его арестовали и посадили в Бастилию.

Выйдя на свободу, он пересек Ла-Манш и влюбился в Англию, — в особенности (агенты по недвижимости, внимание!) в буколическую страну чудес, Уондзуорт, лежавший вдали от грязи и копоти большого города. К тому же, в воздухе Англии носились новые, приведшие его в восторг, концепции, излагавшиеся в сочинениях Ньютона и представлявшие собой противоположность замшелой косной системе, которую Аруэ знал по Франции.

Ньютон создал совокупность законов, которая, казалось, подробно и с великолепной точностью описывала движение всего, что образует нашу вселенную. Планеты неслись в пространстве со скоростями и в направлениях, кои предписывались им законами Ньютона; летевшее по воздуху пушечное ядро приземлялось именно в том месте, которое предсказывали ньютоновские расчеты его траектории.

Выглядело все это так, точно люди жили внутри огромных заводных часов, а законы Ньютона были просто шестернями и винтиками, приводившими эти часы в движение. Но, размышлял Аруэ, если мы вправе требовать рациональных объяснений того, что происходит в облекающей нашу планету огромной вселенной, почему бы не потребовать их же и здесь, на Земле? Францией правил король, коему надлежало повиноваться на том основании, что он — представитель Бога на земле. Аристократы получали власть от короля и подвергать ее сомнению означало прослыть нечестивцем. Но что будет, если мы применим использованный Ньютоном в науке анализ, для выяснения роли денег, тщеславия и иных скрытых сил мира политики?

Возвратившись через три года в Париж, Аруэ принялся распространять свои новые идеи посредством частных писем и печатных памфлетов. В мире, основанном на ясном, уравновешенном анализе подлинных сил, унижение, которое он претерпел у ворот де Сюлли было бы попросту невозможным. Аруэ предстояло на всю его долгую жизнь остаться приверженцем нового мировоззрения Ньютона. А приверженцем он оказался очень полезным, поскольку «Аруэ» было всего лишь именем, полученным им при рождении. И имя это уже к тому времени заместил псевдоним, под которым Аруэ знали повсеместно: Вольтер.

Однако и самый искусный писатель не может, как бы ни старался он насадить идеи определенного мыслителя, сдвинуть нацию с места в одиночку. Вольтеру необходимо было найти для своих дарований нечто вроде трансляционного центра, который мог бы многократно усилить их воздействие. Королевская Академия наук была слишком консервативной, слишком увязнувшей в замшелом от старости образе мыслей. Парижские салоны тоже мало на что годились. Хозяйки их были, как правило, достаточно богатыми, чтобы прикармливать одного-двух ручных поэтов («Если вы не позаботились о том, чтобы попасть в списки куртизанов, — заметил однажды Вольтер, — от вас… ничего не останется»), однако настоящему мыслителю развернуться в них было негде. Ему требовалась серьезная помощь. И он такую помощь нашел.

На самом деле, он познакомился с этой женщиной — и не обратил на нее внимания — еще пятнадцать лет назад, гостя у ее отца. Из родового замка Эмилии де Бретейль открывался вид на парижский парк Тюильри, в замке было тридцать комнат и семнадцать слуг. Однако Эмилия росла не похожей на своих вполне заурядных братьев и сестер — отец ее писал: «Моя младшая дочь щеголяет своим умом, отпугивая претендентов на ее руку… Мы не знаем, что нам с ней делать».

Когда ей исполнилось шестнадцать, Эмилию привезли в Версаль, однако она и там стояла особняком. Представьте себе попавшую в начало восемнадцатого столетия актрису Джину Дэвис, состоящую в обществе «Менса» и бывшую некогда звездой фильмов «экшн». У Эмилии были длинные черные волосы и обличие вечно испуганной невинности, но в то время, как большинство дебютанток высшего света стремилось лишь к одному — использовать свою красоту для того, чтобы найти мужа, — она читала труды Декарта по аналитической геометрии и предпочитала держать потенциальных искателей ее руки на расстоянии.

В детстве она была любившей лазать по деревьям девочкой-сорванцом, к тому же и рост у нее был выше среднего, а поскольку ее родители опасались, что дочь вырастет нескладехой, они — и это самое замечательное — наняли для нее учителя фехтования. Эмилия вызвала Жака де Брен, занимавшего пост, который можно примерно описать как пост начальника королевских телохранителей, на показательную дуэль, состоявшуюся при большом стечении публики на паркетном полу огромного Гербового зала, и ее выпады и парирования показали, насколько она проворна и сильна, — этого хватило, чтобы испуганные поклонники сочли разумным обходить ее стороной.

Ум привел Эмилию к тому, что в Версале она оказалась изолированной, поскольку делиться восторгами по поводу чудесных прозрений, которые она находила в трудах Декарта и других ученых, ей было здесь не с кем. (Хотя одно, по крайней мере, преимущество увлечение математикой ей давало, — садясь за игорный стол, она с легкостью запоминала все карты.)

В девятнадцать лет Эмилия все же выбрала себе мужа из числа наименее неприятных придворных. Им стал богатый военный по фамилии до Шатле, удобный уж тем, что большую часть времени он проводил в далеких кампаниях. Супружество их было чисто формальным, — муж, в духе того времени, не имел ничего против любовных романов жены, происходивших в его отсутствие. Любовников у Эмилии насчитывалось немало и одним из наиболее близких ей оказался бывший офицер гвардии Пьер Луи Мопертюи, который, уйдя в отставку, понемногу обращался в одного из первейших физиков своего времени. Дружба их началась с совместного изучения математического анализа и иных научных штудий, однако Мопертюи собирался отправиться в полярную экспедицию, а во Франции 1730-х любой двадцати с чем-то летней молодой женщине, — как бы умна и спортивна она ни была, — оставаться одинокой было непозволительно.

Эмилия же оказалась «не пристроенной». К кому было ей обратиться за человеческим теплом? Пока Мопертюи производил последние приготовления к экспедиции, Эмилия завела несколько ни к ему не обязывающих интрижек, но кто во всей Франции мог заменить ей Мопертюи? И тут появился Вольтер.

«Я устал от праздной, полной вздорных свар парижской жизни, — вспоминал он впоследствии, — …от даруемых королем привилегий, от партийных интриг ученых людей… В 1733 году я встретил молодую женщину, которая, как оказалось, разделяла едва ли не все мои мысли и взгляды…»

Она познакомилась с Вольтером в опере, и хотя Мопертюи еще не уехал, никаких проблем это не составило. Вольтер посвятил ему восторженные стихи, в которых называл его современным аргонавтом и превозносил за отвагу, с коей Мопертюи устремлялся для блага науки на далекий север; за этим последовала поэма в честь дю Шатле — ее Вольтер сравнивал со звездой и отмечал, что он-то, по крайней мере, не настолько вероломен, чтобы обменять ее на какую-то там арктическую экспедицию. По отношению к Мопертюи это было решительно несправедливо, однако дю Шатле возражать не стала. Да и что иное мог бы сказать и сделать Вольтер? Он был влюблен.

Влюбилась, в конце концов, и Эмилия. И на этот раз расставаться со своей любовью не пожелала. У нее и Вольтера имелось много общего: глубокий интерес к политическим реформам; удовольствие, которое оба получали от стремительных, искрометных бесед («она говорит с великой быстротой, — писал один из ее прежних любовников, — …слова ее подобны ангелам»); и прежде всего, желание продвинуть науку так далеко, как удастся. Муж Эмилии владел замком в Сирее, на северо-востоке Франции. Замок принадлежал семье еще с того времени, как Колумб отправился открывать Америку, ныне он стоял заброшенным и по большей части разрушенным. Почему было не использовать его для постановки во Франции подлинно научных опытов? Они вдвоем принялись за дело и вскоре Вольтер уже писал другу, что мадам дю Шатле

…превращает лестничные колодцы в дымоходы, а дымоходы в лестничные колодцы. Если я говорю рабочим: вот здесь следует построить библиотеку, — она распоряжается заменить ее салоном… Она сажает липы там, где я задумал посадить вязы, а когда я высаживаю где-нибудь травы и овощи… она не успокаивается до тех пор, пока не разобьет на этом месте цветочную клумбу.

Все было закончено за два года. В замке появилась библиотека, сравнимая с той, какой располагала парижская Академия наук, из Лондона в него доставили новейшее лабораторное оборудование, у дома имелись крылья, предназначенные для гостей, и что-то вроде аудиторий для проведения семинаров, и вскоре в него стали приезжать погостить лучшие ученые Европы. Дю Шатле располагала собственной профессиональной лабораторией, но при этом стены ее читальни были украшены подлинными полотнами Ватто. Вольтер обосновался в личном крыле, спальня которого была связана со спальней дю Шатле очень удобным и укромным проходом. (Однажды, явившись к ней без предуведомления, он застал ее с другим любовником, и дю Шатле попыталась успокоить Вольтера, сказав, что поступила так лишь потому, что знала — ему нездоровится — и не хотела беспокоить его, нуждающегося в отдыхе.)

Появлявшиеся время от времени, чтобы посмеяться над ними, визитеры из Версаля обнаруживали в замке прекрасную женщину, которая по собственной воле сидела в четырех стенах, до позднего вечера работая за письменным столом, — два десятка свечей окружали ее, озаряя стопки бумаг с вычислениями и переводами, в огромном зале было тесно от научного оборудования. Время от времени, сюда заходил и Вольтер — не просто ради того, чтобы ознакомиться с последними дворцовыми сплетнями, хотя, будучи Вольтером, оставаться к ним совсем равнодушным он не мог, — но также чтобы сравнить латинские тексты Ньютона с некоторыми из новейших голландских комментариев к ним.

Несколько раз дю Шатле вплотную подходила к ошеломляющим открытиям будущего. Она поставила собственную версию опытов Лавуазье с ржавчиной, и если бы количество чешуек, которые удалось собрать дю Шатле, было чуть более полным, она могла бы открыть закон сохранения массы еще до рождения Лавуазье.

«Сирейская группа» поддерживала переписку с другими учеными нового склада, снабжая их результатами экспериментов, чертежами и расчетами. Здесь неделями, а то и месяцами гостили такие ученые, как Кениг и Бернулли. Вольтера радовало, что благодаря их усилиям, новейшая, ньютоновского склада наука получает все большее распространение. Однако когда он и дю Шатле затевали насмешливые, пародийные перепалки, Вольтер вовсе не попадал в положении знающего жизнь, широко начитанного человека, который сам решает, в каком случае его молодая любовница выйдет победительницей. Дю Шатле была настоящей исследовательницей физического мира, и именно она в какой-то момент решила, что ключевой вопрос, коим теперь надлежит заняться, выглядит так: что есть энергия?

Она знала — в большинстве своем люди считают, что с энергией и так уже все ясно. Тот же Вольтер в его посвященных популяризации Ньютона сочинениях описывал представлявшиеся всем несомненными истины: главное, что необходимо знать для анализа того, как сталкиваются материальные объекты, это простые произведения их масс на их же скорости, то есть mv1. Если шар весом в 5 фунтов движется со скоростью 10 м/час, он будет обладать 50 единицами энергии.

Однако дю Шатле знала и о том, что некогда были довольно широко распространены воззрения, соперничавшие с ньютоновскими и сформулированные Готфридом Лейбницем, выдающимся немецким дипломатом и естествоиспытателем. Лейбниц считал, что главным показателем энергии является mv2. Если шар весом в 5 фунтов движется со скоростью 10 м/час, он будет обладать 5х102, или 500 единицами энергии.

Кто из них был прав? Все это могло выглядеть простым спором об определениях, однако за ним крылось нечто гораздо более глубокое. Мы привыкли к тому, что наука отделена от религии, но в семнадцатом и восемнадцатом веках дело обстояло иначе.

Ньютон считал, что, выдвигая на первый план mv1, можно доказать необходимость существования Бога. Если происходит лобовое столкновение двух пивных фургонов, слышится громовый удар и, возможно, скрежет, с которым вдавливаются друг в друга их бамперы, однако затем наступает тишина. Перед самым столкновением в мире присутствовало изрядное количество mv1 - его создавали две быстро двигавшихся, сильно нагруженных повозки. Допустим, к примеру, что одна на полной скорости катила строго на восток, а другая строго на запад. Однако после того, как они столкнулись и обратились к груды дерева и металла, обе v1 исчезли. Та, что «двигалась на восток», в точности отменила ту, что «двигалась на запад».

На взгляд Ньютона, это означало, что энергия, которой обладали повозки, просто исчезла. Образовалась дыра, ведущая за пределы нашей наблюдаемой вселенной. А поскольку подобные столкновения происходят сплошь и рядом, огромным механическим часам, в которых мы проживаем, требуется постоянная подзаводка. Однако давайте оглядимся вокруг. Мы же не видим, что с ходом годов способность к движению сохраняет все меньшее число физических тел. Вот вам и доказательство. вселенная продолжает «работать» и это, по мнению Ньютона, является знаком того, что ободряющая десница Господня простирается через нее, дабы питать и поддерживать нас, снабжать нас всеми движущими силами, которые мы без нее потеряли бы.

Вольтеру этого было достаточно. Ньютон высказался, а кто может спорить с Ньютоном? К тому же, картина, им созданная, выглядит так величественно и подкреплена столь пугающе сложной геометрией и математическим анализом, что самое разумное для нас — просто кивать и принимать ее. А между тем, дю Шатле проводила долгие часы в своей увешанной картинами Ватто комнате, а затем и за уставленным свечами письменным столом, разбираясь, собственного интереса ради, в возражениях Лейбница.

Лейбниц не только приводил разного рода отвлеченные геометрические доводы, он еще и указывал на прореху, которую подход Ньютона оставляет в мире. Дипломаты порою склонны к сарказму. Лейбниц писал: «Согласно учению [Ньютона], всемогущему Богу угодно время от времени заводить свои часы — иначе они встанут. Похоже, Он оказался недостаточно предусмотрительным для того, чтобы создать вечное движение».

Однако, если использовать для энергии формулу mv2, этой проблемы можно избежать. Допустим, что для повозки, едущей строго на запад, mv2 дает 100 единиц энергии, а энергия второй, движущейся навстречу и ей, и скорому столкновению, тоже составляет 100 единиц. По мнению Ньютона, при столкновении их энергии уничтожают одна другую, а вот по мнению Лейбница, их энергии складываются. Когда повозки сталкиваются, вся их энергия так и продолжает существовать, отправляя металлические обломки повозок скакать по земле, повышая температуру их колес и создавая далеко разлетающийся шум и грохот.

С точки зрения Лейбница, ничто не пропадает и не теряется. Мир продолжает идти своим путем, никаких дыр или шлюзовых ворот, в которые утекает причинная обусловленность либо энергия, — так что только Бог и способен вернуть их назад, — не существует. Мы предоставлены самим себе. Необходимость в Боге могла существовать в самом начале, однако теперь она отсутствует.

Дю Шатле находила эти рассуждения не лишенными привлекательности, но также и понимала, почему за десятилетия, прошедшие с тех пор, как Лейбниц обнародовал их, они особого признания не получили. Воззрения Лейбница были слишком расплывчатыми, они отвечали собственным его предпочтениям, но не получили достаточных объективных подтверждений. Кроме того, как с великим удовольствием показал Вольтер в написанном им романе «Кандид», они были странно пассивными, наводившими на мысль, что какие бы то ни было фундаментальные изменения в нашем земном существовании попросту невозможны.

Дю Шатле славилась взрывной быстротой своих бесед, но лишь потому, что в Версале она была окружена дураками, а в Сирее только так и можно было вставить слово, разговаривая с Вольтером. Когда же дело доходило до осуществляемых ею работ, она оказывалась куда более методичной и неторопливой. Ознакомившись с исходной аргументацией Лейбница, а затем со стандартной их критикой, она — и разного рода специалисты, призванные ею на помощь, — не остановилась на этом, но приступила к широким поискам каких-либо практических свидетельств, которые помогли бы им сделать окончательный выбор. По мнению Вольтера, она просто «зря тратила» время, однако для дю Шатле это стало одним из важнейших моментов ее жизни: исследовательский механизм, созданный ею в Сирее, наконец заработал в полную силу.

Решающее доказательство дю Шатле и ее коллеги отыскали в недавней работе Виллема Гравезанда, голландского ученого, который ставил опыты, бросая с определенной высоты грузы на мягкий глиняный пол. Если формула Е=mv1 справедлива, груз, летящий вдвое быстрее, чем прежде, должен уйти в глину и на глубину вдвое большую. А повышая скорость втрое, получишь втрое большую глубину. Однако Гравезанд обнаружил, что этого не происходит. Маленький медный шар, летящий в два раза быстрее прежнего, уходил в глину на глубину, в четыре раза большую. Если же он летел быстрее в три раза, то глубина его погружения в глину оказывалась большей в девять раз.

Что, собственно, и предсказывалось формулой Е=mv2. Два в квадрате это четыре. Три в квадрате — девять.

Результаты Гравезанд получил серьезные, однако он не был теоретиком в мере, достаточной для того, чтобы свести их воедино. Лейбниц был теоретиком превосходным, но ему не хватало детальных опытных данных — его выбор mv2 был скорее догадкой. Вот эту брешь и заполнила работа дю Шатле. Она углубила теорию Лейбница, включив в нее результаты голландского ученого. Наконец-то появилось серьезное подтверждение справедливости определения энергии с помощью mv2.

Статьи ее наделали немало шума. Дю Шатле всегда была автором, умевшим ясно излагать свои мысли, ей помогало также и то, что Сирей считался одним из по-настоящему независимых исследовательских центров Европы. Большинство англоязычных ученых автоматически принимало сторону Ньютона, а германоязычные с не меньшим догматизмом выступали за Лейбница. Франция же стояла между ними, неизменно владея правом решающего голоса, вот голос дю Шатле и оказался главным в решении давнего спора.

Опубликовав результаты своей работы, она сделала паузу, — необходимо было заняться денежными делами семьи и подумать о следующем предмете исследований. Она и Вольтер путешествовали, в Версале дю Шатле забавлялась, наблюдая за новым поколением придворных, не имевших ни малейшего понятия ни о том, что она — один из ведущих в Европе интерпретаторов современной физики, ни о том, что она издает сделанные ею на досуге переводы Аристотеля и Вергилия. В конце концов, когда дю Шатле произвела обширные расчеты вероятностей выигрыша за карточным столом, кое-какие представления о ее дарованиях все же стали достоянием публики.

Время шло, они возвратились в Сирей. Там («в этом нашем упоительном прибежище» — писала она) уже разрослись липы, и дю Шатле даже позволила, наконец, Вольтеру разбить собственный огород. А затем произошло то, о чем она торопливо написала одной из подруг.

3 апреля 1749

Шато де Сирей

Я беременна, и вы можете вообразить… как я… вынужденная рожать в сорокалетнем возрасте… страшусь за мое здоровье и даже за жизнь.

То было одним из тех событий, контролировать которые она не могла. Она уже рожала вскоре после замужества, но хоть и была в ту пору на двадцать лет моложе, даже тогда роды были делом опасным. Доктора тех времен не ведали, что им следует мыть руки или инструменты. Антибиотиков, способных остановить неизбежную в подобных условиях инфекцию, не существовало; не было и окситоцина, позволяющего справиться с маточным кровотечением. Дю Шатле не гневалась на очевидную бестолковость докторов своей эпохи, но лишь сказала Вольтеру о том, как грустно ей уходить из жизни, не успев приготовится к неизбежному концу. Сколько времени у нее осталось, она знала — роды ожидались в сентябре. Дю Шатле всегда работала подолгу и помногу, теперь же ей приходилось спешить, и свечи на ее письменном столе горели порою до утренней зари.

1 сентября 1749 года она написала директору королевской библиотеки, что в коробке, к которой прилагается ее письмо, он найдет законченный черновик написанных ею пространных комментариев к трудам Ньютона. Три дня спустя начались роды — их она пережила, однако ее поразила инфекция и спустя неделю дю Шатле скончалась.

Вольтер был сам не свой от горя: «Я потерял половину себя самого, душу, созданную для меня».

Постепенно мысль о том, что энергия пропорциональна mv2, обратилась во вторую натуру физиков. Немалую роль в этом сыграло полемическое искусство Вольтера, пропагандировавшего наследие своей возлюбленной. В следующем столетии Фарадей и другие, разрабатывая представления о сохранении энергии в целом, использовали именно mv2, как количество энергии, которое может претерпевать различные трансформации, но никогда не исчезает полностью. Анализ, произведенный дю Шатле, как и ее сочинения, были необходимым шагом вперед, хотя со временем о сыгранной ею роли забыли — отчасти потому, что каждому новому поколению ученых присуща тенденция смотреть на прошлое свысока; отчасти же потому, что ученым неприятно было думать, что именно женщина указала направление столь обширных научных исследований и помогла определить дальнейший ход научной мысли.

Впрочем, оставался еще один большой вопрос: «почему?». Почему именно квадрат скорости дает столь точную меру для описания того, что происходит в природе?

Одна из причин этого состоит в том, что сама геометрия нашего мира часто порождает квадраты чисел. Когда вы подходите к лампе, при свете которой читаете, на расстояние, вдвое меньшее прежнего, света на читаемую вами страницу попадает не вдвое больше. Точно так же, как в опытах Гравезанда, интенсивность света увеличивается в четыре раза.

Свет от лампы может заливать немалую площадь. А когда вы приближаетесь к ней, то же количества света концентрируется на площади много меньшей.

Интересно отметить следующее: рост почти всего, что способно устойчиво аккумулироваться, описывается с помощью простых квадратов чисел. Если вы разгоняете вашу машину с 32 до 128 км/час, скорость ее возрастает в четыре раза. Однако, когда вы жмете на тормоз, чтобы остановить ее, торможение занимает отнюдь не в четыре раза больше времени. Накопленная вами энергия возросла в шестнадцать раз (это четыре в квадрате). Настолько же более длинным окажется и ваш тормозной путь.

Представьте, что тормозная колодка связана с неким накопителем энергии. Автомобиль, который движется в четыре раза быстрее другого, генерирует — на самом деле, несет в себе — энергию в шестнадцать раз большую. Если кто-то попытается измерить эту энергию просто как mv1, ничего путного у него не получится. Наиболее важные аспекты движения выявляются лишь с помощью mv2.

Со временем физики привыкли умножать массу объекта на квадрат его скорости (mv2) для получения столь полезного показателя, как его энергия. Если скорость мяча либо камня составляла 100 м/с, физики знали, что несомая им энергия пропорциональна его массе, умноженной на 100 в квадрате. Если же скорость поднималась до высшего ее предела, до 300 миллионов м/с, все выглядело так, словно полная энергия, которую может содержать этот объект, получалась умножением его массы на скорость света в квадрате — mс2. Это, разумеется, никакое не доказательство, но выглядит оно так естественно, так «уместно», что, когда в детальных расчетах Эйнштейна появилось mс2, величина эта помогла придать большее правдоподобие и его ошеломляющему выводу о том, что раздельные, по всей видимости, царства энергии и массы на самом-то деле связаны, а мост, перекинутый между ними, это «с» — скорость света. (Читатель, которого интересуют подлинные выкладки Эйнштейна, может заглянуть на посвященный этой книге сайт davidbodanis.com, содержащий некоторые из его рассуждений.)

Именно с2 и определяет то, как работает эта связь. Если бы наша вселенная была устроена иначе, — если бы с2 была величиной небольшой, то малая масса преобразовывалась бы и в энергию столь же малую. Однако в нашей реальной вселенной, наблюдаемой с небольшой, тяжеловесно вращающейся планеты, к которой мы приписаны, с2 — величина огромная. Представленная в единицах м/с, скорость света равна 300 миллионам, а с2, соответственно 90 000 000 000 000 000 (при представлении в км/час — 1 080 000 000 и 1 166 400 000 000 000 000, соответственно). Вообразите стоящий в уравнении знак равенства как своего рода туннель или мост. Очень маленькая масса, проходя через уравнение и появляясь на стороне энергии, возрастает колоссальным образом.

А это означает, что масса является просто конечным видом сконденсированной, или сконцентрированной энергии. И наоборот: энергия это то, что при правильных условиях изливается из массы. Вот вам аналогия — несколько древесных веток способны, сгорая, порождать огромное количество дыма. Человек, который никогда не видел костра, может испугаться: подумать только, какие количества дыма «ждали своего часа» внутри дерева. Уравнение Эйнштейна показывает, что примерно таким же образом можно, теоретически, выпустить наружу и массу в любой ее форме. Оно говорит и о том, что результат получится куда более мощным, чем при простом химическом горении — «разрастание» окажется намного большим. Как раз огромный коэффициент преобразования, 90 000 000 000 000 000, и показывает, насколько увеличивается масса, если вся она проходит через стоящий в уравнении знак равенства.

 

Часть 3. Ранние годы

 

Глава 7. Уравнение и Эйнштейн

Когда в 1905 году Эйнштейн обнародовал свое уравнение, Е=mc2, на него почти не обратили внимания. Оно попросту не согласовывалось с тем, чем занималось большинство других ученых. Великие открытия Фарадея, Лавуазье и прочих были доступны всем, однако никто не пытался соединить их так, как это сделал Эйнштейн, да, собственно, никому и в голову не приходило предпринять такую попытку.

Доминирующими индустриями мира были: сталелитейная и красильная промышленности, железные дороги и сельское хозяйство — на них и оставалось направленным внимание рядовых ученых. В нескольких университетах существовали лаборатории, специализировавшиеся по работе в большей степени теоретической, однако значительная часть их проводилась в областях, которые и за два столетия до этого не вызвали бы у Ньютона особого удивления: трактаты по стандартной оптике, звуку и упругости писались и в его время. Оригинальных статей появлялось мало и относились они к новым и загадочным радиоволнам или к вопросам, связанным с радиоактивностью, так что Эйнштейн действовал практически в одиночку.

Мы можем с точностью примерно до месяца датировать миг, в который он понял, что Е должна быть равной mc2. Начальную, посвященную относительности статью Эйнштейн закончил к концу июня 1905 года, а добавление к ней, в котором и появилось его уравнение, подготовил для печати в сентябре, стало быть, мысль об уравнении должна была прийти ему в голову где-то в июле или в августе. Вероятно, это произошло во время одной из его прогулок — или дома, по окончании рабочего дня в патентном бюро. При работе Эйнштейна нередко присутствовал его сын, Ганс Альберт, тогда еще младенец, однако большой помехи он не составлял. Люди, бывавшие в доме Эйнштейна, вспоминают, что он спокойно работал в гостиной своей маленькой квартирки, покачивая свободной рукой колыбельку годовалого сына и, когда требовалось, что-то мурлыча или напевая ему.

Что направляло Эйнштейна, так это сохранившаяся в нем и к двадцати пяти годам заинтригованность неведомым. Он считал, что обязан попытаться понять, какой задумал нашу вселенную Старик (так называл он Бога).

«Мы находимся в положении ребенка, — пояснял впоследствии Эйнштейн, — оказавшегося в огромной библиотеке, стены которой от пола до потолка заставлены книгами, написанными на самых разных языках. Ребенок сознает, что кто-то должен был их написать. Но кто и как — этого он не знает. Как не знает и языков, на которых они написаны. Он замечает, что в расположении книг присутствует определенный план, загадочный порядок, — ребенок не воспринимает его, но лишь смутно догадывается о том, что план этот существует».

И когда у него появился шанс протянуть в сумраке руку и снять с полки написанную Стариком книгу, на страницах которой мерцало уравнение Е=mc2, Эйнштейн с готовностью ухватился за этот шанс.

Исходным пунктом рассуждений, которые привели Эйнштейна к удивительному выводу о том, что масса и энергия едины, было не имевшее, на первый взгляд, никакой ценности умозаключение, согласно которому догнать свет невозможно. Однако оно привело, как мы уже видели на примере космического корабля, к пониманию того, что энергия, вливаемая в движущееся тело, приведет к тому, что масса его начнет, с точки зрения внешнего наблюдателя, возрастать. Рассуждение это можно и обратить: при определенных обстоятельствах физическое тело должен приобретать способность выделять энергию, производя ее из собственной массы.

Начиная с 1890-х — за несколько лет до того, как Эйнштейн записал свое уравнение, — определенное число ученых уже получило определенные намеки на то, как это может происходить. В лабораториях Парижа, Монреаля и иных городов было установлено, что некоторые металлические руды, добываемые в Конго, Чехословакии и других странах, способны излучать загадочную энергию. Если бы камушки, с которыми работали эти лаборатории, испускали скрытую в них энергию и, в конце концов, выдыхались бы, никто не счел бы это удивительным, — протекающий в них процесс был бы воспринят просто как аналог обычного горения. Однако и самая лучшая измерительная техника того времени показывала: испускание энергетических лучей ни к каким решительно изменениям в камушках не приводит.

Одной из первых, кто исследовал это явление, была Мария Кюри — именно она в 1898 году придумала для описания загадочного излучения слово «радиоактивность». Но даже Кюри поначалу не понимала, что металлы, с которыми она работает, порождают энергию, расходуя неизмеримо малые доли собственной массы и обращая ее в огромную, по сравнению с этой массой, энергию излучения. Количества энергии выглядели невероятными: умещавшийся на ладони кусочек руды каждую секунду извергал триллионы высокоскоростных альфа-частиц, делая это часами, неделями, месяцами и не утрачивая веса — во всяком случае, сколько-нибудь измеримого.

Позже, когда Эйнштейн уже стал знаменитостью, он несколько раз встречался с Кюри, однако так ее и не понял — после одной совместной поездки в автомобиле Эйнштейн описал ее как женщину, холодную, точно селедка, и постоянно на что-то жалующуюся. На самом деле, она обладала страстной натурой и питала пылкую любовь к одному элегантному французскому ученому, женатому на другой. Причина же ее жалоб во время той поездки могла состоять в том, что она медленно умирала от рака. Одним из тех непонятных металлов был радий, а Кюри работала с ним уже не один год.

Микроскопические количества обращенного в пыль радия, которые она, сама того не ведая, носила на своей блузке и на руках, проходя по грязным мостовым Парижа 1890-х и времени более позднего, в течение тысяч лет излучали, в соответствии с уравнением, о котором тогда никто и не слышал, энергию, нисколько при этом не убывая. Они неустанно испускали ее, еще находясь глубоко под землей, в шахтах, которые бельгийцы вырыли в Конго, — и продолжали испускать во время многолетних опытов Кюри, в конечном счете наградив ее смертоносным раком. Более семидесяти лет спустя эта пыль еще оставалась активной и выстреливала убийственным излучением в музейных работников, которые изучали лабораторные журналы Кюри или хотя бы ее домашние поваренные книги.

Пыль, которую носила на себе Кюри, весила миллионные доли унции. Однако, согласно уравнению Эйнштейна, ее было достаточно, чтобы создавать радиоактивное излучение, ударившее по ДНК, находившимся в костях Кюри, и породившее лейкемию, от которой она умерла; еще меньшего количества этой пыли хватало на то, чтобы десятилетиями генерировать излучение, каковое счетчики Гейгера обнаруживали исходящим от уже упоминавшихся перепуганных до смерти музейных работников.

Уравнения Эйнштейна показывали, какой большой могла быть результирующая энергия. Чтобы понять, сколько ее может содержаться в некоторой массе, возьмите колоссальную скорость света и возведите ее в квадрат, что даст вам число еще более колоссальное. А затем умножьте на него интересующую вас массу — вы получите точное значение энергии, в которую она может обратиться.

Не заметить, насколько мощна эта идея, дело совсем не трудное. Ибо уравнение Е=mc2 ничего не говорит о том, какого рода масса должна в него подставляться! При определенных обстоятельствах любое вещество способно извергать энергию, сокрытую в его массе. Нас окружают могучие силы, прячущиеся в самых заурядных камнях, растениях и ручьях. Одна-единственная, весящая всего несколько грамм страница этой книги выглядит всего лишь безобидным стабильным соединением волокон целлюлозы и типографской краски. Однако если бы эту краску и эти волокна удалось преобразовать в чистую энергию, мы получили бы громовый выброс ее, гораздо больший того, что возникает при взрыве большой электростанции. Извлечь эту мощь из урана проще, как мы еще увидим, чем из обычной бумаги, но это объясняется всего лишь ограниченностью современной нам техники.

Чем больше преобразуемая масса, тем более пугающую энергию она свободна высвобождать. Опустите в щелку, помеченную буквой «m», тело весом всего в один фунт и после умножения этого веса на 90 000 000 000 000 000, то есть на c2, вы получите, обещает уравнение, больше 10 миллиардов киловатт-часов энергии. А это сравнимо с тем, что дает огромная электростанция. Именно поэтому маленькая атомная бомба, вся начинка которой уместилась бы в чаше ваших ладоней, способна выбрасывать энергию, достаточную для того, чтобы срывать с улиц мостовые и сжигать топливные линии, рушить кирпичные дома на одной улице за другой и разрывать на части десятки тысяч солдат, детей, учителей и водителей автобусов.

Урановая бомба срабатывает, когда внутри нее обращается в энергию менее 1 процента ее массы. Намного большее количество вещества, сжатого так, что образовалась космическая звезда, способно миллиарды лет согревать планету, просто уничтожая часть себя самой, преобразуя фрагменты этого вещества в энергию тепла и света.

В 1905 году, когда Эйнштейн впервые записал свое уравнение, он находился в такой изоляции, что не стал снабжать основную посвященную теории относительности статью никакими примечаниями. Дело в науке почти неслыханное. Он вставил в статью лишь благодарность своему верному другу Мишелю Бессо, инженеру-механику тридцати с чем-то лет, работавшему в том же патентном бюро, что и сам Эйнштейн. Физики жаловались на перегруженность работой даже в 1905 году. Статья Эйнштейна появилась в прославленном журнале, — относясь к своей будущей карьере достаточно серьезно, он поддерживал связь с ним, составляя для журнала обзорные статьи, — однако физики, читавшие журнал, один за другим либо бегло просматривали, либо просто игнорировали на редкость неудобную для них работу Эйнштейна.

В какой-то момент Эйнштейн попытался выбраться из патентного бюро и получить в Бернском университете должность младшего преподавателя. Вместе с прочими написанными им статьями он послал в университет и статью о теории относительности, которой очень гордился. И получил отказ. Несколько позже он подал заявление в среднюю школу, опять-таки предлагая себя в качестве учителя. С бумагами, которых требовали от претендентов на это место, в школу отправилось и его уравнение. На место претендовал двадцать один человек, троих вызвали в школу для собеседования. Эйнштейна среди них не оказалось.

Однако с ходом времени среди ученых понемногу пошли разговоры о его статье и почти сразу возникла ревнивая зависть. Анри Пуанкаре был одним из самых прославленных людей французской Третьей республики и — вместе с немцем Давидом Гильбертом — одним из величайших математиков мира. Еще совсем юным человеком Пуанкаре сформулировал первые из идей того, что стало впоследствии теорией хаоса; рассказывают также, что, будучи студентом, он однажды увидел на уличном углу занятую вязанием старуху, а затем, поразмыслив на ходу о геометрии движения ее спиц, вернулся назад и объяснил ей, что существует другой способ вязания, — так он независимым образом открыл метод вязания петлей наизнанку.

Однако теперь Пуанкаре было за пятьдесят и, хотя он еще мог рождать свежие идеи, энергии, необходимой для их развития, у него становилось все меньше и меньше. А может быть, дело было не в энергии. Пожилые ученые нередко говорят, что их проблема состоит не в отсутствии памяти или способности быстро думать, но скорее в страхе, который мешает им сделать шаг в неизвестное. А Пуанкаре представился однажды шанс подойти вплотную к тому, что делал теперь Эйнштейн.

В 1904-м он оказался в составе большой группы разочарованных европейских интеллектуалов, приглашенных на происходившую в Сент-Луисе Всемирную выставку. (Немецкий социолог Макс Вебер также входил в эту группу и был ошеломлен увиденной им в Америке грубой энергией, — он описал Чикаго, как «человека с содранной кожей», — энергией, которая помогла ему избавиться от депрессии, донимавшей его уже не один год.) На выставке Пуанкаре прочитал лекцию, тему которой обозначил словами «теория относительности», — впрочем, название это обманчиво, поскольку Пуанкаре лишь приблизился к границам того, чего вскоре достиг Эйнштейн. Возможно, будь Пуанкаре помоложе, он смог бы пойти дальше и получить результаты, которые в следующем году получил Эйнштейн, — включая и его поразительное уравнение. Однако после лекции, а затем и утомительных развлечений, предусмотренных для Пуанкаре теми, кто пригласил его в Сент-Луис, пожилой математик махнул на эти идеи рукой. А то обстоятельство, что многие французские ученые отступились от практического подхода Лавуазье, заменив его стерильными сверх-абстракциями, еще больше затрудняло для Пуанкаре занятия прикладной физикой.

К 1906-му, поняв, что молодой швейцарец открыл неизмеримо обширное поле исследований, Пуанкаре впал в холодную хандру. Вместо того, чтобы повнимательнее приглядеться к уравнению Эйнштейна, которое Пуанкаре был вправе счесть своим пасынком, и представить его парижским коллегам с целью дальнейших исследований, он постарался держаться от этого уравнения на расстоянии, никогда о нем не говорил, а имя Эйнштейна упоминал крайне редко.

Другие современники присматривались к работе Эйнштейна гораздо внимательнее, однако склонялись поначалу к тенденции упускать из виду ее ключевой момент — причину, по которой Эйнштейн отвел «с» центральную роль. Они бы еще как-то поняли Эйнштейна, если бы он соорудил в своей лаборатории некую совершенно новую аппаратуру, позволившую получше изучить находки Марии Кюри и иных ученых и тем самым сделать открытие, которого никто другой не сделал. Однако у Эйнштейна никакой лаборатории не было и вот это представлялось им непостижимым. «Новейшие открытия», на которые он ссылался, были сделаны учеными, скончавшимися десятилетия, а то и столетия назад. Но и это не было самым главным. Эйнштейн развил свои идеи не путем терпеливой компиляции некоторого количества новых результатов. Нет, он, как мы видели, провел долгое время, «мечтательно» размышляя о свете, его скорости, о том, что является и что не является логически возможным в нашей вселенной. Правда, «мечтательными» эти размышления казались лишь посторонним, которые не понимали Эйнштейна. Ибо размышления и привели его к одному из величайших интеллектуальных достижений всех времен.

В течение столетий, прошедших после того, как родилась — примерно в семнадцатом веке — направляемая математикой наука, люди полагали, что основные представления о вселенной у них уже имеются, — кое-какие детали еще оставалось уточнить, однако диктуемые «здравым смыслом» свойства окружающего нас мира можно было считать самими собой разумеющимися. Мы жили в мире, где тела, пребывая в движении, сохраняли постоянную массу; где время текло ровно и гладко, а относительно того, в какой точке этого потока мы находимся, все пребывали в совершенном согласии.

Эйнштейн же обнаружил, что мир нашим представлениям о нем не отвечает. Все выглядит так, понял он, точно Бог усадил нас в маленький детский манеж — на поверхность планеты Земля — да еще и позволил нам думать, будто все, что мы из него видим, происходит на самом деле. А между тем, за пределами нашего зрения лежат области, которых мы не видим и в которых наши интуитивные представления не работают. Обнаружить происходящее там способно лишь отвлеченное мышление.

Взаимозаменяемость энергии и массы, о которой говорит уравнение E=mc2, это лишь одно из последствий такой более полной картины. Существуют и другие — чтобы понять их, полезно представить себе мир, в котором верхним пределом всех скоростей является не 300000000 м/с (или 1080000000 км/час), а величина более скромная — скажем, 48 с небольшим км/час. Что мы увидели бы, согласно опубликованной в 1905 году статье Эйнштейна, в этом случае?

Первое поразительное явление, которое бросилось бы нам в глаза, вытекает из рассмотренного нами примера с космическим кораблем. Автомобили, терпеливо стоящие на красном свете, обладали бы обычным их весом, но при смене красного света зеленым набирали бы скорость, а вместе с нею и массу. Собственно говоря, это происходило бы также с пешеходами, бегунами трусцой, велосипедистами — со всем, что движется. Школьница, ожидающая со своим велосипедом зеленого света, могла весить 45 кг, однако, развив скорость около 43 км/час, весила бы уже под 105 кг. Развив же еще большую или просто спускаясь с холма на скорости, несколько меньшей 48 км/час, она вскоре весила бы уже под тонну. Вырос бы и вес ее велосипеда. Однако как только она перестала бы крутить педали, ее вес и вес ее велосипеда возвратились бы к их обычным статичным значениям.

В то же самое время, автомобили, велосипеды и даже пешеходы претерпевали бы другое изменение. В зависимости от позиции, с которой мы наблюдали бы за приближающимся к нам автомобилем длиной в 3,5 м, пропорции его изменялись бы, определенные части выглядели бы уменьшившимися (да еще и сместившимися). При скорости в 47,9 км/час некоторые части автомобиля стали бы совсем крошечными. Водитель и пассажиры тоже ссохлись бы в размерах — но, опять-таки, стоило автомобилю остановиться, и все приобрело бы вид самый обычный.

И мы не только увидели бы, как проносящиеся мимо нас машины становятся более тяжелыми и изменяются в размерах, мы также заметили бы, что время внутри них, похоже, течет медленнее. Если бы водитель протянул руку, чтобы включить CD-плеер, мы увидели бы, что рука его движется с крайней медлительностью. А после включения плеера звук исходил бы из него с мучительной неторопливостью, так что каждая рулада раннего Майкла Джексона походила бы на тягостный погребальный напев.

В такой картине мира «правильная» точка зрения попросту отсутствует — даже наблюдатель, находящийся в повисшем над этим странным городом вертолете дорожной полиции, подтвердил бы: да, машины действительно претерпевают странные изменения, а вот неподвижно стоящие на тротуарах люди выглядят «нормально». Но почему же они получили такой благоприятный статус, а движущиеся машины изменяются? На самом-то деле, ни водители машин, ни школьница на велосипеде никаких изменений не ощущают. Велосипедистка смотрит вокруг и обнаруживает, что руль ее велосипеда, ее тело и рюкзачок за спиной тяжелее отнюдь не стали. А вот люди, которых она оставляет позади, выглядят как-то странно. Это они приобретают бóльшую массу.

И сидящие в машинах пассажиры с ней согласятся. Плеер играет совершенно нормально, скажут они, молодой Майкл Джексон поет так же быстро, как пел всегда. Зато люди на улицах движутся замедленно и швейцары гостиниц, подзывающие такси для постояльцев, руки поднимают с немалым трудом, а щеки, собираясь посвистеть, раздувают, точно глубоководные рыбы.

В теории относительности все эти явления подытоживаются так: всякий, кто наблюдает за удаляющимся от него объектом, видит, что масса этого объекта растет, его размеры растягиваются и время для него растягивается тоже. Люди, стоящие на улице, видят, как это происходит с автомобилем; люди, сидящие, в автомобиле видят, как это происходит с теми, кто стоит на улице.

Человеку, прочитавшему это утверждение впервые, оно представляется бессмыслицей. Даже Эйнштейну поначалу трудно было принять его — в тот летний день, когда он еще работал над своей статьей, его томила во время длинной прогулки с Мишелем Бессо необъяснимая подавленность. Однако принять это утверждение нам трудно лишь потому, что мы никогда не взаимодействуем друг с другом на скоростях, близких к 300000000 м/с (а эффекты, возникающие при обычных для нас скоростях, слишком малы, чтобы мы их заметили). Представьте себе, скажем, музыкальный плеер, принесенный кем-то на пикник. С точки зрения человека, который стоит с ним рядом, плеер играет громко. Тому, кто уходит от него на несколько сот метров, музыка почти не слышна. Мы соглашаемся с тем, что ответа на вопрос, громко ли звучит плеер «на самом деле», не существует, — но лишь потому, что мы способны ходить достаточно быстро и можем отойти от него на сотни метров за довольно короткое время. А муравей или иное крохотное существо способны удалиться от плеера так далеко, чтобы громкость его звучания изменилась, лишь за сроки, равные продолжительности жизни нескольких поколений его сородичей. И ему наши представления о том, что для разных наблюдателей музыка может звучать с разной громкостью, показались бы попросту безумными.

На посвященном этой книге интернетовском сайте приводятся подробности относительно того, как физикам удается показать, что все это следует из простого утверждения о постоянстве скорости света. Однако нас окружает немалое число вполне привычных предметов, работающих с такими скоростями, на которых эти эффекты становятся заметными. Электроны, к примеру, летящие в обычном телевизоре к поверхности экрана, движутся так быстро, что если бы мы могли видеть их, то заметили бы возрастание их массы. И инженерам приходится учитывать это явление, когда они конструируют магниты, фокусирующие потоки электронов на поверхности экрана. Если бы они этого не делали, картинка получалась бы размытой.

Навигационные спутники Системы глобального позиционирования (СГП), которые летают высоко над нами и посылают координатные сигналы автомобилям, реактивным самолетам и участникам пеших походов, тоже движутся так быстро, что время на них — с нашей точки зрения — замедляется. Схемы портативных устройств СГП, с помощью которых мы определяем наше местоположение, как и схемы устройств более крупных, используемых банками для синхронизации платежей, спроектированы так, чтобы компенсировать это обстоятельство в соответствии с уравнениями, которые Эйнштейн вывел в 1905 году.

Эйнштейну всегда не очень нравился ярлык «относительность», прилипший к тому, что он создал. По его мнению, слово это создавало неверное впечатление, внушало мысль о том, что все преходяще, что никаких точных результатов получить больше не удастся. А это не так. Предсказания науки точны.

Ярлык этот способен ввести в заблуждение еще и потому, что все уравнения Эйнштейна образуют единство, что они взаимосвязаны. Несмотря на то, что каждый из нас может видеть происходящее во вселенной по-своему, оно должно быть достаточно синхронизированным для того, чтобы обеспечить сведение наших различных точек зрения в единую картину, гарантировать ее согласованность. Старые представления о том, что масса никогда не меняется, а время течет для всех одинаково, имеют смысл, лишь когда люди наблюдают за обычными, медленно движущимися объектами. Однако в по-настоящему широком мире представления эти не верны — тем не менее, и в нем существуют точные законы, показывающие, как они видоизменяются.

Достижения, подобные этому, случались в истории лишь считанное число раз. Представьте себе, что вам удалось создать хрустальную, сверкающую модель вселенной, которая умещается у вас в кулаке. А теперь раскройте ладонь и посмотрите, как эта модель стремительно расширяется, обретая всю полноту существования. Ньютон был первым человеком, проделавшим это еще в 1600-х: он создал законченную картину мира, которая описывалась лишь горсткой уравнений, но содержала также и правила, позволяющие создавать, опираясь на эту горстку, полноценный мир.

Эйнштейн стал следующим.

И словно для того, чтобы произвести на нас еще более сильное впечатление, и Эйнштейн, и Ньютон проделали бóльшую часть своей работы на третьем десятке лет и за немыслимо короткое время. Ньютон не смог вернуться в университет, закрытый по причине чумы, и потому застрял на ферме матери в Линкольншире; в его распоряжении оказалось примерно восемнадцать месяцев, за которые он успел создать фундаментальные труды — разработать математический анализ, открыть закон всемирного тяготения и развить ключевые понятия применимой ко всей вселенной механики. Эйнштейн в 1905-м управился примерно за восемь месяцев, — при этом он еще и работал с понедельника по субботу в патентном бюро, — именно за этот срок он создал первую свою теорию относительности, вывел уравнение E=mc2 и помог проложить путь к лазерам, компьютерным чипам, ключевым аспектам современных фармацевтической и биоинженерной индустрий и все коммутирующим устройствам Интернета. Он действительно пребывал, — как сказал некогда о себе двадцатилетнем Ньютон — «в лучшем для изобретательства возрасте». Подобно Ньютону, Эйнштейн пробился за границы известного, объединил то, что до него оставалось разъединенным, и задался вопросами о верности того, что до него все просто-напросто принимали как данность.

У существовавших около 1905 года ученых, которые открыли малую часть того, что затем вывел Эйнштейн, не было шансов сравниться с ним. Пуанкаре подошел к его результатам ближе, чем кто бы то ни было, но, когда потребовалось разрушить обычные наши представления о потоке времени или природе одновременности, спасовал, оказавшись не способным разобраться в выводах из столь новых воззрений.

Но почему же успех выпал именно на долю Эйнштейна? Так и хочется сказать: да просто потому, что он был умнее всех. Однако среди бернских друзей Эйнштейна имелись личности высоко интеллектуальные, существовали и люди, такие как Пуанкаре, для которых в тестах, позволяющих определять коэффициент интеллекта, попросту отсутствовали оценки достаточно высокие. Торстейн Веблен написал однажды любопытное маленькое эссе, в котором указывается, на мой взгляд, причина более глубокая. Предположим, говорит Веблен, что ребенка учат следующему: все, сказанное в Библии, чистая правда. Затем он попадает в среднюю школу или в университет и слышит, что никакой правды там нет. «То, что вы узнали, сидя на коленях матери, полностью не верно. А вот то, чему мы научим вас здесь, будет полностью верным». Кто-то из учащихся сказал бы: «Ну и ладно, согласен». Однако нашлись бы и другие, в итоге проникшиеся подозрениями. Один раз их уже одурачили, заставив целиком принять на веру традиционный мир. И оказаться одураченными снова они не хотят. Они будут изучать то, что им предлагают, но отнесутся к нему критически, как всего лишь к одной из возможностей. Эйнштейн был евреем и хоть в своей обычной семейной жизни традиций этого народа не соблюдал, он оставался пропитанным культурой, воззрения которой на личную ответственность, справедливость и веру в авторитет отличались от стандартного немецкого и швейцарского консенсуса на сей счет.

Однако дело не только в этом. Еще маленьким мальчиком Эйнштейн заинтересовался тем, как работает магнит. И родители, вместо того, чтобы посмеяться над ним, отнеслись к его интересу с полной серьезностью. А действительно, как работает этот самый магнит? Должна же существовать какая-то причина его поведения, и в основе этой причины должна лежать другая причина, и быть может, если проследить всю их цепочку, ты доберешься до… до чего?

Какое-то время в семье Эйнштейна имелся очень ясный ответ на этот вопрос. В пору, когда росли его деды и бабушки, большинство евреев Германии еще оставалось близким к традиционной вере. То был мир, пропитанный Библией и одновременно вполне рациональными, накопленными поколениями результатами анализа Талмуда. В этом мире считалось важным добраться до границы уже известного и постараться постичь еще более значительные формы, которые Бог предписал нашему миру. В отрочестве Эйнштейн пережил период напряженной религиозности, хотя ко времени учебы в средней школе Аарау буквалистская вера его покинула. Однако стремление понять самые глубокие основы осталось при нем, как и уверенность в том, что, сумев добраться до них, ты увидишь нечто величественное. Существовала ожидающая нас «ниша», в которой все объяснялось умопостижимым, рациональным образом. Одно время ее заполняла религия. Однако не составляло труда расширить эту нишу так, чтобы она вместила и науку. Эйнштейн питал сильную веру в то, что ответы существуют, что они лишь ждут, когда их обнаружат.

Помогало и то, что у Эйнштейна имелась возможность заниматься развитием своих идей. Работа в патентном бюро означала, что у него отсутствует необходимость печь как блины научные статьи («соблазн поверхностности, — писал Эйнштейн, — противиться которому способны лишь сильные люди»), что он может заниматься своими идеями столько времени, сколько ему потребуется. И самое главное, в него верила семья, а это очень сильное подспорье для веры в себя, — к тому же, родные подбодряли Эйнштейна шутливо и словно бы между делом. Именно это и требовалось, чтобы «сделать шаг назад» от привычных допущений и представить себе такие странные вещи, как космический корабль, пытающийся пробиться сквозь световой барьер, или человека, который гонится за улепетывающим от него лучом света.

Впоследствии его сестра Майя сумела снабдить нас представлениями о принятой в их семье манере подшучивать над собой. В детском возрасте, вспоминала она, Эйнштейн имел обыкновение, разозлившись на сестру, кидаться в нее первым, что попадалось под руку. Однажды он запустил в нее шаром для боулинга, в другой раз «попытался пробить дырку» в ее голове детской мотыгой. «Этого довольно, чтобы показать нам, — писала Майя, — какой крепкий череп надлежит иметь сестре интеллектуала». А рассказав о школьном преподаватели греческого языка, уверявшем, что ничего путного из ее брата не выйдет, она прибавила: «И действительно, пост профессора греческой грамматики Альберт Эйнштейн получить так и не смог».

Для всякого продвижения вперед необходимы движущие силы, серьезные переживания, а они у Эйнштейна имелись в достатке. На третьем десятке лет он потерпел неудачу, оказавшись изолированным от других серьезных ученых, между тем как его университетские друзья делали успешные карьеры. Кроме того, им владело острое чувство вины, связанное с деловыми неудачами отца. В детские годы Эйнштейна отец владел в Мюнхене довольно успешной электротехнической компанией, однако уже к поре его юности отцу пришлось перебраться вместе с семьей в Италию — возможно, потому, что еврейские фирмы перестали получать серьезные заказы, — и попытаться начать все заново. Этот переезд и череда почти успешных, но успеха все же не принесших начинаний истощили средства семьи, тем более что отцу приходилось выплачивать долг своему зятю, постоянно досаждавшему ему дяде Рудольфу («Богатею», как насмешливо называл его Эйнштейн). Все это подорвало здоровье отца, а между тем, семья считала необходимым изыскивать средства, которые помогли бы Эйнштейну получить хорошее образование. («Его подавляет мысль, что он является бременем для нас, людей со скромными средствами…» — отметил отец Эйнштейна в своем датированном 1901 годом письме.) Эйнштейн считал себя обязанным доказать, что достоин всего, ради него сделанного.

С течением времени некоторые из физиков начали присматриваться к работам Эйнштейна, иногда эти люди приезжали в Берн, чтобы побеседовать с ним о его уравнении и иных результатах. Происходило именно то, на что надеялись Эйнштейн и Бессо, однако оно означало также, что пути их начинают расходиться. Ибо Эйнштейн постепенно углублялся в мир идей, в который его лучший друг последовать за ним не мог. Бессо был умен, но он избрал для себя жизнь в мире промышленности. («Я часто уговариваю его стать [университетским преподавателем], но сомневаюсь, что… он это сделает. Ему просто не хочется».) На новый уровень последовать за ним Бессо был не способен.

Он обожал своего младшего друга и делал все, чтобы помочь Эйнштейну, когда тот еще был студентом. Он даже старался — в те вечера, которые они проводили за кружкой пива, сосисками и чаем, — усвоить новые идеи друга. Сам Эйнштейн относился к друзьям, от которых он уходил все дальше, по-доброму. Он ни разу не сказал Бессо, что тот ему больше не интересен. Они продолжали отправляться на загородные прогулки, заходить в пивные, участвовать в музыкальных вечерах и дружеских розыгрышах. И все же, эти двое походили на старых школьных друзей, связь между которыми прерывается, когда они поступают на разные факультеты университета или получают по его окончании первую работу. Каждому хочется, чтобы все складывалось иначе, однако у каждого появляются новые интересы, отдаляющие их друг от друга. Они еще могут разговаривать о прежних временах, когда все делали вместе, однако энтузиазм их натужен, хотя ни один из них признаться в этом не хочет.

Подобное же отдаление произошло и между Эйнштейном и его женой, Милевой. В университете она вместе с ним изучала физику да и вообще была очень умна. Мужчины, занимающиеся наукой, редко женятся на коллегах — много ли таких насчитаешь? — и Эйнштейн едва ли не хвастался перед университетскими друзьями тем, как ему повезло. Первое его письмо к Милеве было сдержанным:

Цюрих, среда [16 февраля 1898]

Хочу рассказать тебе о том, чем мы занимаемся… Гурвиц читает нам лекции о дифференциальных уравнениях (за исключением уравнений в частных производных), а также о рядах Фурье…

Однако отношения их, как показывают выдержки из писем, писавшихся в августе и сентябре 1900-го, развивались:

Перед моими сонными глазами снова проплыли несколько пустых, скучных дней — знаешь, из тех, в какие встаешь поздно, потому что ни думать ни о чем, ни сделать ничего толкового не можешь, и идешь прогуляться, пока твою комнату приводят в порядок… А потом слоняешься без дела, малодушно дожидаясь обеда…

Однако все меняется, нас ожидает чудеснейшая в мире жизнь. Прекрасная работа, мы с тобой вместе…

Не грусти, возлюбленная моя. Нежно целую тебя, твой

Альберт

Совместная их жизнь начиналась счастливо. Подняться до его уровня жена не могла, однако студенткой была хорошей — на выпускных экзаменах, где Эйнштейн набрал 4,96 балла, она подошла близко к нему, получив 4,0 — и следить за его дальнейшей работой определенно была в состоянии. (Миф о том, что именно благодаря ей была написана одна из ключевых работ Эйнштейна, произрастает из сербской националистической пропаганды 1960-х и связан с тем, что семья Милевы изначально проживала под Белградом.) Но затем у них появились дети, а доход семьи был так низок, что они могли позволить себе лишь приходящую служанку, — и за этим последовала традиционная дискриминация женщины. Когда к ним приходили в гости высокообразованные друзья, жена Эйнштейна старалась составлять им компанию, однако делать это, держа на коленях постоянно требующего внимания трехлетнего сына, занятие не из простых. Ты хочешь принимать участие в разговорах, но постоянно отвлекаешься на то, чтобы найти нужные игрушки, нарисовать сыну картинку, убрать разбросанную им еду и, в конце-концов, гости перестают прерывать беседу, чтобы посвятить тебя в то, что ты пропустила. Тебя больше не берут в расчет.

Когда в 1909 году Эйнштейн покинул патентное бюро, его начальник так не смог понять, почему этот молодой человек бросает такую хорошую карьеру. Ему все же предложили место в системе университетов Швейцарии, а затем, проработав некоторое время в Праге, — где он музицировал и участвовал в беседах гостей салона, который время от времени посещал стеснительный молодой человек по имени Франц Кафка, — Эйнштейн получил профессорский пост в Берлине. И этот успех почти полностью изолировал его от прежних бернских друзей. Он также официально разошелся с женой и лишь время от времени навещал ее, чтобы повидаться с двумя своими детьми, которых обожал.

К этому времени работа его приняла новое направление. Уравнение E=mc2 было лишь малой частью всей специальной теории относительности. В 1915 году Эйнштейн занимался совершенствованием теории еще более величественной, столь мощной, что теперь уже специальная теория относительности составляла лишь малую ее часть. (В «Эпилоге» приводятся некоторые сведения об этом труде 1915 года — «В сравнении с этой проблемой, исходная теория относительности — просто детская игра»). Эйнштейну еще предстояло вновь обратиться к своему уравнению — ненадолго, — но уже в гораздо более зрелые годы.

И здесь рассказываемая нами история совершает крутой поворот. Начальная теоретическая разработка уравнения завершилась, персональный вклад Эйнштейна в то, о чем идет наш рассказ, постепенно начинает сходить на нет. Физики Европы согласились с истинностью E=mc2: с тем, что вещество можно, в принципе, подвергнуть преобразованию, которое позволит извлечь «замороженную» в нем энергию. Однако как этого добиться, никто по-настоящему не знал.

Правда, один намек на это имелся. Его давали странные объекты, исследованием которых занимались Мария Кюри и другие: такие тяжелые металлы, как радий и уран, а также другие вещества, способные непонятным образом неделю за неделей и месяц за месяцем источать энергию, никогда не исчерпывая ее «скрытый» в них источник.

Теперь изучать происходящее с ними начали многие лаборатории. Однако для того, чтобы обнаружить механизмы, создающие эти огромные выбросы энергии, недостаточно было продолжать смотреть лишь на поверхность вещей, просто заниматься измерением веса, окраски или внешних химических свойств загадочно теплых радия или урана.

Нет, ученым следовало пойти внутрь, в самое сердце этих веществ. Это, в конечном счете, и показало им, как подобраться к энергии, обещанной уравнением E=mc2. Но что же обнаружили они, вглядываясь в мельчайшие внутренние структуры обычного вещества?

 

Глава 8. Внутри атома

Университетских студентов 1900 года учили тому, что обычное вещество — то, из которого состоят кирпичи, сталь, уран и все прочее, — и само состоит из мельчайших частиц, именуемых атомами. Однако, из чего состоят атомы, этого не знал никто. Общее мнение сводилось к тому, что они подобны сплошным, блестящим шарикам, вроде тех, которые крутятся в шарикоподшипниках, — что атомы это такие посверкивающие сущности, заглянуть внутрь которых невозможно. И только в 1901 году, благодаря исследованиям Эрнеста Резерфорда, рослого мужчины с медвежьим басом, работавшего в Манчестерском университете, об атомах возникли представления более ясные.

Резерфорд оказался в Манчестере, а не в Оксфорде и не в Кембридже, не потому, что происходил из провинциальной Новой Зеландии и говорил с акцентом простолюдина. Ученому, умеющему держаться достаточно скромно, такие недостатки легко прощают. Проблема состояла, скорее, в том, что, еще обучаясь в Кембридже, Резерфорд показал себя не способным почтительно относиться к старшим. А как-то раз он и вовсе выступил с предложением создать совместное предприятие, которое торговало бы одним из его изобретений, и это предложение было приравнено к смертному греху. И однако же, причина, по которой он оказался ученым, впервые сумевшим заглянуть внутрь атома, состояла, в значительной мере, в том, что Резерфорд был человеком, хорошо понимавшим, что такое дискриминация, и это понимание сделало его одним из самых мягких руководителей, какие только встречаются на свете. Его громогласность была не более чем камуфляжем. Резерфорд умел воспитывать толковых помощников — одним из главных его экспериментов руководил молодой человек, в конечном итоге доведший до совершенства чрезвычайно полезный портативный детектор радиации, устройство которого было придумано самим Резерфордом: издающий громкие щелчки счетчик, коему обязан своей славой Ханс Гейгер.

Совершенное ими открытие описывается в современных школах так часто, что нам уже трудно представить себе, насколько неожиданным оно оказалось. Резерфорд обнаружил следующее: сплошные непроницаемые атомы на самом деле почти полностью пусты. Представьте себе, что метеор падает в Атлантический океан и вместо того, чтобы так в нем и остаться, ударившись, в конце концов, об океанское дно, с громовым ревом вылетает назад. Подумайте о том, как трудно преодолеть устоявшиеся представления и понять: единственное объяснение происшедшего состоит в том, что никакой воды под поверхностью Атлантического океана на самом-то деле нет. Напротив, — по аналогии с тем, что обнаружил Резерфорд, — поверхность океана это лишь тонкая пленка жидкости, а под ней, там, где, как мы всегда полагали, плещут глубинные волны, струятся течения и вообще находятся тонны воды, там… пусто.

Ничего, кроме пустого воздуха, там нет и, если бы в нем находилась телекамера, она показала бы нам, как метеор, пробив внешнюю пленку, падает в пустом пространстве. И только на самом дне океана находится некое мощное, чрезвычайно компактное устройство, которое способно схватить падающий метеор и швырнуть его назад, в открытое пространство. Примерно так же выглядит атом с его укрытым в самом центре ядром. Лишь вблизи внешней оболочки атома мечутся электроны, участвующие в обычных реакциях, таких как сгорание куска дерева в огне. Однако от центрального ядра атома, мерцающего в самой глубине совершенно пустого пространства, они далеки.

Если мы снова уподобим атомы шарикам, из которых состоит подшипник, то можно будет сказать следующее: Резерфорд обнаружил, что шарики эти почти полностью полые. Только в самой середке их кроется крошечная песчинка, именуемая ядром. Открытие неутешительное — оказывается, атомы состоят по преимуществу из пустоты! — однако само по себе оно ничуть не объясняет, какое отношение имеет к такому атому уравнение E=mc2. «Сплошные» электроны, образующие внешнюю оболочку атома, не имеют ни малейшего намерения избавляться от своего материального существования и обращаться в вырывающиеся наружу потоки энергии.

Стало совершенно ясно, что теперь ученым надлежит заняться именно ядрами. Атомы содержат изрядное количество электричества, и если половина его распределяется по орбитам этих самых электронов, другая втиснута в сверхплотное центральное ядро. Способа, который позволял бы удерживать столь большой заряд в столь малом объеме, никто не знал. И все же там, в ядре атома, присутствовало нечто, способное запихать в ядро весь этот заряд и удерживать его, не давая извернуться и выскочить наружу. Атом был складским хранилищем скрытой энергии, на существование которой указывало уравнение Эйнштейна. В нем находились положительно заряженные частицы, которые мы называем протонами, — однако выяснить какие-либо относящиеся к ним подробности не удавалось никому.

В конце концов, ассистент Резерфорда Джеймс Чедвик все же сумел получить картину более ясную, — это произошло в 1932 году, когда он открыл еще одну скрывавшуюся в ядре частицу. Ею был нейтрон, получивший такое название потому, что он, походя размерами на протон, был электрически совершенно нейтральным. На то, чтобы обнаружить его, у Чедвика ушло больше пятнадцати лет. В какой-то момент проводимых Чедвиком исследований его студенты даже поставили пьесу, в которой рассказывалась о поисках этой частицы, обладающей столь малым числом свойств, что они в шутку прозвали ее «малотроном». Однако на того, кто провел годы рядом с громогласным и нетерпеливым Резерфордом, студенческие шутки большого впечатления произвести не могли. Чедвик был человеком тихим, однако к цели своей шел решительно и неуклонно.

Он вырос в трущобах Манчестера, а профессиональная его карьера едва не оборвалась в самом начале. Защитив у Резерфорда диссертацию, Чедвик перебрался в Берлин, чтобы заняться исследованиями в лаборатории вернувшегося туда Ханса Гейгера. Когда же началась Первая мировая война, Чедвик смиренно последовал совету местного представительства компании Томаса Кука, уверявшего, что с отъездом из Германии можно не спешить. В итоге, он провел четыре года как военнопленный — запертым в переоборудованных под лагерь конюшнях холодного и продуваемого всеми ветрами потсдамского ипподрома. Чедвик пытался проводить исследования и здесь, он даже сумел раздобыть радиоактивные препараты. В распоряжении компании «Берлин Ауэр» оказались запасы тория, который она предлагала немецкой публике в составе зубной пасты, заставлявшей зубы сиять белизной. Чедвик просто заказывал через охранников этот чудотворный отбеливатель и использовал его в своих опытах. Однако оборудование у него было до того скудное, что никаких серьезных результатов ему получить не удалось. Он отставал от хода науки и, вернувшись в Англию в ноябре 1918-го — по окончании войны, — с трудом наверстал упущенное. И больше уже никогда ничьим советам не следовал.

Теоретически, открытие, совершенное Чедвиком в 1932 году, должно было немедленно привести к другим, новым открытиям. Множество радиоактивных веществ испускало нейтроны, которыми можно было обстреливать, как из пулемета, ожидавшие их атомы. Поскольку нейтроны не имели электрического заряда, отрицательно заряженные электроны, образующие оболочку атомов, никак на них не воздействовали. Да и достигая ядра, они не встречали препятствий со стороны зарядов положительных. Ничто не мешало им проникать внутрь ядра. И стало быть, существовала возможность использовать нейтроны, как зонды, позволяющие понять, что там, внутри, происходит.

Однако, к большому разочарованию Чедвика, выяснить это ему так и не удалось. Чем старательнее обстреливал он ядро нейтронами, тем с меньшим успехом ему удавалось проникнуть внутрь их. Только в 1934-м другой исследователь сумел обойти эту проблему, добиться того, чтобы нейтроны с легкостью проникали в ядро, и поосновательнее разобраться в его структуре. Причем исследователь этот работал далеко не в лучшей научной лаборатории мира, а в таком месте, где подобного результата и ожидать-то не приходилось.

Рим, в котором жил Энрико Ферми, хранил воспоминания о своем величии, однако за десятилетия, предшествовавшие 1930-м, он все сильнее и сильнее отставал от остальной Европы. Лаборатория, которую правительство Италии выделило считавшемуся одним из ведущих европейских физиков Ферми, находилась на окраинной улочке, посреди большого парка. Потолки ее были плиточными, полки — мраморными, а за зданием лаборатории росли вокруг пруда с золотыми рыбками миндальные деревья. Для человека, желавшего удалиться от основного русла европейской мысли, место это было попросту идеальным.

В таком-то тихом уединении Ферми и обнаружил, что другие группы исследователей, стремившиеся обстреливать крошечное ядро обладавшими все большей и большей энергией нейтронами, дабы те смогли проникнуть в него, шли неверным путем. Забрасывая быстрыми нейтронами огромное пустое пространство атома, можно добиться лишь того, что они будут попросту проскакивать сквозь него. Хороший шанс попасть внутрь ядра имеют только нейтроны, подлетающие к нему так медленно, что они почти уж и не движутся. Медленные нейтроны ведут себя, как клейкие пули. А причина, по которой они словно бы липнут к ядру, состоит в том, что при относительно медленном движении нейтроны «размазываются» в пространстве. И даже если основное их тело пролетает мимо ядра, периферийные участки все еще сохраняют способность это ядро зацепить.

В те послеполуденные часы, в которые Ферми понял, что ему нужны медленные нейтроны, его ассистенты притащили в лабораторию ведра, наполненные водой из пруда с золотыми рыбками. И пропустили сквозь эту воду быстрые нейтроны, которые испускал обычно использовавшийся ими источник радиоактивности. Молекулы воды так велики, что оказавшиеся в ней нейтроны ударяются о них, отражаясь назад и вперед и теряя скорость. И когда нейтроны, наконец, покидают воду, они уже движутся настолько медленно, что оказываются способными проникать в ожидающие их ядра.

Придуманный Ферми фокус дал исследователям подобие зонда, способного проникать внутрь ядра. Однако получить полную ясность не позволил и он. Что, собственно, происходило, когда замедленный нейтрон попадал внутрь ядра? Получить всю ту энергию, о которой говорило уравнение Эйнштейна, при этом так и не удавалось. Удавалось всего лишь слегка изменять форму ядра, заставляя его испускать малую толику энергии. Это позволяло получать меченные атомы, которые человек глотал и которые давали затем возможность посмотреть, что происходит у него внутри. Одним из первых, кто использовал такие атомы, был Дьердь де Хевеши, доказавший с их помощью, что «свежее» мясо, подававшееся ему хозяйкой манчестерского пансионата, в котором он жил, было не таким уж и свежим, — приготовленное однажды, оно затем выкладывалось каждый день на действительно свежую тарелку, пока постояльцы не съедали весь его запас. И все же, небольшая энергия, излучаемая веществом, которое можно было глотать без всякого вреда для здоровья, была вовсе не тем, что обещало колоссальное с2.

Должно было существовать какое-то иное объяснение происходящего, новый уровень детализации, подобраться к которому физикам пока не удавалось. Атомы были не сплошными массивными шариками, но, скорее, почти пустыми сферами, подобными океанскому бассейну, из которого выкачана вся вода, за исключением поверхностной его оболочки, и обладающими крошечной сплошной сердцевиной. Это показал Резерфорд. Впрочем и сердцевина их сплошной не была. Она содержала протоны, в которых потрескивали положительные электрические заряды, и плотно упакованные вместе с ними камушки — нейтроны. Это стало ясным в 1932 году. Нейтроны могли легко покидать ядра и так же легко проникать в них, — чтобы добиться последнего следовало лишь проделать довольно неожиданный фокус: замедлить посылаемые в ядро нейтроны. Это было показано Ферми в 1934-м. После чего все на несколько лет застопорилось.

 

Глава 9. Среди безмолвия полуденных снегов

Понимание того, что происходит внутри ядра, — а с ним и открытие более глубоких механизмов поведения вещества, которое позволило, наконец, подобраться к энергии, обещанной формулой E=mc2, — было достигнуто только в 1938 году. И достигнуто оно было одинокой шестидесятилетней австрийкой, застрявшей на окраине Европы — в Стокгольме, даром, что по-шведски она и говорить-то не умела.

«Я оказалась здесь… — писала она, — в положении, которое не дает мне никаких прав. Постарайтесь представить, как бы вы чувствовали себя, если бы… вам выделили в институте комнату, которой вы не можете распоряжаться, лишив вас какой бы то ни было помощи и каких бы то ни было прав…».

Перемена была удручающая, поскольку всего за несколько месяцев до нее Лизе Майтнер считалась одним из ведущих ученых Германии, — «нашей мадам Кюри», как назвал ее Эйнштейн. В Берлине она появилась в 1907-м, — приехавшей из Австрии невообразимо застенчивой студенткой. Однако она боролась со своей замкнутостью и вскоре подружилась с учившимся в том же, что она, университете на редкость красивым студентом по имени Отто Ган. Человеком он был легким, уверенным в себе, говорил с франкфуртским акцентом, который сам же и вышучивал, и, казалось, считал своей обязанностью сделать все, чтобы эта тихая, только что появившаяся в Берлине студентка чувствовала себя здесь как дома.

Вскоре эти двое уже делили лабораторию, находившуюся в подвале здания химического факультета. Они были почти одногодками, обоим было под тридцать. Он уговорил ее петь вместе с ним написанные для двух голос песни Брамса, и она делала это, хоть и часто фальшивила. Когда их общая работа шла особенно хорошо, писала она, «[Ган] насвистывал большие куски скрипичного концерта Бетховена, временами нарочно меняя ритм последней темы, чтобы повеселиться, слушая мои протесты…». Неподалеку находился институт физики, и другие молодые ученые «часто навещали нас, временами пролезая, вместо того, чтобы идти обычным путем, через окно столярной мастерской». По окончании работы Майтнер оставалась в одиночестве, — жила в поочередно снимаемых ею комнатах на одного человека, ходила на концерты, покупая билеты на самые дешевые места для студентов. Общество других людей она находила лишь в лаборатории.

Аналитиком и теоретиком она была намного лучшим, чем Ган, однако ему хватило ума — и рассудительности, — чтобы понять: это может принести ему только пользу. Он всегда умел находить для себя великолепных наставников. Первые открытия, совместно сделанные Майтнер и Ганом, привели к тому, что они получили большую лабораторию в новом институте кайзера Вильгельма, расположенном на западной окраине тогдашнего Берлина. Вблизи от института еще стояли деревенские ветряные мельницы, чуть дальше к западу начинался лес. Они получили известность как серьезная и надежная команда исследователей, помогавшая выстраивать основные и совершенно необходимые знания о том, что представляют собой атомы; и открытия их вскоре стали считать такими же значительными, как те, что делал в Англии Резерфорд.

Все это время она и Ган выдерживали в своих отношениях тон внешне официальный, старательно избегая неформального «ты». Во всех письмах Майтнер он именовался так: «Дорогой герр Ган». Однако их могли связывать и отношения особые, ни разу не упоминавшееся ими понимание того, что такая полная достоинства официальность предохраняет их от вступления в связь более серьезную.

В 1912-м, когда Майтнер было тридцать четыре, а совместная работа их продолжалась уже четыре года, Ган женился на молодой студентке отделения гуманитарных наук. Майтнер говорила всем, что ее это нисколько не волнует. Однако, хоть Майтнер никогда не встречалась с Ганом открыто, она не встречалась ни с кем и во все последующие годы. Майтнер дружила с еще одним молодым коллегой, Джеймсом Франком, связь с ним она продолжала поддерживать более полувека — и после того как он женился, и после того как ему пришлось уехать из Германии в далекую Америку. «Я в вас влюбился», — шутливо писал ей Франк, когда им обоим было уже за восемьдесят. «Spät! (Опоздали!)» — весело отвечала Лизе.

Во время Первой мировой войны Майтнер добровольно работала в госпиталях, в том числе и в самых страшных, находившихся вблизи восточного фронта, а Ган выполнял задания военного ведомства. Проблем нравственного порядка, связанных с тем, что он занимался отравляющими газами, ни у него, ни у нее, похоже, не возникало. Она регулярно писала ему, передавая последние институтские слухи, рассказывая о поездках к морю с женой Гана и, время от времени, описывая, очень смягченно, свою работу в госпитале. Времени для научных исследований у нее оставалось мало: «Дорогой герр Ган!.. Прежде, чем читать дальше, наберите побольше воздуха в грудь… Я хотела закончить некоторые измерения, чтобы получить возможность… рассказать Вам о множестве очень интересных вещей».

Майтнер удалось заполнить один из последних пробелов, еще остававшийся в периодической системе элементов. Эту работу она выполнила самостоятельно, однако указала в качестве ее автора и Гана и настояла, чтобы редакция «Physikalische Zeitschrift» поставила его фамилию первой. В пору их военной разлуки она не настаивала на том, чтобы Ган отвечал на ее письма, хотя время от времени потребность в этом прорывалась наружу: «Дорогой герр Ган!.. Будьте добры, пишите — хотя бы о радиоактивности. Впрочем, я помню один случай, теперь уже давний, в котором вы прислали мне пару строк, упоминаний о радиоактивности не содержавших».

Вскоре после войны они разошлись по разным лабораториям. В середине 1920-х Майтнер уже возглавляла отдел теоретической физики в химическом институте кайзера Вильгельма. Внешне она оставалась все такой же застенчивой, однако обрела уверенность в силе своего ума и на самых почтенных теоретических семинарах неизменно садилась в первом ряду — рядом с Эйнштейном или великим Максом Планком. Ган сознавал, что за ее исследованиями ему не угнаться и потому ограничился занятиями более традиционной химией. Однако, когда в 1934 году Ферми показал, что нейтрон можно использовать в качестве идеального инструмента изучения атомного ядра, Майтнер снова сменила направление работы, приступив к исследованию его свойств. Помимо прочего, это означало, что она могла привлечь к своей работе и Гана, поскольку при изучении новых, возникавших в ходе таких исследований веществ всегда требовались химики.

В 1934-м они снова начали работать вместе, взяв в помощники недавнего докторанта Фрица Штрасмана. Гитлер пришел к власти в 1933-м, но, хоть Майтнер и была еврейкой, это не привело к ее немедленному изгнанию из Берлинского университета, поскольку она все еще оставалась австрийской гражданкой. У институтов кайзера Вильгельма имелись собственные источники финансирования, и тот, в котором работала Майтнер, был только рад платить ей как своей полноправной штатной сотруднице.

Когда же в 1938-м Германия захватила Австрию, Майтнер автоматически обратилась в немецкую гражданку. Институт еще мог удержать ее, однако это в большой степени зависело от того, что скажут ее коллеги. Один из них, химик-органик по имени Курт Гесс, долгое время занимал в институте маленький кабинет. Ученым Гесс был незначительным, его переполняла зависть, и он одним из первых в институте стал активным нацистом. «Евреи представляют опасность для нашего института» — начал нашептывать он всем, кто желал его слушать. Майтнер узнала об этом от одного из своих бывших студентов, который остался преданным ей. Она поговорила с Ганом. Ган направился прямиком к Генриху Горлейну, казначею организации, финансировавшей институт химии кайзера Вильгельма.

И попросил Горлейна избавиться от Майтнер.

Сказать о человеке, что он очарователен, — а Ган оставался очаровательным всю свою жизнь, — значит сказать лишь, что человек этот развил в себе рефлекторную способность делать то, что не доставляет беспокойства окружающим. Такое утверждение ничего не говорит о наличии у него более основательного нравственного компаса. То, как он поступил с Майтнер, бывшей его давним коллегой, могло отчасти тревожить совесть Гана: «Лизе чувствует себя очень несчастной из-за того, что я покинул ее в беде». Однако и другие немецкие физики выполняли все приказы правительства, к тому же, у власти теперь пребывали многие из прежних пронацистски настроенных студентов Гана. Именно они, — а не Майтнер, — были людьми, с которыми ему предстояло сотрудничать все более тесно, людьми, которым следовало угождать.

Он немного помог ей с отъездом из страны, неясно, впрочем, заметила ли эту помощь потрясенная происшедшим Майтнер: «Ган говорит, что мне больше не следует появляться в институте. По сути дела, он выгнал меня».

К августу 1938-го, когда Майтнер обосновалась в Стокгольме, она уже никому не рассказывала о поступке Гана. Вместо этого она почти рефлекторно сохраняла, пусть и на расстоянии, причастность к работе, которую прежде возглавляла. В ходе этой работы Майтнер с помощью Штрасмана и Гана обстреливала потоками медленных нейтронов уран, самый тяжелый из всех, встречающихся в природных условиях элементов. Поскольку нейтроны проникали в ядра атомов и застревали в них, все ожидали, что в результате будет возникать некое новое вещество, еще более тяжелое, чем уран. Однако, сколько усилий ни прилагала Майтнер и иные берлинские исследователи, с ясностью определить, что за новые вещества они создают, им не удавалось.

Ган, как и всегда, понял, что происходит, позже всех. В ноябре Майтнер встретилась с ним в нейтральном Копенгагене и, после того, как он признался, что ничего не понимает, отправила его обратно в Берлин с ясными инструкциями о постановке новых опытов. Ему всего лишь следует использовать наиболее качественные источники нейтронов, а также собранные ею счетчики и усилители, которые так и стояли в их лаборатории — там, где она их оставила. Обмен письмами между Стокгольмом и Берлином происходил настолько быстро, что Майтнер удавалось даже обговаривать с Ганом очередные шаги эксперимента. «Мнения и суждения Майтнер были для нас, работавших в Берлине, настолько весомыми, — вспоминал впоследствии Штрасман, — что мы немедленно приступили к постановке необходимых… опытов». Какую бы глубокую обиду ни питала Майтнер, она, по крайней мере, могла продолжать работу, на которую годами было направлено все ее внимание.

Она предложила тщательно присмотреться к тем разновидностям радия, которые могут возникать в процессе продолжительной бомбардировки урана. (Радий это металл, атомное ядро которого имеет почти такой же вес, как у урана. Оба ядра до того набиты нейтронами, что регулярно испускают излучение.) На этом этапе исследований предложение Майтнер было результатом всего лишь интуитивной догадки, основанной на сходстве двух металлов и том обстоятельстве, что в рудниках их нередко находят рядом друг с другом.

Однако догадка ее означала, что удастся, наконец, обнаружить и явные эффекты, обещанные уравнением E=mc2.

Вечер понедельника, в лаборатории:

Дорогая Лизе!

…В «изотопах радия» присутствует нечто столь замечательное, что пока мы можем рассказать о них только Вам… Возможно, Вам удастся предложить какое-нибудь фантастическое объяснение происходящего… Если Вы сможете придумать нечто достойное публикации, это все же будет, в некотором смысле, результатом работы нас троих!

Отто Ган

В своих опытах они использовали в качестве вязкого вещества заурядный барий, позволяющий перехватывать фрагменты перегруженного нейтронами радия. После того, как барий делал свое дело, его собирали с помощью кислот, а затем вымывали из раствора. Проблема состояла, однако, в том, что Гану не удавалось разделить его. Некоторая часть остаточного бария содержала, судя по всему, приставшие к нему крошечные кусочки чего-то радиоактивного.

И Ган, и Штрасман зашли в тупик. «Интеллектуальным руководителем нашей группы была Майтнер» — писал Штрасман. Однако теперь ее с ними не было. Спустя два дня Ган снова обратился к ней: «Сами понимаете, Вы сделаете доброе дело, если найдете выход из этого тупика». Что делать дальше, они не знали. Попытаться объяснить странные результаты — почему простой барий никакого излучения не дает? — должна была Майтнер.

Время шло к Рождеству, и одна супружеская чета, знавшая, как одинока Майтнер в Стокгольме, пригласила ее составить им компанию — провести рождественские каникулы на западном побережье Швеции, в гостинице, находившейся под Кунгэльвом деревни. А в Копенгагене жил в это время племянник Майтнер, Роберт Фриш, которого она всегда любила — по предложению Майтнер супруги пригласили и его.

С племянником Майтнер по-настоящему познакомилась лет десять назад, когда он был еще полным энтузиазма берлинским студентом. Они часто играли в четыре руки на пианино, даром, что Майтнер с трудом выдерживала темп. (Allegro ma non tanto они шутливо переводили: «Быстро, но не как тетя».)

Теперь Роберт обратился во взрослого человека, многообещающего физика, работавшего в Дании, в институте Нильса Бора. В первый день он, приехавший очень поздно, обсуждать научные темы был не в состоянии. А наутро, спустившись на первый этаж, в ресторан гостиницы, он обнаружил там свою тетушку, размышлявшую над письмом Гана. Барий, который использовался в Берлине, демонстрировал столь устойчивые радиоактивные свойства, излучал такую энергию, что и она, и берлинские исследователи поневоле задумались, почему это происходит. Может быть, радиоактивные свойства каким-то образом возникали именно в ходе экспериментов, которые ставились в Берлине?

Фриш высказал предположение, что дело всего лишь в ошибке, которая вкралась в эксперимент Гана, однако тетушка просто отмахнулась от него. Гениальностью Ган, конечно, не отличался, однако химиком был хорошим. Ошибки совершаются в других лабораториях. Но не в ее. Фриш не стал настаивать на своем. Он понимал, что тетушка права.

Пока Фриш завтракал, они сидели за столиком ресторана, разговаривая. Объяснить результаты эксперимента, который Майтнер предложила поставить берлинской группе, можно было тем, что атом урана каким-то образом разваливался на две половины. Размер ядра бария составляет примерно половину размера ядра урана. Что если радиоактивный барий, который был обнаружен в берлинских экспериментах, это просто половинки атомов урана, возникшие при таком распаде? Однако из всех результатов, полученных ядерной физикой, — из работ Резерфорда и других — следовало, что это невозможно. Ядро урана состоит примерно из двухсот частиц, протонов и нейтронов. Все они удерживаются друг рядом с другом тем, что известно как сильное ядерное взаимодействие, — своего рода исключительно мощным ядерным клеем. Как же может один-единственный проникающий в ядро нейтрон разрушить такие связи и оторвать от ядра здоровенный кусок? Нельзя же, запустив камушком в огромный валун, ожидать, что валун расколется надвое.

Покончив с завтраком, они отправились на прогулку по снегу. Их отель стоял невдалеке от леса. Фриш надел лыжи, предложил тетушке другие, однако она это предложение отклонила («Лизе Майтнер заявила, — писал впоследствии Фриш, — что она и без лыж сможет передвигаться с не меньшей скоростью».)

До сих пор никому не удавалось отколоть от ядра нечто большее, чем мелкий его фрагмент. И Фриш, и Майтнер пребывали в недоумении. Даже если влетавший в ядро нейтрон находил в нем некое слабое место, как удавалось ему одним ударом отрывать от ядра десятки протонов? Ядро отнюдь не похоже на скалу, способную развалиться на две половины. Оно, как предполагалось, должно было сохраняться в целости миллиарды лет.

Но тогда откуда же может исходить энергия, которая вдруг разрывает его надвое?

С Эйнштейном Майтнер познакомилась в 1909 году на происходившей в Зальцбурге конференции. Они были людьми почти одного возраста, однако Эйнштейн уже обладал славой. На той конференции он резюмировал открытия, сделанные им в 1905 году. Мысль о том, что энергия может появляться из исчезающей массы, была «настолько ошеломляюще новой и удивительной, — десятилетия спустя вспоминала Майтнер, — что я и по сей день очень хорошо помню его доклад».

И теперь, гуляя с племянником по снегу, она остановила его близ ствола одного из лесных деревьев, и они начали на пару осмысливать ситуацию. Самая последняя из моделей ядра принадлежала Нильсу Бору, добродушному, спокойному датчанину, у которого работал племянник Майтнер. Бор рассматривал ядро не как твердый металл, набор каким-то образом приваренных один к другому металлических шариков, но, скорее, как каплю жидкости.

Капля воды всегда пребывает на грани распада из-за существующего внутри ее давления. И это давление схоже с электрическим взаимодействием протонов, входящих в состав ядра. Протоны отталкиваются друг от друга (как любые два носителя положительного заряда). Однако капли воды сохраняют, по большей части, целостность благодаря силам поверхностного натяжения, действующим в их тонкой оболочке. Эти силы являются аналогом сильного взаимодействия, которое обеспечивает целостность скопления протонов, несмотря на пытающиеся разорвать его электрические силы.

В ядрах малого размера, каковы ядра углерода или свинца, сильное взаимодействие обладает такой мощью, что содержащееся в них количество электричества, норовящее оттолкнуть протоны друг от друга, оказывается несущественным. В них сильное взаимодействие остается непобедимым. Но не может ли появление дополнительных нейтронов в ядрах больших, и даже огромных, как у урана, привести к нарушению равновесия?

Майтнер и ее племянник не зря были физиками. У них имелись с собой и бумага, и карандаши, и вот в холодном шведском лесу, в самый канун Рождества, они вытащили из карманов и то, и другое и приступили к расчетам. Что если ядро урана велико настолько, и настолько набито нейтронами, отделяющими протоны один от другого, что даже до того, как в него начинают проталкиваться новые нейтроны, ядро это уже пребывает в состоянии не весьма надежном? Что если ядро урана походит на каплю воды, растянутую так сильно, что она того и гляди разорвется? И вот в такое слишком туго набитое ядро проникает еще один полновесный нейтрон.

Майтнер начала рисовать какие-то каракули. Рисовала она примерно так же хорошо, как играла на фортепьяно. Фриш со всевозможной почтительностью отобрал у нее карандаш и принялся сооружать рисунки более опрятные. Один-единственный нейтрон, проникая в ядро, приводит к тому, что оно растягивается посередине. Происходит примерно то же, что с наполненной водой оболочкой воздушного шарика, которую перекручивают посередке. Два конца шарика вспучиваются. Если вам повезет, оболочка шарика не лопнет и вода не вырвется наружу. Но не останавливайтесь. Перекрутите шарик посильнее, а после, когда он совсем растянется, отпустите, чтобы вода рывком вернулась к центру, — и тут же перекрутите в противоположном направлении. Кончится это тем, что шарик все-таки лопнет, и если вы правильно рассчитаете время, вам даже усилий больших прикладывать не придется. Всякий раз, как вода будет возвращаться к центру, старайтесь улучить миг, в который две волны ударятся одна о другую и отразятся, и как раз когда они будут разлетаться с максимальной силой — это примерно то же, что раскачивать качели, — скручивайте шарик, чтобы ускорить новое его растяжение.

Именно это и делают нейтроны, попадая в ядро урана. Причина, по которой Ган никак не мог понять наблюдаемое им явление, состояла в том, что он считал, будто добавление нейтронов лишь делает вещество более тяжелым. На деле же, нейтрон разбивал ядро урана на две половинки.

Это было важнейшее открытие, однако его еще следовало проверить. Начать с того, что Майтнер и ее племянник понимали: теперь электрические заряды протонов получали возможность заставить частицы ядра разлетаться в стороны. В используемых физиками единицах соответствующая энергия составляет примерно 200 МэВ — 200 миллионов электрон-вольт. Фриш и Майтнер подсчитали это значение в уме. Однако следует ли из уравнения, полученного Эйнштейном в 1905 году, что в ядре действительно присутствует количество энергии, способное заставить разлетаться его половинки? О дальнейшем Фриш рассказывает так:

По счастью, [моя тетушка] помнила, как вычисляется масса ядра… и смогла подсчитать, что два ядра, получающиеся в результате деления урана, должны быть легче него примерно на одну пятую массы протона. Но ведь, когда исчезает масса, создается, согласно Эйнштейновской формуле E=mc 2 , энергия…

Хорошо, но какова же величина этой энергии? Одна пятая протона есть частица вещества до нелепого малая. В точке, стоящей над буквой i,протонов содержится больше, чем звезд в нашей галактике. И тем не менее, «исчезновения» одно пятой протона — частицы, которую и увидеть-то никто не способен, — должно хватать на создание 200 МэВ энергии. В Беркли, штат Калифорния, как раз планировали построить электромагнит величиною с дом, способный, когда его зарядят количеством электричества, большим того, что потребляет обычно весь город Беркли, сообщать частице энергию до 100 МэВ. А тут какая-то кроха должна была создать энергию вдвое большую.

Это могло показаться неосуществимым, — если бы не колоссальная величина c2. Мир массы и мир энергии связаны неистово расширяющимся мостом. Для наблюдателя из нашего мира, фрагмент протона, пролетающий мимо дорожного знака «=», трансформируется — растет.

Растет.

Тетя с племянником по пути из Кунгэльва перешли замерзшую реку. Деревня была уже слишком далеко, чтобы они могли слышать шум ее рынка. Майтнер произвела расчет. Впоследствии Фриш вспоминал: «одна пятая массы протона оказалась точным эквивалентом 200 МэВ. Мы получили источник этой энергии, все сошлось одно к одному!».

Атом был вскрыт. До этого времени все ошибались. Путь внутрь атома состоял не в том, чтобы со все большей и большей силой вколачивать в него частицы. Теперь двое людей, пожилая женщина и ее племянник, находившиеся среди безмолвия полуденных снегов, отчетливо поняли это. Для того, чтобы взорвать атом урана, вовсе не нужно было накачивать его энергией. Довольно было нескольких медленных нейтронов, а дальше процесс шел сам собой. Ядро начинало содрогаться, все сильнее и сильнее, пока удерживающее его в целости сильное взаимодействие не подавалось и электрическое поле, крывшееся внутри ядра, не заставляло фрагменты его разлетаться. Взрыв этот питался собственной энергией ядра.

Майтнер и ее племянник считали науку политически нейтральной и потому подготовили свое открытие для публикации. Следовало присвоить ему какое-то название, и Фриш вспомнил о том, как делятся бактерии. Еще находясь в Копенгагене, он как-то спросил американского биолога, приехавшего с визитом в институт Бора, каким английским словом описывается этот процесс. В результате, в их статье появилось слово «деление», описывающее то, что происходит с ядром атома. Тем временем, Ган уже опубликовал полученные им в Берлине результаты — практически не упомянув о Майтнер, — и вскоре начал продлившуюся почти четверть века кампанию, цель которой состояла в том, чтобы доказать: вся честь сделанного открытия принадлежит только ему одному.

Тридцатилетние поиски завершились. За десятилетия, прошедшие после 1905 года, в котором появилось уравнение Эйнштейна, физики показали, как можно взломать атом и извлечь из него сконденсированную, замороженную энергию, о которой говорит формула E=mc2. Они обнаружили ядро, открыли частицу, названную нейтроном и способную легко проникать в ядро и покидать его (особенно если посылать в него нейтроны замедленные), выяснили, что дополнительные нейтроны, внедренные в такие сверхплотные атомы, как атом урана, заставляют их ядра дрожать, ходить ходуном и взрываться.

Майтнер установила: происходит это потому, что существующее внутри ядра мощное электрическое поле, сдерживается подобием пружин или клея, именуемым сильным ядерным взаимодействием. Когда дополнительный нейтрон начинает расшатывать ядро, эти пружины подаются, и внутренние части ядра разлетаются, приобретая огромную энергию. Если взвесить все до и после, оказывается, что разлетающиеся части ядра «весят» меньше, чем бывшее прежде целым ядро. И что именно «исчезнувшая» масса дает энергию, которая обеспечивает высокую скорость их разлета. Ибо на самом деле, никуда эта масса не исчезает. Уравнение Эйнштейна показывает, что она просто проявляет себя в форме энергии, которую c2 увеличивает, в сравнении с массой, почти в 1166400000000000000 раз (в единицах км/час).

Открытие это оказалось зловещим, поскольку теоретически кто угодно мог начать взламывать ядра, эти сердцевины атомов, и получать выбросы огромной энергии. В любую другую эпоху последующие шаги совершались бы медленно и первая атомная бомба появилась бы лишь в 1960-х или 1970-х годах. Но в 1939-м началась самая большая в истории война.

Ас нею началась и гонка, в которой должна была финишировать страна, сумевшая первой получить предсказанную уравнением Эйнштейна энергию.

 

Часть 4. Совершеннолетие

 

Глава 10. На сцену выходит Германия

К 1939 году Эйнштейн уже не был никому не известным молодым человеком, отцу которого приходилось выпрашивать для него работу у лейпцигского профессора. Труды по теории относительности обратили его в самого прославленного из ученых мира. Он стал ведущим профессором Берлина, а когда еврейские погромы и антиеврейская политика сделали пребывание в Германии невозможным, уехал — в 1933 году — в Америку, приняв пост в новом Институте перспективных исследований, который был создан в Принстоне, штат Нью-Джерси.

Когда Эйнштейн узнал о результатах Майтнер и о том, какое развитие получают эти результаты в других исследовательских группах, он направил личное письмо президенту, а коллеги Эйнштейна организовали доставку этого письма непосредственно в Белый дом одним из президентских доверенных лиц.

Ф. Д. Рузвельту,

Президенту Соединенных Штатов,

Белый дом,

Вашингтон, округ Колумбия.

Сэр!

Некоторые недавние работы… которые были сообщены мне в рукописи, заставляют меня ожидать, что уран может быть в ближайшем будущем превращен в новый важный источник энергии. Определенные аспекты возникшей ситуации, по-видимому, требуют особого внимания и, при необходимости, быстрых действий со стороны правительства…

Это новое явление способно привести… к созданию бомб, возможно, — хотя и менее достоверно, — исключительно мощных бомб нового типа. Одна бомба такого типа, доставленная на корабле и взорванная в порту, способна полностью разрушить весь порт и часть прилегающей к нему территории…

Искренне Ваш,

Альберт Эйнштейн

Увы, ответ был таким:

БЕЛЫЙ ДОМ,

ВАШИНГТОН

19 октября 1939

Дорогой профессор!

Я хочу поблагодарить Вас за Ваше недавнее письмо и чрезвычайно интересное и важное приложение к нему.

Я счел эту информацию настолько существенной, что провел посвященное ей совещание… Прошу Вас принять мою искреннюю благодарность.

Искреннейше Ваш,

Франклин Рузвельт.

Даже человек, проведший в Америке, подобно Эйнштейну, лишь несколько лет, понял бы, что «чрезвычайно интересное» это эквивалент резкой отповеди. Президентов постоянно осыпают идеями, никакого практического значения не имеющими. Если присылающий такую идею человек обладает известностью, с ним приходится обходиться повежливее, однако ни ФДР, ни его сотрудники не поверили в бомбу, способную уничтожить целый порт.

Покинув рабочий стол Рузвельта, письмо покочевало по другим столам и, в конце концов, попало в руки Лаймана Дж. Бриггса, благодушного любителя курительных трубок, возглавлявшего в федеральном правительстве «Бюро стандартов». Именно Бриггсу предстояло бы взять на себя всю полноту ответственности за разработку в США атомной бомбы.

В длинной истории назначения тех, кого не следует, на важные посты встречаются эпизоды весьма пикантные, однако этот можно считать одним из самых пикантных. Бриггс попал на государственную службу во время правления Говера Кливленда, в 1897 году, — еще до Испано-Аамериканской войны. Он был человеком прошлого, человеком, который наиболее уютно чувствовал себя в том времени, когда все казалось простым и легким, а Америке ничто не грозило. И желал, чтобы так оно дальше и продолжалось.

В апреле 1940-го находившийся тогда в Англии племянник Майтнер, Роберт Фриш, начал убеждать британские власти в практической возможности создания бомбы. Несколько позже в Вашингтон был срочно направлен содержавший эту новость совершенно секретный меморандум. В то время по всей Европе шли огромные сражения; танковые армии захватывали все новые и новые страны. Однако Лайман Дж. Бриггс был не из тех, кто клюнул бы на подобную удочку. Дурацкий меморандум англичан мог, если бы его кто-нибудь увидел, оказаться по-настоящему опасным. И Бриггс упрятал его в свой сейф.

Немецкие чиновники, даже те из них, что не имели научной подготовки, смотрели на историю совсем иначе. Много ли хорошего видели они в недавнем прошлом? Оно привело лишь к развалу армии в конце Первой мировой войны, к коррупции Веймарской республики, к инфляции, а там и к безработице. Ближайшему будущему надлежало стать другим. Вот почему они питали такую веру в новые дороги, новые автомобили, новые механизмы — и новые завоевания. Гипотезы, зародившиеся в последнее время в научных лабораториях, также обещали нечто новое и мощное. Несколько позже Джозеф Геббельс записал в дневнике: «Я получил доклад о последних разработках в германской науке. Исследования в области атомного разрушения ныне достигли точки, за которой… как нас уверяют, возникает возможность добиться колоссальных разрушений ценой минимальных усилий… Важно, чтобы мы опередили всех…».

Ну а человек, способный добиться этого, у Германии имелся.

Летом 1937 года Вернер Гейзенберг пребывал на вершине блаженства. Он был величайшим после Эйнштейна физиком своего времени, прославившимся работами по квантовой механике создателем принципа неопределенности. К тому же, он только что женился и теперь, дело было в начале июля, возвращался после продолжительного медового месяца в Гамбург, в свой старый семейный дом, где все еще жила его мать и была по-прежнему выставлена на всеобщее обозрение собранная им в отрочестве полутораметровая, снабженная электрическим моторчиком модель линкора. К тому же, Гейзенбергу предстояло произвести не лишенный приятности телефонный звонок, ибо он получил, помимо прочего, предложение занять важный пост на том самом университетском факультете, на котором он, восходящая звезда немецкой науки, почти пятнадцать лет назад защитил докторскую диссертацию. И Гейзенберг позвонил с телефона матери ректору университета.

Гейзенберг имел обыкновение всякий раз, как его что-то радовало, выпрямляться и расправлять плечи, принимая позу настороженного возбуждения. Однако на этот раз порадоваться ему не пришлось — по словам ректора, у него появилась серьезная проблема. Пожилой физик, Иоганн Старк, напечатал в еженедельнике СС статью (неподписанную), в которой говорилось, что Гейзенбергу не хватает патриотизма, что он сотрудничает с евреями, лишен должного немецкого духа и т. д.

Открытые доносы такого рода нередко оказывались предвестием ночного ареста, а затем и отправки в концентрационный лагерь. Гейзенберг был испуган, но также и разгневан. Нашли на кого нападать! Да, все верно, он сотрудничал с еврейскими физиками, но разве у него имелся выбор? Бор, Эйнштейн, великий Вольфганг Паули и многие другие физики были евреями или отчасти евреями. Но Гейзенберг в ходе любых публичных дискуссий неизменно стоял за свою страну, оправдывал действия Гитлера; он всегда оставался верным Германии, отвергая предложения о работе, поступавшие от самых лучших иностранных университетов.

Гейзенберг обратился за помощью к ближайшим друзьям — безрезультатно. Вскоре его вызвали для допроса в подвал штаб-квартиры СС, располагавшейся на берлинской Принц-Альберт-штрассе, — одну из цементированных стен этого подвала украшал издевательский призыв: «Дышите глубоко и спокойно». (Гейзенберга не били, одним из проводивших допрос людей был лейпцигский доктор философии, у которого он принимал когда-то экзамены, однако жена Гейзенберга говорила впоследствии, что страшные сны об этих допросах не давали ему покоя долгие годы.) И когда, наконец, стало ясно: никаких признаков того, что СС от него отстанет, не наблюдается, на помощь Гейзенбергу пришла еще одна его союзница, самая близкая к нему женщина — его мать.

Семья Гейзенбергов принадлежала к образованному среднему классу, как и семья Гиммлеров, а мать Гейзенберга знала мать Генриха Гиммлера еще со времен общей их молодости. В августе госпожа Гейзенберг навестила госпожу Гиммлер в ее маленькой, но очень чистенькой квартире, где перед распятием всегда стояли свежие цветы, и вручила ей длинное письмо сына.

Поначалу госпоже Гиммлер не хотелось беспокоить своего Генриха, однако, как вспоминал впоследствии Гейзенберг, его мать пошла с козырной карты: «Знаете, госпожа Гиммлер, мы, матери, плохо разбираемся в политических взглядах, которых придерживается ваш сын или мой. Однако мы знаем, что должны заботиться о наших мальчиках. Поэтому я к вам и обратилась». Вот этот довод госпоже Гиммлер был более чем понятен.

И письмо сработало.

[Из управления руководителя СС.]

Досточтимый герр профессор Гейзенберг!

Только сегодня у меня появилась возможность ответить на Ваше письмо от 21 июля 1937, в котором вы обращаетесь ко мне в связи со статьей профессора Старка…

Поскольку Вас рекомендовали мои родные, я обязан был расследовать Ваше дело с особой тщательностью и точностью.

Я рад, что могу теперь сообщить Вам о том, что не одобряю этих нападок… и что мной приняты меры к тому, чтобы в дальнейшем они не повторялись.

Надеюсь, что осенью, в ноябре или в декабре, мне удастся увидеться с Вами, и мы сможем обсудить все как мужчина с мужчиной.

С дружескими пожеланиями,

хайль Гилтер!

Ваш, Г. Гиммлер.

P.S. Я считаю, однако, что будет лучше, если в дальнейшем Вы станете, выступая перед Вашей аудиторией, проводить различия между результатами научных исследований и личными, а также политическими взглядами причастных к ним ученых.

P.S. следовало понимать так, что Гейзенберг мог использовать результаты Эйнштейна, касающиеся теории относительности и уравнения E=mc2, но не поддерживать те либеральные или интернационалистские взгляды — проявлявшиеся, к примеру, в выступлениях в защиту Лиги Наций или против расизма, — которых, как было широко известно, придерживались Эйнштейн и иные физики-евреи.

Принять эти условия Гейзенбергу было не так уж и трудно. Подростком он состоял в туристских клубах, члены которых, юные немцы, проводили дни и недели посреди девственной природы, приникая к истинным корням своей нации. Нередко они, сидя вокруг костра, беседовали о мистических героях, о том, как их страна сможет возродиться, обратившись в долгожданный «Третий» Рейх, который поведет за собой — такова была общепринятая фразеология того времени, — прозорливый вождь, или «фюрер». Многие из юношей той поры любовь к этим походам переросли, однако Гейзенберг сохранял ее и на третьем десятке лет, несмотря на насмешливые замечания своих более взрослых или либеральных коллег. Уже став аспирантом, он регулярно покидал семинары, чтобы встретиться с подростками, отправиться с ними в далекий поход и провести, если получится, целую ночь в лесу, а после вернуться назад поездом, позволявшим поспеть на лекцию, начинавшуюся в 9 утра.

Когда в сентябре 1939-го — через месяц после того, как Эйнштейн направил письмо ФДР, — было создано армейское «Бюро вооружений», Гейзенберг одним из первых вызвался оказывать ему любую помощь. Рейх уже вел войну — его артиллерия, пехота, авиация и танки одерживали в Польше одну победу за другой. Впрочем, столкновение с врагом куда более сильным было еще впереди. Гейзенберг всегда был ярым тружеником, однако теперь он превзошел самого себя. Уже в декабре он отправил наверх первую часть обширного доклада, посвященного созданию работоспособной атомной бомбы. В феврале 1940-го им был представлен полный доклад на эту тему и, когда в Берлине создали группу, занявшуюся строительством реактора, Гейзенберг возглавил ее, а поскольку он руководил и работами, проводившимися в его родном Лейпцигском университете, ему пришлось постоянно ездить из одного города в другой и обратно. Большинству людей такая жизнь показалась бы утомительной, однако Гейзенберг пребывал в расцвете сил. Ему шел всего лишь четвертый десяток лет, он регулярно занимался альпинизмом и верховой ездой, плюс каждый год проводил два месяца в расположенном на австрийской границе тренировочном лагере горной пехоты.

Первые опыты были поставлены в Берлине, в обычном обшитом досками доме, стоявшем в лесу — неподалеку от прежнего института Майтнер — под вишнями, которые так обильно цвели теплым и ясным летом 1940 года. Чтобы отпугнуть любопытных, ему дали название «Вирусный дом». Первый шаг Гейзенберга состоял в том, чтобы запастись достаточным количеством урана — намного большим, чем те несколько граммов, которые Майтнер предоставила в распоряжение Гана в 1938 году. Тогда удалось разбить небольшое число атомов. Использовавшийся Ганом образчик урана был настолько тонок, что большая часть испускаемых его атомами нейтронов, просто разлеталась по лаборатории.

Гейзенберг потребовал десятки фунтов урана. Раздобыть его было не трудно, поскольку армия Рейха овладела Чехословакией еще за год до вторжения в Польшу. А именно там, в Иоахимстале, находились крупнейшие в Европе урановые рудники, из которых когда-то получала этот металл сама Мария Кюри. Уран Гейзенбергу доставили. Престиж его был велик настолько, что «Бюро вооружений» организовало для этой цели специальный поезд.

Однако для того, чтобы пошла реакция, мало просто собрать в одном месте большое количество урана. Ибо ядро — это, как мы уже знаем, крошечная частица, сокрытая в глубине пустого пространства атома. Большинство нейтронов, возникших при распаде первых атомов, просто пролетело бы мимо других ядер, точно космические зонды пришельцев, проносящиеся сквозь нашу Солнечную систему.

Придуманный Ферми прием — использование медленных нейтронов — мог помочь разрешить эту проблему и запустить реакцию. Быстрые нейтроны можно представить себе как гладкие, «обтекаемые». Медленные же, как мы уже видели, словно бы «вихляются» и выглядят растянутыми. Даже если основная часть такого нейтрона пролетает мимо ядра, но вблизи от него, «периферия» нейтрона может его зацепить. То, что для быстрого нейтрона было бы почти попаданием в цель, для медленного обратилось бы в «захват». И когда такой медленный нейтрон захватывается ядром, или втягивается в него, возникает возможность срабатывания формулы E=mc2: ядро начинает расшатываться, дрожать, а после взрывается, создавая сильный всплеск энергии и одновременно выбрасывая поток дополнительных нейтронов, ударяющих в другие атомы, отчего, в свой черед, взрываются и они.

Гейзенбергу требовалось вещество, способное обеспечить столь полезное замедление нейтронов. В принципе, годилось любое, в достаточной мере насыщенное водородом, поскольку, сталкиваясь с атомами водорода, нейтроны теряют скорость. Именно благодаря этому Ферми и смог в 1934 году получить, используя обычную воду (H2О), взятую из находившегося рядом с его институтом пруда с золотыми рыбками, нужный эффект. Однако, когда первые группы немецких исследователей погружали урановый образец в обычную воду, они получали реакцию лишь в его центре, — первые атомы урана распадались, но испускаемые ими нейтроны были слишком быстрыми для того, чтобы обеспечить распространение реакции.

Гейзенбергу требовался замедлитель получше. Он знал, что примерно в то же время, когда Ферми получил свои результаты, американский химик Гарольд К. Юри установил, что вода всех океанов и озер Земли состоит не просто из H2О. Помимо этих молекул она содержит и их разновидность — более тяжелую. В этих молекулах место обычного водорода занимает дейтерий, — он очень похож на водород, но весит почти вдвое больше. Во всех остальных отношениях вода, состоящая из таких молекул, ничем не отличается от обычной — она так же текуча и прозрачна и является частью наших дождей, морей и льда; мы пьем ее постоянно. Однако на каждые 10000 молекул обычной воды приходится только одна молекула «тяжелой» — по этой причине никто ее так долго и не замечал. (В большом плавательном бассейне наберется всего лишь стакан «тяжелой воды.) Но при этом тяжелая вода великолепнейшим образом замедляет высокоскоростные нейтроны, — ударяясь об атом дейтерия, они рикошетом отскакивают, теряя скорость при каждом таком соударении, и секунду спустя, после нескольких десятков рикошетов, вылетают из тяжелой воды, став гораздо более медленными, чем были до того, как попали в нее.

Поначалу в лабораториях Германии удалось накопить лишь несколько галлонов тяжелой воды. Для того, чтобы разделить ее между Берлином и Лейпцигом, этого было мало. К Лейпцигу Гейзенберг питал чувства более теплые, поэтому именно там, в подвале института физики, и были поставлены наиболее важные эксперименты. В 1940 году в драгоценную тяжелую воду опустили пластины урана, общий вес которых составлял несколько фунтов. Затем все это поместили в крепкий сферический сосуд и, подняв его лебедкой в воздух, расположили вокруг него измерительную аппаратуру. Как правило, профессора мелкими деталями экспериментов не занимаются, однако Гейзенберг гордился своими практическими навыками не меньше, чем даром теоретика, и потому изготовил часть измерительных приборов сам — с помощью отвечавшего за постановку опытов Роберта Допеля.

Теперь можно было приступить к эксперименту. Для того, чтобы поджечь спичку, необходим порох. Для того, чтобы взорвать динамит, требуется капсюль-детонатор. Для того, чтобы запустить атомную реакцию — даже если качество урана слишком низко, чтобы получился настоящий взрыв, — необходим начальный источник нейтронов. Допель оставил в дне сферического сосуда отверстие. Источником нейтронов было небольшое количество радиоактивного вещества, подобного тому, которое использовал Чедвик. Его доставили в лабораторию в виде одного-единственного длинного стержня и, наконец, — в феврале 1941 года — все составные части будущей бомбы оказались на месте. Можно было приступить к эксперименту.

По приказу Допеля и Гейзенберга стержень надлежало ввести в сферический сосуд, после чего в уран ударят первые свободные нейтроны. Несколько ядер урана взорвутся, осколки их начнут разлетаться со скоростью, намного превышающей ту, которая ожидалась, пока Майтнер не объяснила, как работает формула E=mc2. Из этих быстрых осколков вылетят добавочные нейтроны. Через первые слои урана они пройдут, почти не создав никакого эффекта, однако, оказавшись в тяжелой воде, начнут рикошетить и выйдут из нее замедленными и рассеянными настолько широко, что с уже большей вероятностью будут попадать в ядра урана, особенности в наиболее хрупкие, заставляя их вибрировать и в свой черед взрываться.

При каждом таком взрыве станет срабатывать уравнение E=mc2- в последовательности, которая, как покажут счетчики Гейгера, будет все убыстряться и убыстряться. В первые несколько миллионных долей секунды соударений случится — согласно расчетам Гейзенберга — примерно 2000. В следующие несколько миллионных секунды — уже 4000. Затем 8000, затем 16000 и так далее. При таком временном масштабе удваивание будет происходить очень быстро. Если все пойдет, как задумано, за небольшую долю секунды насчитаются уже триллионы таких крошечных взрывов, а затем и сотни триллионов, и этот каскадный эффект будет все возрастать и возрастать. Он «разорвет» обычную ткань вещества и энергия, миллиарды лет сохранявшаяся затиснутой в атомы, выйдет наружу: здесь, в подвале лейпцигского института, в этом университете, который возглавляют назначенные администрацией рейха чиновники, и аудитории которого наполняют студенты, с гордостью носящие свастику. Для того, чтобы разрушить миллиарды атомов, вовсе не нужно строить огромную лабораторию и оснащать ее миллиардами механизмов, способных испускать инициирующие такое разрушение нейтроны. После того, как взорвутся первые несколько атомов, их нагруженные нейтронами обломки быстро приведут к взрыву всех остальных. Имеющийся в распоряжении Гейзенберга уран недостаточно чист для того, чтобы создать неудержимо нарастающую реакцию, однако первый шаг к ней будет сделан.

Профессора отдали приказ, Вильгельм Пашен, ассистент Допеля, ввел в отверстие стержень. Было начало 1941 года. Инициирующие нейтроны попали внутрь урана! Все присутствовавшие уставились на шкалы приборов, собираясь записывать их показания.

И ничего не произошло.

Для развития реакции не хватило урана. Гейзенберга это не смутило, он просто заказал его еще больше — в компании «Берлин Ауэр», которая за прошедшие после Первой мировой войны годы обратилась из производителя зубной пасты в оптового поставщика самых разных урановых продуктов. Получение уранового сырья проблемы не составляло, о чем и предупреждал Эйнштейн в своем письме к ФДР. («Германия практически прекратила продажу урана, добываемого в рудниках захваченной ею Чехословакии, — писал Эйнштейн, — … между тем как наиболее важным источником урана является Бельгийское Конго.») Находившаяся в оккупированной Бельгии компания «Юнион Миньер» владела тысячами фунтов урана, добытого в конголезских рудниках. Когда запасы Иохансталя были исчерпаны, немцы обратились к бельгийским.

Преобразование урана в пригодную для использования форму было делом тяжелым, поскольку требовало значительного труда, да к тому же, возникавшая при этом урановая пыль составляла опасность для рабочих. Однако в распоряжении Гейзенберга имелась снабженческая организация, деятельность которой не ограничивали никакие устарелые представления о правах человека. Германия построила множество концентрационных лагерей, и их наполняли люди, которых все равно вскоре предстояло убить. Почему же не воспользоваться ими для осуществления важного проекта? Пока шла война, сотрудники «Берлин Ауэр» преспокойно закупали «рабынь» в концентрационном лагере Заксенхаузен. Их можно было использовать для приготовления окиси урана, в которой нуждался немецкий проект создания бомбы. Еще в апреле 1940 года Гейзенберг выражал недовольство задержками первых поставок урана, которые взялась осуществлять компания «Ауэр». Первые поставки состоялись летом того же года, и теперь, в 1941-м, дополнительные запасы урана доставлялись Гейзенбергу намного быстрее.

И осенью 1941 года были произведены опыты, которые дали многообещающие результаты, а затем, весной 1942-го, произошел настоящий прорыв. Сосуд с ураном и тяжелой водой начал испускать нейтроны — их было на 13 процентов больше, чем давал введенный внутрь сосуда инициирующий реакцию источник. Запертая в веществе энергия, о которой почти за сорок лет до этого первым заговорил Эйнштейн, высвобождалась. Все выглядело так, точно из-под земли протянулся узкий дымоход, продуваемый грозным ветром — высвобожденной энергией. Доверие Гиммлера было оправдано. Гейзенберг торжествовал — он сумел добиться того, что энергия, предсказанная уравнением Эйнштейна, вырвалась на свободу: здесь в нацистской Германии.

Эйнштейн получил сведения об успехе Гейзенберга благодаря тому, что директор Института физики кайзера Вильгельма был голландцем, и после того, как его тоже прогнали, в конце концов, оказался в Америке и рассказал своим новым коллегам все, что он знал о работах, проводившихся в «Вирусном доме» и в Лейпциге.

Эйнштейн направил ФДР новое письмо: «Я только что узнал, что в Германии проводятся секретные исследования, в которых теперь участвует еще один из институтов кайзера Вильгельма — институт физики». Однако на сей раз его не удостоили даже ответа. Седоволосый иностранец, особенно если он обладает репутацией великого ученого, это одно дело. Однако Америка приближалась к вступлению в войну, обстановка в стране накалялась, и теперь ФБР считало возможным игнорировать любое его слово. Ибо Эйнштейн был социалистом да еще и сионистом в придачу, — он даже выступал против того, что производители оружия получают сверхприбыли. ФБР докладывало военной разведке, что:

Учитывая его радикальное прошлое, наше агентство не рекомендует привлекать доктора Эйнштейна к секретным работам, не проведя предварительно очень тщательного расследования, поскольку представляется маловероятным, что человек с его прошлым способен за столь короткое время стать лояльным американским гражданином.

Соединенные Штаты все же приступили к осуществлению серьезного атомного проекта и подтолкнули их к этому искусные манипуляции нетерпеливых визитеров из Британии. Марк Олифант был еще одним из блестящих молодых воспитанников Резерфорда, возглавившим летом 1941 года борьбу, которая велась сразу на двух фронтах. В Вашингтон он прибыл с подарком: магнетроном — ключевым устройством, которое позволяло ужать занимавший целую комнату радар до таких размеров, что его можно было разместить в самолете, и при этом в значительной мере повысить его точность. (Именно тогда Олифант и узнал, что Лайман Дж. Бриггс, которому надлежало бы возглавить атомный проект Запада, положил секретный доклад британцев под сукно.) И Олифант отправился в Беркли, где работал Эрнест Лоуренс.

Физиком Лоуренс был не из самых блестящих, однако он любил машины, огромные мощные машины, и само его прямодушие, умение напролом идти к цели, позволяло Лоуренсу добиваться того, чтобы их строили. К примеру, Сэмюэл Аллисон (работавший тогда в Чикагском университете) вспоминает, что у Бриггса был «маленький урановый кубик, который он держал на столе и любил показывать своим сотрудникам… Бриггс часто говорил: “Мне хотелось бы иметь целый фунт такого”… Если бы Лоуренс сказал, что ему нужны сорок тонн, он бы их получил».

К осени 1941-го Бриггса убрали и за работу принялась команда более толковых руководителей, в состав которой входил и Лоуренс, а к декабрю, когда трагедия Перл-Хаобора вынудила Соединенные Штаты вступить в войну, проект уже заработал по-настоящему. Ему предстояло получить название «Манхэттенского проекта» — такова была часть прикрытия, согласно которому он представлял собой просто одно из направлений деятельности «инженерного округа Манхэттен».

И тут оказались совершенно незаменимыми те самые беженцы, к которым с таким презрением относился Бриггс. Юджин Вигнер, к примеру, представлял собой на редкость спокойного, непритязательного молодого венгра, происходившего из столь же спокойной, непритязательной семьи. Когда разразилась Первая мировая война, отец Юджина воздержался от участия в политических дискуссиях, вполне благоразумно указав на то, что мнения семьи Вигнеров вряд ли способны поколебать императора. И эта же осторожность привела к тому, что, когда Юджин, великолепно закончив школу, оказался перед выбором университетского факультета, отец настоял на том, чтобы он стал инженером-практиком, поскольку шансы сделать успешную карьеру в теоретической физике были до крайности малыми.

После того, как в 1930-х Вигнера изгнали из Европы, он добился успеха в качестве физика и, в конце концов, стал центральной фигурой среди тех, кто повторял в Америке расчеты Гейзенберга, детально показывая, как могла бы начаться реакция. Однако инженерное образование Вигнера означало, что справиться с последовательными шагами этих расчетов он был способен намного лучше Гейзенберга. Какую, к примеру, форму должен иметь уран, помещаемый внутрь реактора? Наиболее эффективной оказалась форма сферическая. В ее случае, в центре сферы возникало максимальное число нейтронов. Если же изготовление точной сферы окажется затруднительным, следующим по эффективности будет овал. За овалом следует цилиндр, потом куб и, наконец, — на самый худой конец, — можно попытаться создать реактор, используя урановые пластины.

Гейзенберг для своего лейпцигского устройства именно пластины и выбрал. Причина состояла попросту в том, что расчет свойств плоских поверхностей сопряжен с наименьшими трудностями, — если вы руководствуетесь чистой теорией. Однако инженеры, обладающие достаточным практическим опытом, чистой теорией никогда не ограничиваются. В их распоряжении имеется многое множество неформальных приемов, позволяющих судить о том, как поведут себя овалы и иные геометрические фигуры. Вигнер эти приемы знал, как знали их и многие другие беженцы, которым осторожные родители также присоветовали стать инженерами. Гейзенберг их не знал. И это оказалось до крайности важным. Профессора и вообще-то склонны к поддержанию строгой иерархии, а немецкие профессора тех времен, что предшествовали Второй мировой войне, были к тому же людьми, донельзя уверенными в себе. В ходе войны немалое число молодых немецких ученых обнаруживало, что Гейзенберг совершает одну техническую ошибку за другой. Однако он почти всегда отказывался выслушивать их, гневался и норовил добиться того, чтобы никто на этот счет и рта открыть не посмел.

И все же, уверенности в том, что Соединенные Штаты смогут победить в гонке, призом которой было создание бомбы, не питал никто. Америка только-только вышла из Великой депрессии, большая часть ее индустриальной базы все еще ржавела, пребывая в заброшенном состоянии. Когда Гейзенберг приступил к своим исследованиям в области вооружений, Вермахт обладал самыми мощными в мире боевыми силами. И все его армии были оснащены оружием, превосходившим то, что имелось в распоряжении любой другой страны. Соединенные же Штаты обладали армией, технического оснащения которой, даже с учетом устаревших на одно поколение артефактов времен Первой мировой войны, едва хватило бы на две дивизии, — в мировой иерархии эта армия занимала десятое место и стояла примерно на том же уровне, что армия Бельгии.

Кроме того, у Германии имелись лучшие в мире инженеры и сильная система университетов — даже после того, как из нее изгнали большое количество евреев, — и самое главное, у нее имелась фора: два драгоценных года, в течение которых Гейзенберг и его коллеги работали не покладая рук, а Бриггс предавался размышлениям за своим письменным столом. Таковы были капризы судьбы, которым и предстояло определить, кто сможет использовать уравнение Эйнштейна первым. Теперь E=mc2 представляло собой не просто набор эйнштейновских символов. Союзникам следовало поторопиться.

А немцев следовало притормозить.

 

Глава 11. Норвегия

Британская разведка, с самого начала следившая за осуществлением немецкой программы, смогла отыскать в ней только одно слабое место. Им не был уран — запасы этого металла в Бельгии были так велики, что попытка уничтожить его, а к нему нужно было еще подобраться, не имела смысла. Не был им и сам Гейзенберг — никакая диверсионная группа не сумела бы покончить с ним ни в Лейпциге, ни в Берлине, ни даже в летнем доме, которым его семья владела в Баварских Альпах: дом этот стоял в самой глубине Германии да, к тому же, наверняка находился под усиленной охраной.

Наиболее уязвимой мишенью была тяжелая вода. Реактор не может работать на полную мощность, если нейтроны, возникающие при взрывах первых атомов, не замедляются, что позволяет им отыскивать новые ядра и заставлять таковые взрываться, высвобождая скрытую в них энергию. Гейзенберг полагался в этом отношении на тяжелую воду, однако ее отделение от обычной требовало очень большого завода, потребляющего очень много энергии.

Некоторые из осторожных сотрудников Гейзенберга предлагали построить такой завод в самой Германии, на хорошо защищенной немецкой земле. Но Гейзенберг, которого поддерживали военные, знал, что превосходный и мощный завод, производящий тяжелую воду, уже существует, и что использует он имеющуюся в изобилии энергию норвежских водопадов. Правда, до недавнего времени Норвегия была независимой страной, но разве не обратилась она теперь просто-напросто в одну из присоединенных к Германии провинций?

Решение это оказалось роковым, однако целые поколения немецких националистов считали, что их страну долгое время душили и связывали по рукам и ногам. Гейзенберг поддержал решение опереться на норвежский завод просто потому, что был сторонником идеи, согласно которой Рейх имеет право владеть всей Европой. Во время войны он не без восторженного волнения посещал одну завоеванную страну за другой, проходя по кабинетам своих бывших коллег, обратившихся ныне просто в местных сотрудников; в Нидерландах он, не обинуясь, объяснил ошеломленному Хендрику Казимиру, что, хоть ему и известно о существовании концентрационных лагерей, но «демократия не способна развивать достаточную энергию», а он, Гейзенберг, «хочет, чтобы миром правила Германия».

Норвежский завод находился в горном ущелье Веморк, к которому вела из Осло извилистая дорога длиной в 90 миль. Перед войной этот завод производил в месяц 3 галлона — чуть меньше 11 килограммов тяжелой воды — и вся она предназначалась для лабораторных исследований. Инженеры огромного немецкого промышленного синдиката «ИГ Фарбен» просили о большем и предлагали заплатить за это большее по цене, превышавшей рыночную, однако норвежские управляющие заводом им отказали, ибо не желали помогать нацистам. Несколько месяцев спустя инженеры «Фарбен» обратились с повторной просьбой и на этот раз, — поскольку норвежскую армию Вермахт уже уничтожил, — их просьбу подкрепили вооруженные автоматами солдаты. Людям из Веморка оставалось лишь ответить согласием. К середине 1941-го объем годового производства тяжелой воды возрос до 1360 кг. Теперь же, в середине 1942-го, завод производил до 4535 кг тяжелой воды в год, и вся она отправлялась в Лейпциг.

Охрана завода состояла всего из нескольких сот солдат, так как место, в котором он был расположен, считалось неприступным. Опасаться, что норвежское сопротивление, слишком малочисленное и плохо подготовленное, попытается атаковать завод, не приходилось. Заводской комплекс был обнесен колючей проволокой, освещавшейся дуговыми прожекторами, попасть за ограду можно было лишь по одному-единственному подвесному мосту. Завод стоял на плато, окруженном такими горами, что в течение пяти месяцев они не пропускали к нему ни единого луча солнца, и рабочих, дабы они получали дневную норму солнечного света, приходилось поднимать по канатной дороге на другое плато, расположенное гораздо выше.

Такова была цель, избранная для нападения британским правительством. Если бы Веморк находился на побережье, можно было бы попробовать взять его силами морской пехоты, но поскольку от моря завод отделяли 100 миль, была создана группа из солдат Первой воздушно-десантной дивизии. Это были хорошие солдаты. Большинство их происходило из рабочих семей Лондона, — пережив Депрессию, они научились владеть кулаками, а в дивизии их, двадцатилетних, обучили вещам более серьезным: владению оружием, рациями, взрывчаткой. Куда они направятся, им, разумеется, не сказали, узнать об этом они должны были лишь перед самым вылетом на задание. Пока же они просто полагали, что их готовят к каким-то соревнованиям с парашютистами-янки. А уж того, что их посылают на смерть в попытках контролировать то, к чему привели уравнение Эйнштейна и исследования Резерфорда, они и вовсе знать не могли.

После наступления темноты с аэродрома в северной Шотландии были подняты два планера с диверсионными группами, шедшие на буксире за новыми высокоскоростными бомбардировщиками «Галифакс». Всего на задание отправилось около тридцати солдат. (Сегодня мы представляем себе планер как воздушный аппарат, рассчитанный на одного человека, однако в то время, до широкого распространения вертолетов, нередко использовались планеры гораздо больших размеров, напоминавшие небольшие грузовые самолеты — только без двигателей.) Это была страшная ночь. Огромные залежи руды в горах, над которыми они пролетали, сбили с толку компас одного из самолетов, и самолет этот врезался в гору.

Пилотом второго планера был австралиец, оказавшийся в северной метели перед неразрешимой дилеммой: если он и дальше будет идти на буксире за «Галифаксом», сохраняя прежнюю высоту, крылья и тросы его планера обледенеют настолько, что он не сможет лететь и разобьется. Если же он сойдет с буксира слишком рано, ураганные ветры, дующие в горах, будут швырять его из стороны в сторону и он не сумеет выдерживать сколько-нибудь правильный курс. В конце концов, австралиец, оказавшись в плотном облаке, все же перешел в состояние свободного полета, но что-то пошло не так, и его планер тоже рухнул на землю.

При обоих крушениях уцелело небольшое число солдат, и в обоих случаях некоторые из них — вкалывая себе морфий, чтобы умерить боль от ран, и глотая, чтобы одолеть путь по снегу, амфетамины, — сумели добраться до местных крестьянских домов и попросить о помощи. Однако вскоре все они были схвачены — либо немцами, либо их местными пособниками. Большую часть солдат расстреляли сразу, других — лишь после пыток, которые продолжались несколько недель.

Всего несколькими годами раньше Р. В. Джонс был многообещающим ученым-астрономом и работал в Бейллиол-колледже Оксфордского университета. Ныне, хотя ему едва перевалило за тридцать, он обратился в начальника разведки ВВС и стоял перед нравственным выбором из разряда тех, с какими ему во время оксфордских обедов с их состязаниями на сообразительность сталкиваться не приходилось. Тридцать хорошо обученных воздушных десантников были отправлены на задание и все до единого погибли. До завода они даже не добрались.

«Решить, следует ли нам организовать второй рейд или не следует, должен был я, — десятилетия спустя вспоминал он. — Решение было тем более трудным, что сам я, чем бы ни закончился этот второй рейд, остался бы в безопасности, в Лондоне, и потому мне представлялось, что никакого права посылать еще 30 человек на верную смерть я не имею…

Я говорил себе: мы уже решили — до трагедии, постигшей первую группу, то есть руководствуясь разумом, а не чувствами, — что завод по производству тяжелой воды должен быть выведен из строя; что жертвы во время войны неизбежны и что, если мы были правы, посылая первую группу, то, вероятно, будем правы, послав и вторую».

На этот раз для выполнения задания были отобраны норвежцы — шесть перебравшихся в Британию добровольцев. Один был водопроводчиком из Осло, другой обычным механиком. Документы того времени наводят на мысль, что британцы не питали большой уверенности в том, что норвежцам удастся добиться успеха там, где потерпели неудачу три десятка первоклассных воздушных десантников. Например, вопросу о том, как они будут уходить после выполнения задания, внимание уделялось самое минимальное. Но что оставалось делать? Тяжелая вода отправлялась в Германию во все больших количествах, работы в Лейпциге продолжались; можно было ожидать и того, что вскоре к ним подключится «Вирусный дом».

Шестеро норвежцев прошли лучшую, какую только можно было организовать, подготовку — для ее завершения их поселили под Кембриджем, в прекрасном конспиративном доме на территории готовившего разведчиков и диверсантов «Специального тренировочного лагеря № 61», здесь им предстояло дожидаться наступления ясной погоды. Они обзавелись веселыми подружками-англичанками, с которыми время от времени обедали в Кембридже. Затем, в феврале 1943 года от метеорологов поступили благоприятные прогнозы, и дом вдруг опустел.

Спрыгнув с парашютами над Норвегией, они встретились с передовым отрядом, состоявшим еще из нескольких норвежцев, которые всю зиму ожидали их в уединенных сельских домах. Все вместе они пересекли на лыжах страну и несколько недель спустя — в воскресенье, в 9 часов вечера — достигли Веморка.

«С горы мы впервые увидели наш объект, стоявший ниже нас, по другую сторону ущелья… Это огромное здание походило на средневековый замок, построенный в самом недоступном месте и защищаемый отвесными расщелинами и реками.»

Так завершилось то, что начиналось в виде спокойных размышлений Эйнштейна: горстка вооруженных норвежцев, задыхавшихся после проделанной ими по глубокому снегу дороги, смотрела на залитую в ночи светом крепость. Им было ясно, почему немцы поставили здесь лишь небольшую охрану. Попасть на завод можно было только по единственному подвесному мосту, перекинутому через непреодолимую каменную расщелину глубиной в несколько сот футов. Охрану моста, возможно, и удалось бы, несмотря на ее укрепленные огневые позиции, перебить, открыв шквальный оружейный огонь, но, если бы это произошло, немцы просто начали бы убивать местных жителей. И обе стороны это знали. Когда годом раньше на острове Телавааг был обнаружен радиопередатчик, немцы сожгли все дома и суденышки острова, а всех его женщин, детей — и, разумеется, мужчин, — отправили в концентрационные лагеря. Такого исхода операции находившийся в Лондоне Джонс, вероятно, не принял бы, — девятеро норвежцев, смотревших сейчас на завод, не приняли бы его наверняка. Однако это вовсе не означало, что им придется уйти ни с чем. Они знали о другом ведущем внутрь завода пути.

На полученных воздушной разведкой и затем сильно увеличенных в Англии фотографиях один из членов команды, Кнут Хаукелид, заметил в расщелине, немного в стороне от завода, небольшое скопление растительности. «Там, где растут деревья, может пройти и человек» — сказал он. И теперь другой член команды провел рекогносцировку, подтвердившую это. Они начали спускаться, проклиная свои тяжелые рюкзаки, в расщелину, потом перешли реку, из-подо льда которой зловеще просачивалась вода, а потом, снова кляня рюкзаки, стали подниматься к заводу. Поскольку ни один из них разочаровывать других не хотел, каждый постарался одолеть подъем по возможности быстро, и эта спешка вскоре их измотала.

Добравшись до внешней границы завода, они устроили привал, съели, чтобы подкрепить силы, по плитке шоколада. До них доносился громкий гул турбин — по приказам, поступившим из Лейпцига и Берлина, завод работал круглосуточно. О чем могли разговаривать эти девятеро обвешанных оружием мужчин? Они поддразнивали одного их членов своей команды, обвиняя его в попытках незаметно для других выковыривать из зубов остатки пищи; обсуждали, уже с большей серьезностью, две четы молодых новобрачных, с которыми познакомились за ночь до того, как отправиться в свой лыжный поход к Веморку. Один из парашютистов учился с одним из молодых мужей в школе, однако поначалу тот однокашника не узнал, и все четверо страшно перепугались, случайно наткнувшись на вооруженных незнакомцев. А когда парашютист все-таки был узнан, обе стороны сообразили, что вступать в какие-либо разговоры дело опасное — хоть парашютистам и отчаянно хотелось узнать, как в течение последнего года жилось в Норвегии обычным людям. Парашютистам пришлось провести ночь в доме новоиспеченных супругов, не зажигая света и не разжигая огня — из опасения, что кто-нибудь заметит валящий из трубы дым, — стараясь найти себе занятие, которое отвлекло бы их от мыслей о доме: в который раз проверяя состояние оружия, гранат и взрывчатки, смазывая перед походом лыжи.

Один из них взглянул на часы — короткая передышка закончилась. Подняв со снега рюкзаки, они направились к воротам завода. Хорошо, что среди них имелся бывший водопроводчик, человек крупный и сильный, — он расторопно перерезал большими кусачками проволоку сетчатой ограды и вся команда оказалась на территории завода.

Теперь наступил решающий момент. Гейзенберг и «Бюро вооружений» немецкой армии построили огромную «машину», в состав которой входили уран, хорошо обученные физики и инженеры, электроэнергия, содержащие уран сосуды и источники нейтронов. Лишь после того, как все это займет отведенные им места, можно будет запустить безостановочную череду взрывов атомов урана, обращая их массу в энергию в соответствии с формулой E=mc2. Тяжелая вода, которая контролировала поток инициирующих этот процесс нейтронов, замедляя их настолько, что они оказывались способными «поджечь» урановое горючее, была последней из деталей «машины». И вся мощь Германии — ее солдаты, радарные станции, местные коллаборационисты и инструкторы СС — была обрушена на британских воздушных десантников, которые пытались помешать заработать «машине», позволяющей извлечь обещанную формулой E=mc2 энергию.

Ныне все надежды возлагались на девятерых норвежцев. Одна их группа заняла позиции у бараков охраны. Другая наблюдала за огромными главными дверьми завода. Конечно, их можно было снести взрывом, но это опять-таки повлекло бы за собой карательные санкции. Однако один из работавших на заводе инженеров рассказал людям из Сопротивления о редко используемом кабелепроводе, проходившем через боковую стену завода. И теперь двое членов команды отыскали этот кабелепровод и, нагрузившись взрывчаткой, поползли по нему внутрь завода.

Рабочие, которых они там встретили, никакой любви к «ИГ Фарбен» не питали и были лишь рады закрыть глаза на присутствие диверсантов. Через десять минут заряды были установлены. Рабочих попросили отойти подальше от места будущего взрыва, двое диверсантов последовали за ними.

Около часа ночи послышался глухой взрыв, короткая вспышка озарила несколько окон. Восемнадцать изготовленных из толстой стали «камер», по которым разливалась тяжелая вода, имели высоту по грудь человека и походили на большие газовые котлы. Взрывчатки, которую могли принести на себе девять человек, для полного из уничтожения было недостаточно. Поэтому норвежцы просто установили на дне каждой «камеры» небольшие пластиковые заряды. Заряды взорвались, проделав в «камерах» дырки, а входившая в их состав шрапнель разлетелась в стороны, перебив наружные трубопроводы и кабели.

Задул теплый ветер, который в Норвегии называют «foehn», — норвежцы, спускаясь в расщелину, чувствовали, как начинает таять снег. На заводе включили прожектора и сирены воздушной тревоги, но это было не страшно. Сильно пересеченная местность хорошо укрывала людей. Когда они поднялись наверх и встали на лыжи, тяжелая вода уже стекала по заводским дренажным трубам и вливалась в горные потоки.

 

Глава 12. На сцену выходит Америка

Этот рейд позволил Союзникам выиграть время, но если бы проект по созданию атомной бомбы возглавил не пригодный для этого человек, оно было бы потрачено впустую. На каком-то из этапов всерьез рассматривалась кандидатура физика из Беркли Эрнеста Лоуренса, однако на фоне его личных качеств даже Гейзенберг выглядел человеком заботливым и участливым. В 1920-х и 1930-х сообщество физиков Америки было слабо настолько, что создавать бомбу приходилось, по большей части, усилиями куда более искусных беженцев из Европы. А худшего, чем широкоплечий уроженец Южной Дакоты Лоуренс, руководителя такой команды невозможно было и вообразить.

В 1938 году итальянский беженец Эмилио Сегре получил в лаборатории Лоуренса место, которое давало ему 300 долларов в месяц. Для Сегре это был дар свыше, поскольку, если бы ему и его молодой жене пришлось вернуться в Италию, возможности снова начать работать в университете он, скорее всего, не получил бы, к тому же, отнюдь не исключено было и то, что и его, и жену передали бы немцам, как то уже случилось со многими их родственниками, а дети их, вполне вероятно, погибли бы. Сегре вспоминает, как поступил затем Лоуренс:

В июле 1939-го Лоуренс, который к тому времени понял, в каком положении я нахожусь, поинтересовался у меня, могу ли я вернуться в Палермо. Я рассказал ему всю правду, а он, услышав ее, тут же воскликнул: «Так почему же я должен платить вам 300 долларов в месяц? С этого дня будете получить 116».

Меня это просто потрясло и даже теперь, многие годы спустя, я дивлюсь… [почему] он и на секунду не задумался о том, какое впечатление производит.

Человек, в итоге назначенный руководителем всей программы создания атомной бомбы, Лесли Гроувз, был несколько лучше Лоуренса — хотя бы тем, что не имел обыкновения угрожать своим подчиненным скорой смертью. Гроувз, как и Лоуренс, обладал умением добиваться своего. Он получил подготовку в Массачусетском технологическом институте, затем закончил военную академию в Вест-Пойнте — и был в своем выпуске четвертым, — затем на него была возложена большая часть ответственности за окончание строительства здания Пентагона. Для создания атомной бомбы требовалось построить огромный реактор, расположенный у большой реки, из которой можно было бы брать необходимую для его охлаждения воду; требовалось также возвести производственные помещения длиной в тысячи футов, что позволило бы отфильтровывать токсичную урановую пыль. И Гроувз все это построил — в заданные сроки и не выходя из бюджета.

Однако Гроувз был человеком вспыльчивым — администратором из тех, которые в то время считались в Америке наилучшими. Он кричал, грозился, публично унижал подчиненных, вены на его шее то и дело вздувались от злости. (А то, что ему приходилось теперь иметь дело с физиками-теоретиками, чей интеллектуальный уровень обращал его вест-пойнтские достижения, которыми он так гордился, в нечто, достойное лилипута, жизни Гроувза нисколько не облегчало.)

В апреле 1943-го, при официальном открытии в Лос-Аламосе, штат Нью-Мексико, секретного исследовательского центра, в котором предстояло создавать бомбу, Гроувз произнес речь. Находившийся среди его слушателей молодой в ту пору Роберт Уилсон, впоследствии вспоминал: «Он сказал, что в конечный успех проекта не верит. И подчеркнул, что, если — или когда — мы провалим все дело, именно ему придется объяснять комитету конгресса, как и на что были истрачены огромные деньги. Если бы он начал это собрание на ноте жизнерадостного энтузиазма, думаю, хуже никому не стало бы».

Многие вполне осуществимые проекты проваливались именно потому, что во главе их оказывались администраторы подобного рода. К примеру, уже в 1941 году в Британии был создан и даже летал вполне работоспособный прототип реактивного самолета, однако бестолковая организация дела не позволила построить эти самолеты в таком количестве, чтобы они смогли принести британским ВВС хоть какую-то пользу. Гроувз умел побуждать к работе инженеров-строителей, от которых требовалось всего лишь следовать имевшимся у них чертежам, но вдохновлять теоретиков, которым необходима вера в их способность преуспеть в еще не исследованных областях знания, он почти наверняка не смог бы. Однако осенью 1942-го, — когда Гейзенберг после успешного лейпцигского эксперимента готовился к продолжению работ, — Гроувз назначил своим заместителем настоящего гения. Он выбрал для руководства повседневной работой ученых Лос-Аламоса чрезвычайно разумного и щепетильного Дж. Роберта Оппенгеймера.

Эта работа едва не стоила Оппенгеймеру здоровья. Ко времени первого испытательного взрыва Оппенгеймер, в котором было метр восемьдесят роста, весил всего 52 с небольшим килограмма. В конечном счете, работа в «Манхэттенском проекте» стоила ему научной карьеры, ибо обратила Оппенгеймера в своего рода прокаженного, который оказался бы в тюрьме, даже если бы он предпринял попытку прочитать собственные засекреченные работы. Однако дело свое Оппенгеймер сделал.

Как это ни странно, огромная сила Оппенгеймера имела источником присущую ему неуверенность в себе. Разумеется, это бросалось в глаза далеко не всем и каждому. Закончив Гарвард всего за три года — и с превосходными оценками, — он продолжил учебу в лаборатории Резерфорда, защитил докторскую диссертацию в Геттингене и, не дожив еще и до тридцати, стал одним из ведущих физиков-теоретиков Америки. Казалось, что все дается ему без каких-либо усилий. Как-то раз он попросил аспиранта Лео Неделски, прочесть за него в Беркли одну из лекций: «Это совсем просто, — заверил его Оппенгеймер, — все, что вам потребуется, есть в одной книге». Обнаружив, что книга эта на голландском языке, Неделски запротестовал. «Да ведь это же совсем простой голландский» — сказал ему Оппенгеймер.

А между тем, он был человеком ранимым, легко впадавшим в отчаяние и не верившим в свои силы. И этим отличалась вся его семья. Отец Оппенгеймера работал в швейной промышленности Нью-Йорка, сумел подняться в ней на самый верх, а затем женился на светской женщине, которая настояла на том, что в ее семье все будет делаться «как полагается»: у семьи должны иметься летние домики, слуги и домашние концерты классической музыки. Когда ее сын оказался в летнем лагере, она позаботилась о том, чтобы другим мальчикам было велено играть с ее Робертом, — и страшно удивилась, узнав, что в итоге мальчики издевались над ним, как могли, а однажды даже заперли на целую ночь голым в холодильной камере. Работая в лаборатории Резерфорда, Оппенгеймер, узнав, что его не включили в число ведущих исследователей, впал в такое отчаяние, что едва не придушил одного из своих лучших друзей. В Геттингене он сам переплетал для себя книги и корил чету супругов-аспирантов за то, что именовал их «деревенскими» повадками, — они не могли позволить себе нанять няньку для ребенка, — а после страшно страдал, не понимая, почему его считают высокомерным зазнайкой.

В конечном счете, Оппенгеймер приобрел идеальную способность обнаруживать слабости и внутренние сомнения в других людях. Когда в пору его профессорства в Беркли ему случалось высказывать упреки коллеге-ученому, он умел безошибочно определять, в какой именно области этот коллега считает себя наиболее слабым, ибо отлично знал, что область, в которой коллега чувствует себя слабым, должна существовать непременно. Он хорошо сознавал и собственные слабости и испытывал жгучую неприязнь к себе за то, что регулярно отступает назад, пусть и совсем не намного, там, где мог бы совершить серьезный прорыв вперед.

И вот, оказавшись в Лос-Аламосе, Оппенгеймер вдруг переменился. Саркастичность его на время войны куда-то исчезла. Зато умение обнаруживать потаенные страхи и желания других людей сохранилось, а это означало, что он способен обратиться в великолепного руководителя.

Он понял — мгновенно, — что требующиеся ему в большом числе молодые, только что закончившие аспирантуру физики, работавшие в радарной лаборатории Массачусетского технологического и в других знаменитых программах военного времени, не бросят своих мест и не помчатся в штат Нью-Мексико, в никому не известное место, просто потому, что там больше платят или обещают на будущее хорошую карьеру. Они поедут туда, только если удастся собрать там лучших физиков Америки. И Оппенгеймер, соответственно, начал с вербовки серьезных физиков, — а уж аспиранты быстро последовали на ними. Ему удалось завербовать даже гениального Ричарда Фейнмана, который вообще никаких властей признавать не желал. (Довольно было сказать Фейнману, что страна в опасности и нуждается в нем, чтобы он насмешливо фыркнул на нью-йоркский манер и послал вас куда подальше.) Оппенгеймер понимал, что Фейнман занимает позицию столь враждебную главным образом потому, что им владеет гнев отчаяния: у его молодой жены обнаружили туберкулез, а в ту еще лишенную антибиотиков эру это почти наверняка означало, что она скоро умрет. И Оппенгеймер добился того, чтобы ее отправили в Нью-Мексико в специально оборудованном купе, — а в военную пору они ценились на вес золота, — мало того, он нашел для нее место в больнице, находившейся в достаточной близости от Лос-Аламоса, что позволяло Фейнману регулярно навещать ее. Впоследствии Фейнман всласть поиздевался в своих мемуарах над каждым из администраторов, с коими ему приходилось работать, за исключением того, под началом которого он провел два года в Лос-Аламосе — там Фейнман делал все, о чем просил его Оппенгеймер.

Талант Оппенгеймера сыграл первостепенную роль в решении одной из труднейших проблем, с которыми столкнулся Лос-Аламос. Одна из групп — теннессийская, возглавляемая Лоуренсом, — избрала путь самый прямой и занималась тем, что просто пыталась выделить из естественного урана наиболее взрывчатые компоненты. Наберите их побольше, вот и будет вам бомба. Теннессийские производственные предприятия использовали простой инженерный подход, который так нравился Лоуренсу и другим прямодушным американцам. Существовали, конечно, и сомневающиеся, однако коренные американцы от них отмахивались.

Другая группа, работавшая в штате Вашингтон, избрала подход более тонкий. Она начала с обычного урана и пыталась преобразовать его в полностью новый элемент, используя процесс трансмутаций, над которым в прошлые столетия бились средневековые алхимики и даже сам Ньютон. Алхимики пытались обратить свинец в золото. Вашингтонская группа, если бы она смогла добиться успеха, преобразовала бы обычный уран в зловеще мощный новый металл — плутоний. Сомневающиеся имелись и здесь, однако за этот трудный для понимания подход стояли европейские беженцы, воспитанные в традиции более теоретической.

Пентагону нравились Лоуренс и простые американцы из штата Теннесси, однако выяснилось, что вашингтонский проект, который возглавляли иностранцы, дает результаты наилучшие. Сколько ни кричал, ни разглагольствовал и ни грозился Лоуренс, теннессийские заводы — огромные, общая длина их составляла больше мили, и стоили они миллиард долларов (это по курсу 1940-х), — проработав не один месяц, дали количество чистого урана, умещавшееся в один почтовый конверт. Сделать из него бомбу никто бы не взялся.

Вашингтонская группа сумела создать обещанный ею плутоний, но очень скоро те, кто работал в Лос-Аламосе, поняли, что и из него сделать бомбу далеко не просто. И проблема состояла не в том, что плутоний не взрывался. Он как раз взрывался, но уж больно легко. Соорудить бомбу из обычного урана — даже если бы теннессийцам удалось очистить его в достаточных количествах, — было трудно. Если количество такого урана, необходимое для взрыва, составляет 50 фунтов, вам придется сделать из 40 фунтов шар, прорезать в нем отверстие, затем взять большую пушку, нацелить ее на это отверстие и выстрелить в него — только быстро! — остальными 10 фунтами. Пороговое значение будет достигнуто так скоро, реакция произойдет в пространстве настолько компактном, что большая часть взрывчатого U235 превратится в энергию еще до того, как взрыв разнесет ваш шар на куски.

Другое дело — новый, нестабильный плутоний. Подтолкните две половинки изготовленной из него сферы друг к дружке, и плутоний начнет взрываться еще до того, как они сойдутся. Конечно, стоять рядом с ним, когда это случится, не стоит, поскольку реакция создаст выброс разжиженного или газообразного плутония. Но и это еще не все. Собственно ядерной реакции почти и не произойдет: большая часть исходного плутония будет, трансформируясь, попросту разлетаться от места взрыва.

Вот тут и пригодились прозорливость и управленческий дар Оппенгеймера. Давайте забудем о попытках соединить две половинки массы плутония. Для того, чтобы заставить работать полученный в штате Вашингтон плутоний, понял Оппенгеймер, следует начать с изготовленного из него шара, имеющего довольно низкую плотность. Такой шар взрываться не станет. Однако, окружите его обычной взрывчаткой и заставьте ее сработать точно в одно время. Если все сделать правильно, шар сожмется настолько быстро, что развивающиеся каскадом взрывы, которые обещает формула E=mc2, станут распространяться внутри шара со скоростью, которая позволит накопить достаточную энергию взрывов еще до того, как плутоний начнет разлетаться.

Этот метод получил название «имплозионного», однако расчетов он требовал до того сложных — как, например, можно добиться однородного распределения плутония по шару? — что к возможности его использования многие относились с изрядным цинизмом. (Фейнман, впервые увидев, чем занимаются теоретики имплозии, просто заявил: «Полный бред!»). Оппенгеймер сумел преодолеть и это. Именно Оппенгеймер взрастил теоретиков, которые предложили использовать имплозию, и собрал необходимых специалистов по взрывному делу, а, по мере того, как проект достигал уровня, на котором он, если бы им руководил кто-то другой, попросту развалился бы из-за борьбы вздорных честолюбий, Оппенгеймер мастерски манипулировал своими сотрудниками, добиваясь того, чтобы участвовавшие в осуществлении проекта группы работали параллельно.

В какой-то момент под его началом трудились лучший эксперт-взрывник США, лучший эксперт-взрывник Соединенного королевства, венгр Джон фон Нейман — обладатель самого острого математического ума, какой когда-либо существовал на свете (за свою долгую карьеру он успел поучаствовать и в создании компьютера), — плюс уйма представителей других национальностей, все они пытались реализовать идею имплозии. Он сумел подключить к этой работе даже Фейнмана! Примадонной, способной сорвать все их усилия, был на редкость самолюбивый венгерский физик Эдвард Теллер. Оппенгеймер аккуратно направил его в другую сторону, выделив ему собственный офис и группу сотрудников, что было отнюдь не просто хотя бы по причине нехватки квалифицированных людей, и позволив сосредоточиться на разработке его собственных блестящих идей. Теллер был достаточно тщеславен, — о чем Оппенгеймер, разумеется знал, — для того, чтобы принять все это как должное и, наслаждаясь достигнутым, никому больше не палок в колеса не совал.

Параллельно с американцами вели свою работу британцы, размещавшиеся в Чалк-Ривер близ Оттавы, — они занимались как вопросами теории, так и практическим разделением изотопов урана. Гроувз относился к этой группе с подозрением, однако Оппенгеймер рад был любой помощи, какую ему удавалось получить.

Денег не считали. Все хорошо знали, с какого уровня разработки проблемы начали немцы. В какой-то момент проделанные в Лос-Аламосе расчеты показали, что оболочка из литого золота способна отражать разлетающиеся нейтроны, возвращая их обратно во взрывающееся вещество. (Да и сам вес золота помог бы сохранить в целости разлетающийся плутоний.) Несколько позже Шарлотта Сербер, руководившая в Лос-Аламосе библиотекой и хранилищем документов, получила небольшую посылку размером примерно с бумажный пакет для завтрака.

«Весь тот день Сербер забавлялась сама и забавляла своих сотрудниц, говоря тем, кто заходил в библиотеку, чтобы что-то прочитать: “Будьте добры, перенесите эти пакеты на соседний с моим столик”».

Пакет, который поступил из Форт-Нокса, никто даже с места сдвинуть не смог. Золото плотнее свинца (по этой причине выбор и пал именно на него), поэтому сплошной золотой шарик диаметром в 15 сантиметров весил больше, чем 35-килограммовая штанга.

И все-таки, несмотря на усилия лучших ученых и почти неограниченное финансирование, решить проблему плутония не удавалось. И Оппенгеймера, и других беспокоила мысль о том, что этот путь может и вовсе не привести к созданию работающей бомбы. И тогда самое большее, чего удастся достигнуть, это накопление запасов радиоактивного плутония. Не было исключено даже, что работающий на тяжелой воде реактор Гейзенберга строился всего лишь для отвода глаз. В меморандуме, полученном Оппенгеймером 21 августа 1943 года, говорилось:

Существует возможность того… что [немцы] будут производить, скажем, по два устройства в месяц. Это поставило бы Британию, в частности, в крайне опасное положение, однако есть надежда, что нашей стороне удастся осуществить контрдействия еще до того, как война будет проиграна…

К мнению одного из авторов этого меморандума, Эдварда Теллера, можно было особо и не прислушиваться, однако другим был Ханс Бете, человек на редкость благоразумный. Он возглавлял теоретиков Лос-Аламоса и до 1933 года работал в университете Тюбингена бок о бок с Гейгером. У Бете имелись очень хорошие контакты с физиками, оставшимися на континенте. «Устройства», о которых говорили Теллер и Бете, были готовыми к использованию бомбами — на этом этапе создание их представлялось маловероятным, но кто знал, что еще могли разрабатывать в Германии?

Даже несколько килограммов радиоактивного металла, обращенного в порошок и распыленного над Лондоном, могли на многие годы сделать часть этого города непригодной для обитания. Уже начали поступать тревожащие сообщения о том, что Германия разрабатывает новые средства доставки, а одного из людей Гейзенберга видели в Пинемюнде, где создавалось сверхзвуковое «оружие возмездия» — ракеты «Фау-2». Сооружались также и более простые управляемые снаряды — «Фау-1», — и если бы они обрушили высокорадиоактивные боеголовки в места дислокации войск Союзников — на юг Англии до дня «Д» или во Францию после него, — число жертв могло достичь невиданного прежде уровня.

Все эти угрозы воспринимались с такой серьезностью, что Эйзенхауэр попросил снабдить военные части, накапливавшиеся в Англии в преддверии дня «Д», счетчиками Гейгера и специалистами, обученными работе с этими счетчиками. А затем, в самом конце 1943 года, когда Оппенгеймер, казалось, окончательно зашел в тупик, пытаясь решить проблему имплозии, в Лос-Аламосе появился Нильс Бор, бежавший к тому времени из Копенгагена, где находился его институт. Бор был добродушным патриархом от физики. За долгие годы его работы всякий, кто хоть что-то значил в этой науке — от Гейзенберга до Оппенгеймера и племянника Майтнер Роберта Фриша, — приезжал в институт Бора, чтобы поработать с ним.

Теперь он привез очень серьезную новость. 6 декабря — уже после бегства Бора — в его институте появились представители немецкой военной полиции. Хранившиеся там золотые медали нобелевских лауреатов они прибрать к рукам не смогли, поскольку Дьердь де Хевеши растворил их в концентрированной кислоте и поместил колбу с этим раствором в глубине неприметной полки. Однако немцы постарались запугать сотрудников института и арестовали одного из живших прямо в нем коллег Бора. К тому же, и это было намного серьезнее, поползли слухи о том, что они намерены разобрать и увести в Германию мощный институтский циклотрон — один из первых ускорителей элементарных частиц. А циклотрон мог использоваться для изготовления плутония.

Затем британская военная разведка сообщила, что несмотря на проведенную диверсию и даже на последующие бомбардировки Союзников, завод в Веморке восстановлен. Инженеры «ИГ Фарбен» в великой спешке отремонтировали его, на завод было доставлено все необходимое для замены поврежденного взрывами оборудования, объемы производства тяжелой воды еще и повысились по сравнению с прежними. А в феврале 1944 года от норвежского Сопротивления поступили сведения о том, что весь наличный запас тяжелой воды будет в скором времени вывезен в Германию.

Что оставалось делать теперь? Момент был мучительный, словно предварявший те дилеммы, с которыми физики Союзников столкнулись год спустя, когда им пришлось принимать решение о применении бомбы. Новая прямая атака на завод в Веморке была уже невозможной, поскольку ныне его усиленно охраняли. Не хуже охранялись и основные железнодорожные пути — для этого использовались регулярные войска, подразделения СС и запасные аэродромы, с которых могли взлетать самолеты-наблюдатели.

Единственным слабым местом, позволявшим напасть на идущий в Германию транспорт, было озеро Тинишё, — при подходе к нему железнодорожным вагонам, которым предстояло доставить тяжелую воду из Веморка к побережью Норвегии, приходилось грузиться на паром. Это должно было произойти в середине февраля 1944 года.

Если бы удалось утопить паром вместе с вагонами, никакие немецкие ныряльщики поднять их со дна озера не смогли бы. Однако переправой в Тинишё пользовались также рабочие Веморка и члены их семей, кроме того, она была очень популярна у туристов. Каждый день на этом пароме пересекали озеро самые обычные люди.

Вы бы решились убить их ради достижения высшей цели?

Энергия, овладение которой было обещано уравнением E=mc2, поставила физиков перед необходимостью пойти на нравственный компромисс, которого не пожелаешь никому. Кнут Хаукелид, один из норвежцев-диверсантов, оставшихся в стране после налета на завод, сумел уцелеть и во время устроенных немцами массированных облав и вел теперь полное опасностей существование на плато Хардангер. К этому времени он накопил значительный опыт диверсионной работы: тайных проникновений в тот или иной город, поисков людей, которым можно довериться, сборки и испытаний любых взрывных устройств и таймеров, какие только могут понадобиться. Однако проблему составляло не наличие или отсутствие опыта. Хаукелид вернулся сюда из далекой Англии и вел ныне суровую жизнь ради того, чтобы спасти своих соотечественников. Теперь же ему придется убивать их, топить в ледяной воде.

От норвежской группы в Лондон:

СООБЩЕНИЕ: …СОМНЕВАЕМСЯ ЧТО РЕЗУЛЬТАТ ОПЕРАЦИИ СТОИТ ТАКИХ ЖЕРТВ ТОЧКА НЕ МОЖЕМ РЕШИТЬ НАСКОЛЬКО ВАЖНА ОПЕРАЦИЯ ТОЧКА ПРОСИМ ОТВЕТИТЬ ЕСЛИ ВОЗМОЖНО ЭТИМ ЖЕ ВЕЧЕРОМ ТОЧКА

Из Лондона норвежской группе:

ВОПРОС БЫЛ РАССМОТРЕН ВСЕСТОРОННЕ ТОЧКА СЧИТАЕМ УНИЧТОЖЕНИЕ ТЯЖЕЛОЙ ВОДЫ ЧРЕЗВЫЧАЙНОЙ ВАЖНЫМ ТОЧКА НАДЕЕМСЯ ЭТО УДАСТСЯ СДЕЛАТЬ БЕЗ СЛИШКОМ СТРАШНЫХ ПОСЛЕДСТВИЙ ТОЧКА ЖЕЛАЕМ УСПЕХА ТОЧКА С ПРИВЕТСТВИЯМИ

Самое большее, чего смог добиться Хаукелид: он условился с инженером-транспортником из Веморка, что груз отправят 20-го — в воскресенье, когда пассажиров на пароме будет меньше обычного. (В Веморке очень активно работали профсоюзы, в результате у Сопротивления имелось на заводе немалое число своих людей и просто помощников.) В субботу, поздно ночью, Хаукелид и с ним еще двое местных жителей пришли к стоявшему на якоре парому. На борт им удалось подняться без труда, однако, когда они начали выбирать под палубой места для закладки зарядов, их заметил ночной часовой, молодой норвежец. Впрочем, одного из спутников Хаукелида он хорошо знал по местному спортклубу и, когда диверсанты рассказали ему выдуманную для прикрытия историю — о том, что Хаукелид и второй местный житель, Рольф Сорли, вынуждены скрываться от немцев и ищут место, в котором они могут спрятать свои пожитки, — лишь покивал в знак согласия. Пока двое давних знакомцев стояли, беседуя, на палубе, Хаукелид и Сорли устанавливали заряды — под носовой палубой, так, чтобы после взрыва паром зарылся носом в воду, поднял ставший бесполезным винт в воздух и черпанул побольше воды, которая заставит его быстро затонуть. Все было сделано в течение получаса.

Прощаясь с часовым, я не вполне понимал, как мне поступить… я вспомнил об участи двух норвежских охранников Веморка, которых немцы отправили после нашего нападения в концентрационный лагерь. Мне не хотелось отдавать немцам еще одного норвежца. Однако, если часовой скроется, это может на следующее утро возбудить их подозрения.

И я ограничился тем, что пожал часовому руку и поблагодарил его, — явно озадачив этим юношу.

Собственно говоря, каждый из тех, кто был причастен к этой операции, находился примерно в одном с Хаукелидом положении. Альф Ларсен, главный инженер завода в Веморке, присутствовал в тот же вечер на званном обеде и услышал от гостившего в тех местах скрипача, что тот собирается завтра утром уплыть на пароме. Ларсен пытался отговорить его, упрашивал остаться еще на какое-то время в этих прекрасных краях с их великолепными лыжными трассами. Однако скрипач от его уговоров отмахнулся, а настаивать Ларсен не мог. Кроме того, один из работавших на заводе связных Ларсена сказал ему, что и его, связного, престарелая мать тоже собирается завтра поплыть этим паромом.

Бомба взорвалась в 10.45 утра, когда глубина под паромом составляла около 400 м. От резкого перекоса судна вагоны-платформы железнодорожного состава разломились, двери их распахнулись. Матери заводского рабочего на пароме не было — сын не выпустил ее из дома, — а скрипач был. Всего на борту находилось пятьдесят три человека. Большая часть дюжих немецких охранников сумела вовремя покинуть тонущий паром, и в итоге многим женщинам и детям места в спасательных шлюпках просто не хватило. Около десятка пассажиров оказались запертыми внутри парома.

Несколько бочек, содержавших смесь обычной воды с тяжелой, покачивалось на поверхности озера, и пассажиры, которым удалось покинуть паром, но не удалось попасть в спасательные шлюпки, — скрипачу в этом отношении повезло, — хватались за эти бочки, надеясь дождаться с их помощью прибытия спасателей. Однако те бочки, в которых находилась концентрированная тяжелая вода, показали — совершив нечто вроде замедленного свободного падения, — чем они наполнены. Поскольку молекулы D2О содержат ядра более тяжелые, чем у обычной воды, эти бочки тонули так, точно кто-то нарочно их утяжелил, и увлекали за собой на дно цеплявшихся за них, ничего не понимавших пассажиров.

Год и шесть месяцев спустя, в августе 1945 года, почти 30 килограммов очищенного урана-235, укрытых в 4,5 тоннах бездымного пороха и стальной оболочке, снабженной средствами инициации взрыва, ожидали, покоясь на крепкой тележке, погрузки в бомбардировщик Б-29 — происходило это на острове Тиниан, в шести часах полета от Японии. Осуществление этого последнего этапа проекта контролировал оставшийся в Лос-Аламосе Оппенгеймер.

Будь он человеком более простым, он мог бы гордиться собой. Создание пригодной к использованию «машины», ставшее результатом работы ученых и заводов — производственных и сборочных, — то есть то, чего пытался достичь в Германии Гейзенберг, и чем руководил здесь, в Америке, Оппенгеймер, было, наконец, завершено. Для снабжения заводов и реакторов энергией пришлось изменить русла рек; чтобы расселить десятки тысяч рабочих, были построены целые города; а попутно удалось еще и создать посредством трансмутации новый химический элемент. Достижения были колоссальными.

Первый основанный на конструкции Чедвика источник нейтронов, тот, которым пользовался в Риме Ферми, умещался на ладони. Следующий, на довольно скудные средства построенный Ферми в Нью-Йорке 1940 года, имел примерно такие же размеры, как несколько составленных вместе больших картотечных шкафов. К концу 1942 года, когда значительными средствами, предоставленными правительством США, распоряжался уже Оппенгеймер, Ферми создал усовершенствованное устройство, которое занимало большую часть площадки для игры в сквош, находившейся под трибунами стадиона Чикагского университета. Последние же варианты источника, построенные два года спустя, когда финансирование создания атомной бомбы приобрело максимальный размах, занимали центральную часть площади в 300000 акров, отведенной под них близ Ханфорда, штат Вашингтон. Вместе с их несущими каркасами они превосходили высотой весь римский институт, в котором Ферми начал эти работы в 1934 году. Люди, знавшие всю их историю, взирали на них с благоговейным трепетом.

Проблему плутония удалось разрешить — математики и эксперты-взрывники нашли для обычной взрывчатки форму, которая обеспечила однородность имплозии плутониевого шара. Теперь плутоний, регулярно поставлявшийся заводом, построенным в штате Вашингтон, можно было использовать для создания все новых бомб. Менее успешные теннессийские заводы также смогли произвести небольшое количество взрывчатого вещества, и именно их продукция — почти весь U235, какой имелся у Соединенных Штатов, — была отправлена на остров Сайпан.

Деятельность Гейзенберга удалось блокировать. В первые месяцы 1945-го наступавшие армии Союзников обнаружили в Германии целые заводы, в том числе и подземные, в которых рядами стояли реактивные летательные аппараты и даже несколько ракетных. Однако совершенная годом раньше диверсия на озере Тинишё гарантировала, что далеко в направлении создания атомной бомбы Германия продвинуться не сможет. Тем не менее, Гейзенберг попытался продолжить эту работу. Еще в 1942 году, когда создалось впечатление, что финансирование ее начинает приостанавливаться, он выступил на совещании высших нацистских чиновников с горячей речью, рассказав им о возможной мощи атомной бомбы и попросив возобновить поступление средств. Ныне, даже несмотря на то, что войну Германии почти наверняка предстояло проиграть, он перевел все работы в городок Хехинген, где поселился прямо через улицу от дома, в котором жил когда-то богатый дядюшка Эйнштейна — тот самый, что поддерживал деловые усилия его семьи, дававшие средства, которые позволили Эйнштейну потратить несколько лет на подготовку к поступлению в университет.

Оборудование, доставленное из Берлина и Лейпцига, было не без изобретательности размещено в таком месте, где его не могли обнаружить никакие самолеты-разведчики — в пещере, расположенной рядом с соседним городком: пещера эта уходила внутрь отвесной скалы, на верхушке которой стояла церковь — кроме нее, ничего с неба увидеть было нельзя. Гейзенберг всегда питал склонность к театральным жестам. В двадцать четыре года, впервые постигнув суть квантовой механики, а произошло это ночью на одном из курортных островов Северного моря, Гейзенберг забрался на ближайшую песчаную дюну и стал, подобно романтическому персонажу живописца Каспара Давида Фридриха, дожидаться восхода солнца. Ныне он, покидая пещеру, временами забирался на высшую точку городка, входил в церковь и в одиночестве играл Баха на гневно ревевшем органе.

По сравнению с первыми полученными в Лейпциге результатами, изучение атомных реакций продвинулось довольно далеко. Под конец своей работы ученые Германии научились получать примерно половину того объема расщеплений ядра, какое было необходимым для поддержания цепной реакции. Однако Гейзенберг знал, что дальше ему продвинуться не удастся. Когда группа захвата, состоявшая из солдат армии США, настигла его в Альпах, он, несмотря даже на то, что части Вермахта еще продолжали вести бои в расположенных неподалеку городах, сдался в плен с таким спокойствием, точно лишь этого и ожидал.

Вышедшего в 1946-м на свободу Гейзенберга в Германии встретили, как героя. Оппенгеймер же еще и до окончания войны понимал, что послевоенная его жизнь легкой не будет. В конце 1930-х он участвовал в левом движении, и хотя профессору физики из Беркли такое прошлое ничем серьезным не грозило, когда Оппенгеймер возглавил работы, проводившиеся в Лос-Аламосе, ФБР собрало о нем исчерпывающие сведения. Затем он при первой встрече с представителями военной разведки солгал о некоторых подробностях своего прошлого. Несколько высокопоставленных чиновников пожелали отстранить Оппенгеймера от работы, однако Гроувз его отстоял, и в отместку враги Оппенгеймера начали попросту изводить его: большую часть времени, которое он провел на руководящем посту, телефон и квартира Оппенгеймера прослушивались, прежних друзей его подвергали допросам, а во всех разъездах за ним велась слежка. Жена Оппенгеймера начала пить, и пить сильно, а он, хоть и не подвергавшийся пока прямым нападкам, знал, что его найдется, чем шантажировать: ФБР следило за ним во время поездок в Сан-Франциско, где он проводил ночи с женщиной, с которой был близок в прошлом.

Что еще более важно, он знал о том, что произошло на озере Тинишё и что может произойти в Тихом океане. Сегодня широко распространено мнение, согласно которому атомная бомбардировка Японии была очевидным образом оправданной, поскольку альтернативой ее стало бы вторжение, которое могло привести к куда большему числу жертв. Однако в то время подобная ясность отсутствовала. Основная масса японской армии для американских сил угрозы не составляла, — она была изолирована в Китае, перебраться на родные острова ей не позволяли американские подводные лодки, к тому же над ней уже нависала огромная армия русских, готовая уничтожить ее, как только будет накоплено достаточное для этого количество сил. Значительная часть японской промышленности лежала в руинах. В начале 1945-го перед стратегическими бомбардировщиками США была поставлена задача: разрушить от тридцати до шестидесяти больших и малых городов Японии. К августу уже было разрушено пятьдесят восемь.

Руководивший тихоокеанской кампанией Дуглас Макартур вовсе не считал вторжение в Японию необходимым; председатель Комитета начальников штабов адмирал Лейхи и тогда, и впоследствии твердо держался мнения о том, что необходимость в применении атомной бомбы отсутствовала; Кертис Лимей, командовавший стратегической бомбардировочной авиацией, соглашался с ним. Даже Эйзенхауэр, который без всяких угрызений совести уничтожил бы, если бы этого потребовала безопасность его войск, тысячи солдат противника, усиленно противился использованию атомной бомбы, о чем и уведомил тогда же престарелого военного министра Генри Стимсона: «Я сказал ему, что выступаю против этого по двум причинам. Первая: японцы готовы капитулировать и нужда наносить по ним удар этой страшной штукой отсутствует. Вторая: мне претит мысль о том, что наша страна первой использует такое оружие. Что ж… старый джентльмен только рассвирепел…»

Ощущение, что бомба может и не понадобиться, было настолько сильным, что пошли разговоры о возможности сначала продемонстрировать ее в действии или, по крайней мере, изменить формулировки требования о капитуляции, ясно указав в нем, что император Японии сможет сохранить свое место. Оппенгеймер присутствовал на множестве совещаний, посвященных обсуждению этих вопросов: внимательно слушал, высказывался — не без уклончивости — за применение бомбы, если таковое потребуется, но одновременно и поддерживал оговорку о сохранении императора.

Ничему эти разговоры не помогли. Наиболее влиятельным советником Трумена был Джимми Бирнс, принадлежавший к тому же поколению, что и Лайман Дж. Бриггс, но обладавший куда менее мирным темпераментом. Этос, под влиянием которого складывалась личность Бирнса, сводился к тому, что в драке все средства хороши. Он вырос в 1880-х в штате Южная Каролина, вырос без отца и без воздействия каких-либо сдерживающих начал. Люди, посещавшие этот штат во времена несколько более ранние, дивились тому, что увидеть в тамошних судах жюри присяжных, у всех двенадцати членов которого имелся бы полный комплект глаз и ушей, удавалось очень нечасто. Южная Каролина все еще сохраняла нравственные установки пограничного сообщества, если там начиналась драка, люди выбивали друг другу глаза и пускали в ход зубы и ножи. Именно Бирнс добился того, что оговорка относительно императора, способная смягчить японских противников улаживания конфликта, была из условий капитуляции изъята. Да и такие глупости, как ожидание, когда будет усилена осуществляемая подводными лодками блокада Японии или когда русские сделают всю грязную работу, его нисколько не интересовали.

Выписки из протокола заседания президентского «Временного комитета», 1 июня 1945 года:

Мистер Бирнс порекомендовал и Комитет с ним согласился, использовать… против Японии бомбу как можно скорее; использовать ее надлежит для уничтожения военного завода, окруженного домами рабочих; и сделать это следует без предварительного оповещения.

Отчасти Оппенгеймер был с этим согласен, отчасти — особенно, оказываясь вдали от Вашингтона, — питал сомнения. Но так ли уж оно было важно? Он помог выпустить эти силы на волю, и теперь от него зависело очень не многое. Лесли Гроувз, начальник Оппенгеймера, был генералом Гроувзом. Лос-Аламос был проектом армии Соединенных Штатов. А армия создает оружие для того, чтобы его использовать.

Атомную бомбу ожидала скорая погрузка на борт самолета.

 

Глава 13. 8.16 утра — над Японией

Посвистывавшей и вращавшейся бомбе («вытянутому в длину мусорному баку с плавниками») потребовалось сорок три секунды, чтобы долететь от сбросившего ее Б-29 до точки взрыва. В середине бомбы имелись маленькие отверстия, из которых в момент сбрасывания выдернулись проволочки, — это запустило часовой механизм первой системы наведения. Ближе к хвосту бомбы в ее темной стальной оболочке находились другие, просверленные в Нью-Мексико отверстия, в которые во время свободного падения засасывался воздух. Когда до земли осталось чуть больше 2100 м, связанное с этими отверстиями барометрическое реле включило вторую систему наведения.

С земли Б-29 выглядел как маленькая серебристая фигурка, бомба же, имевшая три метра в длину и семьдесят сантиметров в ширину, была слишком мала, чтобы ее вообще можно было разглядеть. Она посылала вниз, в находившийся прямо под ней госпиталь «Шина», слабые радиосигналы. Малая их часть поглощалась стенами госпиталя, но бóльшая, отражаясь уходила обратно в небо. Рядом с крутящимися плавниками бомбы торчали из ее корпуса тонкие хлыстики радиоантенн. Они принимали возвращавшиеся сигналы, а фиксирующая их аппаратура использовала разницу во времени между посылкой и приемом сигналов для определения высоты бомбы над землей.

Последний из таких сигналов был принят на высоте в 580 м.

Согласно расчетам Джона фон Неймана и других математиков, если бы взрыв произошел намного выше, значительная часть созданной им тепловой энергии рассеялась бы в воздухе; при взрыве на меньшей высоте, бомба образовала бы в земле огромную воронку. Высота же, немногим меньшая 600 м, была идеальной.

Электрический разряд воспламенил бездымный порох, создав тем самым подобие обычного выстрела из пушки. Теперь малая часть полного количества очищенного урана полетела по размещенному внутри бомбы орудийному стволу. При первоначальном проектировании предполагалось использовать ствол очень тяжелый — обычный ствол из числа тех, какими пользовалась морская артиллерия США. Лишь спустя несколько месяцев Оппенгеймер и его сотрудники сообразили, что корабельные орудия делаются тяжелыми потому, что они должны многократно выдерживать отдачу, которая возникает после каждого выстрела. Для бомбы такая прочность была, разумеется, не нужной: ее «пушке» предстояло произвести только один выстрел. В итоге ствол расточили, после чего он стал весить уже не 2270 кг, а примерно в пять раз меньше.

Первый урановый сегмент пролетал по расточенному пушечному стволу расстояние в 1,2 метра, а затем ударял в основную массу урана. Никогда еще на Земле не создавалось такого состоящего из очищенного урана шара весом в несколько десятков килограммов. Внутри него находилось множество пребывавших в свободном состоянии нейтронов и, хотя атомы урана хорошо защищены своими электронными оболочками, на свободные нейтроны, электрического заряда не имеющие, электроны никакого воздействия оказать не могли. Как мы уже видели, нейтроны пронизывают внешний электронный барьер подобно космическим зондам, пролетающим, устремляясь к Солнцу, мимо планет, и хотя многие из нейтронов вылетали с другой стороны атомов, некоторые все же врезались в крошечные центральные ядра.

Обычно эти ядра, переполненные положительно заряженными протонами, не пропускают в себя налетающие извне частицы. Однако лишенные электрического заряда нейтроны остаются невидимками и для протонов. Нейтроны врывались в ядра, нарушая их внутреннее равновесие, расшатывая их.

Атомы добываемого на Земле урана имеют возраст, превышающий 4,5 миллиарда лет. Только очень мощная сила, действовавшая в то время, когда возникала наша планета, могла втиснуть заряженные протоны в столь малый объем. После образования атомов урана начало работать сильное ядерное взаимодействие, которое, словно склеивая протоны, удерживало их вместе столь долгое время: пока остывала Земля и формировались ее континенты; пока Америка отделялась от Европы и медленно заполнялся водой северный Атлантический океан; пока на другой стороне земного шара извергались вулканы, создавая то, что затем стало Японией. И теперь единственный дополнительный нейтрон уничтожал это устойчивое равновесие.

Как только дрожание ядер достигает уровня, на котором превозмогается поддерживающее их целостность сильное взаимодействие, в дело вступает обычное электрическое взаимодействие, заставляющее протоны разлетаться. Обычное ядро весит совсем немного, а его фрагменты и того меньше. Ударяя на большой скорости в другие атомы урана, они возбуждают их ядра не так уж и сильно. Однако здесь плотность урана достаточно высока для того, чтобы началась цепная реакция, и вскоре вместо двух разлетающихся фрагментов уранового ядра появляется четыре, затем восемь, затем шестнадцать и так далее. Масса атомов «исчезает», обращаясь в энергию их разлетающихся с огромной скоростью осколков. Начинает работать формула E=mc2.

Вся эта последовательность множащихся ядерных распадов завершается всего за несколько миллионных долей секунды. Бомба еще падала во влажном утреннем воздухе, внешнюю поверхность ее еще покрывала тонкая пленка сконденсировавшейся влаги, поскольку лишь сорок три секунды назад бомба находилась на высоте в 9,5 км, теперь же, в 580 метрах над госпиталем, температура воздуха составляла около 27оС. За время протекания большей части реакции бомба успела пролететь вниз лишь долю сантиметра; глядя на нее, можно было увидеть лишь, как странно вздувается ее стальная поверхность, указывая на то, что происходит внутри.

Прежде чем завершиться, цепная реакция проходит через восемьдесят «поколений» удвоения. В последних таких «поколениях» фрагменты разорванных ядер урана оказываются столь многочисленными и движутся так быстро, что они начинают разогревать, ударяя в него, окружающий их металл. Самыми важными становятся последние несколько удвоений. Представьте, что в вашем саду имеется пруд, в котором плавают кувшинки, и что число их каждый день удваивается. Через восемьдесят дней они полностью покроют поверхность пруда. Но в какой день половина ее будет все еще свободной, открытой для солнца и воздуха? В семьдесят девятый.

Начиная с этого момента, действие формулы E=mc2 прекращается. Никакая масса больше не «исчезает» и никакая энергия не рождается. Энергия движения ядер просто преобразуется в тепловую энергию, как это происходит, когда вы потираете ладонью о ладонь, чтобы согреть их. Однако фрагменты ядер урана «трутся» об окружающий их металл с огромной скоростью, которую обеспечивает коэффициент c2. Очень скоро они обретают скорость, лишь в несколько раз меньшую скорости света.

Удары фрагментов ядер о внутренность металлической оболочки бомбы приводят к тому, что металл нагревается. Начинаются они при температуре, близкой к температуре человеческого тела — 98,6 F, или 37оС; затем достигается температура кипения воды — 212 F, или 10 °C; затем кипения свинца — 56 °C. Однако цепная реакция продолжается, распадается все большее число атомов урана и температура достигает 500 °C (как на поверхности Солнца), а там и нескольких миллионов градусов (как в центре Солнца) — и продолжает расти. На краткое время в центре еще висящей в воздухе бомбы создаются условия, схожие с теми, что имели место на ранних этапах рождения вселенной.

Тепло рвется наружу. Оно пронизывает окружающую уран стальную оболочку и с такой же легкостью минует массивный, весящий несколько тонн корпус бомбы, — но затем наступает пауза. Продукты реакции до того горячи, что стремятся избавиться от энергии. И они начинают испускать рентгеновские лучи, очень сильные — какая-то их часть уходит вверх, какая-то в стороны, но наибольшая по широкой дуге устремляется к земле.

Взрыв разрастается, фрагменты вещества стараются охладиться. Они исторгают бóльшую часть своей энергии. А затем, через 1/10000-ю секунды, когда рентгеновские лучи разлетаются уже достаточно далеко, тепловой шар начинает разрастаться снова.

Только теперь взрыв становится видимым. Обычным световым фотонам не удается пробиться сквозь пелену рентгеновских лучей, наблюдаемым оказывается лишь свечение, возникающее вне этой пелены. Когда же становится зримой полная вспышка, кажется, что в небе образовалась прореха. И в ней появляется нечто, напоминающее одно из гигантских солнц, которые существуют в отдаленных частях нашей галактики. Оно заполняет небо, в несколько сот раз превосходя размерами наше обычное Солнце.

Этот неземной объект полностью выгорает примерно за половину секунды, затем он тускнеет и через две-три секунды исчерпывает себя полностью. «Исчерпывается» же он главным образом за счет выброса вовне тепловой энергии. Начинаются пожары — и, судя по всему, начинаются все они одновременно; у людей, находящихся на поверхности земли, обгорает и большими лоскутами отстает от тел кожа. Так начинаются первые из десятков тысяч смертей, которые предстоит увидеть Хиросиме.

На эту вспышку уходит примерно треть созданной цепной реакцией энергии. В скором времени срабатывает и вся остальная. Жар «неземного объекта» вытесняет обычный воздух, и он разлетается со скоростью, какой Земле видеть почти никогда не приходилось — разве что в далеком прошлом, когда в нее врезался огромный метеорит или комета. Скорость эта во много раз превышает то, что способен сотворить какой бы то ни было ураган, — воздух несется совершенно бесшумно, ибо он обгоняет любой создаваемый его колоссальным напором звук. За этой ударной волной следует вторая, несколько более медленная, а следом в образовавшуюся пустоту врывается атмосферный воздух. На краткое время плотность воздуха падает практически до нуля. И вдалеке от взрыва начинают гибнуть пережившие его живые существа — их тела, оказавшиеся, пусть и не надолго, в вакууме космического пространства, просто взрываются изнутри.

Небольшое количество порожденного взрывом тепла никуда не уходит, оставаясь в непосредственной близости к тому месту, где совсем недавно находились предохранители, антенны и бездымный порох. И через несколько секунд это тепло начинает, раздуваясь, подниматься вверх, а поднявшись достаточно высоко, рассеивается.

Вот тогда-то и появляется гигантское грибовидное облако. Первая работа, которую проделало на Земле уравнение E=mc2, завершается.

 

Часть 5. До скончания времен

 

Глава 14. Как сгорает Солнце

Свет, вспышку которого породил в 1945 взрыв в Хиросиме, достиг орбиты Луны. Малая часть его вернулась, отраженной, на Землю, все остальное продолжило движение вперед, достигло Солнца и понеслось дальше, в бесконечную вселенную. Эту вспышку можно было различить даже с Юпитера.

Для галактики же в целом она представляла собой лишь ничтожнейший всплеск света.

Одно лишь наше Солнце каждую секунды «взрывает» эквивалент многих миллионов таких бомб. Ибо E=mc2 относится не только к Земле. Все наши крадущиеся диверсанты, озадаченные ученые и бесстрастные бюрократы это лишь капля, еле слышный шепоток, добавленный к мощи уравнения.

Эйнштейн и другие физики поняли это уже давно, а то, что первое применение уравнения произошло в сфере вооружений, было всего лишь случайностью, объясняющейся нуждами военного времени с его ускоренным развитием техники. В этой части книги мы перейдем к картине более широкой: поднимемся над земной техникой и покажем, как наше уравнение правит всей вселенной — от первых вспыхнувших в ней звезд и до завершения ее жизни.

Сразу после открытия радиоактивности в 1890-х ученые заподозрили, что уран или подобное ему «топливо» может работать во всей вселенной и, в частности, поддерживать горение нашего Солнца. Именно нечто столь мощное и требовалось, поскольку открытия Дарвина и геологические находки показывали, что Земля должна была существовать — и обогреваться Солнцем — в течение миллиардов лет. Уголь и иные привычные виды топлива такой большой энергии дать не могли.

К сожалению, никаких признаков наличия урана на Солнце астрономы найти не сумели. Каждый химический элемент создает отчетливый зримый сигнал, и оптическое устройство, именуемое спектроскопом (ибо оно раскладывает любое излучение на составляющие его «спектра»), позволяет эти сигналы идентифицировать. Однако направьте спектроскоп на Солнце и вы ясно увидите: ни урана, ни тория, ни других радиоактивных элементов там нет.

При анализе света далеких звезд — как и нашего Солнца — бросалось в глаза еще одно обстоятельство: в них всегда присутствовало железо, и в очень большом количестве. Ко времени, когда Эйнштейну удалось, наконец, оставить работу в патентном бюро, к 1909 году, уже имелись очень веские доказательства того, что Солнце примерно на 66 процентов состоит из чистого железа.

Результат этот обескураживал. Уран способен изливать, в соответствии с формулой E=mc2, энергию, поскольку его ядро столь велико и до того переполнено частицами, что оно еле-еле удерживает их в себе. Железо — это совсем другое дело. Ядро атома железа является едва ли не самым совершенным и стабильным из всех доступных воображению. Шар, состоящий из железа, — даже расплавленного, ионизированного или газообразного, — не смог бы изливать тепло в течение миллиардов лет.

И неожиданно выяснилось, что использовать E=mc2 и другие связанные с этим уравнения для истолкования того, что происходит во вселенной, невозможно. Астрономам оставалось лишь выглядывать за пределы земной атмосферы, в огромный космос со всеми его звездами, и дивиться.

Человеком, преодолевшим это препятствие и позволившим E=mc2 вырваться из крепких пут Земли, была молодая англичанка Сесилия Пэйн, которой нравилось смотреть, как далеко способен зайти ее ум. Увы, первые ее преподаватели по Кембриджскому университету, в который она поступила в 1919-м, интереса к такого рода экспериментам не питали. Она сменила факультет, потом сменила его еще раз и в итоге стала специализироваться по астрономии, а когда Пэйн принимала какое бы то ни было решение, результаты неизменно получались впечатляющие. Прозанимавшись астрономией всего несколько дней, она впервые оказалась ночью вблизи университетского телескопа и привела в ужас ночного дежурного. Он «сбежал вниз по лестнице, — вспоминала Пэйн, — и, задыхаясь от изумления закричал: “Там какая-то женщина вопросы задает!”». Однако ее это не обескуражило, и несколько недель спустя произошел еще один инцидент такого рода, также ею описанный: «У меня появился вопрос и я поехала на велосипеде к Обсерватории физики Солнца. Там я обнаружила молодого человека с копной спадавших на глаза светлых волос, — он сидел верхом на коньке крыши одного из зданий, занимаясь ее починкой. “Я приехала, чтобы спросить, — крикнула я ему снизу, — почему в звездном спектре не наблюдается эффект Старка?”».

Этот молодой человек не стал спасаться от нее бегством. Эдуард Милн — так его звали — и сам был астрономом; он и Пэйн подружились. Пэйн пыталась увлечь астрономией своих друзей и подруг с факультета искусств и хотя те, по большей части, понимали меньше половины того, что слышали от нее, Пэйн все равно пользовалась у них большой популярностью. Ее квартирка в Ньюнем-Колледже почти всегда была переполнена людьми. Один из ее друзей писал: «…с удобством разлегшись на полу (кресла ей ненавистны), она заводит разговор о чем угодно — от этики до новой теории приготовления какао».

В то время в Кембридже преподавал Резерфорд, однако что ему делать с Пэйн, он не понимал. С мужчинами Резерфорд вел себя грубовато, но дружелюбно, а вот с женщинами — грубовато и едва ли не по-свински. На лекциях он обращался с Пэйн попросту жестоко, добиваясь того, чтобы у его студентов-мужчин эта единственная среди них женщина ничего, кроме смеха, не вызывала. От посещения лекций Резерфорда ее это не отвратило — на семинарах Пэйн неизменно удавалось доказать, что она ни в чем не уступает даже лучшим его студентам, однако и сорок лет спустя, уже уйдя в отставку с поста профессора Гарварда, она помнила ту лекционную аудиторию с рядами выкрикивающих грубости студентов, которые лезли из кожи вон, пытаясь сделать то, чего ждет от них их профессор.

Зато спокойный квакер Артур Эддингтон, также работавший в университете, был рад видеть ее на своих семинарах. И хотя осторожная сдержанность никогда его не покидала, — если он приглашал студентов на чаепитие, на них непременно присутствовала его незамужняя старшая сестра, — Пэйн, которой шел тогда двадцать второй год, переняла у Эддингтона его почти не выражавшееся в словах преклонение перед силой теоретической мысли.

Эддингтон любил показывать своим студентам, каким образом разумные существа, живущие на полностью окутанной облаками планете, могли бы постичь основные особенности не наблюдаемой ими вселенной. Он представлял себе ход их рассуждений так: там, наверху, могут существовать раскаленные сферы, поскольку в плавающих по космосу облаках изначального газа должны постепенно формироваться такие его скопления, которые обладают плотностью, достаточной для того, чтобы внутри них началась ядерная реакция, благодаря чему они вспыхнули бы — и обратились в солнца. Плотность этих раскаленных сфер была бы достаточной и для того, чтобы сила их притяжения удерживала вращающиеся вокруг них планеты. И если бы вдруг задувший на этой мифической планете ветер разорвал облака, ее обитатели, взглянув вверх, увидели бы то, что они и ожидали увидеть, — вселенную, полную раскаленных звезд с вращающимися вокруг них планетами.

Мысль о том, что кто-то из обитателей Земли сумеет разрешить проблему входящего в состав Солнца железа, подтвердив тем самым правильность нарисованной Эддингтоном картины, была волнующей. И когда он поставил перед Пэйн задачу, касающуюся внутреннего строения звезд и бывшую хотя бы начальным шагом к решению этой проблемы, «задача эта преследовала меня днем и ночью. Помню мои яркие сны — я находилась в центре [гигантской звезды] Бетельгейзе и отчетливо понимала, как просто все в ней устроено; однако при свете дня эта простота куда-то исчезала».

Впрочем, и при поддержке такого замечательного человека, возможности защитить диссертацию в этой научной области женщина в Англии не имела, поэтому Пэйн перебралась в Гарвард, где преуспела еще больше. Она сменила плотные шерстяные платья на более легкие, модные в Америке 1920-х; нашла себе научного руководителя, многообещающего астрофизика Харлоу Шепли; ей нравилась свобода, царившая в студенческих общежитиях, нравилась новизна тем, которым посвящались университетские семинары. Ее распирал энтузиазм.

Вот он-то и мог стать серьезной преградой на ее пути. Энтузиазм в чистом виде для молодых ученых опасен. Если вас волнует новая область исследований, если вам не терпится присоединится к тому, чем занимаются ваши профессора и однокашники, это обычно приводит к тому, что вы предпринимаете попытки приладиться к принятым ими подходам. Студенты, работы которых выгодно отличаются от всех прочих, предпочитают, как правило, этого избегать, сохранять критическую дистанцию. Эйнштейн относился к своим цюрихским профессорам без особого почтения, считая большинство их просто рабочими лошадками, никогда не ставившими под сомнение основания того, чему они учили студентов. Фарадей не мог довольствоваться объяснениями, оставлявшими за скобками его сокровенное религиозное чувство; Лавуазье оскорбляла расплывчатая, лишенная точности химия, которую он получил в наследство от своих предшественников. Что касается Пэйн, необходимая ей дистанция возникла, когда она получше познакомилась со своими веселыми однокашниками. Вскоре после приезда в Гарвард: «Я рассказала подруге о том, как мне нравится одна девушка, жившая в том же, что и я, общежитии Рэдклифф-Колледжа. Ее это шокировало: “Она же еврейка!” — воскликнула моя подруга. Я сильно удивилась… а после обнаружила такое же отношение и к студентам африканского происхождения».

Обнаружила она и то, что происходило в задних комнатах Обсерватории. В 1923 году слово «вычислитель» никаких компьютеров не подразумевало. Оно подразумевало человека, единственная задача которого состояла в том, чтобы проводить вычисления. В Гарварде оно прилагалось к сидевшим в этих задних комнатах сутулым старым девам. Некоторые из них обладали некогда дарованиями первоклассных ученых («Мне всегда хотелось заняться математическим анализом, — сказала одна из них, — но [директор] не позволил»), однако давно их утратили, поскольку работа их состояла в измерении местоположений звезд или каталогизации томов, содержавших полученные ранее результаты. Если они выходили замуж, их увольняли; если жаловались на скудость получаемого ими жалования — увольняли опять-таки.

Лизе Майтнер, приступая в Берлине к научным исследованиям, тоже столкнулась с определенными проблемами, однако они и в сравнение не шли со здешней дискриминацией женщин, вынуждавшей их вести одинокое существование и лишавшей всех радостей жизни. Некоторым из гарвардских «вычислителей» удалось за несколько десятилетий, в течение которых они гнули спину за своими рабочими столами, промерить более 100000 спектральных линий. Но что эти линии означали и как они соотносились с новейшими физическими открытиями, — это, как правило, считалось не их ума делом.

Пэйн не желала, чтобы и ее затолкали в их ряды. Результаты спектроскопии могут выглядеть бессмысленными там, где они перекрываются. И Пэйн задумалась: насколько методы, посредством которых ее профессора отделяют одни линии от других, зависят от того, что у этих профессоров уже имеется на уме. К примеру, пусть читатель этой книги получше приглядится к нижеследующим буквам, а затем попытается их прочесть:

э т а к

о е н е

в с я к

о м у п

о у м у

Задача не из самых простых. Ну, правда, если вам удастся разглядеть «Этакое не всякому…», дальше все пойдет легко. Идея докторской диссертации, над которой Сесилия Пэйн работала здесь, в Бостоне 1920-х, состояла в том, чтобы обосновать и развить новую теорию, позволяющую интерпретировать результаты спектроскопических измерений. Ее работа была намного сложнее приведенного мной примера, поскольку спектрограммы солнца всегда включают то, что получено от фрагментов немалого числа элементов, — плюс искажения, создаваемые огромной температурой.

То, что сделала Пэйн, можно продемонстрировать с помощью аналогии. Если астрономы убеждены в том, что Солнце содержит огромное количество железа (а это представляется разумным, поскольку железа очень много и на Земле, и в астероидах), тогда существует только один способ прочтения двусмысленных спектрограмм. Допустим, к примеру, что спектрограмма выглядит так:

невыгодножелезомторговадур

Вы проводите ее грамматический разбор и читаете:

невыгодноЖелезомторговадур

Странное «торговадур» вас особенно не волнует. Появление «дур» вместо «ть» могло оказаться результатом сбоя спектроскопа, или какой-то протекающей на Солнце странной реакции, или просто затесавшегося сюда осколка другого элемента. Чтобы все сходилось одно к одному — так вообще никогда не бывает. Однако Пэйн смотрела на результаты спектрографии без какой-либо предвзятости. Что если они, на самом деле, пытаются сказать нам следующее:

неВыгОДножелезОмтоРгОваДур

Она снова и снова просматривала спектрограммы, выискивая такого рода двусмысленности. Все остальные ученые поддерживали одно прочтение спектральных линий, позволявшее говорить о присутствии железа. Однако можно было без особых натяжек прочитывать спектрограммы и по-другому, обнаруживая в них не железо, а водород.

Еще до того, как Пэйн дописала диссертацию, среди астрофизиков поползли слухи о полученных ею результатах. Прежнее объяснение данных спектроскопии сводилось к тому, что Солнце на две трети, если не больше, состоит из железа, а согласно интерпретации этой молодой женщины, более 90 процентов его составляет водород, а все остальное — обладающий почти таким же малым весом гелий. Если она права, это изменит все представления о том, как горят звезды. Железо настолько стабильно, что никто и представить себе не может, каким образом его можно преобразовать с помощью формулы E=mc2, заставив генерировать всю тепловую энергию нашего Солнца. Но кто знает, на что способен водород?

Это знала старая гвардия. Ни на что он не способен. Его там нет и быть не может. Все карьеры этих людей — все их детальные расчеты, вся их власть и должности — зависели от того, что Солнце состоит из железа. В конце концов, разве эта женщина не оперирует спектральными линиями, полученными от внешней атмосферы Солнца, вглубь его не заглядывая? Может быть, ее интерпретация просто ошибочна, поскольку не учитывает происходящие в этой атмосфере сдвиги температуры, наличие в ней неких химических смесей. Научный руководитель Пэйн заявил, что она ошибается, — следом заявил то же самое и его прежний научный руководитель, высокомерный Генри Норрис Расселл, а с ним спорить было почти бессмысленно. Расселл обладал редкостным самомнением, он никогда не допускал и мысли о возможности своей неправоты, — к тому же, в астрономической науке Восточного побережья от него зависело как большинство грантов, так и любая возможность получения работы.

Какое-то время Пэйн все же пыталась бороться: повторяла свои доказательства, доказывала, что водородная интерпретация спектрограмм не менее правдоподобна, чем та, которая ведет к железу; более того, настаивала на том, что новейшие открытия, сделанные физиками-теоретиками Европы, показывают: водород действительно может питать энергию Солнца. Все было без толку. Она даже пыталась заручиться поддержкой Эддингтона, однако он ей в таковой отказал — возможно, из-за своих убеждений, возможно, из страха перед Расселлом, а возможно, просто из опасений, которые испытывает всякий пожилой холостяк, когда молодая женщина лезет к нему со своими эмоциями. Друг Пэйн по студенческим годам, проведенным ею в кембриджской Обсерватории физики Солнца, молодой, светловолосый Эдуард Милн, ставший теперь признанным астрофизиком, — вот он попытался помочь ей, однако ему не хватило для этого власти. Пэйн и Расселл обменивались письмами, однако для того, чтобы результаты ее исследований были приняты, ей следовало пойти на отступничество. Готовя диссертацию к опубликованию, Пэйн вынуждена была вставить в нее унизительную оговорку: «Огромный избыток [водорода]… почти наверняка является нереальным».

Впрочем, несколько лет спустя значение работы, проделанной Пэйн, стало ясным для всех, поскольку независимые исследования других ученых подтвердили правильность ее интерпретации спектрограмм. Она была оправдана, неправыми оказались ее профессора.

Несмотря на то, что прежние учителя Пэйн так перед ней и не извинились — напротив, они старались, пока могли, притормозить ее карьеру, — путь к использованию E=mc2 для объяснения того, как сгорает Солнце, был открыт. Пэйн показала, что нужное для этого топливо плавает в космосе, что Солнце и все прочие звезды суть, в действительности, огромные насосные станции, работающие по принципу E=mc2. Они перекачивают, уничтожая ее, всю массу водорода. Впрочем, на самом деле, они просто прокачивают ее через стоящий в уравнении знак равенства и то, что выглядело массой, вырывается из них в виде буйной взрывной энергии. Несколько ученых занялись подробностями этого процесса, однако основную работу выполнил Ханс Бете, тот самый человек, который стал впоследствии соавтором посвященного немецкой угрозе меморандума, представленного в 1943-м Оппенгеймеру.

Здесь, на Земле наполняющие атмосферу атомы водорода просто пролетают один мимо другого. Даже если их придавливает обрушившаяся гора, они друг к другу не прилипают. Однако, оказавшись вблизи центра Солнца, испытывая давление слоя вещества высотой в тысячи миль, ядра водорода могут притискиваться так близко одно к другому, что, в конце концов, они соединяются, образуя химический элемент, именуемый гелием.

Если бы происходило только это, ничего особо важного тут не было бы. Но Бете и другие исследователи показали, что каждый раз, как четыре ядра водорода прижимаются друг к другу, срабатывает могучая субатомная арифметика, подобная той, которую как-то под вечер, среди снегов Швеции, разработали Майтнер и ее племянник Фриш. Массу четырех ядер водорода можно записать как 1+1+1+1. Однако, когда они соединяются, образуя гелий, суммарная масса оказывается не равной 4! Тщательно измерьте массу ядра гелия, и вы увидите, что она на 0,7 процента меньше, то есть составляет 3,993 единиц массы четырех ядер водорода. Утраченные 0,7 процента обращаются в ревущую энергию.

Такая величина кажется незначительной, но ведь Солнце во много тысяч раз больше Земли и содержит колоссальное количество доступного в качестве топлива водорода. Взорванная над Японией бомба разрушила целый город, обратив в энергию всего лишь несколько унций урана. Причина мощи Солнца состоит в том, что оно каждую секунду перекачивает 4 миллиона тонн водорода, обращая его в чистую энергию. «Взрывы», происходящие на нашем Солнце, можно ясно наблюдать со звезды альфа Центавра, отделенной от нас 24 триллионами миль, — как и с недоступных воображению планет, которые обращаются вокруг звезд, разбросанных по спиральной ветви нашей галактики.

Солнце перекачивало массу в энергию вчера, — в тот момент, когда вы только-только проснулись, 4 миллиона тонн водорода «продавливались» сквозь знак равенства, стоящий в уравнении, которое Эйнштейн записал в 1905 году, со стороны массы на сторону энергии, умножаясь попутно на огромную величину c2, — оно проделывало тоже самое на заре, разгоравшейся над Парижем пять столетий назад, и в тот день, когда Магомет обрел пристанище в Медине, и когда в Китае утвердилась династия Хань. Энергия, полученная из миллионов исчезающих тонн, каждую секунду с ревом проносилась над головами динозавров — сама Земля пестовалась, согревалась и ограждалась этим яростным пламенем столько времени, сколько она провела на своей орбите.

 

Глава 15. Сотворение Земли

Работа Сесилии Пэйн помогла показать, что наше Солнце и прочие звезды небесные суть огромные насосные станции, чья работа основана на принципе E=mc2. Однако само по себе пережигание водорода в гелий способно было с легкостью привести к возникновению серой, мертвой вселенной. На ранних этапах ее истории состоящие из водорода звезды могли ярко пылать, создавая гелий. Однако с ходом времени изначальный водород должен был попросту выгореть, а тепло и свет, создававшиеся в соответствии с E=mc2, постепенно угасли бы, оставив после себя лишь гигантские летающие кучи пепла — использованного гелия. И ничто иное возникнуть не смогло бы.

Для создания вселенной, какой мы ее знаем, должно было существовать некое устройство, способное вырабатывать углерод, кислород, кремний и все остальные химические элементы, из которых состоят планеты и от которых зависит существование жизни. Атомы этих элементов крупнее и сложнее того, что могла создать простая машина пережигания водорода в гелий.

Пэйн была женщиной достаточно независимой, чтобы бросить вызов всеобщей уверенности в том, что звезды состоят из железа, и это позволило сделать первый шаг к пониманию вселенной: показать, что в звездах, находящихся далеко за пределами нашей атмосферы, достаточно водорода, обеспечивающего постоянный выброс энергии в согласии с формулой «1+1+1+1 = не совсем 4», формулой, которая, собственно, и поддерживает сгорание звезд. Однако на возникновении гелия все и остановилось. Кому хватило бы дерзости и независимости, чтобы пойти дальше, показать, что формула E=mc2 способна создавать обычные элементы, из которых состоит наша планета и на которой построена наша повседневная жизнь?

В 1923 году, когда Пэйн только-только появилась в Гарварде, семилетний йоркширский мальчуган был уличен школьным инспектором в том, что он прогулял бóльшую часть прошедшего учебного года, посещая вместо занятий местный кинотеатр. И хотя юный Фред Хойл убедительно доказал, что хождение в кино пошло ему только на пользу, — следя за титрами, он научился читать, — он был вынужден против собственной воли вернуться в школу. Вот этому мальчугану и предстояло, в конечном счете, сделать следующий крупный шаг в объяснении того, как устроено Солнце.

Примерно через год после возвращения Хойла в школу его класс отправили собирать полевые цветы. Затем, уже в школе, учитель зачитал список собранных цветов и описал один из них как имеющий пять лепестков. Как раз этот цветок Хойл и держал в руке. И лепестков у него было шесть. Странно. Ладно бы меньше пяти, это было бы понятно — какие-то из лепестков могли оторваться, пока он нес цветок в школу. Но больше? Он ломал голову над этой загадкой и почти не слышал скрипучего голоса учителя, а затем: «Я получил удар открытой ладонью по уху, — писал он годы спустя, — …удар, от которого в дальнейшем оглох. Поскольку я его не ожидал, то и не имел возможности отпрянуть хотя бы на дюйм, уменьшив скачок давления, обрушившегося на мою барабанную перепонку и среднее ухо».

Хойлу потребовалось несколько минут, чтобы прийти в себя, но после этого он ушел из школы, а дома рассказал о случившемся матери. «Я сказал, что школа получила от меня три года испытательного срока, и если человек не способен за три года понять, что в какой-то вещи нет ничего хорошего, тогда что он способен понять вообще?»

Мать полностью с ним согласилась — как и отец, проведший пулеметчиком два года на Западном фронте и выживший благодаря тому, что не выполнял приказы не отличавшихся большим умом офицеров, происходивших из высших слоев общества — офицеры эти требовали, чтобы пулеметы пристреливались с десятиминутными интервалами (что, разумеется, позволило бы немцам устанавливать точное расположение огневых точек). Фред Хойл получил еще один год передышки. «Каждое утро я, позавтракав, выходил из дома, — якобы направляясь в школу. Однако направлялся я на заводы и в мастерские Бингли. На фабриках лязгали и грохотали ткацкие станки. В мастерских работали кузнецы и плотники… И все они с явным удовольствием отвечали на любые мои вопросы».

В конце концов, он отправился по железной дороге в другую школу, где отличавшиеся большей добротой учителя разглядели в Хойле одаренного мальчика и помогли ему получить стипендию. Кончилось тем, что Хойл поступил в Кембриджский университет, где специализировался по математике и астрофизике и делал в этом такие успехи, что до крайности нелюдимый Поль Дирак взял его в ученики, — событие до той поры невиданное, — а прежний руководитель Пэйн, Эддингтон, приглашал на чаепития, — впрочем, поскольку поговаривали, что в Гарварде Пэйн «осрамилась» (в смысле интеллектуальном), имя ее почти не упоминалось. (История уже была переписана: Генри Норрис Расселл и прочие давали теперь понять, что они «всегда» знали, как много на Солнце водорода.)

А вот решение вопроса о том, каким образом звездам удается использовать гелий в качестве последующего топлива для колоссальной машины E=mc2, так и застряло на месте, — том, на котором его оставили в 1920-х Пэйн и ее прямые последователи. Существующей в центре нашего Солнца температуры в 10 и более миллионов градусов едва-едва хватало на то, чтобы слеплять вместе четыре положительно заряженных ядра водорода, отчего возникал гелий. Но для того, чтобы склеивать в процессе горения ядра гелия и создавать таким образом элементы более крупные, необходимы температуры намного более высокие. Между тем, вселенная была уже изучена достаточно подробно и таковых в ней не наблюдалось.

И где же тогда следовало искать температуры, превышающие те, что развиваются в центре звезды?

Вот тут и пригодилось обыкновение Хойла складывать факты по-своему. В начале Второй мировой войны его включили в состав группы, занимавшейся исследованиями и разработкой радаров, а в декабре 1944-го он попал в Соединенные Штаты на посвященное обмену информацией совещание, и в конечном итоге оказался в Монреале, где дожидался одного из редких в те времена авиарейсов, который позволил бы ему вернуться через Атлантику домой.

Он бродил по городу и его окрестностям, собирая попутно сведения о работавшей в Чалк-Ривер (примерно в 100 милях от Оттавы) британской исследовательской группе. Официально никто ему о «Манхэттенском проекте» не сообщал, однако имена, которые услышал здесь Хойл, — а некоторые из них принадлежали людям, с чьими работами он познакомился еще в довоенном Кембридже, — постепенно позволили ему уяснить основные этапы развития сверхсекретного проекта, в то время еще осуществлявшегося в Лос-Аламосе.

Из опубликованных перед войной работ Хойл знал: простейший способ получения изначального сырья, необходимого для изготовления бомбы, состоит в том, чтобы использовать реактор для создания плутония. Он знал также, что Британия строить собственные реакторы не пыталась. Это означало, заключил Хойл, что ученые столкнулись на пути использования плутония с какой-то неожиданной проблемой — и, возможно, она состояла в том, что им не удавалось добиться достаточно быстрого развития реакции. Однако теперь, выяснив, кто именно работает в Канаде, а среди этих людей имелись математики, специализировавшиеся по теории взрыва, он понял, что проблему эту, по-видимому, удалось разрешить.

У Оппенгеймера и Гроувза имелись заборы из колючей проволоки, вооруженная охрана и офицеры службы безопасности — все это плотным кольцом окружало ученых, занимавшихся в Лос-Аламосе проблемой детонации плутония. Однако ни те, ни другие, ни третьи не смогли послужить защитой от человека, которому удалось когда-то перехитрить строгую администрацию йоркширской системы образования. Ко времени, когда Хойлу удалось, наконец, вылететь на родину, он уже в общих чертах представлял себе, чего смогли добиться сотни специалистов Оппенгеймера. Такое вещество, как плутоний, просто так не взрывается, однако если его достаточно быстро сдавить до большой плотности, оно определенно само раздавит свои атомы. Имплозия повысит в нем и давление, и температуру в достаточной для этого мере.

Все, кто участвовал в создании бомбы, считали имплозию явлением чисто локальным, работающим лишь применительно к плутониевым сферам диаметром в несколько дюймов. Но почему же его масштабы должны оставаться столь малыми? Имплозия превосходно работает на Земле. А Хойл привык не ограничивать свою мысль какими-либо пределами. Почему не применить идею имплозии и к звездам?

Если подвергнуть имплозии звезду, она тоже разогреется. Температура в ее центре уже не будет составлять, — как быстро подсчитал Хойл, — 20, примерно, миллионов градусов, но приблизится к 100 миллионам. А этого хватит, чтобы слепить крупные ядра элементов более массивных. При высоком давлении из гелия можно получить углерод. Если же имплозия будет развиваться и дальше, звезда разогреется еще сильнее и возникнут ядра еще более тяжелых элементов: кислорода, кремния, серы и прочих.

Все зависело от того, может ли звезда и вправду переживать такое внутреннее «схлопывание», однако Хойл понимал — для этого существует вполне вероятная причина. Пока звезда остается относительно холодной, пока температура в ее центре не превышает 20 миллионов градусов, она способна лишь пережигать водород, порождая гелий, который накапливается примерно так же, как пепел в камине. Когда же весь водород выгорит, пепел сам по себе гореть уже не сможет. Верхние слои звезды не будут больше подпираться, выталкиваться наружу ее внутренним горением. Они начнут стягиваться внутрь — точь-в-точь как у сконструированной в Лос-Аламосе бомбы.

Когда же звезда сжимается, температура в ней поднимается до 100 миллионов градусов, достаточных, чтобы воспламенить состоящий из гелия «пепел». После того как выгорит и гелий, накопится новый пепел и начнется новый этап. Углерод при 100 миллионах градусов гореть не может, а значит звезда начнет сжиматься снова. Температура ее еще возрастет, наступит новый цикл развития процесса. Все это похоже на то, как обваливается внутрь себя многоэтажное здание, на то, как гнутся и ломаются опоры одного его этажа за другим. И центральную роль играет на каждом этапе горения формула E=mc2- сначала выжигается водород, затем гелий, затем углерод, — необходимая для этого энергетическая подпитка получается преобразованием массы в энергию.

В дальнейшем процесс этот разрабатывался все в больших подробностях, многие из которых выявил сам Хойл, однако главной для решения проблемы в целом стала первоначальная идея, полученная им из рассмотрения атомной бомбы. Хойл просто перенес весь процесс с нескольких фунтов плутония, ценой большого труда полученных на Земле, на шары из бурно кипящего газа — звезды, имеющие диаметры в сотни тысяч километров и удаленные от нас в космосе на колоссальные расстояния. Он понял, как могут звезды создавать жизненно необходимые элементы. Он понял также, что, когда те звезды, что покрупнее, исчерпывают свое последнее топливо, они должны распадаться. И после этого все, что было ими создано, извергается в космос.

Мы привыкли считать нашу планету старой, однако, когда она формировалась, небеса уже были древними, полными миллионов взрывающихся гигантов. Их взрывы выбрасывали в космос кремний, железо и даже кислород — все что было необходимым для образования вещества, из которого состоит Земля.

При взрывах древних звезд создавались в больших количествах и неустойчивые элементы, такие как уран и торий, — и оказавшись глубоко под поверхностью Земли, они продолжали взрываться, обстреливая высокоскоростными фрагментами своих ядер окружавшие их скальные породы. Эти радиоактивные выбросы, создаваемые ураном и иными тяжелыми элементами, плюс изначальное тепло, сохранившееся со времени сотворения Земли, не давали недрам нашей планеты остывать. Такие последовательные и множественные проявления E=mc2 помогали поддерживать под земной поверхностью температуру, которой хватало на то, чтобы обеспечивать сдвиги в тонкой пленке континентов, — так формировалась поверхность Земли.

В некоторых местах участки этой пленки сталкивались, сминая друг друга, отчего возникало подобие ряби, которую мы называем ныне Альпами, Гималаями или Андами. В других внутренний жар планеты выжигал ямы, получившие теперь такие названия, как залив Сан-Франциско, Красное море и Атлантический океан. Эти ямы превосходно подходили для накопления также падавшего из космоса водорода, который, соединяясь с кислородом, образовал океаны плещущейся воды. В глубинах планеты плескалось — пусть и на более степенный манер — железо, движимое ее вращением вокруг своей оси. Оно создавало над собой невидимые линии магнитного поля, те самые, которые 4 миллиарда лет спустя описывал и воспроизводил в подвалах лондонского «Королевского института» Майкл Фарадей. В итоге далеко вверху возникла целая сеть таких линий, которая помогала защитить сами собой собиравшиеся на поверхности молекулы углерода от потоков наиболее опасного космического излучения.

Извергались, питаемые постоянно работавшей в глубине планеты формулой E=mc2, вулканы, и это создавало подобие конвейерной ленты непрерывного действия, поднимавшей из недр Земли химические элементы. Ключевые микроэлементы выбрасывались в воздух, помогая образованию плодородной почвы; огромные облака двуокиси углерода поднимались вверх, создавая на молодой планете парниковый эффект, который давал дополнительное тепло, необходимое для зарождения жизни. Там, где возникала особенно высокая концентрация фрикционного тепла, которое порождалось атомами, расщеплявшимися в соответствии с E=mc2, срабатывали подводные вулканы, чьи извержения пробивались даже сквозь тысячи метров холодной океанской воды — именно так и возникли поднявшиеся над волнами Тихого океана Гавайские острова.

Пропустим несколько миллиардов лет и мы увидим, как появляются первые самодвижущиеся скопления атомов углерода (то есть мы с вами), как они бредут сквозь низкие облака созданного звездами кислорода, как помешивают насыщенные кофеином жидкости, образованные при участии возникших во время «большого взрыва» атомов водорода, и читают книжку о том, каким образом они появились на свет. Ибо мы живем на такой планете, где постоянная работа уравнения E=mc2 окружает нас со всех сторон.

Атомные бомбы были примером первого прямого его применения. Поначалу в лабораториях «Манхэттенского проекта» удалось, ценой огромных усилий, изготовить лишь горстку таких бомб, однако после Хиросимы возникла колоссальная инфраструктура, состоявшая из заводов, ученых и научно-исследовательских институтов, — и бомб стало больше. К концу 1950-х атомные и водородные бомбы насчитывались уже сотнями и даже сейчас, после завершения Холодной войны, количество их исчисляется многими тысячами. Создание этих бомб потребовало сотен проводившихся годами наземных испытаний, при которых в атмосферу выбрасывались мощные потоки радиоактивных частиц, разлетавшихся затем по всей планете — и ныне их носит в своем теле каждый, какой только живет на Земле, человек.

Были построены ядерные подводные лодки — взрывавшиеся в котлах этих судов радиоактивные элементы давали тепло, необходимое для вращения их винтов. Это было страшное оружие, но именно потому оно и обеспечивало странную стабильность в наиболее опасные периоды Холодной войны. Предыдущие, времен Второй мировой войны, поколения подводных лодок не могли подолгу находиться на боевом дежурстве. На поверхности воды им удавалось развивать скорость до 22 км/час — скорость велосипедиста; под водой они двигались со скоростью пешехода — 7,5 км/час. Пытаясь пересечь Атлантический или Тихий океан, они пожирали такое количество топлива, что очень скоро им приходилось дозаправляться, а это в условиях военного времени было предприятием отнюдь не простым, или разворачиваться и тащиться восвояси. Другое дело — подводная лодка с ядерными двигателями. Русские и американские субмарины могли выходить на огневую позицию и оставаться на ней неделями и месяцами кряду, создавая угрозу, которая заставляла противника быть очень осторожным и стараться не совершать шаги, способные привести к тому, что такая лодка даст залп всеми ее ракетами.

Что касается суши, на ней строились огромные электростанции, в которых для вращения турбин использовалось фрикционное тепло, создаваемое в соответствии с формулой E=mc2. Это был не самый разумный выбор источника энергии, поскольку даже обычные, не ядерные, взрывы на таких станциях могли приводить к ужасающим последствиям; к тому же, ничто не пугает финансовых служащих корпораций сильнее, чем формулировка «неограниченная ответственность», а радиоактивное заражение стен и цементных полов таких станций, плюс необходимость избавления от радиоактивных остатков их топлива создавали ответственность очень не малую. Тем не менее, правительство Франции — в предвидении возможных обвинений подобного рода — попросту запретило судам принимать к рассмотрению дела против атомной индустрии: и теперь около 80 процентов используемого этой страной электричества производится атомными электростанциями. Когда по ночам освещается Эйфелева башня, электричество для этого получают, воспроизводя, но только медленно, взрыв древних атомов над Хиросимой.

Уравнение E=mc2 работает и в обычных жилых домах. В детекторах дыма, накрепко привинченных к кухонным потолкам, обычно содержатся образцы радиоактивного америция. Детектор получает необходимую для его работы энергию, преобразуя в нее — в точном соответствии с уравнением — массу америция и затем используя эту энергию для создания чувствительных к наличию дыма потоков заряженных частиц: и работать такие детекторы могут годами.

Точно в такой же степени зависят от E=mc2 светящиеся указатели «Выход», которые мы видим в торговых центрах и театральных залах. Питать эти указатели от обычных источников света дело не надежное, поскольку при пожаре подача электричества может прерваться и тогда указатели просто погаснут. Поэтому внутри их находится радиоактивный тритий. Указатели содержат достаточное количество ядер нестабильного трития, который непрерывно «теряет» массу, излучая при этом полезную энергию.

В больницах уравнение постоянно применяется в медицинской диагностике. При использовании мощных устройств создания изображений, известных как ПЭТ (позитронная эмиссионная томография) — сканнеры, пациент вдыхает радиоактивные изотопы кислорода. Ядра их атомов, распадаясь, излучают потоки энергии, которые регистрируются на выходе из тела пациента. Это позволяет получать данные об опухолях, кровотоке или действии принимаемых внутрь лекарств — именно таким образом изучалось, к примеру, воздействие «прозака» на мозг. В случае радиационного лечения рака опухоли бомбардируют микроскопическими количествами таких радиоактивных веществ, как кобальт. При распаде нестабильных ядер кобальта, часть их массы опять-таки «исчезает», а результирующая энергия оказывается достаточной для того, чтобы разрушать ДНК раковых клеток.

Существует также нестабильная разновидность углерода, — она постоянно образуется за иллюминаторами реактивных пассажирских самолетов и создают ее космические лучи, часть которых поступает к нам из отдаленных уголков галактики. Всю нашу жизнь мы вдыхаем этот углерод. Положите себе на ладонь чувствительный счетчик Гейгера и вы услышите, как он защелкает. (По сути дела, он «прослушивает» миниатюрные срабатывания уравнения, записанного Эйнштейном в 1905 году. Каждый щелчок счетчика Гейгера свидетельствует о том, что E=mc2 сработало снова, что нестабильное ядро изотопа углерода испустило излишний нейтрон, который оно захватило, проходя через верхние слои атмосферы.) Однако, когда мы перестаем дышать, — или когда засыхает дерево либо останавливается рост растения — приток углерода в них прекращается. И щелчки понемногу стихают.

Нестабильный углерод — это знаменитый С-14. Он представляет собой подобие часов, использование которых произвело революцию в археологии. Применение углеродной датировки позволило доказать, что Туринская плащаница это средневековая подделка, поскольку содержание углерода в ее полотне стало сокращаться, начиная с четырнадцатого столетия, но никак не раньше. Фрагменты углерода, взятые из пещеры Ласко, из могильных курганов индейцев, из пирамид Майя и поселений кроманьонцев, позволили впервые точно датировать и их происхождение.

А высоко над нами, уже за пределами атмосферы, проносятся спутники мозаичной навигационной системы министерства оборона США с аппаратурой Глобальной системы позиционирования на борту. Излучаемые ими сигналы постоянно претерпевают синхронизационный сдвиг — описанный теорией относительности искажающий эффект, о котором у нас шла речь в главе 7, — и с тем же постоянством его приходится корректировать с помощью компьютерных программ, которые используют открытия Эйнштейна для внесения поправок в эти сигналы. И наконец, совсем уж далеко от нас висит в пространстве огромный, сотрясаемый взрывами шар Солнца, в котором гигантский коэффициент c2 используется для продолжающегося уже миллиарды лет обогрева нашей планеты, без которого никакая жизнь на ее просторах существовать не могла бы.

 

Глава 16. Брамин поднимает глаза к небу

Солнце, конечно, огромно, однако не может же оно гореть вечно. Для обогрева всей Солнечной системы требуются колоссальные количества топлива, пусть даже ее обогреватель перекачивает вещество через знак равенства, стоящий в E=mc2. Сейчас масса Солнца равна 2 000 000 000 000 000 000 000 000 000 тонн, однако каждый день оно расходует на мультимегатонные взрывы около 700 миллиардов тонн содержащегося в нем водорода. И в следующие 5 миллиардов лет наиболее доступная часть этого топлива будет израсходована.

Когда это произойдет и в центре Солнца останется лишь гелиевый «пепел», происходящая в нем реакция начнет смещаться от центра вверх, прокачивая через насос E=mc2 водород, находящийся ближе к поверхности нашего светила. Внешние слои Солнца станут расширяться и несколько охлаждаться, отчего Солнце начнет светиться красным светом. Расширение будет продолжаться вплоть до орбиты Меркурия. К этому времени каменная поверхность этой планеты расплавится, а остатки ее поглотит пламя. Потом, еще несколько десятков миллионов лет спустя наше обратившееся в красный гигант Солнце достигнет орбиты Венеры, поглотив и ее тоже. Но что будет происходить после этого?

Кто говорит, мир от огня Погибнет, кто от льда.

Роберт Фрост опубликовал эти строки в 1923 году, когда изображал в штате Вермонт выращивающего яблоки фермера. Однако первый вариант стихотворения был написан, еще когда он состоял в штате Колледжа Амхерста и имел возможность тратить немалое время на чтение. В ту пору многие из писавших на научные темы людей использовали популярный со времен знаменитого французского натуралиста Бюффона и до поздней викторианской Англии образ огромной остывающей вселенной. Но были и такие, кто противопоставлял ему более ранние апокалипсические образы «Откровения Иоанна», предвещавшего в конце огонь и потопление.

В действительности, с Землей произойдет и то, и другое. Существа, которые будут населять поверхность этой планеты в пятимиллиардный год нашей эры, увидят как Солнце станет разрастаться в размерах до тех пор, пока оно не займет собой половину дневного небосвода. Океаны выкипят, камни на поверхности планеты расплавятся. Возможно, существовавшая на Земле жизнь сможет, используя технологии, которые мы сейчас и вообразить не способны, переселиться на другие планеты или укрыться в глубоких подземных тоннелях; возможно, Земля опустеет задолго до того времени, когда сжигающее все Солнце наполнит небо.

Солнце сохранит огромные размеры в течение еще миллиарда лет, пока будет выгорать оставшийся внутри его гелиевый пепел; оно так и будет уничтожать собственную массу, обращая ее в энергию яростного света и тепла. Затем, когда поддерживавшие его размер потоки энергии ослабеют, оно начнет сжиматься. К этому времени в нем выгорит столько «топлива», что горение Солнца станет неустойчивым.

Вот тогда и начнет образовываться лед. По мере оскудения внутренних запасов топлива, Солнце будет сжиматься и сжиматься, но затем оно подключится к другим источникам топлива, и новый выброс энергии заставит его резко расшириться. Каждый раз это будет сопровождаться звуковыми ударами, не сравнимыми, впрочем, с недолгим громом, который возникает, когда самолет переходит звуковой барьер. На этом этапе, через шесть миллиардов лет, считая от нашего времени, Земля и вправду услышит последний вопль Титанов.

Каждое расширение Солнца будет сопровождаться такой убылью его массы, что спустя всего несколько сот тысяч лет от него останется лишь очень немногое. И остаток этот уже не сможет создавать ту же, что и прежде, силу притяжения. Если Земля не окажется поглощенной расширявшимся Солнцем, то после 11 миллиардов лет ее нахождения на устойчивой орбите оно уже не сможет удерживать ни ее, ни другие планеты. Солнечная система распадется, и Земля полетит в открытый космос.

Одно из ключевых открытий, необходимых для понимания дальнейших событий, — в которых E=mc2 опять-таки играет центральную роль, — было сделано Субрахманьяном Чандрасекаром, одним из ведущих астрофизиков двадцатого века, человеком, научная карьера которого продолжалась почти шестьдесят лет. Открытие это он сделал жарким летом 1930-го, когда ему было всего девятнадцать. Британская империя уже понемногу распадалась, однако Чандра (как его обычно называли) пока еще жил в ее владениях и теперь ехал из Бомбея в Англию, намереваясь поступить в аспирантуру Кембриджа.

В тот август в Аравийском море штормило, пассажиры сидели по каютам, однако, когда Чандра оправился от морской болезни, у него еще оставались недели спокойного плавания, стопка чистых листов бумаги и семейная привычка с толком использовать свободное время. Чандра был темнокожим брамином и, когда дети кое-кого из белых пассажиров пытались поиграть с ним, — а он считал себя обязанным принимать такие предложения, — родители быстренько их уводили.

В итоге, свободного времени у него оказалось предостаточно и он, сидя в палубном шезлонге, одним из первых на Земле людей сообразил, что небесным телам присуща некая странность. Было уже известно, что гигантские звезды могут взрываться, — их верхние слои разлетаются после соударения с тяжелым, сжимающимся ядром. Но что происходит вслед за взрывом с самим этим ядром?

Чандра был образованным молодым человеком, хорошо знавшим литературу Индии и Запада и свободно говорившим по-немецки. Он читал статьи Эйнштейна, встречался с некоторыми приезжавшими в Индию ведущими физиками Германии. Он знал, что плотное ядро звезды испытывает сильное внешнее давление, и теперь задумался о том, что такое давление также является формой энергии.

А энергия есть лишь другая ипостась массы.

Энергия, возможно, и способна к большей, чем масса, диффузии, однако, как показывает уравнение E=mc2, обе они суть различные стороны одного и того же. И опять-таки, два члена уравнения — «Е» и «m» — вовсе не обязаны переходить с одной его стороны на другую и «превращаться» друг в друга. В действительности, уравнение говорит об ином: значительная часть того, что мы называем массой, это на самом деле энергия, — просто мы не привыкли узнавать ее в таком обличии. Подобным же образом, ярко светящаяся, сконденсированная энергия это в действительности масса — просто она имеет форму более диффузную, чем та, в которой мы легко распознаем массу.

Чандра словно бы мельком увидел процесс, который ведет к образованию черных дыр. Ему оставалось лишь следовать логике этого процесса, которая, двигаясь, как по спирали, вела к своего рода «уловке-22». Сжатое ядро звезды испытывает новое, очень сильное давление, давление может рассматриваться как разновидность энергии, а там, где имеет место большая концентрация энергии, окрестные пространство и время ведут себя так же, как в присутствии большой концентрации массы. Благодаря наличию всей этой «массы», сила притяжения, создаваемая остатками звезды, возрастает. И эта сила притяжения продолжает сдавливать то, что осталось, то есть давление становится еще более сильным. А поскольку этот рост давления можно, опять-таки, трактовать как увеличение энергии, оно — понял Чандра, помнивший о E=mc2, — выглядит, как дальнейший прирост массы. То есть, сила притяжения все растет и растет.

У малой звезды такое нарастание давления далеко не заходит, что позволяет веществу, расположенному близ центра звезды, сопротивляться ему. Однако, если звезда достаточно массивна, процесс идет дальше. И не важно, насколько прочно вещество, из которого состоит звезда; на самом деле, если оно обладает исключительно высокой устойчивостью, положение его вскоре только ухудшится. Предположим, что гигантская звезда находится под еще большим, чем ожидалось, давлением, что на нее давят колоссальные, немыслимые триллионы триллионов тонн. Так вот, это дополнительное давление «дало бы» еще большую энергию, которая повела бы себя как еще большая масса, и потому сила притяжения усилилась бы и сдавила бы звезду еще пуще.

Независимо от того, какой сопротивляемостью обладает вещество, из которого состоит ядро звезды, внутренность ее будет сдавливаться до тех пор, пока…

Пока что?

Чандра обладал непредвзятым умом молодого человека, однако на этом этапе и ему пришлось притормозить. Не предсказывает ли он, что внутренность звезды просто-напросто исчезнет? Если так, в самой материи вселенной существуют разрывы! Чандра приостановился, чтобы помолиться и поесть, он даже провел несколько часов, вежливо слушая христианского проповедника, который объяснял ему, правоверному индусу, почему все религии Индии суть дело рук Дьявола. «Он был миссионером, — вспоминал впоследствии Чандра, — но также… желал меня порадовать. Зачем же было грубить ему?»

Когда Чандра вернулся в палубный шезлонг и вновь приступил к работе, он понял, что, в сущности, не способен описать то, что происходит с остатками звездного вещества, вливающегося в дыру, которая создается этим нескончаемым коллапсом. Однако из работ Эйнштейна было ясно, что пространство и время вблизи такой звезды будут сильно искривляться ею. Даже свет не сможет покинуть ее, а ближайшие к ней звезды, притянутые ее гравитационным полем, будут разрываться на части тем, что выглядит как «пустое» место в космосе.

Это открытие, наряду с другими, стало основой современной концепции черных дыр. Однако, добравшись, наконец, до Англии, Чандра обнаружил, что нарисованная им картина отвергается почти всеми, кому он о ней рассказывает, — и зачастую с вежливостью, куда меньшей той, которую проявил, слушая миссионера, он сам. Эддингтон, оказавший когда-то столь вдохновляющее воздействие на Сесилию Пэйн, был теперь слишком стар для подобных фантазий. Это «звездная буффонада», заявил он. «Нелепость». Однако к 1960-м была впервые обнаружена звезда (взгляните на созвездие Лебедя и на звезду, находящуюся чуть в стороне от него), которая вращается вокруг области пространства, представляющейся нашим телескопам совершенно пустой. Единственным, что обладает силой, достаточной для того, чтобы добиться этого, занимая место столь малое, может быть черная дыра. Существуют также основательные свидетельства того, что и в центре нашей галактики имеется черная дыра по-настоящему огромная, приобретшая свои размеры за миллионы лет, поглощая, в среднем, по эквиваленту одной обычной звезды в год. Пространство-время действительно содержит прорехи, — как первым понял молодой Чандрасекар.

В 1930-х Чандра еще пытался бороться с враждебно настроенным по отношению к нему Эддингтоном, однако, обнаружив, что даже те английские астрофизики, которые считают, что он прав, боятся открыто поддерживать его, покинул Англию. В Америке его приняли с распростертыми объятиями, и он вместе с учеными Чикагского университета приступил к работе, которая продолжалась несколько десятилетий и увенчалась присуждением ему Нобелевской премии — в 1983 году, через полвека после его плавания по Аравийскому морю, — работе, сыгравшей центральную роль в понимании того, что ожидает нас в будущем.

Через шесть, считая от нынешнего дня, миллиардов лет, когда Земля полетит прочь от исчерпавшего свое топливо Солнца, уцелевшие на ней наблюдатели или регистрирующие приборы увидят небо, куда более темное, чем наше ночное. Ибо топлива лишатся уже многие звезды, и они начнут угасать — сначала самые яркие, а затем и все остальные.

Полет Земли по этому потемневшему пространству не будет стабильным. Наш Млечный путь уже находится на пути к столкновению с другой галактикой, туманностью Андромеды, и через несколько миллиардов лет после того, как Земля оторвется от Солнца, — если не будет им сожжена, — это великое столкновение, наконец, произойдет. Расстояния между заездами так велики, что большинство тускнеющих светил просто медленно минуют друг друга, не приходя в непосредственное соприкосновение, однако турбулентность, которая при этом возникнет, окажется достаточной для того, чтобы еще раз изменить траекторию Земли.

Если Землю отбросит к центру галактики, то спустя десятки миллионов лет ее притянет к себе находящаяся в нем гигантская черная дыра. Если ее отбросит в противоположную сторону, это будет всего лишь отсрочкой конца. Через 1018 лет, считая от нашего времени (это 1 с восемнадцатью нулями, или 1 000 000 000 000 000 000), от таких столкновений опустеют все галактики. Находившиеся в их центрах черные дыры будут медленно плыть по пространству и при каждой встрече с небесными телами высасывать из вселенной массу и энергию. Если же таким телом окажется другая черная дыра, они просто сольются, обратившись в еще более крупного пожирателя материи. И через несколько часов после того, как Земля попадет в поле притяжения одной из них, и она, и наши далекие потомки исчезнут.

Через 1032 лет может начаться распад и самих протонов, и постепенно от обычной материи останется мало что. вселенная будет состоять из сильно сократившихся в числе разнородных объектов. Будут существовать электроны привычной для нас разновидности, с отрицательными зарядами, а также их любопытные варианты — положительно заряженные электроны антиматерии, — а наряду с ними нейтрино и гравитоны; будут существовать разросшиеся черные дыры и даже остывшие остатки фотонов, уцелевших от первых секунд творения и все еще летящие, спустя столько лет, с их вечной скоростью в 300 миллионов м/с.

Но и на этом все не закончится, потому что со временем исчезнут и черные дыры. Все, что они поглотили, возвратится назад — не в сколько-нибудь узнаваемой форме, но как эквивалентное количество излучения.

Конечное состояние вселенной будет странно походить на начальное. Ибо в первые мгновения творения, задолго до формирования звезд, вселенная обладала немыслимой плотностью, немыслимой «концентрированностью». Эта гигантская плотность означала, что огромное количество излучения «проталкивалось» в E=mc2 со стороны «Е» на сторону «m». Обычное, знакомое нам вещество образовывалось из чистой энергии, создавая со временем звезды, планеты и те формы жизни, которые нам известны. Но теперь, ближе к скончанию времен, спустя 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 лет, все будет выглядеть иначе. Все стало куда более рассеянным, диффузным.

То, что еще уцелеет, будет простираться на расстояния, которые мы и вообразить не способны. Лихорадочная активность ранних эпох закончится. Она была лишь интерлюдией в конечной истории вселенной. Теперь масса и энергия будут преобразовываться одна в другую очень редко. Наступит великий покой.

Уравнение Эйнштейна завершит свою работу.

 

Эпилог: Чем еще славен Эйнштейн

На самом деле, Эйнштейна прославило не уравнение E=mc2 и не статьи 1905 года. Если бы Эйнштейн ничего больше не создал, он получил бы признание в узком сообществе физиков-теоретиков, однако широкая публика вряд ли услышала бы его имя. И в 1930-х он оказался бы еще одним более или менее известным беженцем, ведущим спокойную жизнь, но не обладающим положением, которое позволяло ему подписать направленное в 1939 году ФДР письмо с предупреждением об атомной угрозе.

Но, разумеется, все сложилось иначе. Эйнштейн создал кое-что еще, вытекающее из E=mc2, но пошедшее гораздо дальше и сделавшее его самым знаменитым ученым мира.

То, что Эйнштейн опубликовал в 1905 году, охватывало лишь равномерное движение физических тел, в котором гравитация, способная ускорять их, особой роли не играла. Уравнение E=mc2 остается «справедливым» и в этих случаях, но вот сохранит ли оно свою истинность, если отказаться от этих условий? Это ограничение, а наряду с ним и другие, всегда тревожили Эйнштейна, и в 1907 году он впервые увидел возможность решения более широкого: «Я сидел за моим столом в бернском патентном бюро и мне вдруг пришла в голову одна мысль… Она меня ошеломила».

Впоследствии он назвал ее «счастливейшей мыслью всей моей жизни», поскольку через несколько лет, в 1910-м, она привела его к размышлениям о самой ткани пространства и о том, как воздействуют на нее масса и энергия находящихся в пространстве физических тел. Работа заняла несколько лет — отчасти потому, что Эйнштейн, уверенно чувствовавший себя в физике, математикой владел всего лишь сносно. Он знал ее далеко не так плохо, как это следует из письма, посланного им уже в Америке одной университетской студентке: «Не тревожьтесь по поводу ваших затруднений с математикой. Уверяю вас, я испытываю еще большие.» Однако затруднения эти вполне оправдывали упреки Германа Минковского, который, увидев ранние наброски Эйнштейна, сказал: «Математическое представление изящной теории Эйнштейна неуклюже, — я имею право говорить это, поскольку в Цюрихе сам преподавал ему математику».

Впрочем, у Эйнштейна имелся человек, способный помочь ему с математикой, — его старый университетский друг Марсель Гроссман, тот самый друг, который на последнем курсе университета одолжил ему свои конспекты. (И тот, отец которого написал письмо, позволившее Эйнштейну получить место в патентном бюро.) Гроссман просиживал с Эйнштейном долгие часы, объясняя ему, какие из новейших математических средств он может использовать.

«Счастливейшая мысль» 1907 года привела Эйнштейна к идее о том, что, чем большая масса или энергия сосредоточена в каком-либо месте, тем сильнее искривляются в окрестности этого места пространство и время. Эта теория была куда более мощной, чем та, которую он разработал первой, поскольку она и охватывала гораздо больший круг явлений. Работа 1905 года получила название «специальной» теории относительности. Теперь настал черед ее общей теории.

Маленькое твердое тело вроде нашей планеты обладает лишь небольшой массой и энергией, и потому лишь незначительно искривляет вокруг себя ткань пространства и времени. Куда более мощное Солнце натягивает облекающую его ткань значительно туже.

Уравнение, в котором суммируется эта идея, обладает великой простотой, удивительно схожей с простотой E=mc2. В E=mc2 царство энергии располагается с одной стороны уравнения, царство массы с другой, а мостиком, который их связывает, является знак «=». В новой, более широкой теории Эйнштейна речь идет о том, как вся «энергия-масса», находящаяся в определенной области, связана с окружающим ее «пространством-временем», или, символически, о том, что энергия-масса = пространство-время. «Е» и «m» уравнения E=mc2 оказываются теперь просто членами, стоящими на одной стороне этого более общего уравнения.

Земля со всей ее массой автоматически движется по кратчайшему пути из числа пространственно-временных «кривых», которые нас окружают. Гравитация этой уже не сила, действующая в инертном пространстве — скорее, гравитация это попросту то, что мы наблюдаем, перемещаясь в конкретной конфигурации пространства и времени.

Проблема, однако, в том, что это выглядит противоречащим здравому смыслу! Как могут искривляться пустые, по всей видимости, пространство и время? А именно это должно происходить, если расширенная теория, которая теперь включает в себя и E=mc2, но в более обширном контексте, верна. Эйнштейн понимал, что его теории необходима экспериментальная проверка, некая демонстрация ее справедливости, причем настолько очевидная и мощная, что усомниться в ней никто уже не сможет.

Да, но какая? Идея такой проверки следует из основного положения теории, согласно которому окружающее нас пространство искривлено. Если пустое пространство действительно может натягиваться и искривляться, тогда путь, по которому доходит до нас свет далекой звезды, должен «загадочным» образом изгибаться вблизи нашего Солнца. То есть должно происходить нечто схожее с крученым ударом в бильярде, при котором шар огибает лузу и уходит в другом направлении. Только теперь это должно происходить в небе, о наличии «угловых луз» в котором никто никогда и не подозревал.

При обычных условиях мы не смогли бы заметить, как Солнце искривляет путь прохождения света, поскольку это случается, лишь когда он проходит совсем близко от нашего светила, сияние которого вообще никаких звезд в дневное время увидеть не позволяет.

А как обстоит дело при солнечном затмении?

Каждому герою необходим соратник. У Моисея был Аарон. У Иисуса — его ученики.

Эйнштейну, увы, достался Фрейндлих.

Эрвин Фрейндлих работал младшим сотрудником в королевской Прусской обсерватории Берлина. Я не сказал бы, что он был наихудшим неудачником из всех, о ком мне когда-либо приходилось читать. Возможно, существовал человек, который, пережив крушение «Титаника», решил впоследствии полетать на «Гинденбурге». Но, если и не наихудшим, то очень близко к тому. Фрейндлих надумал сделать карьеру, продвинув вперед общую теорию относительности — проведя наблюдения, которые докажут, что предсказания профессора Эйнштейна верны. Желание вполне великодушное — в том смысле, в каком был великодушен Лавуазье, разрешивший жене помогать ему в наблюдениях за нагревом и ржавлением металла. В виде особого свадебного подарка своей молодой жене Фрейндлих в 1913 году свозил ее в Цюрих — просто ради того, чтобы жена посмотрела, как он будет обсуждать со знаменитым профессором наблюдения за звездами.

На следующий год было предсказано солнечное затмение, которое можно было наблюдать из Крыма. Обстоятельный Фрейндлих приехал в Крым за два месяца до затмения — в июле 1914-го. Худшего места для немца по национальности выбрать было, пожалуй, нельзя. Спустя месяц произошло объявление войны. Фрейндлиха арестовали, посадили в одесскую тюрьму, а всю его аппаратуру реквизировали. В конце концов, его и других немцев обменяли на группу арестованных в Германии офицеров русской армии, однако к этому времени затмение уже состоялось.

Впрочем, Фрейндлих не сдался. В 1915-м, уже в Берлине, он решил, что сможет помочь профессору Эйнштейну, измерив искривление света двойных звезд. В феврале он получил результаты, подкреплявшие новую теорию, и Эйнштейн начал рассказывать об этой хорошей новости в письмах к друзьям. Однако четыре месяца спустя коллеги Фрейндлиха по обсерватории обнаружили, что он совершенно неверно оценил массу этих звезд, и Эйнштейну пришлось извиняться перед друзьями. Большинству людей (о чем, наверное, говорила Фрейндлиху его молодая жена) этих двух неудач хватило бы за глаза, он же решил предпринять новую попытку. Почему бы не попытаться измерить отклонение звездного света массивным Юпитером, планетой, с помощью которой сам великий Ремер столь убедительнейшим образом разрешил научную проблему более раннего времени? Фрейндлих обратился с этим предложением к Эйнштейну. Эйнштейну нравился его ревностный молодой помощник и в декабре он послал директору Прусской обсерватории письмо с просьбой разрешить Фрейндлиху предпринять такую попытку.

Лучше бы он снова отправил Фрейндлиха в одесскую тюрьму. Начальник прогневался на то, что какой-то профессор осмеливается лезть в дела его обсерватории. Он пригрозил Фрейндлиху увольнением, оскорбил его на глазах у коллег и позаботился о том, чтобы его и близко не подпускали к оборудованию, которое могло быть использовано для проверки предсказания Эйнштейна посредством наблюдения за Юпитером.

Впрочем, это было уже и не важно. У Фрейндлиха появилась новая надежда. На 1919 год была запланирована большая экспедиция, цель которой состояла в наблюдении за полным солнечным затмением. Если обстановка в мире позволит ему выехать из Германии, он сможет, наконец, показать себя.

В ноябре 1918-го Первая мировая война завершилась. Теперь ничто не мешало гражданину Германии поехать, куда он захочет. О том, что почувствовал Фрейндлих, когда большая экспедиция отправилась в путь, никаких свидетельств не сохранилось. Зато мы точно знаем, где он находился, когда в газетах появились сообщения о полученных ею результатах. Он находился в Берлине.

К участию в экспедиции его не пригласили.

Экспедицию возглавил уже знакомый нам спокойный англичанин. Артур Эддингтон носил маленькие очки в металлической оправе, рост имел средний, вес чуть ниже среднего, а в разговоре нередко замолкал, задумавшись, посреди предложения. В духе доброй английской традиции все это, разумеется, означало, что под его кротким обличием кроется кипучая, полная решимости душа. К 1930-м, в которые с ним познакомился Чандра, Эддингтон стал человеком более косным, однако тогда, в пору Первой мировой войны, его переполняла молодая энергия.

29 мая каждого года фоном Солнца оказывается исключительно плотная группа ярких звезд — скопления, именуемого Гиадами. Обычно использовать это обстоятельство никак не удавалось, поскольку увидеть, как искривляются Солнцем пути распространения света, идущего от этого звездного скопления, было невозможно. Сияние нашего светила не позволяет наблюдать этот эффект, к тому же еще и слабый. Однако в 1919-м, и именно 29 мая, должно было состояться солнечное затмение. Как скромно отметил впоследствии Эддингтон: «В марте 1917-го королевский астроном Фрэнк Дайсон привлек к этому замечательному обстоятельству всеобщее внимание, после чего началась подготовка к экспедиции…»

Эддингтон скромно не упомянул о том, что, если бы он не занялся этой подготовкой, его просто посадили бы в тюрьму. Ибо, будучи квакером, Эддингтон был и пацифистом, а в разгар Первой мировой войны пацифистов отправляли в исправительные лагеря, разбросанные по срединным графствам Англии. Охрана лагерей состояла из солдат, либо только-только вернувшихся с фронта, либо стеснявшихся того, что их туда не послали, — и от последних добра пацифистам приходилось ждать еще меньше. Условия в этих лагерях были суровыми. Заключенных постоянно унижали и избивали, многие из них так в лагерях и умерли.

Коллеги Эддингтона по Кембриджу не хотели, чтобы он прошел через это, и постарались через Министерство обороны добиться для него, человека, имеющего большое значение для будущего английской науки, отсрочку от военного призыва. Он получил из Министерства внутренних дел письмо, в котором ему сообщалось об этих усилиях — Эддингтону оставалось лишь поставить на письме свою подпись и отослать его назад.

Эддингтон знал, что ждет его в лагере, однако пацифист это не то же самое, что трус, как и показали впоследствии действия многих квакеров, участвовавших в американском движении за гражданские права. Письмо Эддингтон подписал, поскольку не хотел подводить друзей, однако сделал в нем приписку, в которой говорилось, что если ему не предоставят отсрочку по причине его полезности для науки, он хотел бы получить ее по религиозным соображениям. На Министерство внутренних дел его приписка хорошего впечатления не произвела и оно начало процедуру, которая привела бы к отправке Эддингтона в лагерь.

Именно в это время королевский астроном Фрэнк Дайсон и привлек всеобщее внимание к связанной с затмением замечательной возможности. Если Дайсон сумеет добиться того, чтобы подготовку к экспедиции возглавил Эддингтон, не дадут ли ему, все же, отсрочку — даже после этой приписки? Работа Дайсона представляла большую ценность для кораблевождения, и потому у него имелись хорошие связи в Адмиралтействе. Адмиралтейство переговорило с Министерством внутренних дел, и Эддингтона оставили на свободе… до тех пор, пока он стоит во главе экспедиции. На подготовку к ней было отведено два года.

Разумеется, когда экспедиция началась, лил дождь — впрочем, ничего другого на острове, расположенном вблизи побережья Африки, строго на север от Конго, а именно на нем и оказался, в конечном счете, Эддингтон, ожидать не приходилось. Не забывайте, однако, что Фрейндлиха с Эддингтоном не было. Дождь прекратился, небо расчистилось, и Эддингтону удалось получить две хороших фотопластинки. Правда, проявить их надлежало в Англии, и потому результаты экспедиции еще несколько месяцев оставались неизвестными.

Впоследствии Эйнштейн делал вид, что задержка эта его нисколько не волновала. Однако в середине сентября он, не получивший никаких известий, послал своему другу Эренфесту письмо, в котором с деланной небрежностью поинтересовался, не слышал ли он, Эренфест, чего-либо об экспедиции. У Эренфеста имелись в Англии обширные связи, но и ему ничего известно не было. Он не знал даже, вернулся ли Эддингтон на родину.

На самом деле, Эддингтон уже несколько недель как возвратился в Кембридж, однако привезенные им фотопластинки пребывали в очень дурном состоянии. Их везли кораблем в Западную Африку, хранили в палатках на сыром острове, затем в самом начале затмения они, пока их вставляли в камеру и вынимали из нее, попали под дождь, а после вновь оказались на океанском пароходе. Физические различия в движении далеких звезд, которые пытался обнаружить Эддингтон, должны были составлять десятые доли угловой секунды. На маленьких фотопластинках они сводились бы к смещению, составлявшему от силы миллиметр. (Миллиметровую толщину имеет проведенная жирным карандашом линия. Человек с очень хорошим зрением способен различать пылинки, имеющие в поперечнике 1/20 миллиметра.) Эддингтон использовал микрометры, однако правота Эйнштейна была бы доказанной лишь в том случае, если бы эти тонкие расхождения оказались в точности равными предсказанному, а Эддингтону не удавалось различить их с ясностью, достаточной хотя бы для того, чтобы с уверенностью сказать, что они существуют. Эмульсия привезенных из Западной Африки пластинок стала, вследствие их транспортировки и теплового воздействия, настолько желеобразной, что разглядеть необходимые ему различия Эддингтон попросту не мог.

Сдаваться никому из ученых Кембриджа не хотелось — уж больно хороша была теория Эйнштейна. Мысль о том, что гигантский крутящийся шар Солнца сминает саму ткань пространства и времени, прогибая ее настолько, что свет далекой звезды совершает вираж, уподобляясь проходящему поворот автомобилю, была невероятно волнующей. И ведь это явление определялось не только «традиционной» массой Солнца. В нем участвовало и уравнение 1905 года. Все тепло и излучение, вырывающееся из Солнца, — вся эта «энергия» — действовали как добавочная, пусть и обладавшая иной формой «масса», которая добавлялась к основной массе Солнца. (Это и составляло суть тех построений, которые позже, в 1930-х, произвел плывший морем в Англию Чандра.)

По счастью, у Британской империи имелись богатые традиции и одна из главных сводилась к следующему: что-нибудь всегда идет не так. Путешественники, завоеватели, младшие сыновья из родовитых семей и даже квакеры-астрономы в очках с металлической оправой хорошо затвердили этот урок, ибо каждый из них всю свою жизнь слушал рассказы о самых разных британских экспедициях.

Именно поэтому Эддингтон использовал еще одну группу, полностью дублировавшую первую, — ему требовалась уверенность в том, что предсказание Эйнштейна можно будет доказать несмотря ни на какие случайности.

Вторая группа была оснащена другим телескопом, ее направили в другую страну (на север Бразилии) и даже механический привод телескопа был у нее другим. Все было проделано в лучших традициях удвоения шансов и это себя оправдало. После того, как фотопластинки бразильской группы доставили в Англию, после того, как построили специальный, больший обычного микрометр, позволявший работать с этими имевшими куда большие размеры пластинками, после того, как Эддингтон и другие ученые провели измерения и перепроверили их, по миру полетели поздравительные телеграммы. Бертран Рассел, незадолго до того приступивший к работе в Тринити-колледже, получил от своего давнего друга Литлвуда следующее сообщение: «Дорогой Рассел! Теория Эйнштейна подтверждена полностью. Предсказанное смещение составляло 1",75; измеренное — 1",72±0,06».

Праздновали случившееся с подобающим размахом. Членов «Королевского астрономического общества» пригласили на объединенное заседание «Королевского общества», состоявшееся 6 ноября 1919 года в Барлингтон-хаусе, что на Пиккадилли. Ученые приезжали из Кембриджа и других городов на вокзалы Чарринг-Кросс и Ливерпуль-стрит и рассаживались по такси; приезжали также и люди, отношения к науке не имевшие, но прослышавшие, что на заседании будет сделано какое-то важное сообщение. Один из гостей описал этот вечер так: «Даже в самой организации заседания присутствовало нечто театральное — традиционная церемония, происходившая на фоне портрета Ньютона, напоминала нам о том, что величайшее из научных обобщений получило, просуществовав два столетия, первые видоизменения».

Слово предоставили Дайсону, за ним Эддингтону, — свидетельств касательно того, что в зале присутствовал какой-либо подозрительно щурившийся чиновник Министерства внутренних дел, осуществлявший надзор за условно освобожденным ученым, не сохранилось, — а затем на трибуну поднялся старик-председательствующий, сказавший:

Это самый важный результат, полученный применительно к теории тяготения со времен Ньютона, и было бы лишь уместным объявить о нем на собрании «Общества», столь тесно с ним связанного.

Подтверждение справедливости теории Эйнштейна… обращает ее в одно из высших достижений человеческой мысли.

Такое открытие, да еще и сделанное сразу по окончании Первой мировой войны, представлялось чудом. Людям, побывавшим в окопах, могло казаться, что Бог отвернулся от них, но теперь им открывался новый божественный порядок, правивший космосом. Более того, обнаружить его удалось благодаря совместным, согласованным усилиям немца и англичанина. Особы королевских кровей, генералы, политические лидеры и даже представители мира искусства, приобретшие репутацию при старом режиме, — режиме, который привел к ужасам Первой мировой, — были дискредитированы. Категория «уважаемых людей» почти опустела. И Эйнштейн мгновенно обратился в величайшую знаменитость планеты, прославляемую всеми средствами массовой информации. 10 ноября 1919 года газета «Нью-Йорк таймс» вышла с заголовками:

«Свет проходит по небу кривыми путями: Результаты наблюдения за солнечным затмением лихорадят научный мир.»

и

«Теория Эйнштейна торжествует: Звезды находятся не в тех местах, где мы их видим и куда их помещают расчеты, однако поводы для тревоги отсутствуют.»

Описанное нами заседание стало также исходным пунктом для слухов о том, что на всем свете смысл работы Эйнштейна понимает лишь дюжина людей. В «Нью-Йорк таймс» работало несколько человек, способных толково писать на научные темы, однако все они в Нью-Йорке и находились. А этой историей занималось лондонское бюро газеты, направившее в Барлингтон-хаус Генри Крауча. В том, что касается несоответствия человека поставленной перед ним задаче, его можно, пожалуй, сравнить с Лайманом Бриггсом. Крауч был хорошим журналистом — в том смысле, что он умел сделать статью интересной. Однако если говорить о его способности хоть что-то понять в происходившем на заседании «Королевского общества», тут он был далеко не хорош, — в газете Крауч вел раздел гольфа.

Однако он был также до мозга костей человеком «Таймс», и такие пустяки, как всего-навсего отсутствие знаний, остановить его не могли. Он продолжал слать в газету статью за статьей, и вот что извлекли из ключевых моментов его рассказа составители заголовков:

«Книга для 12 мудрецов: Во всем мире насчитается не большее число людей, способных понять ее, — сказал Эйнштейн, когда бесстрашные издатели решили опубликовать его труд.»

Это было выдумкой чистой воды. Никакой книги Эйнштейн не писал и никакие издатели — бесстрашные или не очень, публиковать ее не собирались, — что же касается предмета, которому было посвящено то заседание, присутствовавшие на нем физики и астрономы поняли его без особых трудов. Именно с Крауча началась история разговоров о том, что бедной публике теорию Эйнштейна нипочем не понять, — разговоров, от результатов которых эта теория так до сих пор и не оправилась.

Впрочем, это лишь прибавило ей славы. Почти во всех религиях существует огромная разница между жрецом и пророком. Жрец просто встает под раскрывшейся в небесах дверью и предоставляет истине, которая обычно кроется за этой дверью, возможность изливаться вниз — на него. (В виде примеров можно назвать пресс-секретарей и инженеров-ядерщиков.) А вот пророк это человек, который сумел пройти сквозь названную дверь. Пророки суть люди, решившиеся побывать там, По Другую Сторону, а затем вернувшиеся к обычной жизни — здесь на нашей Земле. В результате мы вглядываемся в их лица или в мощные уравнения, которые они собрали там и принесли сюда, пытаясь понять, как все выглядит наверху, в тех высших сферах, в существование коих верят столь многие из нас, понимая однако, что самим нам их посетить не суждено.

Такими пророками, принесшими с небес видение расовой гармонии, считали Мартина Лютера Кинга Младшего и Нельсона Манделу, слова их распространялись по миру, оказывая на людей воздействие тем более сильное, что воспринимались эти слова, как исходящие из высшего источника. В Европе, только что пережившей Первую мировую войну, открытия Эйнштейна были восприняты с таким же благоговением, с каким впоследствии относились к словам Кинга или Манделы. А поскольку поначалу эти открытия были понятны лишь немногим, все чувства, какие порождало это обстоятельство, — желание воспарить ввысь, к знанию, хранящемуся в божественной библиотеке, о которой говорил Эйнштейн, — вскоре были перенесены на образ самого Эйнштейна. Возможно поэтому людей так привлекали фотографии, с которых он смотрел на них особым, печально задумчивым взглядом. Они отвечали более поздним, оказывавшим столь же мощное воздействие фотографиям Мартина Лютера Кинга, на которых и он кажется с печалью вглядывающимся во что-то много большее того, что дано увидеть простым смертным.

Эйнштейн пытался отстранить от себя часть свалившейся на него славы. Он называл полные преувеличений газетные статьи потешными подвигами воображения. Через две недели после объявления об истинности его теории он писал в лондонской «Таймс», что сейчас немцы называют его немцем, а англичане швейцарским евреем, но, если бы сделанные им предсказания оказались ошибочными, то уже немцы называли бы его швейцарским евреем, а англичане немцем. Тут он ошибался — и его астрономическое предсказание, и уравнение 1905 года оказались истинными, тем не менее, английские антисемиты наподобие Кейнза все равно относились к нему пренебрежительно («грязный еврей — перемазанный чернилами мальчишка»), а с приходом Гитлера к власти правительство Германии не только назвало Эйнштейна евреем, но и поддержало тех, кто требовал убить его. Покинув континентальную Европу, он прожил некоторое время в Англии, а затем перебрался в Америку, где и остался до конца жизни, — подписав в 1939 году письмо президенту Рузвельту, которое, хоть и опосредованно, но привело к созданию атомной бомбы, однако во всем остальном ведя тихую жизнь ученого в доме номер 112 по Мерсер-стрит, Принстон, штат Нью-Джерси.

Присущий университетам «Лиги плюща» снобизм Принстона («этой деревни забравшихся на ходули крошечных полубогов», как описал его Эйнштейн в письме к доброй европейской знакомой) никогда ему не нравился. Девочки-подростки хихикали, завидев его; время от времени сюда заезжали, чтобы поглазеть на него, туристы; молодые ученые стоявшего в двух милях от его дома Института перспективных исследований, в который Эйнштейн регулярно ходил пешком, были с ним внешне вежливы, однако он понимал, что многие из них заглазно принижают его, как ни на что уже не годного старика.

Однако само по себе Эйнштейна это, по-видимому, не волновало. Его цель состояла, как и всегда, просто в том, чтобы увидеть, какой задумал нашу вселенную Старик. То, что Эйнштейн записал десятилетия назад на теперь уже пожелтевших листках бумаги, равно как и новые уравнения, над которыми он ныне постоянно работал, пытаясь создать теорию, которая ясным и допускающим проверку образом объединила бы все известные силы вселенной, — только это и представлялось ему лучшим из возможных путей вперед.

Что причиняло Эйнштейну боль, так это разного рода напоминания о том, к чему может привести его работа. Одно из них, почти непереносимо ужасное, неявным образом возникало при всякой встрече с директором его института Оппенгеймером, который возглавлял «Манхэттенский проект», показавший, что уравнение E=mc2, способно — хоть сам Эйнштейн и не был причастен к этому, — обратить Хиросиму и Нагасаки в огромные поля смерти. «Если бы я знал, что немцам не удастся создать атомную бомбу, — сказал однажды Эйнштейн проработавшей у него многие годы секретарше, — я никогда и пальцем не пошевелил бы. Ни единым!».

Годы шли, и он со все большей остротой чувствовал, что силы его убывают. Непреднамеренно бестактный молодой ассистент как-то спросил его об этом. Эйнштейн ответил, что ему стало гораздо труднее решать, какая из его идей заслуживает дальнейшей разработки — в противоположность годам молодости, когда он великолепно умел определять ключевые для своей области знаний проблемы. «Большие открытия — удел молодых, — однажды сказал он другу, — …стало быть, для меня они в прошлом».

Дни, которые он проводил теперь в дощатом доме на Мерсер-стрит, подчинялись строгой стариковской рутине. Сестра Эйнштейна, Майя, давно уже перебралась к нему в Америку. В 1946 году она перенесла удар, и после этого, в течение почти шести лет, прошедших до ее смерти, Эйнштейн практически каждый вечер оставлял то, чем он занимался, и приходил в ее комнату, чтобы провести несколько часов, читая ей вслух. В дневные часы он исполнял ритуалы пародийных перебранок со своей экономкой; старался отогнать от себя грустные мысли о своем душевнобольном втором сыне; иногда принимал друга, с которым любил играть двойной концерт Баха и скрипичные части барочных трио Перселла и Генделя. Но выпадали и мгновения, в которые он с удобством устраивался в своем кабинете наверху и перелистывал страницы с записанными карандашом символами, которые уносили его в прошлое, в те времена, когда все представлялось возможным.

И ему снова казалось, что он еще сможет прочесть тома божественной библиотеки, которая, верил Эйнштейн, ожидает его.

 

Приложение: Дополнительные сведения о других важных персонажах книги

После того как МАЙКЛ ФАРАДЕЙ получил в «Королевском институте» пост Дэви, он вместе с женой перебрался туда на постоянное жительство. Фарадей продолжал совершать серьезные открытия и на шестом десятке лет, но несмотря на многочисленные просьбы, так и не взял себе ни одного личного ученика.

После казни АНТУАНА ЛОРАНА ЛАВУАЗЬЕ останки его вывезли на телеге за пределы Парижа — через одну из построенных им новых застав, уцелевших после разрушений 1789 года. Спустя несколько месяцев тело человека, отдавшего приказ о начале казней, — Робеспьера, соратника Марата, — провезли через ту же заставу и бросили в одну с Лавуазье общую могилу. Теперь эти двое лежали в одном месте — на обращенной в кладбище пустоши, носившей название "Errancis" («калека»). Сохранившиеся фрагменты застав, служивших проходами через построенную «ГЕНЕРАЛЬНЫМ ОТКУПОМ» стену, можно и поныне видеть в парке Монсо и близ выхода из метро на площади Данфер-Рошро.

За несколько месяцев до ареста Лавуазье в дом ЖАНА ПОЛЯ МАРАТА пришла молодая женщина, Шарлотта Корде, попросившая о встрече с ним. Охрана впустить ее отказалась, однако она настаивала, твердя, что у нее имеются новые сведения об опасных политических противниках Марата, и в итоге тот приказал пропустить ее и отвести наверх. Кожная болезнь Марата вынуждала его проводить значительную часть дня в ванне, — вот из ванны он и поздоровался с гостьей, услышал от нее, что опасные политические противники это ее родные (которых он приказал казнить), и увидел, как она шагнула к нему с кинжалом в руке. Корде заколола Марата, — впоследствии это покушение обессмертил живописец Давид.

Поскольку МАРИ АННЕ ПОЛЬЗА было, когда Лавуазье женился на ней, тринадцать лет, к моменту смерти мужа ей исполнилось всего тридцать пять. И хотя революционное правительство не давало ей покоя, а ее богатый дом подвергся разграблению, Мари Анна смогла пережить большинство своих гонителей и насладиться спокойной старостью.

Вернувшись в Данию, ОЛЕ РЕМЕР женился на дочери своего профессора этики — человека, который первым привлек к нему внимание посланца Кассини. Со временем Ремер стал главным смотрителем дорог, затем бургомистром Копенгагена, затем полицмейстером, и в течение нескольких лет занимал также пост, эквивалентный нынешнему посту члена Верховного Суда. Свободное время он посвящал работам по усовершенствованию прибора для измерения температур, который заезжий купец по имени Даниель Фаренгейт счел не лишенным определенных достоинств. Ремер умер в 1710 году, за семнадцать лет до того, как поставленные в Англии опыты доказали верность его выводов относительно скорости света.

ЖАН ДОМИНИК КАССИНИ пережил Ремера и продолжал продвигать только тех астрономов, которые соглашались с его мнением — ошибочным — о неограниченности скорости света. Созданная им династия насчитывала четыре поколения и правила астрономией почти два столетия — до времени, когда последнему из Кассини пришлось закрыть гордость своего прадедушки, Обсерваторию, здание которой Лавуазье видел из окна тюрьмы.

В 1997 году Европейское космическое агентство (ЕКА) произвело запуск корабля с космическим зондом на борту — кораблю предстояло провести в полете семь лет и достигнуть Сатурна, миновав по пути планету Юпитер, которую Ремер использовал для совершения своего эпохального открытия. Корабль этот назывался «Кассини». Основные свои средства ЕКА получает от Франции.

ВОЛЬТЕР дожил до глубокой старости, всю свою жизнь он писал и насмешничал. Собрание его сочинений занимает больше 10000 печатных страниц, сочинения эти многое сделали для того, чтобы приблизить Революцию, начавшуюся через несколько лет после его смерти. Со времени кончины дю Шатле из под пера Вольтера не вышло ни одного сколько-нибудь значительного сочинения на научные темы.

Книга, которую ЭМИЛИЯ ДЮ ШАТЛЕ заканчивала в свои последние дни — «Principes Mathématiques de la Philosophie Naturelle» [8]«Математические принципы натуральной философии» (франц.).
, — пользовалась большим успехом в научных кругах того времени. Первое ее издание можно увидеть в парижской Национальной библиотеке. Замок де Сирей был во время Революции разграблен и заколочен досками, но по окончании ее восстановлен. Первый сын дю Шатле до этого не дожил — в пору правления Людовика XVI он был назначен послом в Британии, что и привело его после возвращения во Францию, к аресту, а затем и к смерти на гильотине. «Если бы я была королем, — написала однажды дю Шатле, — …женщин ценили бы куда больше, а у мужчин появился бы новый предмет подражания».

АНРИ ПУАНКАРЕ прожил после публикации эйнштейновских статей 1905 года семь лет, так до конца и не смирившись с тем, что за пределами Франции никто его основателем теории относительности не признает. В последние годы жизни он написал несколько ярких, богатых мыслями эссе о творчестве. Он также позаботился о том, чтобы никто из желающих развивать созданные Эйнштейном теории не смог сделать во Франции научную карьеру.

МИЛЕВА МАРИЧ-ЭЙНШТЕЙН продолжала питать к мужу уважение и после того, как он завел новый роман, а брак их распался. Когда он предложил ей в качестве компенсации за развод свою будущую Нобелевскую премию, она ничего необычного в предположении о том, что Эйнштейн эту премию получит, не усмотрела. (В 1922-м, получив ее, — правда не за теорию относительности, поскольку Шведская академия все еще не считала правоту этой теории доказанной, — Эйнштейн, как и обещал, сразу же перевел на имя Милевы значительную сумму, к этой премии прилагаемую.)

После развода Милева замуж больше не вышла, а поскольку она упустила в свое время возможность пересдать университетские выпускные экзамены (полученные ею оценки были чуть ниже тех, которые требовались для получения преподавательской должности), не сделала и сколько-нибудь значительной карьеры. Первый ее сын стал профессором Беркли, преподавал инженерную науку, однако второй провел половину жизни в клиниках для душевнобольных и заботы о нем подорвали здоровье Милевы. Она умерла в Цюрихе в 1948 году, одинокая и впадавшая во все более сильную депрессию.

МИШЕЛЬ БЕССО, ближайший друг бернской поры Эйнштейна, человек, с которым он обсуждал первые идеи специальной теории относительности, был удачлив и в семейной жизни, и в сделанной им карьере инженера-механика. Даже в 1950-х, когда и он, и дважды к тому времени женатый Эйнштейн были уже стариками, их переписка не только продолжалась, но и стала более оживленной. После смерти Бессо в начале 1955 года, Эйнштейн написал его родным: «Способность жить гармоничной жизнью редко сочетается со столь острым умом — особенно в той степени, какую мы наблюдали в его случае… сильнее всего восхищало меня в Мишеле то, что он смог прожить столь многие годы с одной женщиной и прожить не только в мире, но и в постоянном согласии, — чего мне, увы, не удалось достичь даже с двух попуток…».

Несмотря на шары для боулинга и детские мотыги, от которых она немало натерпелась в детстве, МАЙЯ ЭЙНШТЕЙН стала ближайшим другом своего старшего брата. В 1906 году она перебралась в Берн — отчасти и для того, чтобы быть поближе к Эйнштейну, — и в итоге защитила в тамошнем университете докторскую диссертацию (по языкам романской группы), что было для женщины тех времен достижением редкостным. Когда Эйнштейн начал преподавать в этом университете, она (и Бессо) регулярно посещали проводимые им занятия, — дабы администрация университета не заметила, как мало у него студентов.

ЭРНЕСТ РЕЗЕРФОРД скоропостижно скончался в 1937 году вследствие разрыва кишечника, вызванного, возможно, чрезмерно усердными занятиями садоводством, коим он предавался в своем летнем коттедже. Последними словами, с которыми он обратился к жене, была просьба позаботиться об отправке предназначенных для стипендии средств в новозеландский Нельсоновский колледж — тот, в котором Резерфорд получил образование, позволившее ему подняться из деревенской бедности и самому добиться стипендии, необходимой для поездки в Англию. Впоследствии КАВЕНДИШСКАЯ ЛАБОРАТОРИЯ никогда уже не занимала столь выдающегося, как при нем, положения в области исследований ядра. Со временем новый директор лаборатории в значительной мере переориентировал ее на занятия биологией. В результате, лаборатория радушно приняла молодого американца, Джеймса Уотсона, полагая, что он, объединив усилия с получившим образование физика Фрэнсисом Криком, сможет плодотворно использовать ресурсы Кавендиша для исследования структуры ДНК.

ХАНС ГЕЙГЕР, один из воспитанников Резерфорда, проявивший немалую сноровку в изготовлении столь полезных счетчиков излучения, возвратился в Германию, где вскоре стал занимать видные научные должности. Впрочем, годы, проведенные им в Англии, не смогли, судя по всему, привить Гейгеру веру в терпимость или в свободу. Он был одним из наиболее активных среди крупных физиков Германии сторонником Гитлера и с распростертыми объятиями принимал носивших свастику студентов. Он ополчался на своих еврейских коллег, в том числе и на тех, которые в течение многих лет помогали ему; как отмечали Ханс Бете и другие, Гейгер, по-видимому, получал немалое удовольствие, холодно отвергая любые их просьбы о помощи в получении постов за пределами Германии.

Когда в 1939 году началось немецкое вторжение в Польшу, СЭР ДЖЕЙМС ЧЕДВИК проводил вместе с семьей отпуск на Континенте, и хотя принимавшие их люди уверяли его, что шансов оказаться на занятой немцами территории у него попросту не существует, Чедвик с редкостной быстротой возвратился с семьей в Англию. Его умение спорить с Оппенгеймером произвело на генерала Гроувза впечатление настолько сильное, что тот предложил ему видный пост в Вашингтоне, и в конечном итоге, Чедвик стал одним из наиболее деятельных администраторов «Манхэттенского проекта». Он дожил почти до середины 1970-х, однако то, к чему привел взрыв атомной бомбы, произвело на него впечатление настолько гнетущее, что в результате: «Я начал глотать снотворное. Оно было единственным моим спасением. Остановиться я с тех пор так и не смог. Прошло уже 28 лет и не думаю, что за эти годы я провел без снотворного хотя бы одну ночь.»

ЭНРИКО ФЕРМИ легко сходился практически с каждым из тех, с кем он работал в Италии, — то же самое повторилось и в Америке. Он очень старался освоить разговорный язык американцев и признал, что предпринятые им усилия по части американизации не увенчались успехом, лишь когда дело дошло до ухода за лужайкой его первого пригородного дома, — и Ферми, и его супруга недоуменно спрашивали у своих соседей, почему, собственно, сорняки не имеют такого же права расти на ней, как и все остальное.

Участие Ферми в «Манхэттенском проекте» имело центральное для его успеха значение, однако он, как и многие из работавших в этом проекте ученых, заболел, дожив всего лишь до средних лет, раком. Последние несколько месяцев жизни Ферми провел в больничной палате и был пациентом на редкость спокойным. Когда навестивший его индус Чандрасекар, замялся, не зная, что сказать, Ферми разрядил обстановку, с улыбкой спросив, не сможет ли Чандра в следующий раз приехать к нему на слоне?

В 30 милях к юго-западу от Чикаго находится крупнейший в Америке научный центр физики высоких энергий. Он носит имя «ФЕРМИЛАБ».

ОТТО ГАН получил за ту работу, в которой им руководила Лизе Майтнер, Нобелевскую премию. Он не стал объяснять, что произошла ошибка, что премию должна была получить она или хотя бы они оба, — нет, он занялся попытками вычеркнуть ее из истории. Первое свое послевоенное интервью он начал словами о том, что Майтнер была все лишь его младшим научным сотрудником; а впоследствии притворялся (или уже верил в это?), что вообще о ней не слышал.

В течение многих лет стол, за которым Майтнер работала в Берлине, вместе со всеми приборами, собранными ею для проведения ключевых экспериментов, был выставлен в Немецком музее Мюнхена. На прикрепленной к этому экспонату табличке значилось: “Arbeitstisch von Otto Hahn» («Рабочий стол Отто Гана»).

Славу Ган приобрел такую, что, когда был синтезирован новый химический элемент, 105-й, его назвали «ГАНИЕМ». Однако в 1997 году это название из Периодической таблицы исчезло; новый элемент официально переименовали в «Дубний» — в честь того российского города, в котором он был впервые получен.

Кривляния Гана разочаровали ФРИЦА ШТРАСМАНА настолько, что он отказался от тех 10 процентов Нобелевской премии, которые впоследствии предложил ему Ган. Штрасман сохранял либеральные взгляды и в самый разгар войны, — он несколько месяцев укрывал в своей берлинской квартире еврея-пианиста Андреа Вольфенштайна, и годы спустя имя Штрасмана заняло почетное место в иерусалимском мемориале Холокоста «Яд ва-Шем». После войны Штрасман написал Майтнер, попросив ее вернуться в Германию, однако отметив при этом, что поймет ее, если вернуться она не захочет.

ЛИЗЕ МАЙТНЕР была оскорблена тем, как поступил с ней ее многолетний сотрудник Ган, однако отнесла его поступок на счет того, что он пытается вычеркнуть из памяти недавнее прошлое Германии. Она перебралась из Стокгольма в Кембридж (английский), и в 1960-х ее можно было видеть там — худощавую, очень старую женщину, обходившую книжные магазины. На девятом десятке лет она еще заносила в записную книжку вопросы, которые собиралась задать своему молодому племяннику. Вопросы касались как текущего состояния теоретической физики, так и ставивших ее в тупик разговорных выражений вроде «highfalutin'» и «juke box». Майтнер умерла в относительном забвении — в октябре 1968 года, через несколько недель после смерти всемирно известного Гана.

В 1970-х ученые-феминистки приступили к пересмотру ее достижений. Когда в 1982 году был синтезирован новый, 109-й элемент Периодической таблицы, ему дали имя «МАЙТНЕРИЙ».

Молодой племянник, РОБЕРТ ФРИШ, сумел покинуть Данию еще до вторжения немецкой армии. Фриш благополучно добрался до Англии, но, поскольку он был гражданином страны, с которой Англия воевала, к секретным работам по созданию радара его не допустили, и это дало ему время для проведения расчетов, показавших, что создание бомбы требует гораздо меньшего количества урана, чем то предполагалось. Эти расчеты и стали основой секретного меморандума, который привел, — когда его, наконец, извлекли из сейфа Лаймана Бриггса, — к началу работ по разработке в США атомной бомбы.

Фриш играл в Лос-Аламосе важную роль, однако к марту 1945 года он уже возвратился в Кембридж и оказался в Кавендишской лаборатории именно в тот момент, когда в нее заглянул молодой Фред Хойл, нуждавшийся в списке масс различных ядер, который помог бы ему в разработке возникшей у него идеи о том, каким образом внутри звезд формируются химические элементы. Фриш снабдил его таким списком.

После войны Фриш, сменивший имя на «Отто», оставался таким же непоколебимым англофилом, каким был прежде, хоть и придерживался навсегда оставшегося неизменным мнения о том, что такое явление как «погода» возникло в Британии совсем недавно, — только так, полагал Фриш, и можно разумным образом объяснить то обстоятельство, что англичане то и дело заводят разговор об этой самой погоде. К великому удовольствию Фриша, Кембридж предложил ему в 1947 году именное профессорство — такое же, какое было предложено иммигранту более раннему, Эрнесту Резерфорду.

Сразу после того, как две бомбы, которые предстояло использовать против Японии, были отправлены на острова в Тихом океане, к ДЖ. РОБЕРТУ ОППЕНГЕЙМЕРУ вернулась прежняя его саркастичность, и он вдруг начал третировать оставшихся в Лос-Аламосе сотрудников как ученых посредственностей. Немало досталось от него и Льюису Строссу, возглавившему созданную незадолго до того «Комиссию по атомной энергии» (КАЭ), и Эдварду Теллеру, в итоге Оппенгеймер нажил серьезных врагов, что и сказалось, когда созданный при КАЭ комитет по «охоте на ведьм» затеял расследование его причастности к левым партиям 1930-х, равно как и основанного на нравственных соображениях нежелания работать над созданием водородной бомбы. И в 1954 году Оппенгеймера лишили права занимать какие бы то ни было государственные должности.

ЛЕСЛИ ГРОУВЗ всегда питал слабость к Оппенгеймеру. Покинув военную службу и обратившись в одного из руководителей компании «Ремингтон Рэнд», он не стал (как сделало большинство других военных чинов) безоговорочно осуждать Оппенгеймера на слушаниях 1954 года. Гроувз всегда считал, что Оппенгеймер — «настоящий гений… Лоуренс очень умен, [но] он не гений, просто трудяга. Господи, да Оппенгеймер знает буквально все. О чем с ним не заговори — он это знает. Хотя нет, не совсем так. Думаю, пара вещей, в которых он не разбирается, все же существует. Спорт, например.»

Используя материалы, имевшиеся в лаборатории Лоуренса, ЭМИЛИО СЕГРЕ смог первым в мире синтезировать элемент технеций. Он также проработал в лабораториях Беркли в течение времени, достаточно долгого для того, чтобы стать одним из участников открытия плутония, элемента, который был использован в бомбе, взорванной над Нагасаки. Урезанное жалование, которое платил ему Лоуренс, не позволило Сегре подкупить кого-нибудь из консульских чиновников и таким образом вызволить из Италии своих престарелых родителей. В октябре 1943-го мать Сегре попала в нацистскую облаву и была вскоре убита; его прятавшийся в папском дворце отец умер год спустя своей смертью.

Когда война закончилась, Сегре, посетив могилу отца, высыпал на нее щепотку технеция, привезенную из лаборатории Лоуренса: «Радиоактивное излучение она давала очень слабое, а период полураспада, составляющий для технеция сотни тысяч лет, делал ее более долговечной, чем любой памятник, какой я мог предложить отцу».

Сразу после освобождения Дании ДЬЕРДЬ ДЕ ХЕВЕШИ снял с полки в копенгагенском институте Нильса Бора колбу с кислотой, в которой он растворил нобелевские золотые медали, и экстрагировал из этой кислоты золото. Затем Нобелевский фонд просто отлил медали заново и они вернулись к своим законным владельцам. Как раз перед тем, как растворить медали, де Хевеши оправился от полномасштабного кризиса среднего возраста, породившего в нем убежденность, что в свои пятьдесят лет он уже никаких открытий сделать не сможет. Оправился де Хевеши так хорошо, что вскоре и сам получил Нобелевскую премию за работу, связанную с радиоактивными индикаторами, — работу, проделанную им в том возрасте, к наступлению которого большинство физиков давно уж и думать забывает о творчестве.

Шведское гражданство предлагается всем лауреатам этой премии, однако де Хевеши оказался одним из немногих принявших его и поселившихся в Стокгольме до конца своих дней. В 1960-х его можно было временами встретить прогуливавшимся по мысу Ла-Джолла, штат Калифорния, — сохранившего прямую осанку старика, приехавшего погостить у своих американских внуков и рассказать им о том, что он запомнил из детства, которое провел в 1880-х в одном из баронских поместий Венгрии.

ЭРНЕСТ ЛОУРЕНС закончил войну триумфатором, а после нее он, собирая все больше и больше средств, строил все более и более крупные машины, пока, наконец, не предложил соорудить циклотрон, который противоречил специальной теории относительности и уже по одному этому был физически невозможен. Никто из молодых сотрудников Лоуренса не решился сказать ему об этом — в итоге, он, прилагая огромные усилия к тому, чтобы заставить циклотрон работать, надорвал здоровье. Незадолго до своей смерти, случившейся в 1958 году, он, выступая перед группой студентов Иллинойсского университета, сказал: «Не надо строить больших машин, ребята. В наши дни размерам ради размеров придают слишком большое значения».

ВЕРНЕР ГЕЙЗЕНБЕРГ обратился в великого старца немецкой науки и вскоре после того, как он провел, в качестве интернированного лица, полгода в одном из роскошных загородных домов графства Кембриджшир, Англия, получил и всемирное признание в качестве мудреца и философа. О войне он говорил мало, а если говорил, то давал посредством намеков и экивоков понять, что мог бы сделать бомбу давным-давно, но намеренно направлял исследования в неверную сторону, дабы нацистские правители не получили в свои руки это оружие.

Дом в Кембриджшире прослушивался, однако Гейзенберг об этом так никогда и не узнал.

ГЕЙЗЕНБЕРГ: Установка микрофонов? [смеется] О нет, они не настолько хитры. Не думаю, что им известны настоящие гестаповские методы, для этого они слишком старомодны.

Когда полвека спустя записи, сделанные в том доме, обнародовали, стало ясно, что разговоры, которыми прикрывался Гейзенберг, были лживыми. В том, что Гейзенберга и других держали именно в этом доме, присутствовала своего рода изящная справедливость, ибо совсем недалеко от него стоял еще один принадлежавший британской секретной службе элегантный загородный дом, — тот самый, в котором готовились к выполнению своего задания шестеро норвежцев, сорвавших выполнение проекта, коим руководил Гейзенберг.

До взятия в плен Гейзенберг мог и не дожить, поскольку во время его последней поездки в Швейцарию организация, функции которой впоследствии переняло ЦРУ, послала бывшего спортсмена Мо Берга с заданием убить его. Берг находился среди тех, кто пришел на семинар, устроенный Гейзенбергом в Цюрихе. И если бы из сказанного Гейзенбергом следовало, что проект создания бомбы продвигается успешно, он был бы убит. Берг принес с собой пистолет; физику он знал на уровне студента последнего университетского курса, однако выступление Гейзенберга было слишком специальным, чтобы Берг смог его понять. Заметки, сделанные им на том семинаре, сохранились в государственном архиве: «Я слушал и никак не мог с определенностью решить, — см: гейзенберговский принцип неопределенности, — как мне поступить с Г…» В итоге Берг его не тронул.

Несмотря на многочисленные облавы, начавшиеся после взрыва парома на озере Тинишё, КУРТ ХАУКЕЛИД дожил до конца войны. Выдержки из протоколов допросов интернированного Гейзенберга позволяют с окончательной ясностью понять значение этой диверсии, благодаря которой 600 литров концентрированной тяжелой воды ушли на дно озера.

ГЕЙЗЕНБЕРГ: Мы пытались создать машину, которую можно было изготовить из обычного урана…

(СЛЕДОВАТЕЛЬ): Немного обогащенного?

ГЕЙЗЕНБЕРГ: Да. Он работал очень хорошо и потому заинтересовал нас.

(Пауза)

Если бы у нас было на 500 литров тяжелой воды больше, я не сомневаюсь, что после наших последних экспериментов мы получили бы работающую машину…

Хаукелид стал офицером норвежской армии; еще один член его диверсионной группы впоследствии отправился с Туром Хейердалом в плавание на «Кон-Тики».

Завод по производству тяжелой воды в ВЕМОРКЕ проработал до начала 1970-х, а затем был взорван инженерами компании «Норск Гидро», как исчерпавший свою экономическую целесообразность. Некоторую часть его обломков вывезли на грузовиках и поездах, но многие из них остались на месте и были просто засыпаны землей, поверх которой уложили каменную мостовую. Каждый год по ней проходят тысячи туристов, поскольку стоявшая за заводом старая электростанция переоборудована в великолепный музей. Путь, по которому проникли на завод диверсанты, находится прямо под ногами тех, кто направляется ко входу в музей.

Работа компании «ИГ ФАРБЕН», ведавшей во время войны эксплуатацией этого завода, была временна приостановлена администрацией Союзников после Нюрнбергского процесса, доказавшего, что руководство компании наживалось на покупке и последующем умерщвлении рабов. Одна из главных ее составных частей, компания «БАЙЕР», известная широкой публике как производительница аспирина, и сейчас продолжает играть большую роль в общемировом химическом производстве.

Заводы компании «БЕРЛИНАУЭР», на которых работали и умирали рабыни из Заксенхаузена, снабжавшие немецкий проект создания бомбы окисями урана, оставались почти нетронутыми до конца войны. Впрочем, в последние ее месяцы бомбардировщики Союзников, выполняя указание Гроувза, стерли их с лица земли, — главным образом, затем, чтобы они не попали в руки русских. Почти все руководители компании избежали тюремного заключения и еще до окончания войны начали обдумывать свое дальнейшее будущее. Американские следователи обнаружили, что почти все имевшиеся в Европе запасы тория были скуплены анонимным покупателем, — им оказалась компания «Берлин Ауэр», планировавшая снова заняться выпуском отбеливающей зубной пасты.

Проводившиеся в Осло суды над военными преступниками, вынесли приговоры нескольким тюремным охранникам — немцам и норвежцам, — несшим ответственность за смерть взятых в плен БРИТАНСКИХ ВОЗДУШНЫХ ДЕСАНТНИКОВ. Многие из этих пленников были брошены — с руками, связанными за спиной колючей проволокой, — в неглубокие могилы. После войны их перезахоронили; одним из тех, кого заставили выкапывать их останки, как и останки других убитых с ними заключенных, был глава норвежского коллаборационистского правительства Видкун Квислинг.

Секретный некогда реактор в ХАНФОРДЕ, ШТАТ ВАШИНГТОН, сыгравший столь важную роль в создании плутония, который использовался в бомбе, взорванной над Нагасаки, как и в более поздних, так и остался одним из главных предприятий по производству американского ядерного оружия. Впрочем, после нескольких десятилетий работы реактора общество, с его изменившимися настроениями, начало видеть в нем центр загрязнения окружающей среды: стоимость избавления от радиоактивных загрязнений, вызванных утечками из него радиоактивных веществ или неправильным их хранением, оценивается в 30–50 миллиардов долларов.

Научный руководитель СЕСИЛИИ ПЭЙН практически остановил развитие ее карьеры, приняв все меры к тому, чтобы она не получала доступа к какому бы то ни было новому электронному оборудованию, поступавшему в обсерваторию Гарварда. А будучи еще и директором этой обсерватории, он позаботился о том, чтобы читаемые Пэйн лекции не указывались в каталогах Гарварда или Рэдклиффа; позже она обнаружила также, что выплачиваемое ей жалование проводится бухгалтерией как «расходы на оборудование». Когда времена наихудшей дискриминации женщин миновали, а обсерваторию возглавил, уже в послевоенное время, более порядочный человек, было слишком поздно. К тому времени преподавательская нагрузка Пэйн была велика настолько, что «у меня просто не оставалось времени на исследования — и от приостановки их я так никогда вполне и не оправилась».

Зато она стала одной из добрейших помощниц следующего поколения студенток Рэдклиффа, всегда находившей время для долгих разговоров с теми из них, кто оставался не у дел. Чтобы не давать своему ума утратить былую живость, она занималась изучением языков, добавляя их к латыни, греческому, немецкому, французскому и итальянскому, которыми владела уже при появлении в Америке. Впрочем, дочь Пэйн писала: «Исландский оказался чем-то вроде небольшого камня преткновения. Я не могу сказать, что она освоила его по-настоящему». Сесилия Пэйн с удовольствием наблюдала за тем, как ее дочь становится астрономом, — и опубликовала несколько общих с нею статей.

АРТУР СТЭНЛИ ЭДДИНГТОН оказывал все большее сопротивление основным тенденциям современной астрономии. В одной из его последних, опубликованных в 1939-м работ имеется глава, которая начинается так: «Я верю, что во вселенной присутствует 15 747 724 136 275 002 577 605 653 061 181 555 468 044 717 914 527 116 709 366 231 425 076 185 631 031 296 протонов и такое же число электронов». Его удивляло, что профессиональные астрономы перестали обращать на него какое-либо внимание.

В 1950-м, через четыре года после публикации статьи ФРЕДА ХОЙЛА, посвященной имплозии внутри звезд, директор научных радио-программ «Би-Би-Си» продемонстрировал достоинства кембриджского кумовства, сделав вид, будто ему ничего не известно о существовавшем в этой радио корпорации строгом запрете на Хойла, и пригласив своего давнего коллегу выступить в серии передач об астрономии. Торопливо готовя сценарий своего последнего выступления, Хойл придумал отчасти пародийное название для своей тогда еще не доказанной теории образования вселенной. Он назвал ее теорией «Большого взрыва».

Выступления на «Би-Би-Си» и написанная им затем книга оказались до того успешными, что не только позволили Хойлу и его жене приобрести их первый холодильник, но и стали началом его карьеры популяризатора науки, которая шла параллельно проводимым им научным исследованиям. Эта карьера дала ему возможность скопить довольно большие средства, и в 1972 году, когда Хойл сказал администраторам Кембриджа, что подаст в отставку, если они и впредь будут отказываться от собственных обещаний по финансированию созданного им успешного центра астрономических исследований, он, в итоге, смог позволить себе удивить их («Фред не уйдет. С поста заведующего кембриджской кафедрой никто не уходит») и вежливо откланяться. Он продолжал публиковать новаторские статьи, то причудливые, то глубоко продуманные, — как то и было заведено у выдающихся ученых еще со времен Ньютона. Очень многие считают, что если бы не раздражение, которое вызывает у старой гвардии Британии и астрономического сообщества в целом его йоркширская прямота, он давно бы уже получили Нобелевскую премию за свою посвященную формированию химических элементов работу.

СУБРАХМАНЬЯН ЧАНДРАСЕКАР славился наружным спокойствием, однако внутренне: «Мне почти стыдно признаться в этом. Годы проходят, а я ничего не сделал! Мне необходима гораздо большая сосредоточенность, целеустремленность и дисциплинированность». Эта жалоба относится к тому времени, когда ему не было и двадцати, а от морского путешествия, во время которого он увидел крывшуюся в E=mc2 «уловку-22», что вместе с другими его работами привело, в конечном счете, к пониманию природы черных звезд, прошел всего один год. Чандра принял пост в Чикагском университете, но с оговоркой, что он с женой поселится при обсерватории, отстоявшей от университетского городка более чем на 100 миль, — условие это объяснялось главным образом тем, что позволяло ему не повергать в смущение своих чикагских коллег, отвергая приглашения туда, где подавали спиртное и мясо. Когда этого требовала преподавательская работа, он добросовестно ездил в Чикаго и обратно — даже во время зимних метелей, — а однажды проделал такую поездку ради аудитории, состоявшей всего из двух студентов. (Впрочем, дело того стоило, поскольку эта аудитория — Янг и Ли — удостоилась в конечном счете Нобелевской премии.)

Через сорок лет после полученного от Эддингтона отпора Чандра, наконец, вернулся к посвященным черным дырам исследованиям. Существуют фотографии, на которых ярко одетые молодые физики начала 1970-х сидят за столом кафетерия Калтеха, слушая этого относящегося к поколению их дедов человека в превосходно сшитом костюме. Он превзошел почти всех их энергичностью, с которой занялся новыми приложениями общей теории относительности, и в 1983 году, более чем через полстолетия после того плавания, опубликовал фундаментальные работы по математическим основам теории черных дыр. В том же году он получил Нобелевскую премию, а затем, следуя своему обыкновению, снова сменил направление деятельности, занявшись тщательным изучением Шекспира и эстетики вообще.

В середине 1999 года НАСА запустило большой спутник, который ведет наблюдение за глубоким космосом и способен получать изображения ближайших окрестностей черных дыр. Этот спутник, пролетающий над Аравийским морем, Кембриджем и Чикаго, называется РЕНТГЕНОВСКОЙ ОБСЕРВАТОРИЕЙ «ЧАНДРА».

Хотя ЭРВИН ФРЕЙНДЛИХ и не попал в наблюдавшую за солнечным затмением экспедицию 1919 года, он снова воспрянул духом, когда промышленники новой Веймарской республики пожертвовали значительные средства на строительство большой обсерватории в Потсдаме. Она позволяла предпринять дальнейшие проверки точности предсказаний общей теории относительности даже без солнечных затмений. Компания «Цейс» поставила для нее оборудование, а великий архитектор-экспрессионист Мендельсон спроектировал ее здание — это знаменитая «Башня Эйнштейна», изображение которой можно увидеть во многих книгах, посвященных немецкой архитектуре 1920-х.

При поддержке Эйнштейна Фрейндлих стал научным руководителем «Башни Эйнштейна». Оказалось, однако, что техника того времени делала задуманные им измерения невозможными. Только в 1960 году, в Гарварде, совсем другая группа ученых получила это новое подтверждение истинности теории Эйнштейна.

 

Примечания

Эти примечания предназначены для тех, кто желает узнать побольше. Одни из них вполне серьезны: почему Том Стоппард совершенно неправ, используя теорию относительности для подкрепления высказываемых в его пьесах нравственных воззрений; каковы глубинные связи, существующие между теорией относительности, термодинамикой и Талмудом; насколько близко подошли в действительности немцы к тому, чтобы овладеть атомным оружием? Другие более легковесны, хотя, по своему, также не лишены значительности: я испытал удовольствие, узнав, что на Луне находятся кое-какие части немецкого военного корабля времен Первой мировой войны; что уравнения Максвелла записаны вовсе не Максвеллом; что Фарадей никогда не произносил фразу: «Ну как же, премьер-министр, настанет день и вы сможете облагать его налогом»; и даже причину, по которой Эйнштейн не любил называть то, что он создал, «теорией относительности».

Предисловие

С. 3 «Эйнштейн объяснял мне свою теорию каждый день…»: Carl Seelig, “Albert Einstein: A Documentary Biography” (London: Staples Press, 1956), pp. 80–81.

C. 4 «Джордж Маршалл позаботился о том…»: Leslie Groves, “Now It Can Be Told: The Story of the Manhattan Project” (London: Andre Deutsch, 1963), pp. 199–201; Andrew Deutsch; см. также Samuel Goudsmit, “Alsos: The Failure in German Science” (London: Sigma Books, 1947), p. 13.

Глава 1 Бернское бюро патентов, 1905

C. 6 Письмо к Профессору Вильгельму Оствальду: “Collected Papers of Albert Einstein, Vol. I, The Early Years”: 1879–1902, пер. Anna Beck; консультант Peter Havas (Princeton, N.J.: Princeton University Press, 1987), p. 164. Я добавил адрес Оствальда.

C. 7 “из вас никогда не выйдет ничего путного”: там же, p. xx.

С. 7 «Ваше присутствие в классе …»: Philipp Frank, “Einstein: His Life and Times”, пер. George Rosen (New York: Knopf, 1947, пересмотренное издание 1953), p. 17.

С. 7 «продемонстрировал вполне приличные достижения…»: Albrecht Fölsing, “Albert Einstein: A Biography” (London: Viking Penguin, 1997), pp. 115-16.

С. 8 …шутливо называл своей кафедрой теоретической физики…: Эту фразу запомнил посетивший его Рудольф Ладенбург; Fölsing, “Albert Einstein», p. 222; см. также Anton Reiser, “Albert Einstein, a Biographical Portrait” (New York: A. and C. Boni, 1930), p. 68.

С. 8 «Я очень любил его…»: Fölsing, Albert Einstein, p. 73.

С. 8 …ощущая «величайшее волнение»: Reiser, Einstein, p. 70.

С. 8 «Идея занятна и увлекательна, но я не знаю…»: Collected Papers, vol. 5, doс. 28. Друга звали Конрад Хабихт.

С. 8 Так появилось на свет E=mc2: Уравнение E=mc2 было записано Эйнштейном не в 1905 году. В тех символах, которыми он пользовался в то время, уравнение выглядело бы так: L=MV2. Но, что еще более важно, в 1905-м у Эйнштейна имелось лишь представление о том, что, излучая энергию, физическое тело будет терять при этом малое количество массы. Полное понимание того, что происходит и обратное, пришло лишь позже.

Во время Второй мировой войны, когда Эйнштейн записал копию своей главной, посвященной теории относительности статьи 1905 года, которую предполагалось продать с аукциона для приобретения облигаций военного займа, он, диктуя статью своей секретарше Элен Дукас, вдруг остановился спросил: «Неужели я так и выразился?». Она ответила что именно так. «Я мог бы сказать это намного проще». (Эта история рассказана в книге Banesh Hoffman, “Einstein, Creator and Rebel” (New York: Viking, 1972), p. 209.

Глава 2. Е — это энергия

С. 10 Одним из людей, сыгравших важнейшую роль в изменении этого понятия…: Существовали и другие ученые, причастные к созданию идеи о сохранении энергии, однако я сосредоточил основное внимание на Фарадее, поскольку это давало мне возможность ввести понятие поля, наполняющего «пустое», по всей видимости, пространство, — понятие, столь важное для последующей работы Эйнштейна. Если вам хочется узнать побольше о других создателях этой идеи и связях между ними, начните со статьи Thomas Kuhn и Crosbie Smith «The Science of Energy», ссылка на которую приведена в «Руководстве по дальнейшему чтению». Воззрения Фарадея относительно того, в какой полноте сохраняется энергия, отличались от взглядов многих ученых более позднего времени; см. например, Joseph Agassi: «Faraday as Natural Philosopher” (Chicago: University of Chicago Press, 1971).

С. 11 некий копенгагенский лектор обнаружил ныне…: Этим датчанином был Ханс Кристиан Эрстед и в большинстве учебников по физике говорится, что на свои результаты он «наткнулся случайно». Однако это невозможно: стрелка компаса не отклонялась бы, если бы компас был ориентирован под углом к электрическому проводу, или если бы по проводу протекал слишком малый ток, или если бы провод был медным и обладал слишком малым сопротивлением — и так далее. На самом деле Эрстед пытался обнаружить связь между электричеством и магнетизмом в течение восьми лет. Причина, по которой это обстоятельство так часто упускается из вида, состоит в том, что мотивы, которыми руководствовался Эрстед, были почерпнуты не у обычных ученых, а у Канта, Гёте (с его «избирательным сродством») и, в особенности, у Шеллинга. Однако Фарадей понимал, на что в действительности нацелился Эрстед.

Отметим, что успех Эрстеда отнюдь не означает успешности любой вненаучной мотивации. Важна еще и способность объективного оценивания того, что такая мотивация предполагает. Эйнштейн великолепно умел делать это, особенно в молодые годы: изучение трудов Юма наделило его способностью видеть, насколько произвольны взаимопереплетающиеся определения, которыми пользовались физики, и каким натяжкам они порой подвергаются; любовь к Спинозе постоянно и настоятельно напоминала ему об упорядоченной красоте, которая ожидает нас во вселенной. Гёте, напротив, почти всегда демонстрировал слабость по части использования философии в науке и потратил годы на теорию зрительного восприятия, исходя просто-напросто из уверенности в том, что она «должна» быть справедливой. Старая поговорка гласит, что для занятий математикой человеку нужны бумага, карандаш и мусорная корзинка, а для занятий философией достаточно и бумаги с карандашом.

С. 11 «Вы знаете меня хорошо или даже лучше…»: цитата из письма Фарадея Саре Бернар; “The Correspondence of Michael Faraday, vol. I”, ред. Frank A. J. L. James (London: Institute of Electrical Engineering, 1991), p. 199.

С. 12 Вера, в которой он был воспитан, внушала ему мысль о…: Это моя собственная интерпретация, основанная на представлениях когнитивной антропологии относительно корреляций между социальным поведением и идеологией. О более общепринятых воззрениях см. работу Cantor: “Michael Faraday, Sandemanian and Scientis”, ссылка на которую приведена в «Руководстве по дальнейшему чтению».

С. 12 «Ну как же, премьер-министр, настанет день и вы сможете облагать его налогом»: История забавная, способная доставить удовольствие любому неравнодушному к технике человеку, однако ни в письмах Фарадея, ни в письмах знавших его людей, ни в одной газетной статье того времени и ни в одной из биографий, написанных людьми, близкими к Фарадею, эта фраза не встречается. Американские авторы часто говорят о том, что она была обращена к Гладстону, однако это маловероятно, поскольку Гладстон стал премьер-министром через сорок семь лет после того, как Фарадей совершил свое открытие, а к тому времени электрические устройства уже получили немалое распространение. Да и правительство Британии давно осознало, что промышленные новшества делают его лишь более сильным.

С. 12 «он вдруг вскричал…»: Silvanus P. Thompson, “Michael Faraday: His Life and Work” (London: Cassell, 1898), p. 51.

С. 12 Незримые вихри Фарадея…: Так в современной науке впервые появилось представление о «поле». Причина, по которой в Европе 1820-х его приняли с таким удивлением, состояла в том, что уже более столетия всем уважаемым физикам было хорошо «известно»: никакого поля существовать не может. Люди средних веков могли верить в то, что небеса полны гоблинов, духов и незримых оккультных сил, однако когда Ньютон показал, как тяготение может мгновенно распространяться через пустое пространство без вмешательства каких либо переносящих его тел, он «смел паутину с неба».

И все же, хоть другие и воспринимали это как данность, Фарадей занялся повторными изысканиями и обнаружил, что даже сам Ньютон считал представление о совершенно пустом пространстве всего лишь временной ступенью. Фарадей любил цитировать письмо, в 1693 году направленное Ньютоном питавшему интерес к астрономии молодому богослову Бентли: «…то, что одно тело может действовать на другое на расстоянии без посредничества чего-то еще… представляется мне такой великой нелепостью, что я не сомневаюсь — ни один человек, обладающий достаточными для занятий философией способностями, никогда в это не поверит».

Обе цитаты взяты из статьи Максвелла "On Action at a Distance", содержащейся в томе II собрания “The Scientific Papers of James Clerk Maxwell”, ред. W. D. Niven. (Cambridge: Cambridge University Press, 1890), pp. 315, 316.

С. 12 …и именно тогда сэр Гемфри Дэви обвинил Фарадея…:Верно, что Дэви и еще один ученый, Уильям Хайд Волластон уже начали проводить работы в том же направлении, однако к великому результату, полученному Фарадеем, они даже не приблизились, — а с другой стороны, Фарадей не принадлежал к числу склонных к воровству людей. Получить представление о завуалированных обвинениях Дэви можно из смятенных писем Фарадея и резкого ответа Волластона — особенно интересны письма от 8 октября и 1 ноября 1821-го, напечатанные в книге James, ред., «The Correspondence of Michael Faraday.» Продуманное обсуждение этой истории содержится в книге “Michael Faraday: A Biography”, by L. Pearce Williams (London: Chapman and Hall, 1965), pp. 152–160.

С. 13 Фарадей никогда не сказал о Дэви ни одного дурного слова: Однако он был оскорблен. В течение многих лет Фарадей вел посвященный Дэви альбом — он содержал геологические рисунки, напоминавшие об их совместных путешествиях; черновики нескольких статей Дэви, которые Фарадей переписывал в альбом своим аккуратным почерком; дружеские письма, которые Дэви присылал ему в прошлом; рисунки, посвященные событиям их жизни. Альбом был организован хронологически. После сентября 1821-го Фарадей ничего в него не добавлял.

С. 13 Письмо Чарльза Диккенса от 28 мая 1850 года: The Selected Correspondence of Michael Faraday, vol. 2: 1849–1866, ed. L. Pearce Williams (Cambridge: Cambridge University Press), p. 583.

С. 14 Представления же Фарадея о неизменности энергии часто воспринималась как удовлетворительная альтернатива: Во времена Фарадея сохранение энергии было лишь наблюдаемым на опыте явлением. Только в 1919 году Эмми Нетер дала более глубокое объяснение того, что оно повторяется с таким постоянством. Хорошее описание связей между симметрией и сохранением энергии можно найти в книге “The Force of Symmetry”, by Vincent Icke (Cambridge: Cambridge University Press, 1995), особенно интересно обсуждение, содержащееся на С. 114; или в главе 8 книги “Fearful Symmetry: The Search for Beauty in Modern Physics”, by A. Zee (Princeton. N.J.: Princeton University Press, 1986).

С. 15 …в этой тихой северной школе, — обучение там велось неформально и индивидуально…: у Эйнштейна имелось и еще одно добавочное удобство — он жил в доме директора школы Йоста Винтелера, который за двадцать лет до этого написал редкостной оригинальности докторскую диссертацию, посвященную «Relativität der Verhältnisse», или «ситуационной относительности» поверхностных особенностей языка и тому, как они произрастают из неизменных свойств звуковых языковых систем. Частичные структурные совпадения этой диссертации с дальнейшими работами Эйнштейна по физике очень значительны — вплоть до предпочтения Эйнштейном термина «теория инвариантов» для описания того, что он создал, — а именно этим термином пользовался Винтелер. О истории диссертации Винтелера см. pp. 143ff статьи Романа Якобсона в сборнике “Albert Einstein, Historical and Cultural Perspectives”, ред. Gerald Holton and Yehuda Elkana (Princeton, N.J.: Princeton University Press, 1982); существует также очаровательное эссе того же автора “My Favorite Topics", опубликованное в книге in “On Language: Roman Jakobson”, ред. Linda R. Waugh и Monique Monville-Burston (Cambridge, Mass.: Harvard University Press, 1990), pp. 61–66.

Глава 4. m — это масса

С. 18 [Лавуазье] … человеком, впервые показавшим… являются, на самом деле, частями единого целого: Слово «масса» взято в кавычки по той причине, что открытие Лавуазье касалось сохранения материи, а "m" в E=mc2 это инертная масса. Это вещь гораздо более общая, связанная не с детальными внутренними свойствами тела, но — в духе традиции Галилея и Ньютона — с общим сопротивлением, которое тело оказывает попыткам сдвинуть его с места. Такое различение кажется мелочным, однако оно имеет фундаментальный характер. Оказавшись на Луне, космонавты обнаруживают, что весят меньше, чем весили на Земле, но это происходит не потому, что они лишились какой-то части своих тел. Точно так же, — мы еще увидим это в главе 5, — наблюдая за достаточно быстро летящей ракетой, вы обнаружите, что ее масса очень сильно возрастает, однако и это происходит без добавления к ее металлическому корпусу новых атомов и даже без того, что атомы, из которых она состоит, увеличиваются в размерах.

Лавуазье делает заслуживающим пристального внимания то, что его посвященная сохранению материи работа, в конечном итоге, подогрела интерес к сохранению массы — даже при том, что в сегодняшнем понимании этих терминов материя и масса вовсе не обязательно должны быть связанными. Однако в конце 1700-х никого особенно не заботило то обстоятельство, что «на самом деле» Лавуазье доказал сохранение атомов, — ибо в то время никто не имел ясного представления даже о существовании атомов как физических тел.

С. 19 настал момент… опыта, по-настоящему важного: Если кто-то спросит: «А кто первым показал, что масса сохраняется?», ответ будет таким: «Да, собственно говоря, никто». Лавуазье в 1772 году показал, что при нагревании металла к нему присоединяется некоторое количество окружающего воздуха, но это было, по преимуществу, лишь развитием того, что сделали до него Морво, Тюрго и другие. В 1774 году Лавуазье поставил опыт более общего характера, использовав свинец и олово и подтвердив, что увеличение их веса объясняется проникновением воздуха в нагретые емкости, однако и это не было по-настоящему оригинальным, но строилось на концепциях ничего о том не подозревавшего англичанина Пристли. Даже подтверждавшие открытие опыты 1775 года, которые Лавуазье проводил с ртутью, привели, в конечном итоге, к формулировкам, коими атомисты пользовались как самими собой разумеющимися еще со времен Римской империи. И все-таки, нельзя сказать, что Лавуазье лишь присвоил то, что было сделано иными учеными. Пристли и прочие не смогли полностью прочувствовать концептуальную систему, которая придавала смысл всем этим разнообразным опытам. Лавуазье смог.

О различных подходах, оказывавших воздействие на ученых, равно как и о связанных с ними историографических соображениях, см. статью Schaffer: "Measuring Virtue: Eudiometry, Enlightenment and Pneumatic Medicine" в книге «The Medical Enlightenment of the Eighteenth Century”, ред. A. Cunningham и R. K. French (Cambridge: Cambridge University Press, 1990), pp. 281–318.

С. 21 «Каждый подтвердит, что мсье Лавуазье…»: Arthur Donovan, “Antoine Lavoisier: Science, Administration, and Revolution” (Oxford: Blackwell, 1993), p. 230.

С. 21 «Я — гнев, чистый гнев народа…»: Louis Gottschalk, “Jean Paul Marat: A Study in Radicalism” (Chicago: University of Chicago Press, 1967).

С. 22 «Наш адрес… камера в самом конце»: Письмо Лавуазье жене, 30 ноября 1793 (10 фримера, года II); в книге Jean-Pierre Poirier, “Lavoisier: Chemist, Biologist, Economist” (College Park, Penn.: University of Pennsylvania Press, 1996), p. 356.

С. 22 окончательный суд состоялся 8 мая: Часто приходится читать о том, что, когда Лавуазье был приговорен к смерти, председатель суда воскликнул: «Революция не нуждается в ученых!». Весьма сомнительно, однако, чтобы этот судья, Жан Баптист Коффиналь, сказал что-нибудь в подобном роде. В тот раз судили не отдельных людей, но целую группу старших членов «Генерального откупа», и Лавуазье из них судом выделен не был. Сохранился довольно подробный отчет об этом процессе. Что особо прогневало судей и присяжных, среди которых были: цирюльник, почтовый служащий и прежний маркиз де Монтфабер, сменивший к тому времени имя на Dix-Août (10 Августа), так это методы, которыми налоговые откупщики пользовались для собственного обогащения. Многие ученые во время Революции процветали или, по крайней мере, пережили ее, оставаясь относительно тихими во время различных ее эпизодов, особенно накалявших страсти, — к числу их относятся Карно, Монж, Лаплас, Кулон и другие. (Фраза «не нуждается в ученых» была, похоже, выдумана и появилась два года спустя в хвалебной речи, которую зачитал Антуан Фуркру, прежний ученик Лавуазье, поначалу увлекшийся революционным энтузиазмом, а теперь норовивший пойти на попятный и показать, что он ни в коей мере не был трусом, стоявшим в стороне, когда его прежний наставник подвергался нападкам.)

С. 22 «взвели на эшафот в состоянии самом плачевном»: Свидетельство Эжена Шеверни, приведенное в книге Poirier, “Lavoisier” p. 381.

С. 22 Само дыхание — процесс во многом схожий: Озарения подобного рода позволили Лавуазье стать и одним из основателей современной биологии, и заложить основы психологии. Кровь человека, к примеру, состоит большей частью из воды, и если вы попытаетесь примешать к воде кислород, много его в ней не останется. А вот если добавить в воду немного истолченного в пыль железа, кислород, который вы в нее накачиваете, будет липнуть к нему, как то и произошло в лаборатории Лавуазье. (Каждый фрагмент железа быстро начнет ржаветь, притягивая при этом большое число молекул кислорода и заставляя их остаться в воде. В результате, обогащенная железом вода сможет удерживать значительный объем кислорода.) Именно так и устроена кровь — и красна она по той же причине, по какой красна богатая железом глинистая почва штата Джорджия.

Это было исполнением того, что обещало сочинение Ла Метри «L'Homme Machine»; в приливе оптимизма Лавуазье высказал предположение, что в будущем удастся заглянуть внутрь мозга и увидеть «какие усилия затрачивает человек, произносящий речь или… какую механическую энергию… расходует пишущий трактат ученый либо сочиняющий музыку композитор» — довольно точное описание того, что делают современные сканнеры мозга. Цитата взята из “Collected Works” (vol. II, p. 697) Лавуазье.

С. 22 Именно этому и учили Эйнштейна… суть вещи разные: Разделение реальности на две составных части это своего рода автоматическая операция, совершаемая человеческим разумом и обнаруживаемая по той легкости, с которой мы создаем категории своих и врагов, правого и неправого, х и не-х. Частное разделение, завещанное нам Лавуазье, Фарадеем и их коллегами, является еще более неотразимым, ибо когда к одной из раздельных частей относится все материальное и физическое, а к другой нечто незримое, но не менее могучее, нам в голову сразу приходит древняя дихотомия тела и души.

Многие мыслители руководствовались этим различением в своей работе. Когда Алан Тьюринг ввел для компьютера разделение на программное и аппаратное обеспечение, он, похоже, исходил из разделения человека на душу и тело; большинство пользователей компьютеров примерно так это себе и представляют, ибо все мы легко и быстро ухватываем представление о «мертвом» физическом субстрате, которым правит «живая» контролирующая его сила. Разделение на душу и тело пронизывает весь наш мир: это противопоставление Дон Кихота Санчо Пансе; интеллектуального Спока холодному предпринимательству; контраст между негромким ободряющим голосом и физическим телом на экране телевизора, показывающего рекламу кроссовок.

Однако эти заманчивые категории суть лишь предположения, а не доказательства. Молодой человек, каким был Эйнштейн, всегда стремившийся самостоятельно понять то, что лежит в основе избранной им сферы деятельности, с легкостью видел, что его профессора просто делают по индукции выводы, исходя из весьма неполного набора данных.

Существует много описаний того, как не выраженные явно категории заставляют наше мышление идти определяемыми ими путями, см. например, книгу George Lakoff и Mark Johnson “Metaphors We Live By” (Chicago: University of Chicago Press, 1980), или превосходные работы Kedourie о национализме, хотя по какой-то причине этого автора особенно привлекает подход, предложенный в книге Bodanis “Web of Words: The Ideas Behind Politics” (London: Macmillan, 1988).

С. 24 Когда… члены Флорентийской академии…: Предложение Галилея было сделано им в сочинении «Две новых науки», в разделе «День первый». Опыт был поставлен флорентийской Academia del Cimento двадцать лет спустя, вероятно, около 1660 года. Результаты приводятся на странице 158 книги, выходные данные которой содержат такое количество живых подробностей, каких издатели теперь уже не приводят: “Essayesof Natural Experiments, made in the Academie del Cimento; Englished by Richard Waller, Fellow of the Royal Society, London. Printed for Benjamin Alsop at the Angel and Bible in the Poultrey, over-against the Church, 1634”.

Глава 5. с — это celeritas

С. 25 Связанное с ними напряжение сил… повышенное и малоприятное внимание публики: Ясно, что, говоря о Кассини, я немного лукавлю. Из существующих свидетельств следует, что порою он проявлял себя как человек ни в чем не уверенный, однако не будучи во Франции своим, Кассини и не мог питать уверенность в чем бы то ни было: поначалу он получил лишь временное место, а с ним и предупреждение о том, что пытаться говорить по-французски ему не следует; затем ему велели выучить французский, поскольку Академия не желала, чтобы в ее стенах звучала латынь и уж тем более его родной итальянский. Собственный рассказ Кассини о том, какие ужасные усилия прилагал он, чтобы овладеть этим важнейшим для него языком, — и какую гордость испытал, когда сам король похвалил его за сделанные всего в течение нескольких месяцев успехи, — выглядит очень трогательно. К тому же, у него имелись личные причины для неприязни к Ремеру. Ибо Кассини утвердил свою репутацию, обнародовав, еще в июле 1665-го, усовершенствованные предсказания о времени появления спутников Юпитера на небосводе. Предсказания эти сбылись в августе и сентябре того же года: скептики оказались посрамленными, а Кассини получил в виде награды важный пост в Париже. И потому попытка Ремера использовать в точности тот же прием против него нравиться Кассини не могла.

Его критика чрезмерной уверенности Ремера по части наблюдений за Юпитером содержала в себе и нечто большее простой досады. Кассини сочинил длинное стихотворение "Frammenti di Cosmografia", в котором выражал свое смирение перед величием космоса и веру в то, что лишь ничем не оправданная гордыня толкает людей, изолированных на малозначительной планете, полагать, будто они способны точно измерить все, что в нем происходит. Еще до появления Ремера Кассини использовал метод приближений первого порядка, чтобы попытаться избавиться от аномалий в поведении Ио; он был искренен, когда говорил, что настаивать на правильности какой бы то ни было новой интерпретации означало бы проявлять чрезмерную поспешность. Стихотворение это и фрагментарная биография Кассини содержатся в книге “Mémoires pour Servir à l'Histoire des Sciences et à Celle de L'Observatoire Royal de Paris” (Paris, 1810), составленной правнуком Кассини, которого так же звали Жаном Домиником; см., в особенности, страницы 292 и 321.

С. 28 после того, как была разработана, наконец, математика…методами последователей: Последующий успех Максвелла привел к тому, что других ученых того времени перестали принимать во внимание. Особенно интересной промежуточной фигурой был Вебер из Геттингена, ибо и он, стараясь связать электричество с магнетизмом, вычислял скорость света, однако, поскольку она была замаскирована дополнительным коэффициентом Ö2, Вебер не понял, что именно он обнаружил, и попытки свои оставил. История Вебера хорошо описана в статье M. Norton Wise “German Conceptions of Force…”, pp. 269–307 в сб. “Conceptions of Ether: Studies in the History of Ether Theories 1740–1900)” ред. G. N. Cantor и M. J. S. Hodge (Cambridge: Cambridge University Press, 1981). Осторожность Вебера схожа с той, какую проявил молодой Ампер; его гибридные уравнения, почти достигают мира максвелловых полей, но не создают его, напоминая боевой фрегат невесть зачем оснащенный зенитками.

С. 28 «Да, наверное…»: Боюсь, что и это апокриф. С уверенностью можно сказать лишь, что Максвелл любил подшучивать над своей склонностью к точности, и что, будучи студентом Кембриджа, он, к немалому удивлению своих однокашников, экспериментировал с попытками не ложиться спать до самого позднего часа. См, например, Goldman, “Demon in the Aether”, p. 62.

С. 29 «Они никогда не понимали меня, зато я…»: Ivan Tolstoy, “James Clerk Maxwell: A Biography” (Edinburgh: Canongate, 1981), p. 20.

С. 29 «Продолжая исследования…»: “Treatise on Electricity and Magnetism”, James Clerk Maxwell (Oxford: Clarendon Press, 1873); предисловие Максвелла к первому изданию, c. x.

С. 29 Когда луч света отправляется в путь…: Обычный язык по природе своей оказывается здесь неточным, ибо то, что мы действительно описываем, суть свойства электрического и магнитного полей, указание на то, что «могло бы» произойти в любом наперед заданном месте. Сослагательное наклонение грамматики, и в особенности условное сослагательное, позволяет подойти к соответствующей идее поближе: вы, быть может, и не в состоянии указать, что происходит прямо сейчас на конкретном уличном углу бандитского района, однако способны сказать, что может произойти, если на этот угол забредет турист с «Ролексом» на запястье. В случае физики, вспомните некогда виденное вами расположение железных опилок вокруг стержневого магнита. А затем уберите опилки и запишите на месте каждой число или группу чисел, которые говорят вам о том, как, скорее всего, поведут себя опилки, снова сюда помещенные.

Для человека, который не видел, с чего вы начали, записанное вами было бы всего лишь перечнем чисел. Для того же, кому известно, как магнит располагает вокруг себя железные опилки, ваш список оказался бы ярким описанием этой его способности, — а для Максвелла и Фарадея с их религиозными верованиями он стал бы прямым представлением священной силы, которая и создала это поле.

С. 29 Электричество и магнетизм «во взаимных объятиях»: Для создания волны особой мощи не требуется. Нажмите на клавишу пианино и соответствующая струна просто начнет колебаться, оставаясь во всех иных отношениях неподвижной, между тем как «рисунок» ее колебаний будет перемещаться в пространстве, перенося звук. Между двумя людьми, оказавшимися в коридоре в нескольких метрах один от другого, могут располагаться сотни галлонов воздуха, и все же, для того, чтобы поздороваться, вдыхать весь этот воздух им не обязательно. Каждому хватит небольшого глотка, который затем вырвется из его гортани, создав в воздухе волну сжатия, которая и сделает все, что требуется.

Со световыми и электромагнитными волнами дело обстоит, вообще говоря, примерно так же. Включите зажигание вашей машины, и свеча зажигания пошлет содержащую несколько частот электромагнитную волну, которая пройдет сквозь окружающий ее металл и достигнет орбиты Луны через две секунды после того, как вы услышите заработавший двигатель; продолжая двигаться дальше, эта волна спустя несколько часов пройдет расстояние, отделяющее вас от Юпитера.

С. 29 …уравнения Максвелла…: Проделанная Максвеллом работа была колоссальным достижением — и стала бы еще более колоссальным, если бы он сам записал четыре уравнения, которые носят его имя. Однако Максвелл этого не сделал. И вопрос был не только в изменении обозначений, поскольку даже те тонкие эффекты, к которым впоследствии присмотрелся Герц, а это и привело к пониманию того, что радио волны могу излучаться и приниматься подобно световым, в уравнениях самого Максвелла прочувствованы не были.

История о том, как через два десятка лет после смерти Максвелла группа, ядром которой были три физика из Англии и Ирландии, в конце концов, вывела уравнения Максвелла, исчерпывающе излагается в книге Bruce J. Hunt, “The Maxwellians” (Ithaca, N.Ґ.: Cornell University Press, 1991).

С. 30 …быстрее не способно двигаться ничто…: Или более точно, ничто, начинающее со скорости меньшей скорости света, не способно закончить тем, что будет двигаться быстрее него. Но что если бы существовали частицы — или, возможно, целый параллельный мир — находящиеся по другую сторону светового барьера? Это выглядит научной фантастикой, однако физики давно уже научились сохранять непредвзятость. (Эти постулированные сверхсветовые частицы Джеральд Фейберг назвал тахионами.) Еще одна оговорка состоит в том, что мы обсуждаем скорость света в вакууме, — в других средах свет распространяется медленнее. Потому и сверкают бриллианты — свет, скользящий по их поверхности, движется быстрее, чем тот, что проникает внутрь них.

Существуют и исключения более значительные — связанные с воздействиями искривленного пространства-времени на относительные скорости; возможны такие эффекты, связанные с отрицательной энергией, а кроме того, получены интригующие результаты, касающиеся импульсов света, скорость которых превышает нашу «с» (пусть даже движение их происходит таким образом, что никакой добавочной информации они переносить не могут). Однако все это выводит нас за пределы технического уровня этой книги. Подозреваю, что ученые будущего будут оглядываться на нас и дивиться тому, что мы вообще принимали эту оговорку всерьез — или что нам понадобилось столь долгое время, чтобы понять: существует простой способ, который позволяет быстренько открыть новый «Диснейленд» в туманности Андромеды.

С. 31 …начинает расти масса корабля…: Ни одно из обычных наших слов здесь не работает, в частности, «раздувается» следует воспринимать лишь как метафору. Космический корабль, — или протон, или любое другое тело — вовсе не расширяется во всех направлениях. Скорее, здесь выходит на первый план представлявшееся нам довольно смутным различие между сохранением материи и сохранением массы — различие, о котором шла речь в главе, посвященной Лавуазье. Если определить массу как присущее любому телу свойство сопротивляться попыткам ускорить его, что мы, собственно, и делаем, когда пытаемся определить его вес, тогда появляется возможность увеличения массы тела без «раздувания» образующей его материи. И пока имеет место увеличения сопротивления попыткам ускорить тело, это требование выполняется.

При малых скоростях нашего привычного мира прирост массы не будет достаточным для того, чтобы его удалось заметить, — именно поэтому предсказания Эйнштейна и показались столь поразительными, — однако по мере того, как тело улетает от нас на скорости, приближающейся к скорости света, этот эффект становится все более явственным. И предсказания Эйнштейна оказываются на редкость точными.

Для того, чтобы рассчитать, насколько увеличится масса данного тела, нужно взять его скорость, возвести ее в квадрат, разделить на квадрат скорости света, вычесть результат деления из единицы, взять квадратный корень этого результата, потом получить величину обратную и умножить ее на массу интересующего нас тела. В символьной записи это выглядит проще: если тело движется со скоростью «v», то для получения его выросшей вследствие этого массы нужно умножить начальную массу тела «m» на 1/√(1-v2/с2).

Чтобы прочувствовать это уравнение, полезно «повертеть» его, используя разного рода экстремальные значения. Если v намного меньше с — т. е. космический корабль движется медленно, — тогда (1-v2/с2) почти не отличается от единицы, поскольку значение v2/с2 очень мало. И ни квадратный корень, ни взятие обратной величины ничем тут не помогут — вы все равно получите число весьма и весьма близкое к 1. У реального, запускаемого из Флориды шаттла максимальная скорость составляет порядка 30000 км/час. Это настолько малый процент скорости света, что масса шаттла возрастает на величину много меньшую одной тысячной процента, — даже когда он со свистом покидает атмосферу на самой большой своей скорости. Однако, если шаттл или что-то еще движется по-настоящему быстро, если v оказывается близкой к с, то (1-v2/с2) становится близким к нулю. А это означает, что квадратный корень этой величины также очень мал, и разделив на него единицу, вы получите величину огромную. Взгляните на тело, которое проносится мимо вас со скоростью, составляющей 99 процентов скорости света, и вы увидите, что масса его возросла во множество раз.

Существует соблазн решить, что это просто какой-то выверт, что мы запутываемся в наших измерениях, а движущееся тело «на самом деле» не становится более массивным в такой степени, что на это явление следовало бы обращать внимание. Однако магнитам, стоящим вдоль колец ускорителя в ЦЕРНе, действительно приходится повышать свою энергию, чтобы удержать разогнанный до большой скорости протон — в противном случае инерция, обусловленная его возросшей массой, заставит его влепиться в стену ускорителя. При скорости в 90 процентов скорости света, энергия, потребная для того, чтобы потяжелевший в 2,5 раза протон не сорвался со своего кругового пути и не врезался в стену, возрастает весьма значительно. Если же скорость возрастает до 99,9997 процента скорости света, 1/√(1-v2/с2) увеличивает скорость протона в 430 раз, что и приводит к проблемам, с которыми сталкивается ЦЕРН, — ему приходится изыскивать способы получения дополнительной энергии без причинения неудобств достойным гражданам Женевы.

Однако просто заявить, что выражение 1/√(1-v2/с2) дает нам правило, которому мы обязаны следовать, значит поместить нас в ту самую категорию послушно выполнявших правила учителей, которые так возмущали Эйнштейна. Объяснения насчет того, почему это правило истинно, можно получить на сайте davidbodanis.com.

С. 31 …энергия, накачиваемая в… обращается в добавочную массу: Пример с космическим кораблем является всего лишь эвристическим; продвигаясь дальше по этой книге, мы увидим, что энергия и есть масса: единая сущность, именуемая «энергия-масса» просто принимает различные обличия, зависящие от того, как мы ее наблюдаем. Ограниченность наших хрупких тел означает, что мы не в силах существенно увеличивать скорости нашего движения, поэтому мы наблюдаем массу под очень «косым» углом. Возникающее в результате искажение и составляет причину, по которой «высвобождающаяся» энергия кажется нам столь высокой. (Существенная оговорка состоит, однако, в том, что эквивалентность энергии и массы остается справедливой только для частного наблюдателя, относительно которого это тело покоится. И это приобретает особое значение в общей теории относительности, поскольку создаваемая телом сила притяжения определяется его полной энергией, а не просто массой покоя. Это обстоятельство затрагивается на странице 110 книги в связи с черными дырами и более подробно обсуждается на моем веб-сайте.

Глава 6. 2 — это «в квадрате»

С. 34 «наблюдал за их трудами»: “Voltaire et la Societé Francaise au XVIII è Siècle: Volume 1, La jeunesse de Voltaire”, by Gustave Desnoiresterres (Paris: Dider et Cie, 1867), p. 345.

С. 34 …в воздухе Англии носились новые, приведшие его в восторг, концепции: Для того, чтобы осознать недостатки Франции, Аруэ труды Ньютона не требовались. Да и в любом случае, показать, чего не хватает Франции, ему помогли не отвлеченные идеи, но наблюдения за Англией с работающим в ней парламентом и с ее традициями наполовину, по крайней мере, независимых судей и гражданских прав. Однако возможность ссылаться в своей критике Франции на самую прославленную в мире аналитическую системы была приятной. См. «Английские письма» Вольтера.

С. 34 Ньютон создал совокупность законов…: Как это ни удивительно, похоже, что к его последнему шагу Ньютона действительно подтолкнуло наблюдение за падением яблока. Уильям Стакели записал воспоминания престарелого Ньютона и два столетия спустя эти записи были изданы как «Memoirs of Sir Isaac Newton's Life» (London: Taylor amp; Francis, 1936), pp. 19–20.

После обеда, поскольку погода была теплой мы вышли в сад [последней резиденции Ньютона в лондонском Кенсингтоне] и пили чай, только он и я, в тени яблонь. Среди прочего, он рассказал мне, что когда-то именно в таком же случае ему и пришла в голову мысль о тяготении. Ее породило падение яблока, за которым он, погруженный в задумчивость, наблюдал. Почему яблоки всегда должны падать… в направлении центра Земли? Причина, несомненно, состоит в том… что в материи должна присутствовать притягивающая их сила… подобная той, которую мы называем здесь тяготением, распространяющимся по вселенной.

Так Ньютон обрел уверенность в том, что на Земле действуют те же силы, что и в космосе. Измерить скорость, с которой тело падает на землю, довольно легко. За одну секунду яблоко — или любое другое тело — падает примерно на 5 метров. Но как измерить скорость, с которой «падает» Луна?

Для того, чтобы проделать это, необходимо признать, что Луна постоянно падает вниз — хотя бы немного. (Если бы Луна не падала, а всего лишь двигалась по идеально прямой линии, она быстро оторвалась бы от нашей планеты.) Величины этого «падения» как раз достаточно для того, чтобы заставить Луну кружить вокруг Земли. Зная протяженность ее орбиты и время, которое уходит на один оборот, можно заключить, что каждую секунду она падает в направлении Земли чуть больше, чем на 0,13 см.

На первый взгляд из этого следовало, что догадка Ньютона была неверна. Если существует некая сила, заставляющая камень за одну секунду падать в направлении Земли на 5 метров, следует заключить, что в космосе действует сила совсем иная, ибо она заставляет гигантские камни наподобие Луны падать каждую секунду на какие-то жалкие 0,13 см. Даже если учесть куда большее расстояние, отделяющее нас от Луны, идея Ньютона все равно не срабатывает. Земля имеет в поперечнике около 12742 км, стало быть, Ньютон, как и яблони его матери, отстоят от ее центра примерно на 6371 км. Луна отстоит от центра Земли на 384400 км, т. е. находится примерно в 60 раз дальше. Но даже если замедлить падение камня в 60 раз, он все равно будет падать далеко не так медленно, как Луна. (1/60 от 6 м это 8 с небольшим см, что намного превышает ничтожные 0,13 см, на которые каждую секунду падает Луна.)

Но что если представить себе силу, которая, уходя от нашей планеты, ослабевает в 60х60 раз? Идея о том, что сила притяжения зависит от квадрата расстояния, весьма интересна, вот только как ее проверить? Как доказать, что на Земле она в 3600 (60х60) раз сильнее, чем в космосе. В семнадцатом веке никто — даже кембриджский ученый — не мог слетать на Луну и сравнить силу притяжения Земли на ней, с той, что действует на самой Земле. Однако в этом не было необходимости. Уравнения обладают безмерной мощью. Ответ имелся у Ньютона с самого начала. «Почему яблоки всегда должны падать… в направлении центра Земли?» — спрашивал он. На поверхности Земли яблоко, камень и даже изумленный кембриджский профессор пролетают, падая, 5 м в секунду. А Луна падает за то же время на 0,13 см. Разделите одно число на другое и вы получите отношение, показывающее, насколько сила притяжения на поверхности Земли больше, чем она же на орбите Луны.

Она больше примерно в 3600 раз.

Таким был расчет, поделанный Ньютоном в 1666 году. Вообразите гигантские часы, деталями которых являются Земля и Луна. Правило Ньютона показывает, причем точно, каким образом незримые винтики и стержни поддерживают целостность этой хитроумной, состоящей из кружащих частей машины. Каждый, кто читает Ньютона и следует ходу его мысли, может поднять взгляд к небу и понять — впервые, что его тело притягивает к Земле та же сила, которая, распространяясь в пространстве, достигает орбиты Луны и уходит дальше.

С. 35 «Моя младшая дочь щеголяет своим умом…»: Samuel Edwards, “The Divine Mistress” (London: Cassell, 1971), p. 12.

С. 36 …садясь за игорный стол, она с легкостью запоминала все карты: Но даже это делалось ею, по мнению родных, неправильно: «Моя дочь безумна, — в отчаянии писал ее отец. — На прошлой неделе она выиграла в карты более двух тысяч золотых луидоров и, заказав новые платья,… потратила другую половину на новые книги… Она никак не поймет, что ни один благородный дворянин не женится на женщине, которую каждый день видят читающей книгу». Там же, р. II.

С. 36 «Я устал от праздной, полной вздорных свар парижской жизни…»: «Мемуары» Вольтера; в Edwards, “The Divine Mistress”) p. 85.

С. 37 «…превращает лестничные колодцы в дымоходы…": Письмо Вольтера мадам де ла Невилль, в книге André Maurel, “The Romance of Mme du Châtelet and Voltaire”, пер. Walter Mastyn (London: Hatchette, 1930).

С. 37 …он застал ее с другим любовником…попыталась успокоить Вольтера…: Различные рассказы об этом — как слуг, так и самих участников происшествия — сравниваются в книге René Vaillot, “Voltaire en son temps: avec Mme du Châtelet 1734–1748”, которую издал во Франции “Voltaire Foundation”, “Taylor Institution”, Oxford England 1988.

С. 37 Появлявшиеся время от времени…визитеры из Версаля…: Наиболее полный рассказ об этом можно найти в книге мадам де Граффиньи “Vie privée de Voltaire et de Mme de Châtelet” (Paris, 1820).

С. 37 Она знала — в большинстве своем люди считают, что с энергией…: Слово «энергия» является здесь анахроничным, поскольку мы говорим о периоде, в котором эта концепция еще только формировалась. Однако мне кажется, что основные идеи того времени оно передает верно. См. например, L. Laudan, "The vis visa controversy, a post mortem”,Isis, 59 (1968), pp. 131-43.

С. 38 …разного рода отвлеченные геометрические доводы…: Галилей установил, что при падении скорость свободно падающих тел изменяется. Вместо того, чтобы каждую секунду покрывать строго определенное расстояние, они покрывают в первую секунду 1 единицу расстояния, во вторую — 3, в третью — 5 и так далее. Сложите все эти числа и вы получите накапливаемое расстояние, которое пролетает падающее тело: за одну секунду — 1 единица, за вторую — 4 единицы (1+3), за третью — 9 единиц (1+3+5) и т. д. В сочетании с теоретическими соображениями это стало основой знаменитого результата Галилея — накапливаемое расстояние пропорционально количеству времени, которое тело проводит в падении, или d α t2.Лейбниц расширил эту аргументацию.

С. 38 «Согласно учению [Ньютона]…»: Richard Westtfall, “Never at Rest: A Biography of Isaac Newton”[51] (Cambridge: Cambridge University Press, 1987), pp. 777-78.

С. 39 …для дю Шатле это стало одним из важнейших моментов ее жизни…: Вопрос оказался более сложным, чем полагали и Ньютон, и Лейбниц, и для того, чтобы понять, что было верным у каждого из них и что следует сохранить, понадобилась беспристрастная дю Шатле. Ньютон, несмотря на насмешки Лейбница, был прав, ибо, если звезды разбросаны по вселенной случайным образом, почему бы силам тяготения не заставлять их просто падать друг на дружку? В определенных отношениях прав был и Лейбниц, никогда не отстаивавший существование совершенного, вмешивающегося во все Бога, но говоривший, что существует некое оптимальное божество, связанное ограничениями, которые мы, возможно, не в состоянии видеть. А это совсем другая история. Вольтер упустил это утверждение из виду, когда писал свою мощную сатиру «Кандид», однако в физике оно легло в основу фундаментального принципа. В видоизмененной форме оно же обратилось в один из центральных моментов общей теории относительности Эйнштейна, в которой — как мы еще увидим в Эпилоге, — планеты и звезды движутся в искривленном пространстве-времени вселенной по оптимальным путям.

Какое воздействие оказало на Вольтера наблюдение за ломавшей над этими вопросами голову дю Шатле? Он получал постоянные напоминания о контрасте между огромной вселенной и маленьким «атомом грязи», на котором обитают тщеславные человеческие существа, — и это стало основной темой его сочинений. Постоянно напоминали ему и о необходимости предоставлять индивидуальному гению свободу действий — тема, которую жизнь с утомительной и упоительной дю Шатле несомненно усиливала.

С. 39 Виллем Гравезанд: Я рассказываю об обширных опытах Гравезанда упрощенно: он использовал имевшие форму пули цилиндры из словной кости, полые и сплошные медные шары, маятники, тщательно подготовленную и очищенную глину, помещавшуюся в специальные рамы, и множество иных отдающих Лапутией хитроумных приспособлений — и все это ради обоснования своей убежденности в том, что «Свойства Тела не могут быть известными à priori [52] и потому нам должно исследовать само Тело и хорошо вникать во все его Свойства…». См. его (прекраснейшим образом иллюстрированные) “Mathematical Elements of Natural Philosophy, Confirm'd by Experiments”[53], пер… J. T. Desaguilliers, в особенности, Book II, ch. 3, 6th edition (London: 1747); цитата взята со С. iv.

С. 40 «в этом нашем упоительном прибежище»: «Мемуары» Вольтера; в книге Edwards, “The Divine Mistress”, p. 86.

С. 40 «Я беременна…»: Письмо к мадам де Буффлер от 3 апреля 1749. В “Les lettres de La Marquise du Châtelet”[54], vol. 2, ред. T. Besterman (Geneva: Institut et Musee Voltaire, 1958), p. 247.

С. 40 «Я потерял половину себя самого…»: Письмо Вольтера к д’Аргеннталь, см., например, в Frank Hamel, “An Eighteenth-Century Marquise”[55] (London: Stanley Paul amp; Co., 1910), p. 369.

С. 41 Автомобиль, который движется в четыре раза быстрее другого…: При скорости в 30 км/час машину обдувает ласковый ветерок, однако при 300 км/час это уже не ветер а катастрофа, он напоминает скорее ударную волну, возникающую при взрыве газовой печки. И мощнее он не в 10 раз, поскольку энергии несет в 102, или в 100 раз больше. Именно поэтому реактивные лайнеры летают на таких больших высотах. Только разреженный воздух этих высот и позволяет самолету проводить, не повреждаясь, часы под штормовым ветром, дующим ему на встречу со скоростью, которая превышает 960 км/час.

Спортсменам постоянно приходится производить сложные расчеты подобного рода. Бросить мяч так, чтобы он летел со скоростью 30 км/час, может любой школьник, но только профессиональные спортсмены способны придавать ему скорость в 150 км/час. Скорость эта «всего» в пять раз выше, но, поскольку энергия зависит от квадрата скорости (E = mv2), энергетические затраты спортсмена возрастают в 25 раз. Более того, ему приходится затрачивать на это лишь 1/5-ю времени. (Потому что, если его бросок займет столько же времени, сколько занимает он у ребенка, мяч полетит со скоростью 30 км/час.) А создание 25-кратной энергии за1/5-ю времени требует усилия, в 25х5, или в 125 раз большего! И кое-какие иные эффекты, например, сопротивление воздуха, эту задачу лишь усложняют. Правда, взрослому спортсмену помогает то, что рука у него длиннее, чем у ребенка.

С. 41 …выявляются лишь с помощью mv2: Дело не в том, что mv2«истинно», а mv1 - нет. Ньютоновская концепция импульса — mv1 - оказывается совершенно необходимой для понимания вселенной. Дело, скорее, в том, что каждое из этих определений относится к разным областям — разным сторонам — рассматриваемых нами явлений. Выстрелите из ружья — для наилучшего понимания отдачи требуется mv1; а вот удар пули описывается с помощью mv2.Сразу после нажатия на курок ружье и пуля получают равные импульсы, однако отдача ружья убить вас не может — бóльшая часть кинетической энергии ружья определяется его массой, и потому скорость его движения при отдаче на стрелка воздействует незначительно. Зато пуля обладает массой столь малой, что обладание тем же импульсом требует большой скорости. Степень же опасности пули для мишени определяется квадратом ее скорости — кинетической энергией пули.

С. 41 Это, разумеется, никакое не доказательство…: Это один из моментов, подробно обсуждаемых на моем веб-сайте.

С. 41 Как раз огромный коэффициент преобразования… стоящий в уравнении знак равенства: Если бы полное преобразование массы в энергию происходило слишком легко, наши карандаши и ручки начали бы исчезать, испуская ослепительные вспышки света, и унесли бы с собой большинство земных городов, а большая часть физической вселенной вскоре просто перестала бы существовать.

Нас спасает от этого принцип сохранения барионов, сводящийся, грубо говоря, к тому, что полное число существующих во вселенной протонов и нейтронов не меняется — они не могут начать исчезать ни с того ни с сего.

Стопроцентное преобразование происходит только в одном случае — когда обычная материя сталкивается с антиматерией. Типичный протон из тех, что содержатся в наших телах, имеет барионный заряд +1, антипротоны, входящие в состав антиматерии, имеют барионный заряд -1, поэтому, когда они совместно аннигилируют, суммарное число барионов во вселенной не меняется. На самом деле, мы переживаем нечто похожее каждый день, поскольку часть газа радона, который источают фундаменты и стены наших домов, порождает в процессе своего распада антиматерию. И когда она приходит в соприкосновение с молекулами воздуха или нашей кожей, возникает (микроскопический!) взрыв — E=mc2 срабатывает в полную силу и с немедленными результатами.

Глава 7. Уравнение и Эйнштейн

С. 43 …покачивая свободной рукой колыбельку годовалого сына…: Относительно периода чуть более позднего см. воспоминания Д. Рейхинштейна, собранные в его книге “Albert Einstein: A Picture of His Life and His Conception of The World”[56], by David Reichinstein (London: Edward Goldston, Ltd, 1934).

С. 43 …так называл он Бога…: Особенно вдумчивый анализ этой темы содержится в книге Max Jammer, “Einstein and Religion: Physics and Theology”[57] (Princeton, N.J.: Princeton University Press, 1999). Богатую компиляцию взглядов современных ученых на религию — как положительных, так и отрицательных, — можно найти в книге Russsell Stannard, “Science and Wonders: Conversations about Science and Belief”[58] (London: Faber and Faber, 1996), составленной из радио-бесед на «Би-Би-Си».

С. 43 «Мы находимся в положении…»: Эйнштейн продолжает: «Таково, как мне представляется отношение человеческого ума, даже самого большого и развитого, к Богу». Из интервью 1929 года, данного прославленному в то время журналисту Джорджу Силвестру Виреку; приведено в его книге Viereck, “Glimpses of the Great”[59] (London: Duckworth, 1934), p. 372. Цитата, вероятно, является лишь приблизительной, поскольку в нескольких местах книги Вирек признается, что его стенографические записи с трудом поддаются расшифровке.

С. 44 На самом деле, она обладала страстной натурой…: Ее роман описан в книге “Marie Curie: A Life”[60], by Susan Quinn (orig. New York: Simon amp; Schuster, 1995; London: Mandarin pbk., 1996). Слова, сказанные Эйнштейном после автомобильной поездки, произошедшей в 1913 году, цитируются по английскому изданию этой книги (p. 348).

С. 45 …он послал в университет и статью о теории относительности…: Составившая целую эпоху статья была отвергнута по нескольким причинам, и не в последнюю очередь на том солидном бюрократическом основании, что она была напечатана, а «…правила требуют представления тезисов, написанных от руки». Carl Seelig — “Albert Einstein: A Documentary Biography”[61] (London: Staples Press, 1956), p. 88 — услышал об этом от поддерживавшего Эйнштейна Пауля Грюнера, который работал тогда в Бернском университете и был свидетелем этой истории.

С. 46 …как «человека с содранной кожей»: Marianne Weber, “Max Weber: A Biography”[62], ред. и пер… Harry Zohn (New York: John Wiley amp; Sons, 1975), p. 286.

С. 46 …время текло ровно и гладко…: Эйнштейн был далеко не первым из людей, осознавших совместимость законов Ньютона с представлением о том, что никакого внешнего «авторитета» или стандарта измерений, позволяющих судить о какой-либо нашей частной деятельности, не существует, — это видел и сам Ньютон! Однако в его пропитанную богословием эпоху, Ньютону, впавшему в подобную ересь, приходилось быть осторожным в выражении своих мыслей. В значительной мере для того, чтобы избежать отрицающего существование Бога «свободного течения» времени, Ньютон и ввел в свои «Принципы» абсолютное время. Стандартная формулировка этого принципа содержится в ньютоновском «Общем комментарии», взгляните, однако, на его изложенные более разговорным языком пояснения в письмах к Ричарду Бентли (в то время молодому богослову); и то, и другое можно найти в книге “Newton: Texts, Backgrounds, Commentaries”[63], ред. Bernard Cohen и Richard Westfall (New York: Norton, 1995). Если бы не предосторожности подобного рода, Ньютон, возможно, и сделал бы несколько простых алгебраических шагов, которые привели бы его к разработке специальной теории относительности.

С. 47 …мир, в котором скажем, 48 с небольшим км/час…: Этот образ взят из достойной всяческого уважения трилогии Джорджа Гамова о мистере Томпкинсе, на которой выросли поколения любителей науки. Когда Гамов описывал эту картину, она казалась фантастической; думаю, он рад был бы узнать, что еще до конца двадцатого века, «в феврале 1999-го» группа гарвардских исследователей, используя лазерное охлаждение, создала субстанцию «температура которой отличалась от абсолютного нуля лишь на одну пятидесятимиллиардную градуса» и в которой свет распространялся, с точки зрения внешнего наблюдателя, со скоростью несколько меньшей 48 км/час.

С. 47 …возвратились бы к их обычным статичным значениям…: Такие привычные термины, как «вес» и «набирать» массу используются здесь, опять-таки, для того, чтобы яснее показать происходящее.

С. 47 …пассажиры тоже ссохлись бы в размерах…: В учебниках говорится обычно, что

Ускоряющийся автомобиль будет сжиматься в направлении его движения, пока не ужмется до толщины папиросной бумаги. Однако, хотя непосредственное применение приведенного на с. 190 коэффициента сжатия показывает, что так оно и будет, в действительности происходит явление более тонкое и связано оно с тем, что свет, исходящий от разных частей автомобиля, должен и испускаться ими в разные моменты времени. Возникающие при этом искажения схожи с теми, что появляются, когда трехмерную землю изображают посредством двумерных Меркаторовых проекций.

С. 48 …спутники Системы глобального позиционирования …: Помимо требуемых специальной теорией относительности корректировок получаемых от спутников СГП сигналов существуют значительные эффекты, связанные с общей теорией относительности — хороший обзор их можно найти в книге Clifford M. Will, “Was Einstein Right: Putting General Relativity to the Test”[64] (Oxford: Oxford University Press, 1993). Мне нравится мысль о том, что миллионы людей, когда-либо державших в руках приемники СГП, смыкали пальцы на устройствах, внутри которых скрыты миниатюрные переложения логических последовательностей, возникших некогда в мозгу Эйнштейна, на язык техники.

С. 48 …ярлык «относительность»…: Формулировку «теория относительности» Эйнштейн в своей оригинальной статье 1905 года не использовал, она была предложена Планком и другими лишь год спустя. Название, ему и вправду нравившееся, исходило от Минковского, который в 1908 году говорил об эйнштейновских «постулатах инвариантности». Однако, хотя в то время и раздавались призывы принять измененное название, в 1920-х годах первый, не нравившийся Эйнштейну ярлык прилип к его теории окончательно.

С. 48 …неверное впечатление…: «Смысл слова “относительность” очень многими понимается неверно, — пояснял в 1929-м Эйнштейн. — Философы играют с ним, как дитя с куклой… Эта [относительность] вовсе не означает, что все относительно.»

Эйнштейна истолковали неверно главным образом потому, что очень многие именно к этому и были готовы. Сезанн говорил о необходимости сосредотачиваться только на том, что видите и измеряете лично вы: мазок красного там, пятно синего здесь. Это было воспринято как соответствие, выражаемому теорией относительности сомнению в существовании бесстрастного «объективного» фонового мира, который ждет лишь, подобно импрессионистской интерпретации парижского бульвара, чтобы все его приняли. В совсем уж недавнее время Том Стоппард, который любит подкапываться под общепринятые мнения, с удовольствием вкладывал в уста персонажей своих пьес упоминания об эйнштейновских эффектах, которые вроде бы подкрепляют эти воззрения.

Беда, однако, в том, что такое использование трудов Эйнштейна никакого отношения к ним не имеет. Как уже говорилось в этой книге, при тех скоростях с которыми мы обычно имеем дело в жизни, предсказываемые теорией относительности отклонения от привычных нам явлений настолько малы, что наблюдать их невозможно. И еще более существенным является тот факт, что теория относительности держится на сохранении нескольких ключевых инвариантов — скорости света, согласованности любой заданной системы координат и ее «равенстве» другим — все это полностью противоположно тому, как обычно изображают теорию Эйнштейна. Когда-то он сам объяснил это историку искусства, который предпринял попытку связать кубизм с теорией относительности:

Сущность теории относительности понята неверно… теория говорит лишь одно… общие законы таковы, что их форма не зависит от выбора системы координат. Однако это логическое требование не имеет никакого отношения к тому, как представляется единичный специфический случай. Множественность систем координат для такого представления не нужна [подчеркнуто]. Математическое описание целого в его отношении к одной системе координат является вполне достаточным.

В случае картин Пикассо все выглядит совершенно иначе… Этот новый художественный «язык» ничего общего с теорией относительности не имеет.

Эта цитата из книги Paul La Porte, "Cubism and Relativity, with a Letter of Albert Einstein,"[65]Art Journal, 25, no. 3 (1966), p. 246, приведена в книге Gerald Holton “The Advancement of Science, and Its Burdens”[66] (Cambridge, Mass.: Harvard University Press, 1998), p. 109. Далее Холтон делает весьма разумное замечание о том, что представление о множественности возможных систем отсчета это, фактически, суть всей современной науки, — если отсчитывать современность от Галилея ранних 1660-х; равным образом и множественные, но согласованные одна с другой проекции уже очень давно распространены в архитектуре.

С. 49 …и Эйнштейн, и Ньютон… за немыслимо короткое время: Лаврового венка заслуживает здесь все же Эйнштейн. Хорошо известны слова Ньютона о том, что за краткое время, проведенное им на ферме матери, он открыл дифференциальное исчисление, структуру света и закон всемирного тяготения. Однако слова эти были сказаны уже очень старым, вспоминавшим свое прошлое человеком. Вычисления, которые он произвел на ферме, большой доказательностью не отличались, — вместо числа 3600, которое мы использовали как показатель ослабления силы земного притяжения на орбите Луны, «доказывающий» пропорциональность этой силы обратному квадрату расстояния, неточности в измерении параметров Земли давали Ньютону весьма далекое от убедительности 4300 или около того. Помимо этого, он немного запутался и в том, какую роль играет центробежная сила, и в том, удовлетворяет ли движение Луны вихревой теории планет Декарта или не удовлетворяет, — в общем, по возвращении в Кембридж его еще ожидал немалый объем работы. Но, с другой стороны, самоуничижение — это, скорее всего, отнюдь не то, в чем нуждается человек, работающий на таком уровне.

Живо написанная статья: Curtis Wilson, "Newton and the Eotvos Experiment"[67], содержащаяся в его сборнике “Astronomy from Kepler to Newton: Historical Studies”[68] (London: Variorum Reprints, 1989), дает особенно хорошее представление о тонкостях, которые еще предстояло проработать Ньютону. Дальнейшие представления о трудностях, с которыми он столкнулся в чумной год, дает пятая глава Westfall, “Never at Rest: A Biography of Isaac Newton” (Cambridge: Cambridge University Press, 1987). См. также “The “Annus Mirabilis” of Sir Isaac Newton, 1666–1966”[69], ред. Robert Palter (Cambridge, Mass.: MIT Press, 1970).

С. 49 Они будут изучать то, что им предлагают…: Что мне особенно нравится в Веблене, так это особое внимание, уделяемое им конкретной точке пересечения социального и интеллектуального начал — пересечению религии с наукой, которое неизбежно оказывается исполненным глубокого смысла. Чтобы понять его роль, нам следует в несколько большей мере углубиться в труды Эйнштейна.

И первым, что мы при этом обнаружим, будет великая вера Эйнштейна в единство. Одна часть традиционной физики строилась на обычной ньютоновской механике, в которой всегда имелась возможность сравнить двух наблюдателей: выяснить, кто из них движется быстрее, а кто медленнее, объективно установить, что у того из них, который едет в скоростном автомобиле и включает фары, свет этих фар будет распространяться «быстрее», чем у того, чья машина стоит на месте. А с другой стороны, Эйнштейн понимал, что вторая часть традиционной физики построена на развитии Максвеллом трудов Фарадея, и эта часть основана на одинаковости скорости света для любого равномерно движущегося наблюдателя. Стоит машина или едет, водители ее увидят свет фар, улетающий вперед со скоростью 300 000 000 м/с. Для Ньютона это было невозможным. Для Максвелла — неизбежным.

Большинство других ученых, столкнувшись с этим обстоятельством, пожимали плечами и отмахивались от него, однако для Эйнштейна «Мысль о том, что существуют две несопоставимых ситуации была непереносимой» (взято из статьи 1920 года, цитируемой в книге Fölsing, p. 171). Ибо Эйнштейн нередко говорил о том, что одним из его глубочайших нравственно-религиозных верований была приверженность к идеалу социального равенства. Любое неоправданное, несправедливое разграничение должно, если исследовать его с достаточной пристальностью, допускать разрешение, снимающее какое бы то ни было неравенство. Это принцип справедливости Джона Ролза[70] — да и каждого, кто верит в недопустимость незаслуженных разграничений, — распространенный на материальный мир, мир единый, каким его и должно было создать унитарное божество.

Чтобы разрешить дилемму, заключавшуюся в том, что Ньютон «противоречит» Максвеллу, Эйнштейн совершил один из тех «скачков в сторону», которые в прежние времена с таким успехом проделывали Ремер и Фарадей. Он поставил под вопрос сами термины, в которых формулировалась эта дилемма! Определения расстояния, времени и одновременности использовались уже так давно — они были систематизированы, самое позднее, еще во времена Ньютона, — что стали восприниматься в качестве «оснований» здравого смысла. Эйнштейн же понял, что все они содержат подогнанные под уже готовые ответы предположения о том, как надлежит производить измерения. Ньютона и Максвелла попросту тянуууууууууули друг от друга в разные стороны… а Эйнштейн изменил сам метод построения определений так, чтобы появилась возможность выбрать образовавшуюся между двумя учеными слабину и подтянуть их поближе друг к другу.

Если я говорю, что к настоящей минуте свет от фар должен уже миновать некий дорожный указатель, а вы отвечаете мне, что это чушь, что свету требуется более длительное время, чтобы добраться до этого указателя, никакого противоречия, на самом-то деле, не возникает — при условии, что ваше представление о «длительном» отличается от моих понятий о том, что такое «длительность». В этом случае, то, что я наблюдаю, является истинным и не противоречит тому, что наблюдаете вы. Специальная теория относительности разрешает видимые противоречия попросту тем, что проясняет терминологию нашего восприятия.

Было ли это революционным шагом? Эйнштейн неизменно настаивал на том, что никакой революции тут не было, что, несколько изменив основные понятия, он попросту сделал шаг, который был необходимым для сохранения достижений прошлого. Возможно, его стремление к целостности определялось, по сути своей, потребностью в целостности религиозной веры; возможно, уважением к великим физикам прошлого.

Подозреваю, что годы его странствий лишь усилили это стремление. В начале он жил в тихом швабском доме, потом очутился в по-прусски строгой школе католической Баварии, школу сменили несколько упоительных месяцев отрочества, проведенных на вольном воздухе Италии, за ними последовала крепкая смесь интеллектуальных и романтических привязанностей, отметившая его пребывание в далеком, уединенном Аарау, затем — жизнь цюрихского студента, фон которой составляло разочарование в узколобых, холодных преподавателях Высшей технической школы; Цюрих быстро сменился Берном и натиском новых, уже взрослых обязанностей — перед женой, ребенком, перед громоздкой иерархией государственных служащих. Эйнштейну в ту пору едва перевалило за двадцать — к этим годам Лоренц, скажем, еще ни разу не побывал за пределами Нидерландов. А впереди Эйнштейна ожидали новые страны, новые города — скитания его завершились лишь в Принстоне, в далекой, мало понятной Америке. При таких странствиях, таком одиночестве, единственное, что, путешествуя с вами, остается в целости и сохранности, это вы сами.

С. 49 …воззрения которой на личную ответственность, справедливость и веру в авторитет отличались…: К теории какого типа относится созданная Эйнштейном теория относительности? Она не похожа на собрание детализированных законов, которые встречаются в технических текстах, законов, говорящих, к примеру, что при ускорении самолета сопротивление воздуха, с которым он сталкивается, возрастает. При более подробном рассмотрении такие «законы» просто разваливаются, поскольку их исходные положения основываются лишь на частичном анализе. Это скорее полезные эмпирические правила, выведенные для того, чтобы с удобством суммировать свойства тех подмножеств физического мира, к которым они прилагаются, но и не более того.

Другие положения, такие как третий закон Ньютона, говорящий, что для каждого действия существует равное и направленное противоположно ему противодействие, обладают большей глубиной. Они могут использоваться для усовершенствования эмпирических правил, касающихся того же сопротивления воздуха, поскольку глубже уходят в природу аналитических систем. Их применение к таким системам является, в принципе, неограниченным.

Эйнштейновская специальная теория относительности, опять-таки, отличается и от них. Она не представляет собой частного результата, который просто выходит за пределы созданного Ньютоном и Максвеллом. Это, скорее, теория о теориях: детальное развитие двух критериев — того, что скорость света остается одной и той же для всех наблюдателей, и того, что любая равномерно движущаяся система отсчета по природе своей неотличима от любой другой, — критериев, которым должна удовлетворять любая действенная теория. Если теория удовлетворяет этим критериям, ее можно считать истинной. Если нет, она наверняка ложна.

Таким образом, специальная теория относительности есть просто-напросто механизм вынесения суждений, относящийся к метауровню комментарий, подобный многослойному анализу Талмуда или третьему закону термодинамики.

Эту «законодательную» природу теории Эйнштейна нередко упускают из виду, ибо после провозглашения своего принципа сам Эйнштейн, а затем и многие другие, начали демонстрировать частные выводы из него, такие как E=mc2 или наблюдаемое замедление времени, выводы, представлявшиеся аналогичными частностям, выводимым из других теорий. И все же, именно принадлежность его теории к закону более высокого порядка и объясняет, почему «m», входящая в E=mc2, обладает такой общностью, что относится к любой из субстанций вселенной — от кусочка угля в вашей ладони до плутония, скрытого в атомной бомбе, и водорода, скрытого в звезде.

С. 50 «соблазн поверхностности…»: Albrecht Fölsing, “Albert Einstein: A Biography” (London: Viking Penguin, 1997), p.102.

С. 50 …манере подшучивать над собой…: Подобная же манера нередко встречается в письмах многих художников того времени, это свидетельство озадаченного приятия того, далеко не рационального мира общепринятых правил, в котором нам приходится жить. То обстоятельство, что вся преклоняющаяся перед знанием академическая система была погружена в общество, исповедавшее нормы совершенно иного толка — такие как преимущественные права юнкерства, величие кайзера, — порождало во многих молодых умах интеллектуальный цинизм.

С. 50 «Этого довольно, чтобы показать нам… Альберт Эйнштейн получить так и не смог»: Цитируются восхитительные короткие воспоминания его сестры Майи — “Albert Einstein — A Biographical Sketch”[71], in Collected Papers of Albert Einstein, Vol. I. The Early Years: 1879–1902, пер. Anna Beck, консультант Peter Havas (Princeton, N.J.: Princeton University Press, 1987).

С. 50 …дяде Рудольфу («Богатею»): там же, р. 160.

С. 50 «Его подавляет мысль…»: там же, р. 164. Это все то же, 1901- года, письмо Германа Эйнштейна профессору Оствальду.

С. 51 С течением времени некоторые из физиков…: Ученик Планка Макс фон Лауэ был первым, кто приехал, чтобы увидеть написавшего эту статью великого профессора. В приемной бюро патентов фон Лауэ указали на коридор, по которому ему следовало пройти; навстречу ему вышел молодой человек, которого фон Лауэ проигнорировал, оставшись дожидаться появления профессора. Спустя какое-то время, молодой человек возвратился. Это и был Эйнштейн — знакомство, в конце концов, состоялось. Эта история рассказана в датированном 1952 годом письме фон Лауэ и приводится в книге Carl Seelig, “Albert Einstein: A Documentary Biography” (пер. Mervyn Savill (London: Staples Press, 1956), p. 78.

С. 51 «Хочу рассказать тебе…»: “Collected Papers of Albert Einstein”, vol. 1. Я смонтировал эту цитату из писем, которые приведены в документах 39, 72, 76 и 70.

С. 52 …Миф о том, что именно благодаря ей была написана…: Миф этот впервые появился в статье “In the Shadow of Albert Einstein”[72], написанной на сербо-хорватском отставной школьной учительницей Десанкой Трбухович-Гурич. Затем он получил развитие в книге Andrea Gabor, “Einstein's Wife”[73] (New York: Viking, 1995) и был широко разрекламирован после того, как Джилл Кер Конвэй, стоявшая одно время во главе «Смит-Колледжа», напечатала в «Нью-Йорк Таймс» крайне благосклонную рецензию на книгу Габор.

Увы, и «Таймс», и Конвэй (и Габор, и Трбухович-Гурич) истолковали историю совершенно превратно. Милева была хорошей студенткой-физичкой, но никак не музой. См. работу John Stachel, “Albert Einstein and Mileva Marie: A Collaboration that Failed to Develop”[74] в сборнике “Creative Couples in Science”[75], ред. H. Pycior, N. Slack, и P. Abir-Am (New Brunswick, N.J.: Rutgers University Press, 1995). Истинный характер их отношений наилучшим образом освещается в книге “Albert Einstein, Mileva Marić: The Love Letters”[76], ред. Jurgen Renn and Robert Schulmann; пер. Shawn Smith (Princeton, N.J.: Princeton University Press, 1992).

С. 52 «В сравнении с этой проблемой… просто детская игра»: Banesh Hoffmann, “Albert Einstein: Creator and Rebel” (New York: Viking, 1972), p. 116.

Глава 8. Внутри атома

С. 54 Совершенное ими открытие описывается в современных школах так часто…: Резерфорд первым заподозрил, что каждый атом должен представлять собой расплывчатую «каплю» электричества, а поскольку многие физики обучались в английских школах, по учебникам того времени начал гулять образ пудинга с изюмом. Однако после того, как Резерфорд соорудил подобие сверхминиатюрной атомной базуки и начал обстреливать золотую фольгу альфа-частицами, некоторые из них рикошетом вылетали назад, и он понял, что где-то в атоме присутствует нечто твердое. Но где?

Ответить на этот вопрос оказалось трудно, ибо, хоть Резерфорд и был одним из лучших экспериментатором столетия, математикой он владел отнюдь не в совершенстве. Ему не удавалось разработать правдоподобные представления о том, что происходит с частицами, которые он выстреливает и которые затем разворачиваются и летят обратно. В итоге, он обратился к математике конических сечений, развитой в классические времена и использовавшейся в семнадцатом веке для описания орбит, по которым движутся кометы. До некоторой степени эта математика сработала, со временем Резерфорду удалось привести в соответствие с ней полученные им в Манчестере результаты, — и в итоге, студентов многие годы учили тому, что атом походит на солнечную систему в миниатюре. Однако, это не имело смысла: не существовало причины, по которой электроны, излучающие энергию при движении по своим орбитам, не падают внутрь атома, как не существовало и никакого физического аналога стабильности настоящей солнечной системы — стабильности, гарантируемой ньютоновской силой притяжения, обратно пропорциональной квадрату расстояния. И все же, сила построенной на ложных допущениях математической картины такова (к тому же, лучшей идеи никто предложить не мог), что хотя со временем планетарную модель пришлось отвергнуть, то, что началось с математической слабости Эрнеста Резерфорда, было подхвачено популярной мифологией науки и обратилось в модель, которую автоматически использует большинство людей, пытающихся представить себе, как выглядит атом.

С. 55 В нем находились положительно заряженные частицы…: Откуда взялось утверждение о том, что в ядрах имеются положительные заряды? Основания для него давал один из старых преподаваемых в школе законов: одинаковые электрические заряды отталкиваются, противоположные притягиваются. Если вы выстреливаете в центр атома положительной частицей, и она там застревает, вы понимаете: ее поджидал в центре отрицательный заряд. Однако альфа-частицы, которыми пользовался Резерфорд, были заряжены положительно и отбрасывались назад «чем-то», находившемся в центре атомов. Значит и это «что-то» должно было нести положительный заряд.

С. 55 …«малотрон»: Andrew Brown, “The Neutron and the Bomb: A Biography of Sir James Chadwick”[77] (Oxford: Oxford University Press, 1997), p. 103.

С. 56 …причина, по которой они словно бы липнут к ядру: Действующий в квантовой физике принцип неопределенности подробнее обсуждается в примечаниях к главе 10.

С. 56 …его ассистенты притащили в лабораторию ведра, наполненные водой…: То, что сработало на вилле, выделенной Ферми для исследований, может срабатывать всюду, где скопления радиоактивного вещества окружаются замедляющей нейтроны водой. В начале 1970-х геологов-разведчиков озадачили образцы странной руды, добытой близ реки Окло в Габоне. Вскоре специалисты французской «Комиссии по атомной энергии» сообразили, что когда-то здесь находились залежи естественного урана, которые более 1,8 миллиардов лет назад оказались работающими в критическом режиме. Природный водоносный слой поставлял необходимую для этого воду; каждая из реакций продолжалась до 100 000 лет, а после прекращалась.

С. 56 …Дьердь де Хевеши, доказавший с их помощью…: Де Хевеши произвел этот акт кулинарной самообороны с помощью свинца и аналогичных ему элементов за два десятилетия до работы Ферми. См. M. A. Tuve, “The New Alchemy”[78], Radiology, vol. 35 (Aug. 1940), p. 180.

Глава 9. Среди безмолвия полуденных снегов

С. 58 «Я оказалась здесь… в положении…»: Статья Sallie Watkins, “Lise Meitner: The Foiled Nobelist”[79], в книге Rayner-Canham, “A Devotion to Their Science”[80] (Toronto: McGilll — Queen's University Press, 1997), p. 184.

С. 58 «нашей мадам Кюри»: Philipp Frank, “Einstein: His Life and Times”[81] (New York: Knopf, 1947), pp. III-12.

С. 58 «[Ган] насвистывал большие куски…»: Ruth Lewin Sime, “Lise Meitner: A Life in Physics”[82] (Berkeley: University of California Press, 1996), p. 35.

С. 59 «Я в вас влюбился»: Sime, “Lise Meitner”, p. 37.

С. 59 «Дорогой герр Ган!..»: Там же, рр. 69 и 67. Выдержки из писем от 17 января 1918 и 6 августа 1917.

С. 59 …Майтнер снова сменила направление работы…: Когда Майтнер занялась нейтронами, это породило зависть в душах некоторых менее успешных берлинских ученых, — как и определенное количество озлобленных слухов. Вообще научные лаборатории меняют направление своей деятельности крайне редко, — все имеющееся в них оборудование подбирается для выполнения прежней работы, под нее же получают гранты работающие в лабораториях аспиранты, именно для выполнения таковой обучаются технические сотрудники — порою даже поставщики необходимых им материалов начинают специализироваться по тому, что лабораториям требовалось прежде. Экономисты называют это проблемой невозвратных издержек — именно она и является одной из главных причин, по которой лишь очень немногие из ведущих лабораторий остаются ведущими надолго. В наше время она же объясняет почему гигантов компьютерной индустрии то и дело обходят начинающие компании из Силиконовой долины. Майтнер, несмотря на ее наружную застенчивость, вполне могла бы стать уверенной в своих силах предпринимательницей эпохи электронной торговли.

С. 60 «Евреи представляют опасность для нашего института»: О Курте Гессе и подробностях этой истории см. статью Sallie Watkins в “A Devotion to Their Science”, p. 183; а также Sime, “Lise Meittner”, pp. 184-85.

С. 60 …могло отчасти тревожить совесть Гана…: Существует множество градаций виновности, к тому же, нацистом Ган, разумеется, не был. На самом деле, через несколько месяцев после прихода Гитлера к власти Ган разговаривал с Планком о необходимости протестовать против изгнания еврейских ученых из Академии. К концу 1930-х такие протесты были уже невозможны, однако множество других физиков считало своим долгом втайне помогать людям, подобным Майтнер: они просили своих иностранных коллег приглашать этих людей на заграничные коллоквиумы, подчеркивая в письмах, что вся необходимая оплата будет производиться за пределами Германии (дабы приглашаемым не отказывали в визах на том основании, что деньги поступают из Германии); иногда ставили на таких письмах даты более ранние, чтобы письма выглядели посланными до официального изгнания этих людей из научных институтов. То обстоятельство, что Ганн практически ничего подобного для своего пожизненного коллеги Майтнер не сделал, это еще не великий грех — оно показывает лишь, что Ган не смог подняться до уровня редких, обладающих более развитой нравственностью личностей, таких как другой его коллега, Штрасман.

Гораздо более серьезными — или, по крайней мере, объяснимыми лишь тем, что Ган сознавал: он сделал нечто дурное, — были послевоенные попытки Гана переписать историю его отношений с Майтнер, старания изобразить ее в интервью, данном в Стокгольме шведским газетам за неделю до нобелевской церемонии 1946 года, своей малозначительной помощницей, и более поздние насмешливые, едва ли не сокрушенно снисходительные упоминания о том, насколько бестолковы и не верны были советы, которые он от нее получал. Майтнер подозревала, что таким способом Ган пытается оправдать себя в собственных глазах — ведь если ее рядом с ним не было, как можно обвинить его в том, что он столь дурно с ней обошелся? См. Sime, “Lise Meitner”, главы 8 и 14, и в особенности примечание 26 на странице 454.

С. 60 «…в беде»: Там же, р. 185.

С. 60 «Ган говорит, что мне больше не следует…»: Там же.

С. 60 Ган, как и всегда, понял, что происходит, позже всех: Ган испытывал затруднения и после того, как были развиты общие представления о делении ядер: «Возможно, Бор сочтет меня кретином, — писал он Майтнер в июле 1939-го, — но даже после 2 его пространных объяснений я по-прежнему ничего не понимаю». Впрочем, как и в случае Лоуренса, это было вопросом интеллектуального уровня. Ган был человеком достаточно умным — просто он не дотягивал до уровня Майтнер. Впрочем, в чем он был особенно силен, так это в умении определять, чем пришло время заняться. Этого у него не отнимешь. Далеко не случайно он «попал» в монреальскую лабораторию Резерфорда именно тогда, когда у искусного химика вроде него появилась возможность открыть новый химический элемент; как не случайно и то, что Ган оказался в новых институтах, открывшихся на окраине Берлина, как раз в то время, когда они стали наиболее плодоносными для химика его квалификации.

Питер Медавар называет эту важную способность правильного выбора «искусством нахождения решаемой проблемы». Суть его не только в выборе тех проблем, что полегче; скорее, «искусство исследователя — это искусство превращения трудных проблем в решаемые путем создания средств, которые позволяют к ним подступиться». Молодой Эйнштейн в совершенстве владел этим искусством. Цитата взята со второй страницы заслуженно превозносимой книги Medawar “Pluto's Republic”[83] (Oxford: Oxford University Press, 1984).

С. 60 «Мнения и суждения Майтнер…»: Watkins, P.185.

С. 61 Письмо Гана к Майтнер от 19 декабря 1938 года: Sime, “Lise Meitner”, pp. 233-34.

С. 61 «Интеллектуальным руководителем нашей группы была Майтнер»: Там же, р. 241.

С. 61 «Сами понимаете, Вы сделаете доброе дело…»: Там же, р. 234.

С. 61 Роберт Фриш: Во многих книгах говорится о некоем Отто Фрише, который вроде бы приходился каким-то родственником — племянником, возможно, физику по имени Роберт Фриш. На самом деле, это один и тот же человек. В молодости Роберт Отто Фриш предпочитал использовать первое имя, однако, начав впоследствии работать с американцами, среди которых имя Роберт очень распространено, Фриш, во избежание путаницы, отдал предпочтение своему среднему имени.

С. 61 «Быстро, но не как тетя»: Otto Frisch, “What Little I Remember”[84] (Cambridge: Cambridge University Press, 1979), P.33.

С. 61 А наутро, спустившись на первый этаж…: То, что произошло за завтраком, а затем во время их знаменитой прогулки по снегу, было подробно рассказано обоими ее участниками. См. ссылки на Фриша и Майтнер в «Руководстве по дальнейшему чтению», а также библиографические примечания в книгах Sime, “Lise Meitner”, p. 455, и Richard Rhodes, “The Making of the Atomic Bomb”[85], p. 810, entry 257.

С. 62 «…она и без лыж сможет передвигаться с не меньшей скоростью»: Frisch, “What Little I Remember”, p. 116.

С. 62 «настолько ошеломляюще новой и удивительной…»: Lise Meittner, “Looking Back”[86], Bulletin of the Atomic Scientists (Nov. 1964), p. 4.

С. 63 «По счастью, [моя тетушка] помнила…»: Frisch, What Little I Remember, p. 116. Майтнер знала это по прежним публикациям, посвященным измерению атомных весов.

С. 64 …слово «деление»: Биологические аналогии были весьма распространенными — Резерфорд назвал центр атома «ядром», основываясь на них же.

Глава 10. На сцену выходит Германия

С. 66 Письмо Эйнштейна от 2 августа 1939 года: Это письмо воспроизводится в большинстве биографий Эйнштейна или книг о нем; см. например, отчетливое факсимиле в “Einstein: A Centenary Volume”[87], ред. A. P. French (London: Heinemann, 1979), p. 191. История о том, как получилось, что Эйнштейн подписал это письмо, рассказывается в красочных деталях в книге Leo Szilard, “The Collected Works”[88] (Cambridge, Mass.: MIT Press, 1972) и с несколько большей точностью в книге Eugene Wigner, “The Recollections of Eugene P. Wigner (as told to Andrew Szanton)”[89] (New York: Plenum Press, 1992).

С. 66 Письмо Рузвельта от 19 октября 1939 года: в книге “Einstein on Peace”[90] ред. Otto Nathan и Heinz Norden (New York: Siimon amp; Schuster, 1960), p. 297.

С. 67 «Я получил доклад…»: Эта дневниковая запись несколько опережает основное течение рассказа; Геббельс сделал ее в 1942-м, после февральского совещания, на котором Гейзенберг произвел мощное впечатление на некоторое число нацистских чиновников, рассказав им о том, с какой легкостью будет протекать дальнейшее создание бомбы.

С. 68 …он всегда оставался верным Германии, отвергая предложения о работе…: См. David Cassidy, “Uncertainty: The Life and Science of Werner Heisenberg”[91] (New York: Freeman, 1992), pp. 412-14.

С. 68 …жена Гейзенберга говорила впоследствии, что страшные сны…: Там же, р. 390.

С. 68 «Знаете, госпожа Гиммлер…»: Alan Beyerchen, “Scientists Under Hitler”[92] (New Haven, Conn.: Yale University Press, 1977), pp. 159-60. Байэрхен взял у Гейзенберга интервью через 34 года после того, как все это происходило — возможно, Гейзенберг несколько преувеличил наивность своей матери.

С. 69 «Досточтимый герр профессор…»: Письмо воспроизводится в книге Samuel Goudsmit, Alsos: The Failure in German Science (London: Sigma Books, 1947), p. 119.

С. 70 То, что для быстрого нейтрона было бы почти попаданием в цель…: Это следствие знаменитого принципа неопределенности, разработанного преимущественно Гейзенбергом в середине 1920-х. Эффект довольно странный, однако в истории о том, как уравнение E = mc2 покинуло, в конце концов, лаборатории и обратилось в такую страшную силу, он играет важнейшую роль. Кроме того, этот принцип, подобно E = mc2, записывается одним из самых мощных уравнений, какие только можно представить в столь краткой форме; выглядит оно так: ∆x ∆v³h. ∆x это погрешность измерения местоположения частицы, ∆v погрешность измерения скорости ее движения. (Символом h обозначена чрезвычайно малая величина, именуемая постоянной Планка.)

Значок ³ говорит о том, что в точность, с которой мы наблюдаем реальность, встроено нечто вроде качелей. Если вы будете все более точно измерять местоположение частицы, то скорость ее вы сможете измерять с точностью все меньшей — и наоборот. Когда одно идет вверх, другое идет вниз.

На большие тела, которые окружают нас в обычной жизни, это прямого воздействия не оказывает, однако на микроуровне, на котором Гейзенберг и пытался работать в 1940-м, воздействие его огромно. Замедлив нейтрон, который вы посылаете в мишень, вы сможете измерить его скорость с большей, нежели прежде, точностью. Однако вследствие упомянутых «качелей» принципа неопределенности, это будет означать, что точно определить его местонахождение вам не удастся. В символическом выражении, чем меньше становится ∆v, тем больше становится ∆x.

Все это может показаться излишним умничаньем, и тем не менее, — как и в случае следствий теории относительности, рассмотренных нами в предшествующих главах, — это чистая правда. Чем больше ∆x, тем больший разброс результатов мы получаем, пытаясь определить местонахождение нейтрона. А это означает, что его взаимодействие с мишенью меняется. Ибо что представляет собой полезное для нас определение размера нейтрона? Это просто вероятность того, что он попадет в то самое ядро, в которое им выстрелили.

Мысль о том, что лучшего определения «размера» нам получить не удастся, может вызывать раздражение, однако вспомните о специальной теории относительности, в коей не существует никакой объективной обстановки или «времени», к которым могут быть привязаны события. Само представление о существовании допускающего измерение «истинного» размера, является нарушением принципа неопределенности. Так бейсбольная или крикетная перчатка позволяет вам ловить мяч, который вы без нее упустили бы: они увеличивают эффективный размер вашей руки. Однако, если человек, наблюдающий за одной из этих игр, ничего о ней толком не знает, если он просто наткнулся на репортаж о ней, переключая каналы телевидения, он вполне может решить, что в размерах увеличился мяч — потому-то полевые игроки и ловят его со столь удивительной легкостью.

Принцип неопределенности не позволяет обойти эту «расплывчатость» частиц. Замедление налетающего на мишень нейтрона увеличивает вероятность его «захвата», — а это можно с таким же успехом объяснить и тем, что сама мишень стала «больше». (В реальной жизни принцип носит характер вероятностный — эффективное «расширение» относится лишь к последовательности выпускаемых в мишень нейтронов.)

Принцип неопределенности имеет фундаментальное отношение к тому, как высвобождалась энергия, обещанная уравнением E = mc2, поскольку он использовался во множестве расчетов, которые потребовались для создания бомбы. (Например, входящие в состав атома электроны не могут двигаться слишком быстро — иначе они просто разлетелись бы, — а это ограничение их скорости означает повышение точности любых вычислений их местонахождения в атоме.)

С. 72 «Германия практически прекратила продажу…»: Письмо это цитировалось множество раз. См, к примеру, “Einstein: A Centenary Volume”, ред. A. P. French, p. 191.

С. 72 Однако в распоряжении Гейзенберга имелась снабженческая организация…: Большинство дат уточнено в работе Mark Walker, “German National Socialism and the quest for nuclear power 1939–1949”[93] (Cambridge: Cambridge University Press, 1989); см. в особенности рр. 132-3. Женщины «закупались» в Заксенхаузене в 1943 году; в это же время в других связанных с проектом создания бомбы работах использовались русские военнопленные (их заставляли работать, к примеру, с изотопными «шлюзами» доктора Багге). По конец войны, когда часть Института физики кайзера Вильгельма перебазировалась в окрестности Хехингена, Гейзенберга проинформировали, что в его распоряжение могут быть отданы польские рабы.

С. 72 …закупали «рабынь»: Время идет и легко забыть, какие позиции занимали люди, работавшие в Германии, и что, на самом деле, означали слова «закупать» и «рабы». В документах Нюрнбергского процесса имеются десятки тысяч посвященных этой теме страниц; 15 ноября 1947 года нью-йоркская «Геральд Трибюн» писала о свидетельских показаниях, изложенных всего на одной из этих страниц:

Нюрнберг, 14 ноября 1947 (АП). Свидетель-француз показал сегодня, что «ИГ Фарбен» закупила в концентрационном лагере Освенцим (Аушвиц) 150 женщин, выразив недовольство слишком высокой их ценой — 200 марок (в то время- 80 долларов), — и затем убила их всех в ходе экспериментов с усыпляющим средством.

Этим свидетелем был Грегор М. Африн. Он рассказал американскому военному трибуналу, слушающему дело по обвинению 23 директоров «ИГ Фарбен» в военных преступлениях, что после того как в январе 1945 года русские захватили лагерь Освенцим, они обнаружили там большое количество писем и наняли его в качестве переводчика. Среди этих писем, сказал он, имелись направленные нацистскому коменданту лагеря заводом, который принадлежал компании «Байер», дочернему предприятию «Фарбен». Свидетель привел следующие выдержки из этих писем:

1. Мы рассматриваем вопрос о проведении экспериментов с новым снотворным и были бы признательны, если бы Вы предоставили нам некоторое число женщин.

2. Мы получили Ваш ответ, однако считаем цену в 200 марок за женщину чрезмерной. Мы предполагаем заплатить не более 170 марок за голову. После согласования цены мы готовы вступить во владение этими женщинами. Нам требуется примерно 150 таковых.

3. Благодарим за согласие. Приготовьте для нас 150 женщин, пребывающих в наилучшем из возможных состоянии, мы готовы будем принять их по первому вашему извещению.

4. 150 женщин получены. Несмотря на их истощенное состояние, мы сочли их вполне удовлетворительными. Мы будем сообщать Вам о ходе наших опытов.

5. Опыты проведены. Все подопытные скончались. В скором времени мы свяжемся с Вами по вопросу об отгрузке новой партии.

С. 72 Гейзенберг выражал недовольство…: Cassidy, “Uncertainty”, pp. 428-89.

С. 73 «Я только что узнал, что в Германии проводятся секретные исследования…»: Otto Nathan и Hans Norden, “Einstein on Peace” (New York: Schocken, 1968), p. 299.

С. 73 «…наше агентство не рекомендует привлекать доктора Эйнштейна…»: Richard A.. Schwartz, “Einstein and the War Department”[94], Isis, 80, 302 (June 1989), pp. 282-83.

С. 73 Физиком Лоуренс был не из самых блестящих…: Опять-таки, как и в случае Гана, блестящий ум это понятие относительное. То, что способности его ограничены, Лоуренс понимал хорошо. «Будете хвататься за все сразу и вы просто сами себя распнете» — сказал он своему ассистенту, когда начал преподавать в Беркли (в книге Nuel Phar Davis, “Lawrence and Oppenheimer”[95], London: Jonathan Cape, 1969, p. 16) — в частности, Лоуренс отлично умел отслеживать чужие результаты, которые он мог бы использовать в собственной работе. Самым большим его успехом было усовершенствование разработанного в Норвегии метода ускорения заряженных частиц, — эта его работа легла в основу создания циклотрона и, в конечном счете, принесла ему Нобелевскую премию. Стремительные «заимствования» такого рода суть основа работы любой успешной исследовательской лаборатории: см. Kealey, “Economic Laws of Scientific Research”[96] в «Руководстве по дальнейшему чтению», главы 8 и 9.

С. 73 «маленький урановый кубик…»: Davis, “Lawrence and Oppenheimer”, p. 99.

С. 74 …стал инженером-практиком…: Wigner, “Recollections of Eugene P. Wigner” (New York: Plenum Press, 1992), pp. 59–62. Такого рода предосторожности были чрезвычайно распространены: даже обладавший завидным интеллектом фон Нейман получил наряду с докторской summa cum laude [97] степенью математика и квалификацию инженера-химика. Примерно по этим же причинам оказался причастным к практическим изобретениям — улучшенного электросчетчика, усовершенствованного холодильника — и Эйнштейн.

С. 74 Какую, к примеру, форму должен иметь уран…: Эти соображения представлены на с. 40 книга Джереми Бернстайна (Jeremy Bernstein) "Hitler's Uranium Club”[98]. Она стала центральной для моего понимания работы немцев над созданием атомной бомбы, на ней основаны несколько глав этой моей книги. Стоит отметить, что, хотя некоторые группы немецких ученых смогли показать, что кубическая форма намного эффективнее, Гейзенберг отвергал их выводы почти до самого конца войны — примерно так же он отмахивался от ученых, выступавших за использование модераторов, отличных от тяжелой воды, которой отдавал предпочтение он.

С. 74 …расчет свойств плоских поверхностей сопряжен с наименьшими трудностями…: Это слабость весьма распространенная. Истребитель «Стилс Ф-У7», например, имеет форму столь угловатую не потому, что она обладает наилучшими аэродинамическими свойствами, — как раз ими-то она и не обладает, — но потому, что использовавшиеся для анализа его свойств компьютеры 1970-х справится с чем-то более округлым не могли. См. Ben Rich и Leo Janos, “Skunk Works: A Personal Memoir of My Years at Lockheed”[99] (Boston: Little, Brown, 1994), p. 21.

С. 74 Соединенные же Штаты обладали армией… занимала десятое место…: Мы часто забываем о том, насколько отсталой была в 1930-х Америка — и в интеллектуальном, и в военном отношении. Триумфально-самоуверенное отношение к себе Соединенные Штаты обрели прежде всего благодаря полученному ими опыту в осуществлении таких административно-военных усилий, какими характеризовался «Манхэттенский проект».

Глава 11. Норвегия

C. 75 …мощный завод, производящий тяжелую воду, уже существует…: На самом деле, то был завод, производивший удобрения и соединенный с большой гидроэлектростанцией. При производстве удобрений происходило разделение воды на водород и кислород и это позволяло легко накапливать водород тяжелый. А уже из него получалась тяжелая вода.

С. 75 Решение это оказалось роковым…: Семейства ученых, живших в Германии, какой та была до 1945 года, нередко оказывались крайне националистическими, легко отождествлявшими себя с гордящимся своими военными успехами берлинским правительством. Многие из этих семейств считали, что возвышение Германии определялось такими «героическими» деяниями, как произведенные в 1860-х нападения на Данию и Австрию, а в 1870-м на Францию, как вторжение 1914 года в Бельгию.

Когда в 1918-м эта экспансионистская политика потерпела крах, чувство, что Германию заманили в ловушку, просто усилилось. В то время, когда Гейзенберг с его осуществленной в 1920-х работой по квантовой механике выдвинулся в первые ряды физиков мира, землю его родины еще топтали французские оккупационные войска, нередко особым качеством не отличавшиеся. Результатом всего этого стали воинственные, зачастую исполненные презрения ко всему остальному миру настроения значительной части элиты этой страны — и вспышка удовлетворения, когда в первые последовавшие за 1936-м успешные годы, снова возникла возможность долгожданной экспансии.

С. 75 «демократия не способна развивать достаточную энергию»: Casssidy, “Uncertainty”, p. 473; — в сущности, я порекомендовал бы прочесть всю 24 главу этой книги. См. также, к примеру, Abraham Pais, |Neils Bohr's Times”[100] (Oxford: Oxford University Press, 1991), p. 483, равно как и Walker, “German National Socialism”[101], pp. 113–115.

С. 77 «…должен был я…»: R V. Jones, “Thicker than Water”[102], в Chemistry and Industry, August 26, 1967, p. 1422.

С. 77 «С горы мы впервые увидели наш объект…»: Knut Haukelid, “Skis Against the Atom”[103] (London: William Kimber, 1954; пересмотренное издание 1973, London: Fontana), p. 68.

С. 78 «Там, где растут деревья, может пройти и человек»: Там же, р. 65.

Глава 12. На сцену выходит Америка

C. 80 …Эрнеста Лоуренса, однако на фоне его личных качеств даже Гейзенберг выглядел человеком заботливым…: Это не означает, что управленческий стиль Лоуренса не мог принести хороших плодов, — просто приносились они в несколько иной манере. Ибо Лоуренс кончил тем, что начал набирать учеников, способных расцвести именно в созданной им обстановке. Немалое число их крало результаты друг у друга или вычеркивало имена друг друга из отчетов о проделанных экспериментах, и все же лаборатории Беркли никогда не отличались безнравственностью. Они отличались отсутствием нравственности, а это совсем другое дело. Многие из работавших в них людей, просто старались дать внешнему миру то, что ему требуется, быстрее всех прочих. Если престиж в медицине определялся отысканием средств борьбы с болезнями, они старались отыскать эти средства, нанося попутно удары в спину друг другу.

Когда уравнение E = mc2 и связанные с ним технологии открыли целый спектр новых возможностей, многие из неуживчивых молодых учеников Лоуренса стали одними из главных «кранов», через которые этих новые возможности втекали в наш мир. Они поставляли де Хевеши и его коллегам новые усовершенствованные радиоизотопные индикаторы для их использования в медицине, разрабатывали усовершенствованные устройства фокусировки рентгеновских лучей для радиотерапии раковых заболеваний и многое иное. Когда же по окончании войны проект по созданию атомной бомбы обратился в бурлящий источник грантов, контактов, технических знаний, люди Лоуренса просто оказались самыми опытными в том, чтобы пробиваться к этому источнику первыми. О возникавших при этом столкновениях нравственных и практических начал можно написать целую книгу.

С. 80 …сообщество физиков Америки было слабо настолько…: Впрочем, положение это быстро менялось. О том как возвращавшиеся после получения докторской степени ученые сеяли семена нового в лучших университетах США см. Daniel J. Kevles, “The Physicists: The History of a Scientific Community in Modern America”[104] (Cambridge, Mass.: Harvard University Press, 1995); в особенности глава 14.

С. 80 «В июле 1939-го Лоуренс…»: Emilio Segre, “A Mind Allways in Motion”[105] (Berkeley: University of California Press, 1994), pp. 147-48.

С. 80 …помещения длиной в тысячи футов, что позволило бы отфильтровывать токсичную урановую пыль…: Именно здесь, а не на предприятиях космической программы началось коммерческое использование тефлона. Насосам, контролировавшим работу теннессийских фабричных фильтров, требовались уплотнители, не подвластные воздействию чрезвычайно реакционноспособных испарений. Идеальными оказались атомы фтора, образующие защитные оболочки углеродных цепочек, — полученный в итоге политетрафторэтилен стал впоследствии известен под сокращенным названием «тефлон». В конце концов, выяснилось, что вещество, к которому не пристают токсичные ураниевые пары, позволяет легко избавляться и от остатков сгорания, липнущих к обычным кухонным сковородкам. Когда из того же самого политетрафторэтилена были изготовлены мембраны, появилась водонепроницаемая «дышащая» ткань «Гортекс».

С. 81 «Он сказал, что в конечный успех проекта не верит…»: Peter Goodchild, “J. Robert Oppenheimer: Shatterer of Worlds”[106] (New York: From, 1985), p. 80.

С. 81 «Это совсем просто…»: Интервью, взятое в 1976 Элис Кимбалл Смит у Неделски, в книге “Robert Oppenheimer: Letters and Recollections”[107], ред. A. K. Smith и Charles Weiner, (Palo Alto: Stanford University Press, 1995), p. 149.

С. 82 Одна из групп занималась тем, что просто пыталась выделить из естественного урана наиболее взрывчатые компоненты: Это был знаменитый U235, составляющий немого меньше 1 процента обычного урана, основные ископаемые запасы которого содержат более «спокойный» U238. Один из способов запомнить разницу между ними состоит в том, что, если вы подержите в чашке ладоней 24 кг U238, то почувствуете лишь легкое тепло, если же вы найдете два комка U235,весом в 12 кг каждый и попробуете соединить их, самые лучшие подробности того, что произойдет в дальнейшем, ваш ближайший родственник получит, скорее всего, от операторов «Си-Эн-Эн», сидевших в вертолете и использовавших телеобъективы высочайшего разрешения, чтобы получить изображения взрыва и образовавшегося на его месте кратера.

Куда более скучный способ, позволяющий запомнить разницу между этими типами урана, состоит в том, чтобы сосредоточиться на природе четных и нечетных чисел. Поскольку ядро U238 содержит 238 частиц, в нем все «ходят парами» — влетающему снаружи нейтрону оказывается трудно найти оставшегося не у дела партнера. Но, поскольку в ядре урана U235 содержится нечетное число частиц — 235, — это означает наличие в нем 46 пар протонов, 71 пары нейтронов и еще одного дополнительного нейтрона. Вот он-то самым уязвимым и оказывается. Когда из внешнего мира является новый нейтрон, он легко вступает в реакцию с этим непарным нейтроном — в результате получается 46 пар накрепко связанных протонов и 72 пары накрепко связанных нейтронов. А такому ядру с его «крепкими» связями оказывается куда проще делиться и извергать из себя фрагменты деления. То, как это происходит, и как происходящее порождает низкоэнергетический барьер, и составляет основу практической атомной инженерии.

С. 82 Существовали, конечно, и сомневающиеся…: Инженеры компании «Дюпон», строившие сердцевину хэнфордского реактора, об атомной физике ничего толком не знали, зато хорошо знали основной инженерный принцип, согласно которому что-нибудь всегда получается не так, и потому необходимо оставлять дополнительное архитектурное пространство для ремонтных работ. Когда при первом испытании реактора оказалось, что ксенон, возникающий как побочный продукт реакции, замедляет его работу, выяснилось, что инженеры-строители оставили достаточное дополнительное пространство — следуя раннему предположению Уилера о том, что хорошо бы иметь возможность увеличивать количество урана, не разбирая и не перестраивая реактор заново. И добавление урана более чем скомпенсировало воздействие ксенона. См. John Archibald Wheeler, “Geons, Black Holes, and Quantum Foam”[108] (New York: Norton, 1998), pp. 55–59/

С. 83 …шара, имеющего довольно низкую плотность…: Выражение «низкая плотность» имеет, разумеется, характер относительный — она все-таки намного больше, чем плотность свинца. Важно здесь то, что она остается недостаточной для «самовозгорания».

С. 83 «Полный бред!»: Nuel Phar Davis, “Lawrence and Oppennheimer” (London: Jonathan Cape, 1969), p. 216.

С. 84 Теллер был достаточно тщеславен…: Персональным проектом Теллера была водородная бомба — куда более мощная, чем та, которую можно создать, используя уран. То обстоятельство, что Оппенгеймер усомнился впоследствии в ее необходимости, было одной из причин, по которой раздражительный Теллер дал во время послевоенных разбирательств по поводу лояльности Оппенгеймера показания против него.

С. 84 «Весь тот день Сербер забавлялась…»: Serber, “The Los Alamos Primer”[109] (Berkeley: University of California Press, 1992), p. 32. И на той же странице: «Помню, кто-то в Лос-Аламосе сказал, что может заказать ведро алмазов и этот заказ пройдет через отдел закупок без всяких вопросов, а вот чтобы получить от этого отдела пишущую машинку… требуется номер приоритета и документ, удостоверяющий необходимость ее приобретения».

С. 84 «Существует возможность того…»: Richard Rhodes, “The Making of the Atomic Bomb”[110] (New York: Simon amp; Schuster, 1986), pp. 511-12. Я лишь добавил адресата и дату.

С. 84 Даже несколько килограммов… на многие годы сделать часть этого города непригодной для обитания: Чего, собственно, могла добиться Германия, — если говорить о разумных пределах? Возможно, настоящей бомбы она и не получила бы, однако Пауль Хартек, физико-химик, работавший в Гамбурге, усиленно проталкивал идею реактора, в котором вместо тяжелой воды использовалась в качестве модератора двуокись углерода. Создать его, используя имевшиеся в Германии запасы урана и мастерство ее инженеров, было бы достаточно просто, а производимым им в больших количествах радиоактивным веществом было бы легко оснастить «Фау-1» или «Фау-2». Отметим, что по некоторым сведениям Отто Скорцени предлагал оснастить подводную лодку радиоактивным оружием, которое затем взорвалось бы в Нью-Йорке. Если бы это предложение исходило от обычных штабных плановиков, от него можно было бы и отмахнуться, однако Скорцени был человеком, который организовал и возглавил рейд планеристов, вытащивших в 1943 году Муссолини из «неприступной» горной тюрьмы. Немецким подводным лодкам не составляло большого труда подобраться к восточному побережью Соединенных Штатов, а некоторые из них позволяли доставлять и запускать маленькие самолеты.

Впрочем, причину наибольших опасений составляло необычайно квалифицированное сообщество инженеров и ученых, которым даже в разгар войны все еще обладала Германия. Американцы с энтузиазмом использовали химиков, хорошо знакомых с разработанным Клузиусом процессом разделения изотопов, однако у Германии имелся сам профессор Клузиус — не говоря уже о профессоре Гейзенберге, профессоре Гейгере и прочих. У нее имелась также огромная прослойка инженеров-производственников, которые оказались способными творить чудеса на заводах, выпускавших как реактивные и ракетные летательные снаряды, так и обладавшие чрезвычайно большим радиусом действия подводные лодки, — все это начало производиться еще до окончания войны. Многие из таких выпускавшихся в больших количествах аппаратов обладали серьезными недостатками, однако реактор или даже пригодную для применения бомбу, которую мог создать Гейзенберг, довольно было использовать всего один или два раза, и это изменило бы как позиции целых государств, так и принимаемые ими решения.

Насколько близко подошла к решению этой проблемы Германия? В начале 1940-х Хартек считал, что для проверки его идеи относительно двуокиси углерода ему необходимо 300 кг урана. Он договорился с компанией «ИГ Фарбен» о поставке замороженной двуокиси углерода (сухого льда), выделенный армейской службой технического снабжения поезд должен был ускоренным порядком доставить ее в Гамбург, а Гейзенберг и компания «Ауэр» готовы были выделить необходимый уран. Однако в последний момент «Фарбен» объявила, что раньше первых чисел июня поставить сухой лед не сможет, поскольку он потребуется для поддержания свежести продуктов в жаркие летние месяцы.

Хартек пришел в отчаяние, а тут еще выяснилось, что и необходимые ему количества урана раньше конца июня от Гейзенберга не поступят. Компанию «Фарбен» ему сдвинуть с места так и не удалось. Хартек сумел собрать 200 кг урана, однако этого количества для получения доказательных результатов было недостаточно; Германии не удалось с легкостью вырваться вперед и построить реактор на сухом льде, который мог (как показали последующие опыты) почти наверняка дать ей еще в первые годы войны множество радиоактивного металла. Таким образом стоявшая тем летом жара — так часто проклинавшаяся Союзниками, поскольку она облегчила продвижение немецких танковых армий по Франции, — сыграла основную роль в предотвращении зла намного большего. Mark Walker, “German National Socialism and the quest for nuclear power 1939–1949”[111] (Cambridge: Cambridge University Press, 1989), p. 25 говорит кое-что об усилиях Хартека; см. также Bernstein, “Hitler's Uranium Club”.

С. 85 …Эйзенхауэр попросил снабдить военные части…: Гроувз, совещавшийся с генералом Маршаллом 23 мая 1944 года, сказал ему, что «Немцы… обладают радиоактивными материалами; они способны производить их и использовать как оружие войны. Причем в попытках отразить вторжение сил Союзников на западное побережье Европы эти материалы могут использоваться без предварительного оповещения». Это совещание привело к началу производства портативных счетчиков Гейгера и к тому, что Эйзенхауэр получил группу специалистов, способных объяснить, как этими счетчиками пользоваться. И вскоре базировавшийся в Англии штаб Эйзенхауэра отдал приказ, согласно которому все офицеры сил вторжения, обнаружившие странное помутнение пленок, которые использовались для регистрации рентгеновских лучей, должны были немедленно докладывать об этом в штаб-квартиру — равно как и о частях, в которых было обнаружено эпидемическое заболевание «непонятной этиологии», характеризующееся выпадением волос и тошнотой. См. Leslie Groves, “Now It Can Be Told: The Story of the Manhattan Project” (London: Andre Deutsch, 1963), pp. 200–203.

С. 85 …Дьердь де Хевеши растворил их в концентрированной кислоте…: George de Hevesy, “Adventures in Radioisotope Research”[112] (London: Pergamon, 1962), p. 27.

С. 85 …никакие немецкие ныряльщики поднять их со дна озера не смогли бы…: Американские Великие Озера это относительно мелкие выемки, прорытые в земле ледниками, между тем, озеро Тинишё представляет собой заполненную водой горную долину с отвесными стенами, имеющую глубину более 300 метров. Это одно из самых глубоких в Европе озер.

С. 86 От норвежской группы в Лондон: Радиограмма, по памяти воспроизведенная Хаукелидом в его книге “Skis Against the Atom”, p. 126. Я заменил «хардангерскую группу» на «норвежскую» и добавил «точка» между предложениями (как это сделал сам Хаукелид в радиограмме, приведенной на с. 78 его книги). Горное плато Хардангер было тем районом, в котором действовали его люди.

С. 86 «Прощаясь с часовым…»: Haukelid, “Skis Against the Atom”, p. 132.

С. 88 Оборудование, доставленное из Берлина…: Относительно расположения пещеры: Boris Pash, “The Alsos Mission”[113] (New York: Award Books, 1969), p. 206ff; а также: David Cassidy, “Uncertainty: The Life and Science of Werner Heisenberg” (Freeman, 1992), p. 494. Об ожидании восхода солнца на Гельголанде: Werner Heisenberg, “Physics and Beyond: Encounters and Conversations”[114] (London: George Allen amp; Unwin, 1971), p. 61.

С. 88 …ученые Германии научились получать примерно половину того объема…: Они достигли (по воспоминаниям Гейзенберга) почти 700-процентного прироста количества нейтронов. Для поддержания устойчивой реакции им требовалось примерно в два раза больше урана и больше тяжелой воды. См. Cassidy, “Uncertainty’, p. 610.

С. 89 К августу уже было разрушено пятьдесят восемь [японских городов]: Бензин и напалм, который обрушивали на города Японии американские летчики, не создавали энергии, достаточной для таких разрушений. Подлинным ее источником было излучение, возникавшее при протекании термоядерной реакции на Солнце. Оно издавна падало на Землю и его энергия столетиями накапливалась в виде существующих в древесине химических связей. Японцы сами сосредотачивали эту энергию в одном месте — их города были по преимуществу деревянными. От американских зажигательных бомб требовалось только одно — ненадолго понизить барьер, который удерживал в древесине эту некогда термоядерную, а теперь ставшую химической энергию. Иными словами, достаточно было поджечь часть домов, а дальше пожар уже поддерживал себя сам.

С. 89 «Я сказал ему, что выступаю против этого по двум причинам…»: Harold Evans, “The American Century”[115] (London: Jonathan Cape, 1998), p. 325.

С. 90 Выписки из протокола заседания президентского «Временного комитета»…: Richard Rhodes, Making of the Atomic Bomb (New York: Simon amp; Schuster, 1986), pp. 650-51. Более детальные протоколы этого заседания приводятся в книге Martin J. Sherwin, “A World Destroyed: The Atomic Bomb and the Grand Alliance”[116] (New York: Knopf, 1975), см. в особенности pp. 302-3.

С. 90 …армия создает оружие для того, чтобы его использовать: Ученые многих стран хранят воспоминания о том, как им в резкой форме напоминали об их месте в иерархии власти. Андрей Сахаров — великий физик, обратившийся в диссидента, — описывает вечер того дня 1955 года, в который Советский Союз провел испытания мощной бомбы. Маршал Неделин устроил в тот вечер банкет, на котором присутствовали все причастные к этим испытаниям высшие руководители, И Сахаров, вспомнив увиденный им за несколько часов до того огненный шар, произнес тост:

Я… сказал примерно следующее: «Я предлагаю выпить за то, чтобы наши изделия взрывались так же успешно, как сегодня, над полигонами и никогда — над городами.» За столом наступило молчание, как будто я произнёс нечто неприличное. Все замерли. Неделин усмехнулся и, тоже поднявшись с бокалом в руке, сказал: «Разрешите рассказать одну притчу. Старик перед иконой с лампадкой, в одной рубахе, молится: “Направь и укрепи, направь и укрепи”. А старуха лежит на печке и подаёт оттуда голос: “Ты, старый, молись только об укреплении, направить я и сама сумею!” Давайте выпьем за укрепление.»

Я весь сжался, как мне кажется — побледнел… Прошло много лет, а до сих пор у меня ощущение, как от удара хлыстом.

Глава 13. 8.16 утра — над Японией.

С. 91 «вытянутому в длину мусорному баку с плавниками»: То, о чем рассказывается в этой главе, почерпнуто главным образом из книг: Rhodes, “The Making of the Atomic Bomb”, pp. 701-15; Robert Serber, “The Los Alamos Primer”[117] (Berkeley: University of California Press, 1992), см. в особенности рр. 35–49; а также из стандартных учебников физики. «Мусорным баком» бомбу назвал один из членов экипажа самолета Джекоб Безер, см.: Rhodes, p. 701.

С. 91 Высота же, немногим меньшая 600 м, была идеальной: С ходом войны позиции многих людей сильно ужесточились. В марте 1940 года Фриш и Пайерлс отмечали в своей памятной записке, посвященной детальному обсуждению теоретической возможности практического создания атомной бомбы:

Вследствие того, что радиоактивные вещества будут разноситься ветром, использование бомбы без уничтожения большого числа мирных жителей было бы, вероятно, невозможным, что делает ее непригодным для применения нашей страной оружием. (Само собой напрашивается ее использование в виде глубинной мины, размещаемой вблизи базы военно-морского флота, однако даже это, скорее всего, привело бы к огромным потерям, которые гражданское население понесло бы вследствие наводнений и радиоактивного излучения.

Дело не в том, что взрыв бомбы не был необходимым — дело в том, что через пять лет после составления этой цивилизованной памятной записки выбор оптимальной высоты для взрыва бомбы над гражданским, по преимуществу, центром, стал частью самой обычной работы. Полный текст меморандума Фриша и Пайерлса — равно как и документа, который Бриггс держал запертым в своем сейфе, — приводится в книге Rudolf Peierls, “Atomic Histories”[118] (New York: Springer-Verlag, 1997), pp. 187-94. О том, что демократии в особенности подвержены таким леденящим кровь трансформациям, говорилось еще к в 1830-х — в знаменитом комментарии Токвиля по поводу причастных к ним карьеристских факторов (“Democracy in America”[119], vol. I, part 3, chapter 24); с еще большей глубиной рассматривает этот вопрос Victor Davis Hanson в его первоклассной книге "The Soul of Battle”[120] (New York: The Free Press, 1999).

С. 92 …в дело вступает обычное электрическое взаимодействие, заставляющее протоны разлетаться…: Мощность атомного взрыва велика настолько, что многим кажется, будто он порождается некоей новой формой энергии, никогда прежде не существовавшей. Однако это не так. Атомные бомбы взрываются благодаря просто-напросто статическому электричеству.

Сила электрического отталкивания в очень значительной степени зависит от расстояния между заряженными телами. Если в сухой зимний день вы поместите палец в некотором удалении от металлической поверхности, силы электрического взаимодействия не хватит, чтобы справиться с сопротивлением находящегося между ними воздуха. Однако пододвигайте палец поближе, сокращая расстояние, и сила эта будет возрастать, пока вы не получите — ШАРАХ! — разряд статического электричества.

Ядро примерно в 1000 раз меньше атома в целом. Это означает, что каждая из находящихся в ядре заряженных частиц отталкивается другими с силой, примерно в 1000 раз большей, чем та, привычная для нас сила, которая расталкивает разделенные куда большими расстояниями поверхностные электроны атома. (На самом деле, все происходит несколько иначе, но с аналогичными результатами.)

В то же самое время, речь здесь идет не просто об одной заряженной частице, отталкивающей другую — как в случае двух электронов, — ядро атома урана содержит 92 заряженных частицы. Обычно их удерживает вместе сила ядерного взаимодействия, но если она вдруг преодолевается, все приобретает такой вид, словно 92 заряженных частицы оказываются слепленными в комок, в котором ничего, кроме силы электрического отталкивания, не действует. Так вот, когда один электрон оказывается вблизи другого и отталкивается им, энергия, обусловленная их зарядами, составляет 1 Х 1. В случае 92 протонов получается уже 92 Х 92, что больше 8400.

В атомной бомбе одновременно срабатывают оба эффекта. Заряженные частицы, втиснутые в ядро урана, выталкиваются вовне с силой примерно в 1000 раз превышающей ту, что присутствует в обычном искровом разряде или химическом взрыве. И она увеличивается еще примерно в 8400 раз зарядами плотно упакованных в ядре протонов. Полная вырывающаяся наружу энергия составляет порядка 1000 Х 8400 — то есть, она более чем в 8 миллионов раз превышает привычные для нас электрические силы, будь то сопротивление деревянной биты ударяющему в нее мячу или громовые химические взрывы ракетного топлива. Полный ее расчет требует множества корректировок, однако общая указанная нами здесь пропорция достаточно точна. Утверждение, что взрыв атомной бомбы в миллионы раз мощнее любых взрывов, какие только были известны до ее создания, может показаться преувеличением, и тем не менее, так оно и есть.

С. 92 Масса атомов «исчезает», обращаясь в энергию их разлетающихся с огромной скоростью осколков: (Этот примечание — и несколько следующих — показывает, как уравнение E=mc2 работает в практической атомной инженерии и астрофизике.) Бóльшая часть взорванного над Хиросимой урана уцелела, рассеявшись в виде пылевых облаков, трансформация затронула только один их процент. Кажется, что к серьезным результатам это привести не могло, поскольку, если взять массу одного атома урана, умножить ее на c2 (E=m x c2) и разделить на 100 (дабы учесть то обстоятельство, что «взорвался» лишь каждый сотый из атомов), получится всего лишь 2,7 х 10-6 эрг — энергия, которой не хватит даже на то, чтобы задуть свечу. Однако американские техники старательно упаковали в хиросимскую бомбу 100 000 000 000 000 000 000 000 атомов урана. Вот это число микровзрывов и убило такое огромное число людей, разрушив при этом так много дорог и зданий.

С. 92 …[фрагменты ядер урана] обретают скорость, лишь в несколько раз меньшую скорости света: В посвященном Ньютону разделе главы 7 мы видели, как мощь уравнения позволяет ученому установить действующую в окрестностях лунной орбиты силу земного притяжения, — для этого ему даже не приходится покидать своего заставленного книгами, расположенного на Земле кабинета. Точно таким же образом, можно заглянуть внутрь взрывающейся атомной бомбы и точно подсчитать скорость разлетающихся фрагментов ядра. И уравнение, которое позволяет это проделать, есть та самая старинная формула определения кинетической энергии, которой мы обязаны Лейбницу и Эмилии дю Шатле.

Благодаря их трудам, мы знаем, что кинетическая энергия разлетающихся фрагментов равна mv2/2, где “m” это масса взрывающегося ядра, а “v” — скорость, с которой они разлетаются. Зная, что E=mv2/2 вы можете умножить это уравнение на 2, чтобы получить 2E = mv2, затем разделить это на m и получить 2E/m = v2, и наконец, взять корень квадратный, что даст вам окончательное выражение √(2E/m) = v. Подставьте в него значения “E” и “m” и вы сможете заглянуть внутрь атомной бомбы и подсчитать скорость разлетающихся фрагментов.

Величину “E” для единственного взрывающегося атом урана мы знаем, это 2,7 х 10-6 эрг. Подставьте ее в √(2E/m) и вы получите результат: каждый из фрагментов начинки бомбы летит со скоростью v=1,2 х 108см/с. (Опять-таки, все выглядит немного иначе, но общая схема рассуждений сохраняется.) А это больше 4 миллионов километров в час — вот почему находящийся в бомбе твердый слиток урана очень быстро обращается в шар раскаленного газа, расширяющийся с такой неимоверно высокой скоростью.

Результат этот является очень важным, поскольку нейтроны, которые все еще извергаются делящимися ядрами, могут работать и дальше только в том случае, если им удастся нагнать стремительно разлетающиеся фрагменты ядер. По этой причине медленные нейтроны вроде тех, которые первым проанализировал Ферми — и которые играют такую важную роль в постепенном разогреве плутония, — после того, как начинается взрыв, становятся совершенно бесполезными. Для того, чтобы взрыв продолжал развиваться, необходимо сконструировать бомбу так, чтобы сами фрагменты ядер выделяли нейтроны, летящие со скоростью большей той, с который расширяется облако сначала ставшего жидким, а затем и газообразным урана. Их начальная скорость должна составлять не 5 миллионов км/час, но 30 и более миллионов км/час — что и имело место внутри взорванной над Хиросимой бомбы.

И по этой же причине коммерческие реакторы не способны взрываться как настоящая атомная бомба: используемые в них медленные нейтроны не способны угнаться за начавшимся взрывом, цепная реакция останавливается и взрыв попросту выдыхается. В этом смысле такие реакторы по самой их сути являются безопасными. (И опять-таки, «безопасность» понятие относительное. Даже незавершенный взрыв способен наделать много шума и разрушить реактор — крышка чернобыльской герметизирующей оболочки весила многие тонны, однако когда ядерное топливо под ней перегрелось, ее снесло, точно картонную.)

Расчет кинетической энергии взят из книги Serber, “The Los Alamos Primer” pp. 10 и 12; соображения относительно быстрых нейтронов коротко изложены в книге Bernstein, “Hitler's Uranium Club” pp.21–22.

С. 92 На краткое время создаются условия, схожие с теми, что имели место на ранних этапах рождения вселенной: Может ли это привести к возгоранию атмосферы Земли? Нет, поскольку тепловой энергии взрыва, пусть и колоссальной, все-таки не хватает для того, чтобы пересечь барьер, за которым начинается плавление. Единственным возможным кандидатом на воспламенение был бы преобладающий в атмосфере Земли азот. Однако задолго до того, как окажется достигнутой температура его плавления, электроны унесут с собой энергию — и так быстро, что необходимая локальная концентрация тепла не возникнет. Широко распространенная уверенность в том, что такое возгорание возможно, имеет, по-видимому, источником недопонимание, возникшее в 1958 году, когда романистка Перл Бак взяла интервью у одного из главных администраторов проекта. Превосходное и просто изложенное резюме физических соображений на этот счет содержится в книге Hans Bethe, “The Road From Los Alamos”[121] (New York: Simon amp; Schuster 1991) pp. 30–33.

С. 94 Первая работа, которую проделало на Земле уравнение E=mc2, завершается: Существует известная обложка журнала «Тайм», изображающая Эйнштейна на фоне грибовидного облака и уравнения E=mc2, с библейской властностью начертанного на этом облаке. Однако «ответственность» Эйнштейна за случившееся это вопрос куда более тонкий. То, что произошло над Хиросимой, проистекало из уравнения, записанного Эйнштейном за многие годы до этого, но самого уравнения для детальной инженерной разработки бомбы было не достаточно, — в определенном смысле, оно даже не было «необходимым», поскольку ядерные физики могли, в принципе, развить нужные технические знания, и не сознавая, что общая картина взрыва суммарно выражается этим уравнением.

И тем не менее, Эйнштейну приходилось оправдываться за то, что он оказался связанным со случившимся. Отвечая в 1952 году одной японской газете, он писал: «Мое участие в создании атомной бомбы сводится к одному единственному поступку: к тому, что я подписал письмо, направленное президенту Рузвельту». А в 1955 году, в письме к французскому историку, Эйнштейн развил эту тему:

Вы, похоже, считаете, что я, несчастный человек, открыв и опубликовав соотношение между массой и энергией, сделал тем самым важный вклад… Вы полагаете, что мне следовало… в 1905 году предвидеть возможность создания атомной бомбы. Однако это было решительно невозможным, поскольку осуществление «цепной реакции» основывалось на опытных данных, предвидеть которые в 1905 году было весьма затруднительно… Даже если бы такое знание уже существовало, попытка утаить некий частный вывод из специальной теории относительности выглядела бы смехотворной. Если теория существует, существуют и выводы из нее.

Распространенная уверенность насчет того, что его работа была связана с бомбой, основывается, я полагаю, на порождающей благоговейный трепет мысли о том, что, даже не желая создания бомбы, Эйнштейн, в определенном смысле, предсказал его. Цитаты взяты из книги “Einstein on Peace”, ред. Otto Nathan и Heinz Norden (New York: Simon amp; Schuster, 1960), pp. 583 and 622-23.

Глава 14. Как сгорает Солнце

С. 97 «сбежал вниз по лестнице…»: Все цитаты взяты из книги “Cecilia Payne-Gaposchkin: An Autobiography and Other Recollections”[122], ред. Katherine Haramundanis (Cambridge: Cambridge University Press, 2nd ed., 1996). «сбежал вниз по лестнице», сс. 119-20; «поехала на велосипеде», с.121; «с удобством разлегшись на полу», с.72. «с рядами выкрикивающих грубости студентов» это не прямая цитата, она взята из сноски на с. 118.

С. 97 …в плавающих по космосу облаках изначального газа…: Не все сжимавшиеся облака достигали плотности, достаточной для воспламенения — планета Юпитер дает нам один из примеров неторопливого облака, имевшего размеры в несколько раз меньшие тех, какие требуются для возникновения термоядерной реакции. Не исключено, что в нашей галактике носится огромное число свободных планет или еще больших не вспыхнувших небесных тел, так и не приставших ни к каким звездам.

С. 98 «задача эта преследовала меня днем и ночью» и «Я рассказала подруге о том, как мне нравится одна девушка»: Cecilia Payne-Gaposchkin, pp. 122 and 111.

С. 98 «Мне всегда хотелось заняться математическим анализом»: George Greenstein, "The Ladies of Observatory Hill," in “Portraits of Discovery”[123] (New York: Wiley, 1998), p. 25.

С. 99 Ее работа была намного сложнее приведенного мной примера: Новая теория была обязана своим происхождением индийскому теоретику Мег Над Саба. История ее замечательно изложена в работе V. DeVorkin and R. Kenat “Quantum Physics and the Stars. 2: Henry Norris Russell and the Abundance of the Elements in the Atmospheres of the Sun and Stars”[124], Journal of the History of Asstronomy, 14 (1983), pp. 180–222. Более сжатые изложения присутствуют в Greenstein, pp. 15–16 и автобиографии Пэйн, с.20. Об удивительном появлении таких личностей, как Саба (а также Раман и Бозе) в Индии периода, последовавшего за 1920-ми, а затем и об удивительном отсутствии у них — после первых работ мирового уровня — каких-либо новых достижений см. замечания Чандрасекара в книге Kameshwar Wali, “Chandra: A Biography of S. Channdrasekhar”[125] (Chicago: University of Chicago Press, 1992), pp. 246-53. Их открытия, считал Чандра, были частью горделивого самовыражения, к которым призывали Ганди и антибританское сопротивление; а своим последующим крахом они были обязаны тем, что каждый обретавший внезапно известность ученый создавал собственную кичливую, раздражительно академичную империю — пагуба, от которой индийская наука страдает и по сей день.

С. 100 «Огромный избыток [водорода]…»: Cecilia Payne-Gaposchkin, p. 20.

С. 101 …каждую секунду перекачивает 4 миллиона тонн водорода, обращая его в чистую энергию: Как можно установить эту величину? Самая страшная жара, наступающая в полдень в Долине смерти, обязана своим происхождением примерно одной тысяче ватт солнечного излучения, падающего на квадратный ярд земной атмосферы, расположенный прямо над этой долиной; если пересчитать это применительно к размерам всей планеты, получится, что Земля получает от Солнца энергию в 150 квадрильонов ватт.

Для того, чтобы понять, какую массу теряет Солнце, обеспечивая Землю такой энергией, следует вспомнить о том, что с2 - множитель очень не маленький, а мы обитаем в столь крошечной нише вселенной, что приходящаяся на нашу долю масса-энергия оказывается попросту мизерной и «массовый» ее аспект почти теряется на фоне общей гигантской энергии, излучаемой Солнцем. Поскольку энергия это масса, умноженная на с2, постольку масса это энергия, деленная на ту же величину. Иными словами, m=E/c2. Если подставить в это выражение 150 квадрильонов ватт для Е и 1080 миллионов км/час для с, вы получите около 2 кг. Вот и все — свет и тепло, которые достаются Земле производятся всего-навсего из двух с небольшим килограммов водорода, которых лишается Солнце.

Кстати сказать, примерно таким же образом получена и та цифра, что была приведена в начале этой главы, где говорилось, что Солнце каждую секунду «взрывает» эквивалент множества бомб, взорванных над Хиросимой. Если Солнце находится в центре огромной сферы, а Земля представляет собой лишь крошечную точку на ее поверхности, то, разумеется, площадь этой поверхности во много раз больше, чем площадь Земли. Собственно говоря, она больше примерно в 2 миллиарда раз, а поскольку свет Солнца распространяется во всех направлениях и заливает всю поверхность этой воображаемой сферы, то и масса, которую Солнце «теряет» каждую секунду, тоже во много раз больше. Это масса в более чем три с половиной миллиарда килограмм. Бомба, взорвавшаяся в 1945 году над Хиросимой, причинила огромные разрушения, полностью обратив в энергию немногим больше 200 граммов своей массы, откуда и следует, что Солнце каждую секунду взрывает более 16 миллиардов таких бомб.

Глава 15. Сотворение Земли

С. 102 «Я получил удар…»: Fred Hoyle, “Home Is Where the Wind Blows: Chapters from a Cosmologist’s Life”[126] (Oxford: Oxford University Press, 1997), p. 48.

С. 102 «Я сказал…»: Там же, р. 49.

С. 103 «Каждое утро я, позавтракав…»: Там же, р. 50.

С. 103 …однако имена, которые услышал здесь Хойл…: Одно из них принадлежало Нику Кеммеру, который работал в собственно британском атомном проекте, а потом вдруг куда-то исчез; другое — блестящему математику Морису Прайсу, также загадочным образом исчезнувшему из подразделения сигнализации Адмиралтейства — см. там же, рр. 227-28.

С. 104 Имплозия превосходно работает на Земле: Аналогии такого рода отражались и в привлечении людей к работе по созданию атомной бомбы. К примеру, главой теоретиков Лос-Аламоса был Ханс Бете, — тот самый Бете, который в 1938 году «завершил» работу Пэйн и других, усовершенствовав их уравнения, которые описывали происходящие на Солнце реакции синтеза.

С. 106 …потребовало сотен проводившихся годами наземных испытаний…: Вследствие чего немецкие боевые корабли времен Первой мировой войны — во всяком случае, некоторые их части — и оказались на Луне.

В 1919 году имперский военный флот Германии сдался Британии и попал на огромную якорную стоянку Королевского военно-морского флота в заливе Скапа-Флоу, что в Шотландии. После нескольких месяцев тревожного ожидания немецкий адмирал уверовал, ошибочно, впрочем, что Британия вот-вот поставит этот флот себе на службу. Адмирал послал обговоренный заранее шифрованный сигнал и немецкие моряки затопили свой флот прямо на стоянке. Однако Скапа-Флоу — залив не очень глубокий, почему его для стоянки и выбрали, и сотни тысяч тонн высококачественной стали оказались лежащими на глубине от нескольких метров до нескольких десятков таковых. В 1920-х и 1930-х некоторую часть этого флота подняли со дна: ныряльщики сверлили в бортах кораблей отверстия, затем к ним крепились огромные подушки, в которые накачивался воздух, в итоге, некоторые лишь наполовину затонувшие гиганты были отбуксированы в доки Россита, залив Ферт-оф-Форт.

После 1945 года то, что осталось под водой, обрело особое значение. Для литья стали требуется огромное количество воздуха и вся сталь, выплавлявшаяся после Хиросимы, стала отчасти радиоактивной по причине постоянно проводившихся наземных испытаний атомных бомб. А сталь, произведенная до 1945 года, осталась чистой. На дне Скапа-Флоу и поныне покоятся три линкора и четыре легких крейсера из могучего некогда кайзеровского флота (те читатели, что посмелее, могут понырять в этом заливе и увидеть их собственными глазами — добираться туда лучше всего из Стромнесса, что на Оркнейских островах). Использовать их для заурядных целей особого смысла нет — куда дешевле выплавить новую сталь, — однако для чрезвычайно чувствительных мониторов радиации, таких как используемые на космических кораблях, их сталь, предшественница Хиросимы, оказалась незаменимой. Оборудование, которое «Аполло» оставил на Луне, равно как и некоторые части достигшего Юпитера космического зонда «Галилей» и даже зонда «Пионер», который уже прошел на своем пути к далеким звездным системам орбиту Плутона, — все они несут остатки кайзеровского флота, а именно, стали, поднятой со дна Скапа-Флоу. Вся эта история хорошо описана в работе Dan van der Vat, сборник “The Grand Scuttle: The Sinking of the German Fleet at Scapa Flow in I9I9”[127] (London: Hodder and Stoughton, 1982).

С. 106 Это был не самый разумный выбор источника энергии…: Ранние расчеты затрат, которых потребует такой источник, оказались искаженными верой в то, что, поскольку вес используемого топлива оказывается в миллион раз меньше, пропорционально уменьшатся и затраты на производство энергии. Однако затраты на топливо составляют лишь малую часть расходов, которых требуют создание и эксплуатация атомных электростанций. Владеющим ими фирмам приходится приобретать землю и строить турбины, обучать персонал и платить ему жалование, строить системы охлаждения и передающие станции, поддерживать в рабочем состоянии линии электропередачи. Многие руководители систем ядерной инженерии сознают, что, когда в Америке 1960-х началась реклама первых коммерческих реакторов, прогнозы связанных с ними затрат были совершенно нереалистичными, а то обстоятельство, что конструкция их унаследовала особенности модели Риковера, созданной для ограниченного пространства атомных подводных лодок, никаких достоинств им не добавляло. С другой стороны, если быть справедливым, получение электроэнергии посредством таких станций не приводит к выбросам двуокиси углерода (на считая тех, что неизбежно возникают при добыче руды и строительстве), а последние конструкции этих станций по-настоящему надежны и делают повторение Чернобыля невозможным.

Глава 16. Брамин поднимает глаза к небу

С. 108 в следующие 5 миллиардов лет наиболее доступная часть этого топлива будет израсходована: Мы снова оказываемся в сфере действия E=mc2 - это уравнение позволяет нам предсказать, как долго протянет наша солнечная система. Обозначим массу Солнца символом Мо. Водород в пригодной для горения форме составляет лишь 10 процентов этой массы и, как мы уже видели, лишь 0,7 процента этого водорода действительно «переносится через» уравнение E=mc2 и преобразуется в энергию. Это означает, что используемая в действительности масса равна 0,007(1/10) х Мо, что дает 1,4 х 1030 граммов.

Полная энергия, которую мы можем получить из такой массы с помощью E=mc2, это Е = (1,4 х 1030 граммов) х (1080 миллионов км/час)2. Произведя указанные действия, мы обнаружим, что максимальная энергия, которую Солнце сможет «поставлять», пока не иссякнет топливо, равна — при сделанных выше предположениях — 1,3 х 1051 эрг.

Надолго ли ее хватит? Это зависит от скорости, с которой она используется. Солнце изливает энергию, — или «сияет» — со скоростью 4 х 1035 эрг в секунду. (Эта величина рассчитана, исходя из тех же соображений, что использовались в примечании к с.101, где речь шла о солнечном свете, падающем на квадратный ярд земной атмосферы.) Умножим полную энергию, которую Солнце будет способно производить, пока не исчерпает себя, на скорость, с которой оно себя исчерпывает, и мы получим 3,2 х 1017 секунд. Когда эти секунды закончатся, наше Солнце перестанет существовать (при условии его постоянного свечения и верности наших предположений о его массе). Земля же либо сгорит, либо будет поглощена Солнцем, либо оторвется от него. Если перейти к единицам несколько более крупным, 3,2 х 1017 секунд это примерно 10 миллиардов лет. Поскольку мы находимся где-то на середине жизненного пути Солнца, можно считать, что около 5 миллиардов лет у нас в запасе имеется.

С. 108 «Кто говорит, мир от огня…»: Стихотворение Роберта Фроста «Огонь и лед» в переводе М. Зенкевича цитируется по антологии «Современная американская поэзия», изд. «Прогресс», М. 1975, с.43.

С. 110 У малой звезды такое нарастание давления далеко не заходит…: У звезд «нормальных» дополнительное давление лишь принуждает значительную часть их внутренней материи двигаться быстрее, однако в звездах, уже находящихся под огромным давлением, движение это совершается с такой огромной скоростью, что энергия оказывается не способной ее повысить. И так же, как в случае с нашим воображаемым космическим кораблем из примера, приведенного в главе 5, энергии остается лишь увеличивать массу. Этот момент прекрасно излагается в книге Kip Thorne, “Black Holes and Time Warps: Einstein's Outrageous Legacy”[128] (New York: Norton, 1994), pp. 151 и 156-76; рассуждения Чандры описаны в Wali, “Chandra”, p. 76.

С. 110 «Он был миссионером…»: Wali, “Chandra”, p. 75.

С. 110 «звездная буффонада»: Там же, р. 142. Подробно о нападках Эддингтона и о влиянии, которое он оказал на дальнейшую карьеру Чандра, говорится в главах 5 и 6 книги Вали; см. также собственные исполненные достоинства замечания Чандрасекара, сделанные им в 1982 году, на страницах 130–137 его книги “Truth and Beauty: Aesthetics and Motivations in Science”[129] (Chicago: University of Chicago Press, 1987).

С. 111 …от обычной материи останется мало что…: В этой книге мы, по преимуществу, рассматриваем уравнение E=mc2 как описывающее мост или туннель, идущий в одном направлении, от массы к энергии. Однако, когда Роберт Рекорде ввел в 1555-х свое типографическое новшество, знак «= = =», он имел в виду путь, открытый в обе стороны. Ни одна из них предпочтительной не была.

При нормальных обстоятельствах обратный путь не проходится — заставьте лучи двух фонариков встретиться друг с другом, и никакие твердые тела при этом не возникнут и не полетят, кувыркаясь, по воздуху. Однако в ранние мгновения существования вселенной температуры и давление были до того велики, что самый обычный свет регулярно совершал этот обратный переход по изображаемому знаком равенства мосту и сгущался вплоть до образования массы.

Происходило это не в один миг — вселенная не обладала сходством с мгновенно наполняющейся ванной небожителя. Большая часть возникавшей массы продолжала взрываться, обращаясь в беспримесную энергию. И лишь когда вселенная обрела структуру, постарела на целую секунду, а то и больше, эти трансформации прекратились. Однако к тому времени с правой стороны уравнения 1905 года накопилась немалая масса — вещество, из которого все мы состоим, уже обрело существование. Срабатывали также и другие обстоятельства — вся эта история подробно излагается в книге Alan Guth, “The Inflationary Universe”[130] (London: Jonathan Cape, 1997).

Эпилог: Чем еще славен Эйнштейн

С. 113 «Я сидел за моим столом…»: “The Quotable Einstein”[131], ред. Alice Calaprice (Princeton, N.J.: Princeton University Press, 1996), p. 170.

С. 113 «счастливейшей мыслью всей моей жизни»: Из неопубликованной статьи, которую Эйнштейн в 1920-м написал для журнала “Nature”.

С. 113 «Не тревожьтесь…»: “Albert Einstein, the Human Side”[132], Helen Dukas и Banesh Hoffmann (Princeton, N.J.: Princeton University Press, 1979), p. 8.

С. 116 «…привлек к этому замечательному обстоятельству всеобщее внимание…»: Arthur Eddington, “Space, Time and Gravitation”[133] (Cambridge: Cambridge University Press, 1920), p. 114.

С. 117 «Дорогой Рассел!»: “The Autobiography of Bertrand Russel”[134], vol. II (London: George Allen and Unwin, 1968).

С. 118 «Даже в самой организации заседания присутствовало нечто театральное…»: Этим гостем был сотрудник Рассела Алфред Норт Уайтхед: “Science in the Modern World”[135] (London, 1926), p. 13.

С. 118 «Это самый важный результат…»: Albrecht Fölsing, “Albert Einstein: A Biography” (London: Penguin, 1997), p. 444.

С. 118 …в газете Крауч вел раздел гольфа…: Meyer Berger, “The Story of The New York Times, I85I–I95I (New York: Simon amp; Schuster, 1951)”[136], pp. 251-52.

С. 119 …английские антисемиты…: цитируются “The Collected Writings of John Maynard Keynes, Vol. X Essays in Biography”[137] (London: Macmillan; New York: St. Martin's Press, for the Royal Economic Society, 1972), p. 382. В июне 1926 Кейнз посетил Берлин, чтобы прочесть лекции в университете, и встретился с Эйнштейном на одном из званных обедов. «Нельзя допускать, — заметил он, — чтобы цивилизация в такой мере находилась под башмаком ее нечистых евреев».

С. 120 «этой деревни забравшихся на ходули крошечных полубогов»: Из письма к пожизненной корреспондентке Эйнштейна королеве Бельгии Елизавете. См. “The Quotable Einstein”, p. 25.

С. 120 «Если бы я знал…»: Antonina Vallentin, “The Drama of Albert Einstein”[138] (New York: Doubleday, 1954), p. 278.

С. 120 Годы шли…: До некоторой степени, в том, что происходило с Эйнштейном, ничего необычного не было. Великим художникам и композиторам нередко удается создавать лучшие их творения уже в преклонном возрасте, но с учеными такого не бывает. Отчасти это может быть связано с тем, что им становится трудно удерживать в голове целую совокупность сложных идей. Даже обратившись к театру, мы увидим, что трагедия «Эдип в Колоне», сочиненная очень старым Софоклом, отличается неуклюжестью построения, в физической теории недопустимой. При этом Бетховен сочинял очень сложные вещи, когда ему было уже за пятьдесят, а «Буря» написана без малого пятидесятилетним Шекспиром. Однако наука развивается быстро, а для Эйнштейна отставание от нее было намного более важным, чем для кого-либо еще. В общем, тема эта обширна и сложна — существуют относящиеся к ней наблюдения Маколи и даже Спилберга, которые обсуждаются на моем вебсайте.

С. 120 …молодой ассистент как-то спросил его…: “Einstein, A Centenary Volume”, ред. A. P. French (London: Heinemann, 1979), p. 32.Этим ассистентом был Эрнст Штраусс, который работал с Эйнштейном с 1944 по 1948 год. В том же томе, на с. 211, содержится рассказ Эйнштейна о том, насколько иначе все обстояло, когда он был моложе и мог «нюхом находить пути, которые ведут в глубину, и игнорировать все остальное, все множество забивающих голову мыслей, — отделять от них самое существенное».

С. 120 «Большие открытия…»: Banesh Hoffmann “Albert Einstein, Creator and Rebel” (New York: Viking, 1972), p. 222.

Приложение: Дополнительные сведения о других важных персонажах книги

С. 122 «Если бы я была королем…»: Предисловие дю Шатле к переводу «Басни о пчелах» Мандевиля; Esther Ehrman, “Mme du Châtele”t (Berg Publishers, 1986), p. 61.

С. 123 «Способность жить гармоничной жизнью…»: “Albert Einstein/Michele Besso, Correspondence 1903–1955”[139], пер. Pierre Spezialli (Paris: Hermann, 1972), p. 537.

С. 123 «Я начал глотать…»: Richard Rhodes, “The Making of the Atomic Bomb” (New York: Simon amp; Schuster, 1986), p. 356.

С. 125 «настоящий гений…»: Rhodes, “The Making of the Atomic Bomb”, p. 448.

С. 126 «Радиоактивное излучение она давала очень слабое…»: Emilio Segre, “A Mind Always in Motion” (Berkeley: University of California Press, 1994), p. 215.

С. 126 ДЬЕРДЬ ДЕ ХЕВЕШИ снял с полки…: "Adventures in Radioisotope Research: The Collected Papers of George Hevesy”, vol. 1 (London: Pergamon Press, 1962), pp. 27, 28.

С. 126 «Не надо строить больших машин, ребята»: Nuel Phar Davis, Lawrence and Oppenheimer (London: Jonathan Cape, 1969), p.351.

С. 126 «Установка микрофонов?»: Jeremy Bernstein, ред., “Hitler's Uranium Club: The Secret Recordings at Farm Hall”[140] (Woodbury, N.Y.: American Institute of Physics, 1996), p. 75. См. также предисловие сэра Чарльза Франка к книге “Operation Epsilon: The Farm Hall Transcripts”[141] (Bristol: Institute of Physics, 1993), где рассказано о технических тонкостях, связанных с этими записями, и об апломбе, с которым он ответил на вопрос «насчет непонятных проводов на тыльной стороне буфета».

С. 127 «Мы пытались создать машину…»: Bernstein, “Hitler's Uranium Club”, p. 211.

С. 128 …компании «БЕРЛИНАУЭР»…: Samuel Goudsmit, “Alsos: The Failure in German Science” (Woodbury, N.Y., 1996), pp. 56–65.

С. 128 «у меня просто не оставалось времени на исследования…»: Cecilia Payne-Gaposchkin: An Autobiography and Other Recollections, ed. Katherine Haramundanis (Cambridge: Cambridge University Press, 2nd ed. 1947), p. 225.

С. 128 «Исландский оказался чем-то вроде небольшого камня преткновения»: George Greenstein, "The Ladies of Observatory Hill," in “Portraits of Discovery” (New York: Wiley, 1998), p. 17.

С. 129 «Фред не уйдет»: “Fred Hoyle, Home Is Where the Wind Blows: Chapters from a Cosmologist's Life” (Oxford: Oxford University Press, 1997), p. 374

С. 129 «Мне почти стыдно…»: Kameshwar Wali, Chandra: A Biography of S. Chandrasekhar (Chicago: University of Chicago Press, 1992), p. 95.

 

Руководство по дальнейшему чтению

Фарадей и энергия

Чтобы познакомиться с личностью Майкла Фарадея, лучше всего почитать его избранные письма — либо в варианте под редакцией L. P. Williams и др., "The Selected Correspondence of Michael Faraday”[142] 2 vols. (Cambridge and New York: Cambridge University Press, 1971), либо в более полном издании “The Correspondence of Michael Faraday”[143], ред. Frank A. J. L. James (London: Institution of Electrical Engineers, выходит с 1991). Читая их, вы увидите подростка, бегущего грозовой ночью по улицам Лондона, наслаждаясь омывающими его потоками воды; затем ревностного молодого ассистента, гневающегося на жену Гемфри Дэви, которая обращалась с ним во время поездки на Континент, как со слугой; и наконец, десятилетия спустя, величавого патриарха британской науки, расстроенного тем, что память его быстро слабеет, а способность целиком сосредоточиться на любом предмете исследований исчезла без следа.

Вопрос о влиянии, которое оказала религия на жизнь и научные изыскания Майкла Фарадея, прекрасно освещен в книге Geoffrey Cantor, “Michael Faraday, Sandemanian and Scientist: A Study of Science and Religion in the Nineteenth Century”[144] (London: Macmillan; New York: St. Martin's Press, 1991); а биография, которая нравится мне больше всех прочих — “Michael Faraday: His Life and Work”[145], by Silvanus P. Thompson (London: Cassell, 1898) — превосходно передает сам стиль эпохи Фарадея, что для авторов более поздних оказалось затруднительным. В совсем недавней “Faraday Rediscovered: Essays on the Life and Work of Michael Faraday”[146], ред. David Gooding и Frank A. J. L. James (London: Macmillan, 1985; New York: American Institute of Physics, 1989) исправлены многочисленные ошибки Томпсона, эта книга содержит также хорошее введение в крупные научные открытия. Одна из ее самых волнующих глав содержит основанной на записных книжках Фарадея почти поминутное описание того, как протекал решающий опыт, поставленный в сентябре 1821 года.

“Humphry Davy: Science and Power”[147]; by David M. Knight (Oxford, England: Blackwell, 1992) содержит серьезный анализ личности непростого наставника Фарадея и безусловно значительнейшего влияния идей Канта, которые были получены ими обоими от поэтов Вордсворта и Кольриджа. Найт демонстрирует также нередкую встречавшуюся в среде британских ученых предрасположенность к вере в мистические силы, — как в случае фарадеевского данного Богом единства, — в противоположность крайним материалистам Франции, исследования которых помогли оправдать террор Французской революции. Несколько более приглаженный рассказ о Фарадее и Дэви содержится в "The Mercurial Chemist”[148] by Anne Treneer (London: Methuen, 1963).

Фарадей был далеко не единственным человеком, активно участвовавшим в развитии идеи сохранения энергии. Об этом говорится в знаменитом эссе Томаса Кана “Energy Conservation as an Example of Simultaneous Discovery”[149], содержащемся в его книге Thomas Kuhn, “The Essential Tension: Selected Studies in Scientific Tradition and Change”[150] (Chicago: University of Chicago Press, 1977). Кан не просто отмечает, что идея сохранения «носилась в воздухе», но показывает роль множества новоизобретенных производственных машин того времени, как источника метафор, а также значение новых практических технологий в преобразовании одних типов энергии в другие. В книге “The Science of Energy: A Cultural History of Energy Physics in Victorian Britain”[151] by Crossbie Smith (London: Athlone Press, 1998) использован иной подход — в ней рассматриваются, к примеру, тонкости шотландского богословия и системы раздачи церковных должностей и показывается, каким образом обладавшая меньшей, нежели иные, расслоенностью общественная система естественным образом порождала — в ходе мощного перекрестного оплодотворения — инженеров, профессоров и богословов.

Вненаучная мотивация плодовитого Ханса Христиана Эрстеда исследуется в работе R C. Stauffer, “Speculation and Experiment in the Background of Oersted's Discovery of Electromagnetism”[152],Isis, 48 (1957), а те, кто осилит многие сотни приторно-слащавых страниц, смогут почерпнуть сведения о ней из сочинений самого Эрстеда. В эссе Gerald Holton “The Two Maps”[153] (в его “The Advancement of Science, and Its Burdens”[154] [Cambridge, Mass.: Harvard University Press, 1986, 1998], pp. 197–208) великолепно рассказывается о том значении, какое приобрело непонимание сделанного Эрстедом.

Что касается более детального рассмотрения науки об энергии, распавшейся ныне на множество направлений, оказавшееся столь полезным странно косвенное рабочее определение ее ясно описывается в главе 3 (“The Great Conservation Principles”[155]) книги “The Character of Physical Law”[156] (London: Penguin UK, 1992), представляющей собой расшифровку сделанных «Би-Би-Си» записей лекций, прочитанных в Корнелльском университете блистательным Ричардом Фейнманом. Представление об энтропии анализируется — все более упорядочивающимся образом — в достойном всяческого уважения труде Peter Atkins, “The Second Law: Energy, Chaos, and Form”[157] (New York: Scientific American Books, 1984, 1994) — в нем превосходно продемонстрированы рассуждения, которые привели к пониманию нового уровня структуры, в рамках которой работает понятие энергии. (Глава, в которой Аткинс показывает, что привычная нам жизнь есть лишь малый перевалочный пункт на полной температурной шкале вселенной, это несомненный шедевр.) Ибо если мы способны постичь неупорядоченность, которую именуем «теплом», нам удастся постичь и упорядоченность, которую можно было бы назвать «информацией». Книга Neil Gershenfeld, “The Physics of Information Technology”[158] (New York: Cambridge University Press, 2000) несколько сложнее книги Аткинса, однако я усиленно рекомендую ее тем, кого интересует эта самая отдаленная точка пути, пройденного викторианской концепцией энергии.

Лавуазье и масса

Лавуазье нашел элегантного биографа в лице Артура Донована — см. Arthur Donovan, “Antoine Lavoisier: Science, Administration, and Revolution”[159] (Oxford, England: Blackwell, 1993). Книга Jean-Pierre Poirier, “Lavoisier: Chemist, Biologist, Economist”[160] (перевод на английский) (College Park, Penn.: University of Pennsylvania, 1996) является более исчерпывающей, однако для начального чтения она трудновата. Роберт Дарнтон более тридцати лет занимался исследованиями жизни внешне благовоспитанного французского общества в период деятельности Лавуазье и его книга Robert Darnton, "Mesmerism and the End of the Enlightenment in France”[161] (Cambridge, Mass.: Harvard University Press, 1968) прекрасно воссоздает исторический фон этой деятельности и в особенности те общественные настроения, которые сыграли в судьбе Лавуазье столь роковую роль. Что касается Марата, я советовал бы обратиться к небольшому сочинению написанному молодым Луи Готтшалком: Louis Gottschalk, “Jean Paul Marat: A Study in Radicalism”[162] (первое изд. 1927, переиздание Chicago: University of Chicago Press, 1967). Если поблизости от вас имеется хорошая библиотека и вы хотя бы немного владеете французским, вас несомненно возьмут за живое полученные из первых рук свидетельства о тюремной жизни и судах времен Революции, приведенные в книге Adrien Delahante, “Une famille de finance au XVIIIe siècle”, 2 vols (Paris, 1881).

Книга Stephen Toulmin и June Goodfield, “The Architecture of Matter”[163] (London: Hutchinson, 1962) будет особенно полезной тем, кто хочет разобраться в настроениях эпохи Лавуазье, тогда как в книге “The Origins of Modern Science 1300–1800”[164] by Herbert Butterfield (первое изд. London, 1949) использован более серьезный лобовой подход к этой теме. В большей мере посвященный собственно физике и доведенный до двадцатого столетия рассказ содержится в книге Max Jammer, “Concepts of Mass in Classical and Modern Physics”[165] (New York: Dover, 1997), включающей и такие лакомые кусочки как правдоподобие предположения о том, что слово «масса» ведет свое происхождение от древнееврейского слова, которым обозначалась маца, а также рассказ о связи закона сохранения массы с представлением о quantitas mataeriae, «количестве материи», с помощью которого последователи Фомы Аквинского старались объяснить, что на самом деле происходит во время пресуществления, совершающегося в ходе католической мессы.

Что касается недавних подходов, здесь особой свежестью отличается работа Frederic Holmes, “The Boundaries of Lavoisier's Chemical Revolution”[166] в Revue d'Histoire des Sciences,48 (1995), pp. 9-48. Написанная Морисом Гросландом (Maurice Crosland) глава книги “The Ferment of Knowledge”[167], George S. Rousseau, ред. (New York: Cambridge University Press, 1980) хорошо рассказывает о том, какие мысли, возможно, владели Лавуазье во время его опытов с металлами. Попробуйте также прочесть эссе Perrin, “The Chemical Revolution: Shifts in Guiding Assumptions”[168], pp. 53–81 в сборнике “The Chemical Revolution: Essays in Reinterpretation”[169] (специальный выпуск журнала Osiris, 2nd series, 1988).

Вопрос о том, чем «в действительности» является масса, приводит нас к существующей в современной физике концепции поля Хиггса, прекрасное введение в которую дает книга “Lucifer's Legacy-The Meaning of Asymmetry”[170] by Frank Close (New York: Oxford University Press, 2000), между тем как книга Gerard’t Hooft “In Search of the Ultimate Building Blocks”[171] (Cambridge: Cambridge University Press, 1997) показывает картину еще более широкую, мастерски передавая историю этой концепции через рассказ о годах учения автора и его профессиональных проблемах (правда, книга эта отличается чрезмерной скромностью и раздражающим отсутствием настоящего временного охвата: подлинная кульминация — получение автором Нобелевской премии в ней отсутствует).

«с»

Галилей жил в эпоху, в которую наука еще не оказалась полностью отделенной от философии и литературы, а это означает, что и сегодняшние неспециалисты могут получать удовольствие, читая его основные труды: особенно приятное чтение составляют большие фрагменты его «Двух новых наук». В давней статье I. B. Cohen “Roemer and the First Determination of the Velocity of Light”[172],Isis, 31, 1940, pp. 327-79, подробно рассказывается о том, с чем вынужден был мириться Кассини; строгие, не позволявшие отступаться от чистой эмпирики правила, которым Кассини приходилось следовать, работая в католической стране примерно в то же время, в которое происходили гонения на Галилея, представлены в статье “The Galilean satellites of Jupiter from Galileo to Cassini, Romer, and Bradley”[173] by Suzanne Debarbat and Curtis Wilson, которую можно найти в “The General History of Astronomy, Vol. 2, Planetary Astronomy from the Renaissance to the Rise of Astrophysics, Part A: Tycho Brahe to Newton”[174], ред. Ren Taton и Curtis Wilson (Cambridge: Cambridge University Press, 1989), pp. 144–157. Книга Timothy Ferris “Coming of Age in the Milky Way”[175] (New York: William Morrow, 1988) помещает все это в еще более широкий контекст — это идеальное введение в историю астрономии.

На долю Максвелла выпал биограф уместно ироничный — см. Martin Goldman, “The Demon in the Aether: The Story of James Clerk Maxwell”[176] (Edinburgh: Paul Harris Publishing; with Adam Hilger, Bristol, 1983). Вместе с ней я порекомендовал в качестве первоначального чтения главу II (“Gentleman of Energy: the Natural Philosophy of James Clerk Maxwell”[177]) книги Crosbie Smith “Science of Energy: A Cultural History of Energy Physics in Victorian Britain” (London: Athlone Press, 1998). Что касается книги Голдмана, в ней превосходные объяснения сути дела сочетаются с приятными анекдотами — мы находим в ней даже размышления Максвелла (близкие сердцу любого оксфордского автора) относительно образования, полученного им в Кембридже:

Как ощипанный тощий гусь, я Неуверенно спрашиваю себя, Принесет ли мне вся эта галиматья Хоть какую-то пользу?

Рядовой читатель может получить непосредственное ощущение научных воззрений Максвелла, ознакомившись с его многочисленными предисловиями и комментариями к собственным трудам. Отличными примерами таковых являются “A Historical Survey of Theories on Action at a Distance”[178] и “Experiment on Lines of Force”[179], приведенные в книге “Physical Thought: An Anthology”[180], ред. Samuel Sambursky (London: Hutchinson, 1974). На смену предпринятому в 1890-м изданию статей Максвелла теперь пришло другое — “The Scientific Letters and Papers of James Clerk Maxwell”[181], ред. P. M. Harman (New York: Cambridge University Press, 1990, 1995). Общее представление о его трудах может дать классическое исследование Harman, “Energy, Force, and Matter”[182] (New York: Cambridge University Press, 1982), с которым может поспорить еще даже более рафинированный труд Robert D. Purrington, “Physics in the Nineteenth Century”[183] (New Brunswick, N.J.: Rutgers University Press, 1997).

“Innovation in Maxwell's Electromagnetic Theory”[184] by Daniel Siegel (New York: Cambridge University Press, 1991) содержит очень подробное, хоть временами и спорное освещение творчества Максвелла, включающее и его показательные контрасты с чрезмерно теоретизированной французской традицией, которая подробно и разносторонне рассматривается в книге Christine M. Crow, “Paul Valery and Maxwell's Demon: Natural Order and Human Possibility”[185] (Hull, England: University of Hull Publications, 1972). Ричард Фейнман относился к Валери и большинству историков с полным равнодушием, о чем можно лишь пожалеть, однако в том, что касается исследований природы света, его сочинения (и исследования) почти не имеют равных — вместе с другими физическими текстами, упоминаемыми в следующем разделе, его “QED: The Strange Theory of Light and Matter”[186] by Richard Feynman (Princeton, N.J.: Princeton University Press, 1985) представляет собой отличное первоначальное чтение.

Дю Шатле и «квадрат»

У англоязычных биографов дю Шатле не в фаворе, а вот читатели, владеющие французским, могут считать, что им повезло. Элизабет Бадинтер пришла в голову превосходная мысль написать сравнительную биографию Эмилии дю Шатле и Эмилии д’Эпине и ее книга Elisabeth Badinter “Émilie, Émilie: l'ambition feminine au XVIIIe siècle” (Paris: Flamarion, 1983) представляет собой живо написанный, хорошо продуманный парный психологический портрет.

“Les Lettres de La Marquise du Châtelet”, 2 vols. (Geneva, 1958), ред. T. Besterman показывают нам дю Шатле ничем не стесненной, порою забавной — как бывают забавными умные киносценарии, — а едва ли не в следующем предложении принимающей тон серьезный, говоря о своей озадаченности тем, каким образом только что произведенные ею наблюдения соотносятся со свободой воли или основаниями физики.

"Voltaire en son temps: avec Mme du Châtelet 1734–1748” (Paris: Albin Michel, 1978) by Rene Vaillot книга более педантичная, однако содержит такие крупицы золота, как живое описание дю Шатле, которая за утренним кофе читает пораженному гостю письмо от Христиана Вольфа о возможных гигантских обитателях планеты Юпитер. Написано это письмо было на латыни, а идея его, подробно обсуждавшаяся с Вольтером, несомненно легла в основу его рассказа «Микромегас» (который я вам от души рекомендую). Его тема — воззрения невинного и мудрого великана с душою, коей, как начинает догадываться читатель, хотел бы обладать и сам Вольтер, — возникала в ходе веков во множестве самых разных произведений: от Библии до голливудского фильма «День, когда остановилась земля» и до «Железного человека» Теда Хьюза.

Откровенная биография Nancy Mitford “Voltaire in Love”[187] (London: Hamish Hamilton, 1957) не особенно, как того и следовало ожидать, точна по части биографических подробностей, беспомощна в научном отношении, несколько стервозна по интонации и представляет собой первоклассное чтение. Сочинение Фонтенеля «Беседы о множественности миров» прекрасно передает то восторженное чувство, которое дю Шатле могла испытывать, вглядываясь в ночное небо.

Лучшим введением в тему Лейбниц — дю Шатле — Ньютон является вторая глава книги "Science and the Enlightenment”[188] by Thomas Hankins (New York: Cambridge University Press, 1985); а книга I. O. Wade “Voltaire and Mme du Châtelet: An Essey on the Intellectual Activity at Cirey”[189] (Princeton, N.J.: Princeton University Press, 1941) далеко не так суха, как заставляет заподозрить ее название. Статья Steven Shapin “Of Gods and Kings: Natural Philosophy and Politics in the Leibniz-Clarke Disputes”[190],Isis, 72, (1981), pp. 187–215 расширяет тему интеллектуальной борьбы, что в еще даже большей мере делает его же полемически заостренная новая интерпретация научной революции — см. “The Scientific Revolution”[191] (Chicago, University of Chicago Press, 1996).

Статья Carolyn Iltis “Madame du Châtelet's metaphysics and mechanics”[192], напечатанная в журнале “Studies in the History and Philosophy of Science”, 8 (1977), pp. 29–48, дает более привычную широкую картину исторической обстановки и составляет хорошую пару интригующей работе P. M. Heimann и J. E. McGuire “Newtonian Forces and Lockean Powers: Concepts of Matter in Eighteenth-Century Thought”[193], опубликованной в журнале “Historical Studies in the Physical Sciences”, 3 (1971), pp. 233–306. Те, кто хочет представить себе Сирей как научно-исследовательский центр и понять, что могут произвести на свет двое склонных к интеллектуальному авантюризму людей, вряд ли найдут более подходящее для этого чтение, чем книга Lewis Pyenson и Susan Sheets-Pyenson “Servants of Nature: A History of Scientific Institutions, Enterprises and Sensibilities”[194] (London: HarperCollins,1999).

Уравнение и Эйнштейн

Эйнштейн

Я питаю слабость к некоторым из ранних биографий Эйнштейна — дело тут обстоит как со старыми фильмами: сам принятый в них характер подачи материала несет в себе нечто от особенностей времени, в которое жили их герои, и в этом отношении сравняться с ними способны лишь немногие из произведений более поздних. Двумя биографиями, которые особенно нравились самому Эйнштейну, являются та, что была написана его пражским преемником: “Einstein: His Life and Times” by Philipp Frank (New York: Knopf, 1947) и “Albert Einstein: A Documentary Biography” by Carl Seelig, пер. Mervyn Savill (London: Staples Press, 1956). Силиг был журналистом — и другом семейства, которое многие годы переписывалось с Эйнштейном.

Из сочинений более недавних стоит отметить книгу Banesh Hoffmann “Albert Einstein, Creator and Rebel” (New York: Viking, 1972), в которой биография и ее научный фон смешаны в идеальных пропорциях. Что касается молодости Эйнштейна, книга “The Young Einstein: The Advent of Relativity”[195] by Lewis Pyenson (Boston: Adam Hilger, 1985) показывает, чего позволяет достигнуть вдумчивая академическая работа — Пайенсон детально изучил дела семейной фирмы, внутри которой рос Эйнштейн, и обнаружил, что его дядя изобрел измерительное устройство, основу работы которого составляла сверка сигналов, поступавших от двух разных часов, а это, если вдуматься, составляет ключевую часть рассуждений, приведших к созданию специальной теории относительности. Еще один пример искусного исследования дает статья Robert Schulmann “Einstein at the Patent Office: Exile, Salvation or Tactical Retreat”[196], напечатанная в специальном выпуске журнала “Science in Context”, vol. 6, number 1 (1993), pp. 17–24.

Что касается культурного фона, лишь очень немногие из ученых либо историков способны сравниться по глубине проникновения в него с той, которую продемонстрировал один из лучших американских историков Фриц Стерн в длинной третьей главе его труда “Einstein's German World”[197] (Princeton, N.J.: Princeton University Press, 1999) или в его же более ранней работе “Einstein's Germany”[198], напечатанной в сборнике “Albert Einstein, Historical and Cultural Perspectives”[199] ред. Gerald Holton и Yehuda Elkana (Princeton: Princeton University Press, 1982), pp. 319-43. Одним из тех, кто достиг высот Стерна, является Авраам Пайс, чья собственная жизнь это зеркальное отражение много из того, с чем пришлось столкнуться людям двадцатого века, и чья книга “"Subtle Is the Lord … ": The Science and the Life of Albert Einstein”[200] (New York: Oxford University Press, 1982) представляет собой последний, вероятно, рассказ, полученный нами от исследователя, близко знавшего Эйнштейна. Она построена на внимательном чтении статей Эйнштейна и потому насыщена техническими подробностями в большей, чем моя книга мере, и отличается глубокой, продуманной оценкой своего предмета.

Еще один выдающийся мыслитель, изучающий Эйнштейна, это Джеральд Холтон, сохранивший свежесть и глубину проникновения во всей его длящейся вот уже сорок лет работе. Я особенно рекомендую его Gerrald Holton “The Advancement of Science, and its Burdens” (Cambridge, Mass.: Harvard University Press, 1986, 1998), а также “Einstein, History, and Other Passions”[201] (Reading, Mass.: Addison-Wesley, 1996).

В виде добавления к эссе Веблена существует маленькая брошюра Claude Levi-Strauss “Race and History”, перепечатанная в его труде “Structural Anthropology”[202], Vol. 2 (New York: Penguin, 1977), и рассматривающая вопрос о том, каким образом глубочайшие идеи могут возникать при столкновении культур; классическая работа Mary Douglas “Purity and Danger”[203] (New York: Routledge, 1966) содержит еще более глубокий взгляд на мощные потенциальные возможности, возникающие в пору концептуальных и социальных изломов. Книга Nilton Bonder “Yiddishe Kop: Creative Problem Solving in Jewish Learning, Lore and Humor”[204] (Boston: Shambhala Publications, 1999) представляет собой почти мистический рассказ о интригующем культурном мире, тогда как статья Howard Gardner “The Creators' Patterns”[205], напечатанная в сборнике “Dimensions of Creativity”[206], ред. Margaret A. Boden (Cambridge, Mass: A Bradford Book, The MIT Press), pp. 143-58, возвращает нас на Землю, рассматривая Эйнштейна и Бессо в контексте отношений Фрейда с Флайссом, Марты Грэхем с Луисом Хорстом, и других творцов, каждый из которых в начале своего периода многолетней внешней изоляции, посвящавшегося приватной подготовке к дальнейшим свершениям, нуждался в поддержке близкого друга.

Введение в физику вопроса

Если вас интересуют физические основы уравнения, вам лучше всего провести лето за чтением какого-нибудь введения в математический анализ — после этого вы обнаружите, что университетские учебники, по которым изучают физику первокурсники, станут для вас открытыми книгами. Однако жизнь коротка и не у каждого из нас находится свободное лето, а потому прочтите довольно простую с виду, но очень сильную книгу Роберта Миллса (из прославленной пары Янг-Миллс): Robert Mills “Space, Time and Quanta: An Introduction to Contemporary Physics”[207] (New York: W. H. Freeman and Company, 1994), способную дать подготовку первокурсника даже тем, кто математическим анализом не владеет.

На уровне менее техническом существует великолепная компиляция Timothy Ferris “The World Treasury of Physics, Astronomy, and Mathematics”[208] (Boston: Little, Brown, 1991). Она содержит изящные статьи, написанные видными современными учеными, — и даже четыре посвященных E=mc2 страницы, вышедшие из-под пера самого Эйнштейна.

Книга Lawrence Kraus “The Physics of Star Trek”[209] (New York: Basic Books, 1995) отличается совершенно оригинальным подходом: скажем, уравнение E=mc2 обсуждается в ней на примере реальных затруднений, с которыми герой этого фильма Скотти столкнулся бы, выполняя команду капитана Керка «Веди меня по лучу». Книга покойного Крауса: Kraus “Fear of Physics: A Guide for the Perplexed”[210] (New York: Basic Books, 1994) содержит более систематическую разработку некоторых вопросов физики. Книга Alan Lightman “Dance for Two: Selected Essays”[211] (London: Bloomsbury, 1996) — это живо написанные рассказы, посвященные избранным автором темам: заглавная, к примеру, описывает законы Ньютона на примере грузных (пусть и неприметных) скачков вверх и вниз, которые Земля совершает при каждом подскоке балерины на сцене одного из театров.

Colin Bruce “The Strange Case of Mrs. Hudson’s Cat: Or Sherlock Holmes Solves the Einstein Mysteries”[212] (New York: Vintage, 1998) — это книга из тех, что заставляют авторов других книг хвататься за голову: «Как же я сам до этого не додумался?». Брюс написал ряд рассказов о Шерлоке и Ватсоне, каждый из которых основан на разрешении одного из основных принципов физики. Ватсон путает все на свете, Бейкер-стрит погружается в туман, профессор Челленджер совершает акты вероломства, а читатель без особых трудов узнает много нового.

Введение в специальную теорию относительности

В книге Russell Stannard “The Time and Space of Uncle Albert”[213] (London: Faber and Faber, 1989) описывается череда насмешливых разговоров, которые добрый дядюшка Альберт ведет со своей сверхсовременной племянницей Геданкен. Она рекламируется как предназначенная для подростков и даже младших школьников, однако в качестве начального чтения прекрасно подходит и для взрослых. Выходившая во множестве изданий книга Джорджа Гамова (George Gamow) “Mr. Tompkins in Wonderland”[214] отличается подходом не менее приятным. Вместо того, чтобы анализировать связанные с уравнением Эйнштейна «как» и «почему», Гамов, во всяком случае поначалу, просто помещает воображаемого и напрочь сбитого с толку банковского клерка в обстановку, которую описывают теория относительности и иные физические теории. (Книга Гамова была переработана — см. Russell Stannard “The New World of Mr. Tompkins”[215] [New York: Cambridge University, 1999]). Julian Schwinger в его “Einstein’s Legacy: The Unity of Space and Time”[216] (Basingstoke, England: Freeman, 1986) поднимается на одну ступень выше, давая ясное и красноречивое описание теории относительности и уравнения Эйнштейна; очень хороши также работы Wald и Geroch, упоминаемые на с.190.

Ньютон

Из множества биографий Ньютона я начал бы с A. Rupert Hall “Isaac Newton: Adventurer in Thought”[217] (New York: Cambridge University Press, 1992). Составленная Нортоном критическая антология “Newton: Texts, Backgrounds, Commentaries”[218] ред. I. Bernard Cohen и Richard S. Westfall (New York: Norrton, 1995), содержит многочисленные выдержки из написанного Ньютоном, а также из посвященной ему литературы двадцатого века — от Кейнса и Койре до Вестфалла и Шаффера. Это самое лучшее руководство для тех, кто хочет пойти дальше.

Внутри атома (главы 8 и 9)

Читая посвященное Резерфорду четырнадцатистраничное эссе Ч. П. Сноу из его книги C. P. Snow “Variety of Men”[219] (London: Macmillan, 1968), вы словно слышите сообщаемый вам на ухо рассказ о том, что в действительности происходило в те славные дни в лаборатории Кавендиша. Слышите, как Резерфорд, когда кто-то говорит ему, что он неизменно находится на гребне волны, не без рисовки заявляет: «Ну, в конце концов, я же эту волну и поднял, не так ли?». Но слышите и голос его потаенной неуверенности в себе, когда он, говоря о необходимости финансовой поддержки определенных заокеанских фондов, вдруг выпаливает: «Если бы не они, не было бы и меня».

Прочитав Сноу, попробуйте перейти к книге A. S. Eve “Rutherford” (London: Macmillan, 1939), — из нее вы узнаете о тех ранних днях много нового. Несмотря на лишенное особой изобретательности название, книга Mark Oliphant “Rutherford” (New York: Elsevier, 1972) это оригинальная и сильная вещь — вы узнаете из нее о гневе, а затем и смущенных полуизвинениях Резерфорда, понявшего вдруг, что созданная им лучшая исследовательская лаборатория мира начинает медленно разваливаться — и не в малой мере по причине изъянов собственной его натуры. Олифант был одним из последних многообещающих учеников Резерфорда, человеком, который все-таки заставил Бриггса начать осуществление проекта по созданию в США атомной бомбы и умер незадолго до своего девяностолетия, — за несколько недель до того, как эта книга была отправлена в типографию, — успев совершить славную послевоенную карьеру, включавшую и десятилетия борьбы с разработкой и распространением ядерного оружия.

Книга Andrew Brown “The Neutron and the Bomb: A Biography of Sir James Chadwick”[220] (New York: Oxford University Press, 1997) уместно нейтральна — ведь речь в ней идет о человеке, открывшем нейтрон. Молодость Чедвика рассматривается в этой книге достаточно подробно для того, чтобы мы могли понять, как этот спокойный человек оказался, в итоге, единственным, кто способен был противостоять и Оппенгеймеру, и Гроувзу, что и закрепило за ним ключевую роль в успехе «Манхэттенского проекта». Однако наибольшей удачей Олифанта является рассказ о том, как возникшее, в конце концов, ярое соперничество Чедвика и Резерфорда проявляло себя через посредство немилосердной, натянутой холодности, отличавшей отношения их жен.

Книга Лауры Ферми “Atoms in the Family”[221] (Chicago: University of Chicago Press, 1954) это рассказ жены Ферми о муже, иногда прибегавшем к ласково поддразниваему тону сестры Эйнштейна. Более подробно о научной истории и личности этого тихого и целеустремленного человека рассказывается в книге Emilio Segre “Enrico Fermi, Physicist”[222] (Chicago: University of Chicago Press, 1970). Прекрасное эссе Gerald Holton “Fermi's group and the recapture of Italy's place in physics”[223], опубликованное в сборнике “The Scientific Imagination”[224] (Cambridge, Mass.: Harvard University Press, 1998), подробно рассказывает о работе римской исследовательской группы — и, в частности, о том, как Ферми нашел для себя всесильного чиновного покровителя, сыгравшего в этой работе немаловажную роль.

Как удалось Резерфорду и Ферми создать и поддерживать столь могучие исследовательские центры? Книга Edward Shils “Center and Periphery: Essays in Macrosociology”[225] (Chicago: University of Chicago Press, 1975) хорошо освещает стандартные социологические основания соответствующих процессов, между тем как статья J. H. Brown “Spatial variation in abundance”[226], Ecology, 76 (1995), pp. 2028-43 содержит интересную демонстрацию того, каким образом не очень сильный нажим со стороны конкурентов дает превосходные результаты в том, что касается возникновения новых видов деятельности. В книге Terence Kealey “The Economic Laws of Scientific Research”[227] (New York: St. Martin's Press, 1996) используется подход до странного занятный, в ней показывается, к примеру, каким образом фармацевтические компании и другие научно-исследовательские группы постоянно выигрывают, нанимая перворазрядных ученых, полагающих, что им предстоит выполнять оригинальную работу, между тем, как используют их просто для толкового отсеивания зерен от плевел в существующей научной литературе.

Книга Ruth Lewin Sime “Lise Meitner: A Life In Physics” (Berkeley: University of California Press, 1996), отличающаяся оправданно сильной феминистской направленностью, рассказывает о росте Майтнер как ученого; см. также первоклассное эссе о Майтнер, опубликованное Sallie Watkins в сборнике “A Devotion to Their Science”, ред. Marlene F. и Geoffrey W. Rayner-Canham (Toronto: McGill-Queen's University Press, 1997). Это идеальное дополнение к короткому рассказу самой Майтнер “Looking Back” Bulletin of the Atomic Scientists, 20 (Nov. 1964), pp. 2–7. Автобиография Отто Фриша: Otto Frisch “What Little I Remember” (New York: Cambridge University Press, 1979) дает прекрасное представление об этом милейшем человеке. В книге Richard Posner “Aging and Old Age”[228] (Chicago: Univeristy of Chicago Press, 1995) содержится свежий взгляд на «невозвратные издержки», сопровождающие длительную карьеру ученого.

Создание бомбы (главы 10–13)

В 1943-м вооруженные охранники, служившие в армии Соединенных Штатов, проявили бы значительный личный интерес ко всякому постороннему лицу, попытавшемуся скопировать лекции, которые Роберт Сербер читал ученым, только-только появляшимся в Лос-Аламосе, ибо лекции эти содержали обзор всего, что было к тому времени известно о возможности создания атомной бомбы. Ныне копии этих лекций можно без особых хлопот прочесть в книге Robert Serber “The Los Alamos Primer” (Berkeley: University of California Press, 1992). Помимо лекций, в ней содержатся великолепные комментарии и воспоминания Сербера. Это идеальное чтение для каждого, кто хочет проникнуться настроениями работавших в Лос-Аламосе людей.

Лучшим источником сведений об Оппенгеймере является книга “Robert Oppennheimer: Letters and Recollections”, ред. Alice Kimball Smith и Charles Weiner (Palo Alto, Calif: Stanford University Press pbk 1995; orig. Harvard University Press, 1980). Письма его замечательно откровенны: краткие мгновения интеллектуальной радости сменяются в них самобичеванием — разумеется, они не обходятся и без рисовки в самых разных ее видах. Драматическое повествование о том, как Оппенгеймеру и Лоуренсу удалось преодолеть их взаимную опасливость и стать лучшими друзьями, — чтобы затем обратиться в усталых, впавших в смятение врагов, — содержится в книге Nuel Phar Davis “Lawrence and Oppenheimer” (London: Jonathan Cape, 1969). Ставшие бестселлером воспоминания Ричарда Фейнмана «Вы, разумеется, шутите, мистер Фейнман» это живое и глубоко личное повествование; книга James Gleick “Genius: Richard Feynman and Modern Physics”[229] (New York: Pantheon, 1992) это куда более полный рассказ о том, что пришлось пережить в Лос-Аламосе Фейнману и другим ученым.

Самый полный рассказ об американском и немецком проектах содержится в книге Richard Rhodes “The Making of the Atomic Bomb” (New York: Simon amp; Schuster, 1986), ставшей заслуженным лауреатом «Национальной книжной премии». Подслушивание — дело постыдное, но приятное, и книга “Hitler's Uranium Club: The Secret Recordings at Farm Hall” под редакцией и с комментариями Jeremy Bernstein (Woodbury, N.Y.: American Institute of Physics, 1996) дает нам расшифровку записей подслушанных разговоров, которые вели Ган, Гейзенберг и другие интернированные немецкие ученые в те шесть долгих месяцев, которые они провели в не лишенном приятности плену. Комментарии Бернстайна дают очень ясные представления об их научных и личных историях. Книга Samuel Goudsmit “Alsos: The Failure in German Science” (London: Sigma Books, 1947; reissued Woodbury, N.Y: American Institute of Physics, 1995), местами не очень точна, однако она представляет собой пикантный персональный рассказ главы миссии США, направленной перед окончанием войны в Европу для сбора информации — и для отлова немецких ученых.

“Physics and Beyond: Encounters and Conversations” (London: Allen amp; Unwin, 1971) — это рассказ самого Гейзенберга о его жизни и основных моментах, в которых происходило разветвление его интеллектуальных интересов. Книга David Cassidy “Uncertainty: The Life and Science of Werner Heisenberg” (Basingstoke, England: Freeman, 1992) многое добавляет к этому рассказу. Хотя бы из честности следует упомянуть и о книге Thomas Powers “Heisenberg's War: The Secret History of the German Bomb”[230] (London: Jonathan Cape, 1993), в которой излагаются взгляды, отличные от моих; основные ее положения были серьезно оспорены в обширной рецензии Ричарда Пайерлса, приведенной в его Richard Peierls “Atomic Histories” (New York: Springer-Verlag, 1997), pp. 108-16; равно как и в уже упомянутой книге Джереми Бернстайна, в которой приводится его рецензия, напечатанная в журнале Nature, 363 (May 27,1993), pp. 311-12, и в особенности в рецензиях журнала American Historical Review, 99 (1994), pp. 1715-17, и в книге Paul Lawrence Rose “Heisenberg and the Nazi Atomic Bomb Project: A Study in German Culture”[231] (Berkeley: University of California Press, 1998).

Великолепный отчет о событиях в Норвегии содержится в книге самого Хаукелида — Knut Haukelid “Skis Against the Atom” (London: William Kimber, 1954, reissued), между тем как несколько коротких глав очень приятной для чтения книги Leo Marks “Between Cyanide and Silk: A Codemaker's Story 1941–1945”[232] (New York: HarperCollins, 1999), посвященных сплоченности проходивших в Лондоне подготовку норвежцев, способны многое добавить к пониманию причин их успеха. Посвященная усилиям, которые предпринимало Соединенное королевство, книга Richard Wiggan “Operation Freshman: The Rjukan Heavy Water Raid 1942”[233] (London: William Kimber, 1986) содержит расшифровку стенограмм проводившихся в Норвегии судов над военными преступниками и рассказ о пленении лондонских молодых людей, посланных в эту студеную, смертельно опасную страну.

Решение американцев об использовании бомбы рассматривается с распространенной военно-стратегической точки зрения в книге Stephen E. Ambrose “Americans at War”[234] (New York: Berkeley Books, 1998), pp. 125-38; а с точки зрения административной — в книге Margaret Gowing “Britain and Atomic Energy 1939–1945”[235] (London: Macmillan, 1964). Однако наилучшей из всех мне представляется книга J. Samuel Walker “Prompt and Utter Destruction: Truman and the Use of Atomic Bombs Against Japan”[236] (Chapel Hill, N.C.: University of North Carolina Press, 1997), в которой показывается в какой большой мере плохо подготовленного Трумена направляли и подталкивали его советники с их собственными бюрократическими, геополитическими и внутригосударственными интересами; а также сколь многие из тогдашних американских военных руководителей были напуганы согласным мнением этих советников о том, что атомная бомбардировка неизбежна.

Было ли такое решение оправданным или нет, то, о чем рассказывается в главе 19 книги Richard Rhodes “The Making of the Atomic Bomb”, это необходимое напоминание о том, какими последствиями обернулись эти решения на земле в те два августовских утра; а граничащее с потерей речи нежелание многих послевоенных ученых обсуждать нравственные аспекты их работы над атомным оружием является центральной темой книги Robert Jay Lifton и Eric Markusen “The Genocidal Mentality: The Nazi Holocaust and Nuclear Threat”[237] (London: Macmillan 1991)

Вселенная (Главы 14–16)

Пэйн

Здесь самым богатым источником является книга “Cecilia Payne-Gaposchkin: An Autobiography and Other Recollections”, ред. Katherine Haramundanis (New York: Cambridge University Press, 2nd ed., 1996). См. также вдумчивое эссе George Greenstein “The Ladies of Observatory Hill” в его “Portraits of Discovery” (New York: Wiley, 1998). Интересные сравнения с взглядами более позднего поколения содержится в книге Vera Rubin “Bright Galaxies, Dark Matters”[238] (Woodbury, N.Y.: American Institute of Physics, 1997), тогда как немного устаревшая, но превосходно читаемая George Gamow “The Birth and Death of the Sun: Stellar Evolution and Subatomic Energy”[239] (London: Macmillan, 1941) дает полезные впечатления и физике Солнца времен Пэйн.

Хойл и Земля

Фред Хойл — лучший писатель среди всех известных мне ученых высокого уровня. Читать его автобиографию — “Home Is Where the Wind Blows: Chapters from a Cosmologist's Life” (New York: Oxford University Press, 1997) — сплошное удовольствие. Из нее можно узнать, по какой причине его поколение подростков вынуждено было страдать, ходя в школу с самыми мокрыми в Йоркшире ногами (предыдущие поколения носили башмаки на деревянных подошвах, через которые вода проходила насквозь, следующее поколение получило ботинки, которые воду не пропускали, поколению же Хойла выпали на долю ботинки, пропускашие воду в себя и не выпускавшие наружу). Мы также узнаем из нее многое о лекторском стиле Дирака, о стиле мышления Эддингтона, об бедах, к которым приводили сверхсложные кембриджские экзамены, о достижениях, которые порождала наисправедливейшая система кембриджских стипендий, и получим, кроме прочего, и сведения о нуклеосинтезе, и сравнительных исследовательских стилях королевских военно-воздушных и военно-морских сил, об академической политике и о поразительной выносливости картонных автомобилей.

Если вас интересует более широкий контекст работы Хойла, обратитесь, опять-таки, к Timothy Ferris “Coming of Age in the Milky Way” (New York: William Morrow, 1988).

Чандрасекар

Kameshwar C. Wali “Chandra: A Biography of S. Chandrasekhar” (Chicago: University of Chicago Press, 1992) — великолепная биография, я особенно рекомендую вам те шестьдесят страниц ее «Эпилога», на которых приведены разговоры Вали с Чандра. Когда Чандра описывает Ферми («Дело было, разумеется, в том, что Ферми обладал способностью мгновенно углубляться в любую физическую проблему… в его глубочайшем чувстве законов физики. Движение межзвездных облаков с пронизывающими их силовыми линиями магнитного поля, напоминало ему вибрации кристаллической решетки, а гравитационная нестабильность спиральной ветви галактики, внушала мысль о нестабильности плазмы и приводила его к рассмотрению возможности ее стабилизации с помощью… магнитного поля»), он также описывает и самого себя, давая нам представление о том, каким может видеть мир столь мощный, способный к установлению взаимосвязей мозг. Я также рекомендую вам прочесть сборник статей самого Чандры “Truth and Beauty: Aesthetics and Motivations in Science” (Chicago: University of Chicago Press, 1987).

Помощь в дальнейшем проникновении в астрофизику вам может оказать многое множество текстов. Особенно хороша книга Fred Adams и Greg Laughlin “The Five Ages of the Universe: Inside the Physics of Eternity”[240] (New York: Free Press, 1999), охватывающая историю вселенной от ранних ее мгновений до очень, очень далекого будущего. Сборник работ Stephen Hawking “Black Holes and Baby Universes”[241] (New York: Bantam, 1993) и увлекателен, и полон ироничной продуманности; что же касается читателей, которые привыкли полагаться на популяризаторские книги о науке, но находят их несколько расплывчатыми, я посоветовал бы им отказаться от этих книг и почитать такие блестящие вводные тексты как Theodore P. Snow “The Dynamic Universe: An Introduction to Astronomy”[242] (St. Paul: West Publishing Company, several editions).

Общая теория относительности (Эпилог)

Лучшее из известных мне введений в эту науку является также и самым сжатым. Это книга Robert M. Wald “Space, Time, and Gravity: The Theory of the Big Bang and Black Holes”[243]. В одном ряду с ней стоит не менее превосходная Robert Geroch “General Relativity From A to B”[244]. И Уолд, и Герох используют ясный геометрический подход, эти книги содержат множество схем и картинок, помогающих в понимании того, что в них сказано, поэтому человеку, не имеющему научной подготовки, читать их так же легко, как книгу по архитектурному проектированию — с той лишь разницей, что здесь речь идет о проектировании нашей вселенной.

Книга Kip Thorne “Black Holes and Time Warps: Einstein's Outrageous Legacy” (New York: Norton, 1994) намного длиннее, в ней иногда нетрудно сбиться с пути, утонуть в потоке биографических данных. Однако по большей части она отличается живостью, а к тому же Торн — подобно Уолду и Герозу, десятилетиями были ведущими в области общей теории относительности учеными. Если вас интересует продуманное описание наблюдавших солнечное затмение экспедиций 1919 года — и истинные мотивы, двигавшие Эддингтоном, — не пропустите 6 главу книги Чандрасекара “Truth and Beauty: Aesthetics and Motivations in Science”.

Благодарности

Я не смог бы написать эту книгу в одиночку. Многое в ней обязано своим происхождением лекционному курсу «Интеллектуальный инструментарий», который я читал в Оксфорде, и который был задуман Роджером Оуэном и Ральфом Дарендорфом. В течение многих лет этот курс помогал выпестовать Ави Шлаим, а Пол Клемперер, прослушав одну из посвященных творческим усилиям лекций, сделал несколько весьма уместных замечаний, которые помогли расширить те аспекты этого курса, которые связаны с физикой.

После того, как был закончен первый черновой вариант книги, несколько моих друзей — Бетти Сью Флаувер, Джонатан Раусон, Мэтт Хоффман, Тара Лемми, Эрик Грюнвальд, Питер Крамер и Кэролайн Андервуд — были настолько добры, что прочли рукопись целиком. Я получил от них великолепные советы, многими из которых в дальнейшем воспользовался. Еще большую отвагу проявили сотрудники издательства «Уолкер-энд-Компани» Джордж Гибсон и Джекки Джонсон, раз за разом осыпавшие меня мудрыми замечаниями, которые помогли в огромной мере усовершенствовать эту книгу. Читателями ее, проверившими отдельные главы на предмет точности сообщаемых в них сведений или ответившими на мои конкретные вопросы, были Стивен Шейпин, Дан ван дер Ват, Шон Джонс, Боб Уолд, Том Сеттл, Малколм Паркерс, Ян Коган, Дэвид Найт, Уинстон Скотт и Фрэнк Джеймс. Ни один из них, разумеется, не несет ответственности за какие-либо уцелевшие в книге ошибки.

Особенно значительную помощь я получил от двух людей. Дуг Борден, с которым я вел долгие, неторопливые телефонные разговоры, помог мне понять, как наилучшим образом построить главы, посвященные «массе» и «энергии». Красноречивейшая из всех моих друзей Габриэлль Уолкер обсуждала со мной все особенности книги, открывая для меня мир честного сочинительства в разговорах, которые мы с ней многие месяцы вели во время весьма изысканных обедов. Особенно памятной стала для меня ночная прогулка по Сент-Джеймсскому парку, во время которой она объяснила, каким образом тихо разрастающийся хорал из «Страстей по Матфею» указывает путь, следуя коим я могу — после того, как история уравнения доберется до 1945 года, — уклониться от строго хронологического порядка изложения. Без этого книга дальше 13-й главы попросту не пошла бы.

Долгое время я не мог решить, какой уровень объяснений был бы наилучшим для основных глав книги. Питер Крамер оказался в особенности убедительным в его рекомендациях относительно того, что мне следует показать результаты использования уравнения, не вдаваясь в подробности относительно того, почему оно верно. Чтобы сделать это, я поместил самую суть тех объяснений, без которых обойтись невозможно, в основной текст, добавил чуть большее их число в примечания, а затем разместил еще большее — в особенности тех, что связаны с математикой, — на интернетовском сайте davidbodanis.com. Мне нравится сама идея того, что книга не является больше отдельным, хорошо определимым объектом, состоящим всего лишь из бумаги, клея и брошюровочных скрепок. Чтобы сделать сайт интересным не только для тех, кого интересуют чисто технические подробности, я добавил к нему кое-какие воспоминания о моих проведенных в Чикаго отроческих годах (эти воспоминания позволили мне с легкостью перейти к объяснению того, как сливаются одно с другим пространство и время). На сайте можно также познакомиться с озарениями, посетившими Уильяма Блейка, послушать голос Эйнштейна, найти ссылки на прочитанные мной лекции об уравнении Эйнштейна и получить объяснения того обстоятельства, что такие простые формы искусства, как уравнения, нередко несут в себе истину — ну и узнать о многом ином.

Для проведения исследований подобного рода недавно построенное новое здание Британской библиотеки подходит великолепнейшим образом: это одна из величайших библиотек мира и, возможно, последняя пирамидоподобная дань уважения доинтернетовскому веку. Многие из хранимых Библиотекой научных журналов все еще находятся в старых читальных залах, расположенных на Саутгемптон-Роу, — их интерьеры и кофейни несколько не дотягивают до уровня нового здания, однако этот недостаток во многом искупается развешанными по их стенам фотокопиями оригинальных патентных заявок (среди которых можно увидеть заявки Уиттла на реактивный двигатель, заявки на скрепку для бумаг, на термос и на закрученное крыло братьев Уайт).

Полезной оказалась и библиотека лондонского Юниверсити-Колледжа — несмотря на то, что в физическом ее обличии проступают результаты многолетней скудости финансирования, сотрудники библиотеки делают все, чтобы залатать трещины в ее стенах. Расположенная на Сент-Джеймсской площади Лондонская библиотека от недостатка финансирования не страдает, что составляет одну из серьезных причин, по которым этот город стоит того, чтобы в нем жить. Это ранневикторианское, но все еще работающее учреждение: на его открытых для доступа полках стоит около миллиона книг, в том числе и множество первых изданий. В ней я пристрастился к чтению текстов, содержащих ссылки на малодоступные труды ранних биографов, которые обычно удается отыскать, пусть их и покрывает тонкий слой пыли, стоящими на расстоянии вытянутой руки на той же полке, что и ссылающаяся на них книга..

Еще одно дополнительное достоинство этой библиотеки состоит в том, что я мог набирать в ней целую охапку трудов и писем Фарадея, Максвелла и им подобных, и оттаскивать все это на одну из скамей, врытых под дубами, что украшают центр Сент-Джеймсской площади, — на самое подходящее для чтения таких текстов место. По одну его сторону стоит красного кирпича дом, вмещавший в 1944-м, когда боязнь немецкой атомной бомбы достигла высшей точки, эйзенхауэровскую Главную штаб-квартиру экспедиционных сил Союзников; за спиной у меня висела мемориальная доска в честь Ады, графини Лавлейс, профессора компьютерного программирования девятнадцатого века, испытавшей немало взлетов и падений, которые сопровождали в то время карьеру женщины-ученого; направляясь на ленч в суши-бар, я проходил мимо дома на Джермин-стрит, в котором жил когда-то Ньютон; а, усевшись за ленч, оказывался прямо напротив огромного зала, в котором была впервые сообщена новость, подтвердившая справедливость предсказаний, сделанных общей теорией относительности Эйнштейна.

Большую часть собственно написания книги пришлась на время, когда моя жена Карен преобразовывалась из выдающегося историка в выдающегося бизнес-консультанта. Мы всегда проводили массу времени с нашими детьми, но теперь ей приходилось улетать в Женеву, Вашингтон, Берлин и, хотя впоследствии она помогала мне в работе со сменявшими один другого черновыми вариантами, давая добрые, хоть и язвительные советы, в ту пору я вынужден был посвящать детям большую, чем прежде, часть дневного времени. А это означало, что писательские труды мне нередко приходилось прерывать. Но, как это ни странно, работа над текстом шла у меня быстрее прежнего.

Думаю, дело в том, что отдавая время детям, я поневоле делал перерывы, которых писатели себе обычно не позволяют. Направляясь в детский, мы, бывало, ложились на землю, чтобы понаблюдать за ползающими в траве муравьями, или останавливались, чтобы поговорить с людьми, сверлившими в тротуаре какие-то дыры, а почти у каждого из них имелись младшие братья и сестры или собственные дети и потому они были только рады прерваться и рассказать, как работают их инструменты, заворожено слушавшим эти объяснения ребятишкам трех и пяти лет. Были у нас и компьютерные игры, и долгие ленчи и вечера. Мне случалось, конечно, задумываться о своем и впадать в сварливость (простите, ребята), однако по большей части я с нетерпением ждал времени, проводимого нами вместе, чудотворного восстановления сил, которое может дать только общение с обладателями очень юных, очень любознательных умов (спасибо, ребята).

Когда, наконец, наступал поздний час и дети отправлялись спать, я садился в большое стоявшее в их комнате кресло (казавшееся мне куда более удобным, чем то, что стоит в моем кабинете), раскладывал вокруг себя книги и заметки и с удовольствием посвящал этой книге час за часом, — пока за окнами темнело небо и стихали улицы Лондона. Бывало, что я, расписавшись вовсю, забывал даже о давно остывшем кофе и, спохватившись, обнаруживал, что просидел так всю ночь, — самый памятный из этих случаев приходится на то место книги, в котором я писал о химии Солнца, писал, пока его ревущий от термоядерных взрывов, коими правит E=mc2, шар поднимался над горизонтом где-то далеко за устьем Темзы, чтобы напитать наши жизни.

Мне очень нравилось писать эту книгу.

[51] «Никогда не знавший состояния покоя: Биография Исаака Ньютона» (англ.).

[52]Заранее, до опыта (лат.)

[53] «Математические элементы натуральной философии, подтвержденные опытами» (англ.).

[54] «Письма маркизы дю Шаттле» (франц.).

[55] «Маркиз восемнадцатого столетия» (англ.).

[56] «Альберт Эйнштейн: Картина его жизни и представлений о мире» (англ.).

[57] «Эйнштейн и религия: физика и теология» (англ.).

[58] «Наука и чудеса: Беседы о науке и вере» (англ.).

[59] «Проблески величия» (англ.).

[60] «Мария Кюри: Жизнь» (англ.).

[61] «Альберт Эйнштейн: Документальная биография» (англ.).

[62] «Макс Вебер: Биография» (англ.).

[63] «Ньютон: Тексты, предпосылки, комментарии» (англ.).

[64] «Был ли прав Эйнштейн? Проверка общей теории относительности» (англ.).

[65] «Кубизм и относительность; с приложением письма Альберта Эйнштейна» (англ.).

[66] «Достижения науки и ее бремя» (англ.).

[67] «Ньютон и опыт Этвеша» (англ.).

[68] «Астрономия от Кеплера до Ньютона: Исторические исследования» (англ.).

[69]«“Год чудес” сэра Исаака Ньютона, 1666–1966» (англ.).

[70]Джон Ролз (р. 1923), американский философ.

[71] «Альберт Эйнштейн — Набросок биографии» (англ.).

[72] «В тени Альберта Эйнштейна» (англ.).

[73] «Жена Эйнштейна» (англ.).

[74] «Альберт Эйнштейн и Милева Марич: Сотрудничество, не увенчавшееся успехом» (англ.).

[75] «Творческие пары в науке» (англ.).

[76] «Альберт Эйнштейн, Милева Марич: Любовная переписка» (англ.).

[77] «Нейтрон и бомба: Биография сэра Джеймса Чедвика» (англ.).

[78] «Новая алхимия» (англ.).

[79] «Лизе Майтнер: Несостоявшийся нобелевский лауреат» (англ.).

[80] «Преданность науке» (англ.).

[81] «Эйнштейн: Его жизнь и время» (англ.).

[82] «Лизе Майтнер: Жизнь в физике» (англ.).

[83] «Платоновская республика» (англ.).

[84] «То немногое, что я запомнил» (англ.).

[85] «Создание атомной бомбы» (англ.).

[86] «Оглядываясь назад» (англ.).

[87] «Эйнштейн: К столетию» (англ.).

[88] «Избранное» (англ.).

[89] «Воспоминания Юджина П. Вигнера (рассказанные им Эндрю Сцантону)» (англ.).

[90] «Эйнштейн о мире» (англ.).

[91] «Неопределенность: Жизнь и наука Вернера Гейзенберга» (англ.).

[92] «Ученые при Гитлере» (англ.).

[93] «Немецкий национал-социализм и вопрос о ядерной мощи, 1939–1949» (англ.).

[94] «Эйнштейн и Министерство обороны» (англ.).

[95] «Лоуренс и Оппенгеймер» (англ.).

[96] «Экономические законы научного исследования» (англ.).

[97]С высшим отличием (лат.).

[98] «Урановая дубинка Гитлера» (англ.).

[99] «Поганая работенка: Мои личные воспоминания о годах, проведенных в компании “Локхид”» (англ.).

[100] «Времена Нильса Бора» (англ.).

[101] «Немецкий национал-социализм» (англ.).

[102] «Плотнее воды» (англ.).

[103] «Лыжи против атома» (англ.).

[104] «Физики: История научного сообщества современной Америки» (англ.).

[105] «Мозг в вечном движении» (англ.).

[106] «Дж. Роберт Оппенгеймер: Сотрясающий миры» (англ.).

[107] «Роберт Оппенгеймер: Письма и воспоминания» (англ.).

[108] «Геоны, черные дыры и квантовая пена» (англ.).

[109] «Лос-Аламос в самом начале» (англ.).

[110] «Создание атомной бомбы» (англ.).

[111] «Немецкий национал-социализм и стремление к ядерной мощи, 1939–1949» (англ.).

[112] «Приключения исследователя радиоизотопов». (англ.).

[113] «Миссия “Алсос”» (англ.).

[114] «Физика и не только она: Интервью и беседы» (англ.).

[115] «Век Америки» (англ.).

[116] «Разрушенный мир: Атомная бомба и Большой Альянс» (англ.).

[117] «Лос-Аламосский детонатор» (англ.).

[118] «Атомные истории» (англ.).

[119] «О демократии в Америке» (англ.).

[120] «Боевой дух» (англ.).

[121] «Дорога из Лос-Аламоса» (англ.).

[122] «Сесилия Пэйн Гапошкин: Автобиография и другие воспоминания» (англ.).

[123] «Женщины Обсерваторского холма» в книге «Портреты открытий» (англ.).

[124] «Квантовая физика и звезды. 2. Генри Норрис Рассел и обилие химических элементов в атмосферах Солнца и иных звезд» (англ.).

[125] «Чандра: Биография С. Чандрасекара» (англ.).

[126] «Дом находится там, где дует ветер: Главы из жизни космолога» (англ.).

[127] «Большая пробоина: /Затопление немецкого флота в Скапа-Флоу в 1919 году» (англ.).

[128] «Черные дыры и искривление времени: Возмутительное наследие Эйнштейна» (англ.).

[129] «Истина и красота: Эстетика и мотивация в науке» (англ.).

[130] «Вздувающееся пространство» (англ.).

[131] «Цитируемый Эйнштейн» (англ.).

[132] «Альберт Эйнштейн как человек» (англ.).

[133] «Пространство, время и гравитация» (англ.).

[134] «Автобиография Бертрана Рассела» (англ.).

[135] «Наука в современном мире» (англ.).

[136] «История газеты “Нью-Йорк Таймс”» (англ.).

[137] «Избранные сочинения Джона Мейнарда Кейнза, том Х: Биографические статьи» (англ.).

[138] «Драма Альберта Эйнштейна» (англ.).

[139] «Альберт Эйнштейн — Мишель Бессо. Переписка, 1903–1955» (англ.).

[140] «Урановая дубинка Гитлера: Секретные записи Фарм-Холл» (англ.).

[141] «Операция “Эпсилон”: Расшифровка записей с Фарм-Хилл» (англ.).

[142] «Избранные письма Майкла Фарадея» (англ.).

[143] «Переписка Майкла Фарадея» (англ.).

[144] «Майкл Фарадей, зандеманианец и ученый: Наука и религия в девятнадцатом столетии» (англ.).

[145] «Майкл Фарадей: Его жизнь и творчество» (англ.).

[146] «Новое открытие Фарадея: Статьи о жизни и творчестве Майкла Фарадея» (англ.).

[147] «Гемфри Дэви: Наука и власть» (англ.).

[148] «Переменчивый химик» (англ.).

[149] «Сохранение энергии как пример открытия, одновременно сделанного многими» (англ.).

[150] «Необходимое напряжение: Избранные исследования научных традиций и перемен» (англ.).

[151] «Наука энергии: Культурная история физики энергий в викторианской Британии» (англ.).

[152] «Умозрительные рассуждения и опыт как основания совершенного Эрстедом открытия электромагнетизма» (англ.).

[153] «Две карты» (англ.).

[154] «Развитие науки и ее бремя» (англ.).

[155] «Великие принципы сохранения» (англ.).

[156] «О характере физических законов» (англ.).

[157] «Второй закон: Энергия, хаос и форма» (англ.).

[158] «Физика информационной технологии» (англ.).

[159] «Антуан Лавуазье: Наука, администрирование и революция» (англ.).

[160] «Лавуазье: Химик, биолог, экономист» (англ.).

[161] «Месмеризм и конец Просвещения во Франции» (англ.).

[162] «Жан Поль Марат: Исследование радикализма» (англ.).

[163] «Архитектура материи» (англ.).

[164] «Возникновение современной науки» (англ.).

[165] «Понятие массы в классической и современной физике» (англ.).

[166] «О границах осуществленной Лавуазье революции в химии» (англ.).

[167] «Фермент знания» (англ.).

[168] «Революция в химии: Изменения основных предпосылок» (англ.).

[169] «Революция в химии: Новые интерпретации» (англ.).

[170] «Наследие Люцифера — значение асимметрии» (англ.).

[171] «В поисках исконных строительных блоков» (англ.).

[172] «Ремер и первое определение скорости света»

[173] «Галилеевы спутники Юпитера от Галилея до Кассини, Ремера и Бредли» (англ.).

[174] «Общая история астрономии, том 2, Планетарная астрономия от Возрождения до возникновения астрофизики. Часть А: от Тихо Браге до Ньютона» (англ.).

[175] «Совершеннолетие на Млечном пути» (англ.).

[176] «Демон в эфире: История Джеймса Клерка Максвелла» (англ.).

[177] «Джентльмен от энергии: Натуральная философия Джеймса Клерка Максвелла» (англ.).

[178] «Исторический обзор теорий дальнодействия» (англ.).

[179] «Опыт по определению силовых линий» (англ.).

[180] «Физическая мысль: Антология» (англ.).

[181] «Научные сообщения и статьи Джеймса Клерка Максвелла» (англ.).

[182] «Энергия, сила и материя» (англ.).

[183] «Физика девятнадцатого столетия» (англ.).

[184] «Новаторство максвелловской теории электромагнетизма» (англ.).

[185] «Поль Валери: Демон Максвелла и возможности человека» (англ.).

[186] «КЭД: Странная теория света и материи» (англ.).

[187] «Влюбленный Вольтер» (англ.).

[188] «Наука и Просвещение» (англ.).

[189] «Вольтер и мадам дю Шатле: Об интеллектуальной жизни в Сирее» (англ.).

[190] «О богах и королях: Натурфилософия и политика в диспутах Лейбница и Кларка» (англ.).

[191] «Научная революция» (англ.).

[192] «Метафизика и механика мадам дю Шатле» (англ.).

[193] «Ньютоновские силы и познавательные способности Локка: концепции материи в мышлении восемнадцатого столетия» (англ.).

[194] «Слуги Природы: История научных учреждений, предприятий и вкусов» (англ.).

[195] «Молодой Эйнштейн: Пришествие специальной теории относительности» (англ.).

[196] «Эйнштейн в патентном бюро: Изгнание, спасение или тактическое отступление» (англ.).

[197] «Немецкий мир Эйнштейна» (англ.).

[198] «Германия Эйнштейна» (англ.).

[199] «Альберт Эйнштейн в исторической и культурной перспективе» (англ.).

[200]«“Господь хитер…”: Наука и жизнь Альберта Эйнштейна» (англ.).

[201] «Эйнштейн, история и другие предметы увлечения» (англ.).

[202] «Структурная антропология» (англ.).

[203] «Чистота и опасность» (англ.).

[204] «Юдише коп: Разрешение проблемы творчества в еврейской учености, традиции и юморе» (англ.).

[205] «Структуры творцов» (англ.).

[206] «Измерения творчества» (англ.).

[207] «Пространство, время и кванты: Введение в современную физику» (англ.).

[208] «Мировая сокровищница физики, астрономии и математики» (англ.).

[209] «Физика “Звездного пути”» (англ.).

[210] «Боязнь физики: Руководство для запутавшихся» (англ.).

[211] «Танец для двоих: Избранные статьи» (англ.).

[212] «Странная история кошки миссис Хадсон, или Шерлок Холмс разрешает тайны Эйнштейна» (англ.).

[213] «Пространство и время дядюшки Альберта» (англ.).

[214] «Мистер Томпкинс в Стране чудес» (англ.).

[215] «Новый мир ми (англ.). стера Томпкинса»

[216] «Наследие Эйнштейна: Единство пространства и времени» (англ.).

[217] «Исаак Ньютон: Искатель приключений в сфере мышления» (англ.).

[218] «Ньютон: Тексты, предпосылки, комментарии» (англ.).

[219] «Разнообразие людей» (англ.).

[220] «Нейтрон и бомба: Биография сэра Джеймса Чедвика» (англ.).

[221] «Атомы в семье» (англ.).

[222] «Энрико Ферми, физик» (англ.).

[223] «Группа Ферми — Италия вновь обретает почетное место в мире физики» (англ.).

[224] «Воображение в науке» (англ.).

[225] «Центр и периферия: Заметки о макросоциологии» (англ.).

[226] «Обилие пространственных вариаций» (англ.).

[227] «Экономические законы научных исследований» (англ.).

[228] «Старение и старость» (англ.).

[229] «Гений: Ричард Фейнман и современная физика» (англ.).

[230] «Война Гейзенберга: Тайная история немецкой бомбы» (англ.).

[231] «Гейзенберг и нацистский проект атомной бомбы: Исследование культуры Германии» (англ.).

[232] «Между цианистым кальцием и шелком: История шифровальщика, 1941–1945» (англ.).

[233] «Операция “Новичок”: Рейд в Рьюкан для уничтожения тяжелой воды, 1942» (англ.).

[234] «Американцы на войне» (англ.).

[235] «Британия и атомная энергия, 1939–1945» (англ.).

[236] «Быстрое и полное уничтожение: Трумен и использование атомных бомб против Японии» (англ.).

[237] «Менталитет геноцида: О нацистском холокосте и ядерной угрозе» (англ.).

[238] «Яркие галактики, темные дела» (англ.).

[239] «Рождение и смерть Солнца: Эволюция звезд и субатомная энергия» (англ.).

[240] «Пять возрастов вселенной: Внутри физики вечности» (англ.).

[241] «Черные дыры и младенцы-вселенные» (англ.).

[242] «Динамичная вселенная: Введение в астрономию» (англ.).

[243] «Пространство, время и гравитация: Теория Большого взрыва и черных дыр» (англ.).

[244] «Общая теория относительности от А до Б» (англ.).

Ссылки

[1] Хаим Вейцман (1874-1952), один из лидеров сионистского движения, первый президент Израиля (с 1948 года) - Здесь и далее примечания переводчика.

[2] Вильгельм Фридрих Оствальд (1853-1932), немецкий физикохимик и философ, лауреат Нобелевской премии (1909).

[3] Район Лондона; это же название носит расположенная в нем, построенная в 1851 году тюрьма - самая большая в Англии.

[4] Английский клуб интеллектуалов, организованный по принципу «круглого стола» (название происходит от латинского «стол»).

[5] Быстро, но не весьма (итал.) - указание музыкального темпа.

[6] Франклин Делано Рузвельт.

[7] Пещера во Франции, около горы Монтиньяк, с гравированными и живописными настенными изображениями (охоты на бизона, оленей, диких быков, лошадей) позднепалеолитического времени.

[8] «Математические принципы натуральной философии» (франц.).

[9] Напыщенность, претенциозность (англ.).

[10] Музыкальный автомат (англ.).

[11] «Альберт Эйнштейн: Документальная биография» (англ.).

[12] «Теперь об этом можно рассказать: История Манхэттенского проекта» (англ.).

[13] «Операция “Алсос”: Падение немецкой науки» (англ.).

[14] «Собрание документов Альберта Эйнштейна. Том I, Ранние годы: 1879-1902» (англ.).

[15] «Эйнштейн: Его жизнь и время» (англ.).

[16] «Альберт Эйнштейн: Биография» (англ.).

[17] «Альберт Эйнштейн: Биографический портрет» (англ.).

[18] «Эйнштейн, творец и бунтарь» (англ.).

[19] «Фарадей как натур-философ» (англ.).

[20] «Переписка Майкла Фарадея», том.1 (англ.).

[21] «Майкл Фарадей, зандеманианец и ученый» (англ.)

[22] «Майкл Фарадей, его жизнь и труды» (англ.)

[23] «О дальнодействии» (англ.).

[24] «Научные работы Джеймса Клерка Максвелла» (англ.).

[25] «Майкл Фарадей: Биография» (англ.)

[26] «Сила симметрии» (англ.).

[27] «Пугающая симметрия: Поиски красоты в современной физике» (англ.).

[28] «Альберт Эйнштейн: Исторические и культурные перспективы» (англ.).

[29] «Мои любимые предметы» (англ.).

[30] «О языке: Роман Якобсон» (англ.).

[31] «Благодетельность измерений: эвдометрия, просвещение и пневматическая медицина» (англ.).

[32] «Просвещение и медицина восемнадцатого столетия» (англ.).

[33] «Антуан Лавуазье: Наука, администрирование и революция» (англ.).

[34] «Жан Поль Марат: Исследование радикализма» (англ.).

[35] «Лавуазье: Химик, биолог, экономист» (англ.).

[36] «Человеческая машина» (франц.).

[37] «Избранные труды» (франц.).

[38] «Метафоры, которыми мы живем» (англ.).

[39] «Паутина слов: Идеи, стоящие за политикой» (англ.).

[40] «Эссе о физических опытах, произведенных вAcademia del Cimento, переведено на английский Ричардом Уоллером, членом лондонского Королевского общества. Отпечатано по заказу Бенджамина Олсопа в типографии «Ангел и Библия», что в Поултри напротив церкви. 1634» (англ.).

[41] «Немецкая концепция силы...» (англ.).

[42] «Концепции эфира: Исследования по истории теории эфира 1740-1900)» (англ.).

[43] «Демон в эфире» (англ.).

[44] «Джеймс Клерк Максвелл: Биография» (англ.).

[45] «Трактат об электричестве и магнетизме» (англ.).

[46] «Максвеллианцы» (англ.).

[47] «Воспоминания сэра Исаака Ньютона о его жизни» (англ.).

[48] «Небесная возлюбленная» (англ.).

[49] «Роман мадам дю Шатле и Вольтера» (англ.).

[50] «Спор vis visa, посмертный» (англ.).

Содержание