Дифференциа'л (от лат. differentia — разность, различие) в математике, главная линейная часть приращения функции. Если функция y = f (x) одного переменного х имеет при х = х 0 производную, то приращение

Dy = f (x 0 + Dx) - f (x 0 )

функции f (x) можно представить в виде

Dy = f' (x 0 ) Dx + R,

где член R бесконечно мал по сравнению с Dх. Первый член

dy = f' (x 0 ) Dх

в этом разложении и называется дифференциалом функции f (x) в точке x 0 . Из этой формулы видно, что дифференциал dy линейно зависит от приращения независимого переменного Dx, а равенство

Dy = dy + R

показывает, в каком смысле Д. dy является главной частью приращения Dy.

  Подробнее о Д. функций одного и нескольких переменных см. Дифференциальное исчисление .

  Обобщение понятия дифференциала. Обобщение понятия Д. на вектор-функции, начало которому положили в начале 20 в. французские математики Р. Гато и М. Фреше, позволяет лучше выяснить смысл понятия «дифференциал» для функций нескольких переменных, а в применении к функционалам приводит к понятию вариации, лежащему в основе вариационного исчисления .

  Важную роль в этом обобщении играет понятие линейной функции (линейного отображения). Функция L (x) векторного аргумента х называется линейной, если она непрерывна и удовлетворяет равенству

L (x' + х'') = L (x') + L (x'')

для любых х' и х'' из области определения. Линейная функция n-мерного аргумента х = {x 1 ,..., x n } всегда имеет вид

L (x) = a 1 x 1 +... + a n x n ,

где a1,..., a n — постоянные. Приращение

DL = L (x + h) - L (x)

линейной функции L (x) имеет вид

DL = L (h),

т. е. зависит только от векторного приращения h, и притом линейно. Функция f (x) называется дифференцируемой при значении аргумента х, если её приращение Df = f (x + h) - f (x), рассматриваемое как функция от h, имеет главную линейную часть L (h), т. е. выражается в виде

Df = L (h) + R (h),

где остаток R (h) при h ® 0 бесконечно мал по сравнению с h. Главная линейная часть L (h) приращения Df и называется дифференциалом df функции f в точке x. При этом в зависимости от того, в каком смысле понимается бесконечная малость R (h) по сравнению с h, различают слабый дифференциал, или дифференциал Гато, и сильный дифференциал, или дифференциал Фреше. Если существует сильный Д., то существует и слабый Д., равный сильному Д. Слабый Д. может существовать и тогда, когда сильный не существует.

  В случае f (x) º x из общего определения следует, что df = h, т. е. можно приращение h считать Д. аргумента x и обозначать dx.

  Если сделать теперь переменной точку x, в которой определяется Д. df, то он будет функцией двух переменных:

  df (x; h).

Далее, считая h = h 1 постоянным, можно найти Д. от дифференциала df (x; h 1 ) как главную часть приращения

df (x + h 2 ; h 1 ) — df (x; h 1 ),

где h 2 — некоторое второе, не связанное с h 1 приращение x. Получаемый таким образом второй дифференциал d 2 f = d 2 f (x; h 1 , h 2 ) является функцией трёх векторных аргументов x, h 1 и h 2 , линейной по каждому из двух последних аргументов. Если d 2 f непрерывно зависит от x, то он симметричен относительно h 1 и h 2 :

  d 2 f (x; h 1 , h 2 ) = d 2 f (x; h 2 , h 1 ).

  Аналогично определяется дифференциал d n f = d n f (x; h 1 ,..., h n ) любого порядка n.

  В вариационном исчислении сам векторный аргумент x является функцией x (t), а дифференциалы df и d 2 f функционала f [x (t)] называются его первой и второй вариациями и обозначаются df и d2f.

  Всюду выше речь шла об обобщении понятия Д. на числовые функции векторного аргумента. Существует обобщение понятия Д. и на случай вектор-функций, принимающих значения в банаховых пространствах.

  Лит.: Ильин В. А., Позняк Э. Г., Основы математического анализа, 2 изд., М., 1967; Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 2 изд., М., 1968; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969; Кудрявцев Л. Д., Математический анализ, т. 1, М., 1970; Рудин У., Основы математического анализа, пер. с англ., М., 1966; Дьедонне Ж., Основы современного анализа, пер. с англ., М., 1964.

  А. Н. Колмогоров.