Фурье' интегра'л, формула для разложения непериодической функции на гармонические компоненты, частоты которых пробегают непрерывную совокупность значений. Если функция f (x ) удовлетворяет на каждом конечном отрезке условию Дирихле (см. Фурье ряд ) и если сходится

,

то

.     (1)

  Эта формула впервые встречается при решении некоторых задач теплопроводности у Ж. Фурье (1811), но её доказательство было дано позже другими математиками. Формулу (1) можно представить также в виде

,     (2)

где

;

.

  В частности для чётных функций

,

где

.

  Формулу (2) можно рассматривать как предельную форму ряда Фурье для функций, имеющих период 2T , когда Т ® ¥. При этом а (u ) и b (u ) аналогичны коэффициентам Фурье функции f (x ). Употребляя комплексные числа, можно заменить формулу (1) формулой

.

  Формулу (1) можно преобразовать также к виду

     (3)

(простой интеграл Фурье).

  Если интегралы в формулах (2), (3) расходятся (см. Несобственные интегралы ), то во многих случаях их можно просуммировать к f (x ) при помощи того или иного метода суммирования . При решении многих задач используются формулы Ф. и. для функций двух и большего числа переменных.

  Лит.: Титчмарш Е., Введение в теорию интегралов Фурье, пер. с англ., М. — Л., 1948.