Гидротурби'на, гидравлическая турбина, водяная турбина, ротационный двигатель, преобразующий механическую энергию воды (её энергию положения, давления и скоростную) в энергию вращающегося вала. По принципу действия Г. делятся на активные и реактивные. Основным рабочим органом Г., в котором происходит преобразование энергии, является рабочее колесо. Вода подводится к рабочему колесу в активных Г. через сопла, в реактивных — через направляющий аппарат. В активной Г. (рис. 1 ) вода перед рабочим колесом и за ним имеет давление, равное атмосферному. В реактивной Г. (рис. 2 ) давление, воды перед рабочим колесом больше атмосферного, а за ним может быть как больше, так и меньше атмосферного давления.

  Первая реактивная Г. была изобретена в 1827 французским инженером Б. Фурнероном; эта Г. имела на рабочем колесе мощность 6 л. с., но из-за плохих энергетических свойств подобные. Г. уже не применяются. В 1855 американский инженер Дж. Френсис изобрёл радиально-осевое рабочее колесо Г. с неповоротными лопастями, а в 1887 немецкий инженер Финк предложил направляющий аппарат с поворотными лопатками (см. Радиально-осевая гидротурбина .). В 1889 американский инженер А. Пелтон запатентовал активную — ковшовую гидротурбину , в 1920 австрийский инженер В. Каплан получил патент на поворотнолопастную гидротурбину . Радиально-осевые, поворотнолопастные и ковшовые Г. широко применяются для выработки электрической энергии (см. Гидроэнергетика ).

  Для расчёта профиля лопасти рабочего колеса Г., вращающегося с постоянной угловой скоростью, используется уравнение (рис. 3 ):

 

  где Н — рабочий напор Г., т. е. запас энергии 1 кг воды (разность отметок горизонтов воды перед входом в сооружения гидравлической силовой установки и по выходе из них за вычетом потерь на сопротивление во всех сооружениях, но без вычета потерь в самой Г.); U 1 и U 2 — окружные скорости лопастей на входе воды в рабочее колесо и на выходе из него, м/сек; V 1 и V2 — абсолютные скорости воды на входе и выходе, м/сек; (a1 и a 2 — углы между направлениями окружных и абсолютных скоростей в точках, соответствующих осереднённой по энергии поверхности тока, град; g — ускорение свободного падения, м/сек 2 .

  В левую часть уравнения вводится множитель hr, являющийся гидравлическим кпд гидротурбины. Часть мощности, полученная колесом, расходуется на преодоление механических сопротивлений, эти потери учитываются механический кпд гидротурбин h 0 . Утечка воды в обход рабочего колеса учитывается объёмным кпд гидротурбины.

  Полный кпд гидротурбины h = h г · h m · h 0 — отношение полезной мощности, отдаваемой турбинным валом, к мощности пропускаемой через Г. воды. В современной Г. полный кпд равен 0,85—0,92; при благоприятных условиях работы лучших образцов Г. он достигает 0,94—0,95.

  Геометрические размеры Г. характеризуются номинальным диаметром Д, рабочего колеса. Г. разных размеров образуют турбинную серию, если обладают однотипными рабочими колёсами и геометрическими подобными элементами проточной части. Определив необходимые параметры одной из Г. данной серии, можно подсчитать, пользуясь формулами подобия, те же параметры для любой гидравлической турбины этой серии (см. Моделирование гидродинамическое и аэродинамическое). Каждую турбинную серию характеризует коэффициент быстроходности, численно равный частоте вращения вала Г., развивающей при напоре 1 м мощность 0,7355 квт (1 л. с.). Чем больше этот коэффициент, тем больше частота вращения вала при заданных напоре и мощности. Г. и электрический генератор обходятся дешевле при увеличении частоты их вращения, поэтому стремятся строить Г. с возможно большим коэффициентом быстроходности. Однако в реактивных Г. этому препятствует явление кавитации , вызывающее вибрацию агрегата, снижение кпд и разрушение материала Г.

  Графики, выражающие зависимости величин, характеризующих Г., называются турбинными характеристиками. На рис. 4 представлены характеристики Г. при постоянном напоре и частоте вращения колеса, но при различных нагрузках и расходе воды. В реальных условиях Г. работают при меняющемся напоре; их поведение в этом случае изображается универсальными характеристиками для модели и эксплуатационными характеристиками — для натурной Г. Универсальные характеристики строятся на основании лабораторных исследований модели, проточная часть которой геометрически подобна натурной.

  Характеристики поворотнолопастных и радиально-осевых гидротурбин, выпускаемых в СССР

Марка пово-ротнолопаст-ной гидротурбины Напор, м Число лопа-стей Мощность, Mвт Марка радиально-осевой гидротурбины Напор, м Мощность, Мвт
ПЛ-10 3-10 4 0,6-49 РО-45 30-45 6,5-265
ПЛ-15 5-15 4 1.3-88 PО–7 5 40-75 9,7-515
ПЛ-20 10-20 4 3.3-115 PO-115 70-115 21.5-810*
ПЛ-ЗО 15-30 5 6-180 PO-170 110-170 34-900*
ПЛ-40 20-40 6 8,2-245 PO-230 160-230 29.5-920*
ПЛ-50 30-50 7 13-280 PO-310 220-310 31-485
ПЛ-60 40-60 8 15-315 PO-400 290-400 31-280
ПЛ-70 45-70 8 15.8-350 PO-500 380-500 33-195
ПЛ-80 50-80 8 17-385

* Верхний предел показывает мощности, технически возможные. К 1970 максимальная единичная мощность работающих гидроагрегатов достигла 500 Мвт.

  На универсальных характеристиках (рис. 5 ), исходя из условий моделирования, в координатах приведённых величин расхода Q' 1 л/сек и частоты вращения h' 1 об/мин (характерных для Г. данной серии диаметром рабочего колеса 1 м, работающих при напоре 1 м) наносятся изолинии равных кпд h%, коэффициент кавитации s и открытия направляющего аппарата a 0 . Эксплуатационные характеристики (рис. 6 ) строятся на основании универсальных и показывают зависимость кпд натурной турбины h% от нагрузки N Мвм и напора Нм при номинальной частоте вращения турбины n = const. Здесь же обычно наносят линию ограничения мощности, выражающую зависимость гарантированной мощности от напора. На этих же характеристиках изображают линии равных допустимых высот отсасывания H S м , показывающих заглубление рабочего колеса Г. под уровень воды в нижнем бьефе (разность отметок расположения рабочего колеса и уровня нижнего бьефа).

  Проточная часть реактивных Г. состоит из следующих основных элементов (рис. 7 ): спиральной камеры гидротурбины 1 ; направляющего аппарата 2, регулирующего расход воды; рабочего колеса 3 и отсасывающей трубы 4, отводящей воду от Г. Реактивные Г. по направлению потока в рабочем колесе делятся на осевые и радиально-осевые. По способу регулирования мощности реактивные Г. бывают одинарного и двойного регулирования. К Г. одинарного регулирования относятся Г., содержащие направляющий аппарат с поворотными лопатками, через который вода подводится к рабочему колесу (регулирование в этих Г. производится изменением угла поворота лопаток направляющего аппарата), и лопастнорегулируемые Г., у которых лопасти рабочего колеса могут поворачиваться вокруг своих осей (регулирование в этих Г. производится изменением угла поворота лопастей рабочего колеса). Г. двойного регулирования содержат направляющий аппарат с поворотными лопатками и рабочее колесо с поворотными лопастями. Поворотнолопастные Г., применяемые на напоры до 150 м, могут быть осевыми и диагональными гидротурбинами . Разновидностью осевых являются двухперовые, в которых на каждом фланце размещаются по две лопасти вместо одной. Радиально-осевые Г. одиночного регулирования применяют на напоры до 500—600 м. Активные Г. строят преимущественно в виде ковшовых Г. и применяют на напоры выше 500—600 м; их делят на парциальные и непарциальные. В парциальных Г. вода к рабочему колесу подводится в виде струй через одно или несколько сопел и поэтому одновременно работает одна или несколько лопастей рабочего колеса. В непарциальных Г. вода подводится одной кольцевой струей и поэтому одновременно работают все лопасти рабочего колеса. В активных Г. отсасывающие трубы и спиральные камеры отсутствуют, роль регулятора расхода выполняют сопловые устройства с иглами, перемещающимися внутри сопел и изменяющими площадь выходного сечения. Крупные Г. снабжаются автоматическими регуляторами скорости.

  По расположению вала рабочего колеса Г. делятся на вертикальные, горизонтальные и наклонные. Сочетание. Г. с гидрогенератором называют гидроагрегатом . Горизонтальные гидроагрегаты с поворотно-лопастными или пропеллерными Г. могут выполняться в виде капсульного гидроагрегата .

  Широкое распространение получили обратимые гидроагрегаты для гидроаккумулирующих и приливных электростанций, состоящие из насосо-турбины (гидромашины, способной работать как в насосном, так и в турбинном режимах) и двигателя-генератора (электромашины, работающей как в двигательном, так и в генераторном режимах). В обратимых гидроагрегатах применяются только реактивные Г. Для приливных электростанций используются капсульные гидроагрегаты.

  В 1962 в СССР разработана номенклатура поворотнолопастных и радиально-осевых Г., в которой даются система типов и размеров Г. и их основные гидравлические и конструктивные характеристики (табл.). Эта номенклатура основана на закономерном изменении зависимостей геометрических и гидравлических параметров рабочих колёс от напора.

  Основными тенденциями в развитии Г. являются: увеличение единичной мощности, продвижение каждого типа Г. в область повышенных напоров, совершенствование и создание новых типов Г., улучшение качества, повышение надёжности и долговечности оборудования. В СССР созданы и успешно работают Г. радиально-осевого типа мощностью 508 Мвт на расчётный напор 93 м с диаметром рабочего колеса 7,5 м для Красноярской ГЭС, разрабатываются Г. такого же типа для Саянской ГЭС (единичная мощность 650 Мвт, расчётный напор 194 м, диаметр рабочего колеса 6,5 м).

  Больших успехов в создании Г. достигли фирмы; «Хитати», «Мицубиси», «Тосиба» (Япония), «Нохаб» (Швеция), «Нейрпик» (Франция), «Инглиш электрик» (Великобритания), «Фойт» (ФРГ) и др. Например, японской фирмой «Тосиба» проектируются Г. для ГЭС Гранд-Кули-III единичной мощностью 600 Мвт на напор 87 м с диаметром рабочего колеса 9,7 м.

  Лит.: Шпанхаке В., Рабочие колёса насосов и турбин, пер. с нем., ч. 1, М.—Л., 1934; Турбинное оборудование гидроэлектростанций, под ред. А. А. Морозова. 2 изд., М. — Л., 1958; Ковалев Н. Н., Гидротурбины, М. — Л., 1961; Кривченко Г. И., Автоматическое регулирование гидротурбин, М. — Л., 1964; Tenot А., Turbines hydrauliques et régulateurs automatiques de vitesse, v. 1—4, P., 1930—35.

  М. Ф. Красильников.

Рис. 7. Проточная часть реактивной гидротурбины.

Рис. 2. Схема реактивной гидротурбины: а — рабочее колесо; б — направляющий аппарат.

Рис. 5. Универсальные характеристики для модели гидротурбины.

Рис. 3. Треугольники скоростей на входе в рабочее колесо гидротурбины и на выходе из него.

Рис. 1. Схема активной гидротурбины: а — рабочее колесо; б — сопла.

Рис. 4. Характеристики гидротурбины при постоянном напоре и частоте вращения колеса: h — кпд; Q — расход воды; N — нагрузка гидротурбины.

Рис. 6. Эксплуатационные характеристики для натурной гидротурбины.