Ги'льбертово простра'нство, математическое понятие, обобщающее понятие евклидова пространства на бесконечномерный случай. Возникло на рубеже 19 и 20 вв. в виде естественного логического вывода из работ нем. математика Гильберта в результате обобщения фактов и методов, относящихся к разложениям функций в ортогональные ряды и к исследованию интегральных уравнений. Постепенно развиваясь, понятие «Г. п.» находило все более широкие приложения в различных разделах математики и теоретической физики; оно принадлежит к числу важнейших понятии математики.

  Первоначально Г. п. понималось как пространство последовательностей со сходящимся рядом квадратов (т. н. пространство l2). Элементами (векторами) такого пространства являются бесконечные числовые последовательности

  x = (x 1 , x 2 ,..., x n ,...)

  такие, что ряд x 2 1 + x 2 2 +... + х 2 n + ... сходится. Сумму двух векторов х + y и вектор lx, где l — действительное число, определяют естественным образом:

  x + y = (x 1 + y 1 ,..., x n + y n ,...),

  lx = (lx 1 , lx 2 , ..., lx n ,...)/

  Для любых векторов х, y Î l 2 формула

  (x, y) = x 1 y 1 + x 2 y 2 + ... +x n y n + ...

  определяет их скалярное произведение, а под длиной (нормой) вектора х понимается неотрицательное число

  #i-images-115440402.png

  Скалярное произведение всегда конечно и удовлетворяет неравенству |(х, у)| £ ||x|| ||y||. Последовательность векторов хn называется сходящейся к вектору х, если ||х n —х|| ® 0 при n ® ¥. Многие определения и факты теории конечномерных евклидовых пространств переносятся и на Г. п. Например, формула

 

  где 0 £ j £ p определяет угол j между векторами х и у. Два вектора х и у называются ортогональными, если (х, у) = 0. Пространство l 2 полно: всякая фундаментальная последовательность Коши элементов этого пространства (т. е. последовательность х n , удовлетворяющая условию ||х п —х m ||® 0 при n, m ® ¥) имеет предел. В отличие от евклидовых пространств, Г. п. l 2 бесконечномерно, т. е. в нём существуют бесконечные системы линейно независимых векторов; например, такую систему образуют единичные векторы

  e 1 = (1, 0, 0,...), e 2 = (0, 1, 0,...),...

  При этом для любого вектора x из l2 имеет место разложение

  x = x 1 e 1 + x 2 e 2 +...     (1)

  по системе {e n }.

  Другим важным примером Г. п. служит пространство l 2 всех измеримых функций, заданных на некотором отрезке [a, b], для которых конечен интеграл

  #i-images-175117927.png

  понимаемый как интеграл в смысле Лебега. При этом функции, отличающиеся друг от друга лишь на множество меры нуль, считаются тождественными. Сложение функций и умножение их на число определяется обычным способом, а под скалярным произведением понимается интеграл

  #i-images-183796604.png

  Норма в этом случае равна

  #i-images-107928154.png

  Роль единичных векторов предыдущего примера здесь могут играть любые функции j i (x) из L 2 , обладающие свойствами ортогональности

  #i-images-132219597.png

  и нормированности

  #i-images-184331242.png

  а также следующим свойством замкнутости: если f(x) принадлежит L 2 и

  #i-images-138238345.png

  то f(x) = 0 всюду, кроме множества меры нуль. На отрезке [0,2p] в качестве такой системы функций можно взять тригонометрическую систему

  #i-images-184722475.png

  Разложению (1) соответствует разложение функции f(x) из L 2 в ряд Фурье

 

  сходящийся к f(x) по норме пространства L 2 . При этом для всякой функции f(x) выполняется равенство Парсеваля

  #i-images-195630802.png

  Соответствие между функциями f(x) из L 2 и последовательностями их коэффициентов Фурье a 0 , a 1 , b 1 , a 2 , b 2 ,... является взаимно однозначным отображением L 2 на l 2 , сохраняющим операции сложения, умножения на числа, а также сохраняющим длины и скалярные произведения. Т. о., эти пространства изоморфны и изометричны, значит имеют одинаковое строение.

  В более широком смысле под Г. п. понимают произвольное линейное пространство , в котором задано скалярное произведение и которое является полным относительно нормы, порождаемой этим скалярным произведением. В зависимости от того, определено ли для элементов Г. п. Н умножение только на действительные числа или же элементы из Н можно умножать на произвольные комплексные числа, различают действительное и комплексное Г. п. В последнем случае под скалярным произведением понимают комплексную функцию (х, у), определённую для любой пары х, у элементов из Н и обладающую следующими свойствами:

  1) (х, х) = 0 в том и только том случае, если х = 0,

  2) (х, х) ³ 0 для любого x из Н,

  3) (х + у, z) = (x, z) + (у, z),

  4) (lx, у) = l(x, у) для любого комплексного числа l,

  5)

  где черта означает комплексно сопряжённую величину. Норма элемента х определяется равенством

  #i-images-165413779.png

  Комплексные Г. п. играют в математике и в её приложениях значительно большую роль, чем действительные Г. п. Одним из важнейших направлений теории Г. п. является изучение линейных операторов в Г. п. (см. Операторов теория ). Именно с этим кругом вопросов связаны многочисленные применения Г. п. в теории дифференциальных и интегральных уравнений, теории вероятностей, квантовой механике и т. д.

  Лит.: Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 2 изд., М., 1968; Люстерник Л. А., Соболев В. И., Элементы функционального анализа, 2 изд., М., 1965; Данфорд Н., Шварц Дж., Линейные операторы, т. 1 — Общая теория, пер. с англ., М., 1962; Дэй М. М., Нормированные линейные пространства, пер. с англ., М., 1961.

  Ю. В. Прохоров.