Проекти'вное преобразова'ние , взаимно однозначное отображение проективной плоскости или проективного пространства в себя, при котором точки, лежащие на прямой, переходят в точки, также лежащие на прямой (поэтому П. п. иногда называется коллинеацией). П. п. проективной прямой называется взаимно однозначное отображение её в себя, при котором сохраняется гармоническое расположение точек этой прямой. Простейшим и вместе с тем наиболее важным для приложений примером П. п. является гомология — П. п., оставляющее на месте прямую и точку вне её. Примером П. п. пространства является перспектива, т. е. проектирование фигуры F , лежащей в плоскости П, из точки S в фигуру F' , расположенную в плоскости П' , любое П. п. получается конечной последовательностью перспектив. П. п. образуют группу , основным инвариантом которой является двойное отношение четырёх точек прямой. Теории инвариантов групп П. п., оставляющих на месте некоторую фигуру, представляют собой метрические геометрии (см. Проективная метрика ).

  Основная теорема о П. п. проективной плоскости состоит в том, что каковы бы ни были четыре точки А , В , С, D плоскости П , из которых никакие три не лежат на одной прямой, и четыре точки A' , B' , C' , D' той же плоскости, из которых никакие три также не лежат на одной прямой, существует и притом только одно П. п., которое точки А , В , С , D переводит соответственно в точки A' , B' , C' , D'. Эта теорема применяется в номографии и аэрофотосъёмке. Аналогичная теорема имеет место и в проективном пространстве: там П. п. определяется пятью точками, из которых никакие четыре не лежат в одной плоскости. Эта теорема эквивалентна аксиоме Паппа.

  В однородных координатах П. п. выражается однородным линейным преобразованием , определитель матрицы которого не равен нулю. Рассматриваются также П. п. евклидовой плоскости или пространства; в декартовых координатах они выражаются дробно-линейными функциями , причём свойство взаимной однозначности утрачивается.

  Лит. см. при ст. Проективная геометрия .