Фактор четыре. Затрат — половина, отдача — двойная

Вайцзеккер Эрнст Ульрих фон

Ловинс Эймори Блок

Ловинс Хантер

ЧАСТЬ I. Пятьдесят примеров учетверения производительности ресурсов

 

 

 

Глава 1. Двадцать примеров революционных преобразований в использовании энергии

 

Люди привыкли говорить об «энергосбережении». Выражение «экономия энергии» имеет моралистический подтекст. Отец обычно убеждает своих детей выключать свет, выходя из комнаты, и никогда без нужды не оставлять работающими электрические приборы. В конце концов, расточительность не только стоит денег, но и всегда считалась грехом. Когда была осознана необходимость охраны окружающей среды, реакция со стороны правительств и поставщиков электроэнергии не отличалась изобретательностью: вы (выставляющие слишком большие требования люди) можете получить столько охраны окружающей среды, сколько захотите, если вы готовы радикально уменьшить ваши требования. Упрощенческое понятие о сбережении энергии путем добровольного самоограничения позволило руководителям избежать творческого решения вопроса об энергии.

В последние годы появилось новое выражение: «рациональное использование энергии». Употребление этого термина усиливает репутацию оратора: предполагается, что он компетентен в вопросах энергетики. Поэтому, хотя мы и не решаемся отвергнуть этот термин, он нас не устраивает. Он звучит так бюрократически, сложно и оборонительно. Он не доставляет никакой радости и непонятен, когда речь идет о связи между использованием энергии и технологическим прогрессом. Именно о технологическом прогрессе эта книга. Или скорее о переориентации технологического прогресса. Мы предпочитаем говорить об «энергетической производительности».

Сам по себе и в зависимости от условий, в которых вы находитесь, термин «производительность» может иметь положительный или отрицательный смысл. Это смешение значений — медвежья услуга экономистов, которые сузили термин до такой степени, что он означает только производительность труда. В прошлом производительность труда означала процветание, сегодня же она неизбежно связана с угрозой безработицы.

С другой стороны, энергетическая производительность — нечто, что все могут с радостью приветствовать. Практически никто от нее не проиграет.

Эта глава — о повышении энергетической производительности в четыре раза. Выражения «энергосбережение» или «рациональное использование энергии» просто недостаточны для того, чтобы передать соответствующий смысл жизнерадостной атаки на широко распространенных технологических динозавров. Понятие об «энергетической производительности» более соответствует поставленной задаче.

На первый взгляд может показаться, что, используя в качестве эталона «фактор четыре», мы исключаем значительную часть производства: выплавку алюминия, учитывая законы термодинамики, невозможно сделать в четыре раза более энергетически эффективной. То же справедливо и для производства хлора, цемента, стекла и некоторых других исходных материалов. Но нам не придется отказываться от потенциала «фактора четыре», которым обладают эти материалы. Алюминий и стекло в высшей степени пригодны для переработки, и такая переработка сэкономила бы большую часть энергии, необходимой для их производства из сырьевых материалов. Для некоторых конечных использований ряд материалов можно заменить другими, без какого-либо ущерба для производящего сектора, либо материалы могут быть использованы более целесообразно. Поэтому большинство применений металлов или стекла, с учетом всего срока службы, должно обеспечивать четырехкратное увеличение энергетической производительности.

В этой книге, однако, мы сосредоточим внимание на примерах с прямым потенциалом увеличения энергоэффективности в четыре с лишним раза. Начнем с примера, имеющего колоссальное значение для мирового энергетического баланса.

 

1.1. Гиперавтомобили: по США на одном топливном баке

7

 

С 1973 по 1986 год средняя новая выпускаемая в США легковая автомашина стала в два раза экономичнее — с 17,8 до 8,7 литра бензина на 100 км. Около 4 % экономии было получено благодаря изготовлению легковых автомобилей с уменьшенным размером салона, 96 %— благодаря облегчению и улучшению конструкции; путем простого вырезания явно излишнего веса было сбережено 36 %. С тех пор, однако, топливная экономичность возросла всего лишь примерно на 10 %. В середине 1991 г. производители автомобилей заявляли, что к концу этого века без чрезмерных затрат или ухудшения технических характеристик реальными будут еще какие-нибудь 5— 10 %.

 

Можем ли мы добиться лучших результатов?

Скромность этого заявления кажется странной по двум причинам. Во-первых, многие усовершенствования в производимых в массовых количествах и хорошо продающихся легковых автомобилях применяются далеко не всегда. Установлено, что полное внедрение всего лишь 17 таких усовершенствований помогло бы сэкономить еще 35 % топлива, потребляемого, скажем, средним новым автомобилем выпуска 1987 г., без какого-либо изменения его размера, ходовых качеств или приемистости. Среди них назывались такие известные решения, как привод передних колес, четыре клапана на цилиндр, верхнее расположение распредвала и пятискоростная коробка передач. В данный список не вошли даже некоторые очевидные улучшения, например, отведение назад тормозных суппортов (как в тормозах мотоциклов) для того, чтобы колодки не прижимались к диску и не останавливали машину, когда водитель пытается заставить ее двигаться. Это улучшение до 5,36 л на 100 км обошлось бы только в 14 центов на сэкономленный литр — менее половины самой низкой сегодня цены на бензин в Америке, где он дешевле, чем вода в бутылках.

Пока производители автомашин сомневались в этих данных, «Хонда» подтвердила их выпуском в 1992 г. модели «Субкомпакт VX», давшей еще большую экономию — 56 %, т. е. 4,62 л на 1-00 км, и с еще меньшими затратами (наибольшая экономия уже составляла 18 центов на литр). Этот автомобиль был на 16 % экономичнее, чем прогнозируемый (уже после его создания!) Национальным исследовательским советом США малогабаритный автомобиль 2006 г.

Если такое отставание прогноза от реальных событий воспринималось как временное предубеждение, то второй довод в пользу того, чтобы считать, что мы можем сделать лучше, был просто очевиден. Все, что существует, возможно. В середине 80-х годов производители автомобилей создали десятку новых моделей, которые сочетали в себе довольно традиционные слагаемые и давали двойную или тройную экономию топлива. Эти легковые автомобили, рассчитанные на четыре-пять пассажирских мест, расходовали 1,7–3,5 л на 100 км при улучшенных параметрах безопасности, выбросов и ходовых качеств. Массовое производство по крайней мере двух моделей — «Вольво» и «Пежо» — стоило бы столько же, сколько производство сегодняшних автомобилей. Однако в США игнорировали это обстоятельство, считая, что упомянутые модели не отвечают американским стандартам, поскольку разрабатывались в Европе или Японии.

К середине 1991 г. в Институте Рокки Маунтин (ИРМ) сформировалась гораздо более радикальная концепция. Почему бы не перепроектировать автомобиль? Почему бы не пересмотреть его заново, начиная с колес, чтобы коренным образом упростить его? Эйнштейн говорил, что «все нужно делать максимально просто, но не упрощать». Автомобили же постепенно стали невероятно вычурными, с нагромождением одного «наворота» на другой, в попытках решения проблем, устранить которые можно в первую очередь благодаря улучшению конструкции.

 

Назад к основам

Новое изучение автомобиля как физической системы привело к поразительному выводу: инженеры в Детройте, Вольфсбурге, Каули и Осаке стали настолько узкими специалистами, что знали почти всё почти ни о чем; вряд ли кто-нибудь из них смог бы самостоятельно сконструировать автомобиль целиком. Терялась имеющая принципиальное значение взаимосвязь между элементами конструкции. Проектировщики слишком много думали о мелких деталях и слишком мало об автомобиле как о системе. Промышленность за скрупулезным вниманием к детали потеряла из виду технику создания цельной системы — технику, которая чрезвычайно проста и именно поэтому очень трудна.

На деле автомобильная промышленность в течение десятилетий целенаправленных усилий конструировала автомобиль, если так можно выразиться, задом наперед. Примерно 80–85 % энергии топлива теряется до того, как она доходит до колес, и в конечном итоге только около 1 % энергии используется для движения. Почему? Да потому, что машина делалась из тяжелой стали, и чтобы разогнать такую махину, требовался настолько большой двигатель, что основную часть времени он работал почти вхолостую. Использовалась такая крохотная часть его мощности, что коэффициент полезного действия двигателя уменьшался вдвое. Производители стали привносить дополнительные усложнения, чтобы выжать чуть больший к.п.д. из двигателя и трансмиссии (карданная передача). Были достигнуты и продолжают достигаться впечатляющие успехи, но экономия мала, а затрачиваемые усилия огромны.

Но посмотрим на машину с другой стороны. Что происходит с 15–20 % энергии топлива, которой действительно удается «добраться» до колес? При езде по ровной дороге в городских условиях примерно треть идет на нагревание воздуха, сопротивление которого преодолевает машина (эта величина возрастает до 60–70 % на скоростных автомагистралях), треть нагревает шины и дорогу и треть — тормоза. Каждая единица энергии, сэкономленная за счет преодоления этих фатальных недостатков, в свою очередь, сэкономила бы примерно от пяти до семи единиц энергии топлива, которое не нужно было бы подавать в двигатель для того, чтобы она добралась до колес! Таким образом, вместо того, чтобы сосредоточивать усилия на устранении одной десятой процента потерь в карданной передаче, конструкторы должны поставить во главу угла сбережение энергии путем создания принципиально более экономичного автомобиля.

 

Стратегия сверхлегкости

Использование сверхпрочных и вместе с тем сминаемых при аварии, ударогасящих материалов (главным образом, современных композитов) помогло сделать автомобиль, рассчитанный на четыре-пять пассажиров, в 3 раза легче. Он весит всего 473 кг. Улучшенный дизайн в 2–6 раз повысил аэродинамические свойства его обтекаемого профиля. Покрышки лучшего качества при меньшем весе машины уменьшили износ резины в 3–5 раз. Автомобиль проектировался не как танк, а скорее как самолет.

«Сверхлегкая» стратегия уже претворена в жизнь. В конце 1991 г. «Дженерал моторс» представила свою разработку сверхлегкого четырехместного автомобиля «Алтралайт» из углеродволоконного композита. Модель экономична, безопасна, отличается прекрасным комфортом, изяществом отделки, а также высокими спортивными характеристиками (разгон от 0 до 100 километров в час за 8 секунд), которые можно сравнить с приемистостью двенадцатицилиндрового БМВ, но с меньшим, чем у автомобиля «Хонда Сивик» двигателем (111 л.с.). За 100 дней 50 специалистов создали два автомобиля «Алтралайт».

Этот и другие эксперименты показали, как очень легкая и обтекаемая конструкция позволила сделать весьма привлекательную машину в 2–2,5 раза более экономичной по сравнению с обычным автомобилем.

 

Гибридный электрический привод

Между тем в ходе других экспериментов (в основном в Европе) было установлено, что «гибридная» система электрической тяги увеличивает экономичность на 30–50 % частично за счет регенерации 70 % энергии на торможение, ее временного накопления и затем повторного использования для подъема в гору и для ускорения. Автомобиль получает энергию за счет сжигания любого подходящего жидкого или газообразного топлива в миниатюрной бортовой силовой установке любого вида (двигатель, газовая турбина, топливный элемент и т. д.). Горючее является более удобным способом накопления энергии, нежели аккумуляторные батареи, которые дают менее 1 % полезной энергии на единицу веса. Именно поэтому батарейные автомобили, как заметил голландский специалист П. Д. ван дер Коох, «перевозят в основном батареи, но не очень далеко и не очень быстро — иначе им потребовалось бы еще больше батарей».

Изучив положение дел, аналитики Института Рокки Маунтин обнаружили нечто удивительное: искусное сочетание стратегий сверхлегкости и гибридного привода повышало экономичность не в 2–3 раза, как ожидалось, а примерно в 5 раз. Это походило на открытие уравнения, согласно которому два плюс один равняется пяти. Вскоре, однако, основные причины этой магической синергии стали понятны:

• выигрыш в весе нарастает как снежный ком, поскольку, чем легче автомобиль, тем больше комплектующих деталей уменьшаются в размерах или становятся ненужными;

• «накопление» экономии в весе происходит еще быстрее в случае гибридного привода;

• когда стратегия сверхлегкости почти полностью устранит безвозвратные потери энергии (на нагревание воздуха, шин и дороги), единственным местом, куда может пойти энергия колес, станет система торможения, а «регенеративное» электронное торможение возвратит большую часть этой энергии;

• экономия колесной энергии умножается затем вдвое или втрое благодаря предотвращению потерь в карданной передаче при доставке этой энергии к колесам.

Таким образом, если бы автомобиль «Алтралайт» компании «Дженерал моторс» был оснащен гибридным электрическим приводом вместо традиционного двигателя и ведущего моста в блоке с коробкой передач, его экономичность возросла бы не в 2, а примерно в 4—6 раз, т. е. до 1,2–2,1 л на 100 км. Разработчики ИРМ вскоре нашли пути повышения экономичности привлекательной семейной автомашины (литр бензина на сто с лишним километров). Этого в конечном счете достаточно, чтобы пересечь Соединенные Штаты на одном баке горючего (0,8–1,6 л/100 км). И, к их большому удивлению, оказалось, что такой автомобиль настолько проще, а его изготовление настолько легче, чем штамповка, сварка и покраска стали, что в итоге он мог бы стоить примерно столько же, сколько и сегодняшние автомобили — а может быть, и еще меньше.

 

Идея распространяется

Осенью 1993 г. ISATA, крупнейшая в Европе конференция по автомобильной технологии, присудила этой разработке свою Ниссанов-скую премию как одной из трех лучших из 800 представленных работ. Производители автомобилей стали уделять ей значительное внимание, она все шире освещалась в печати. Разработка была выдвинута на соискание трех премий США за дизайн. В апреле 1994 г. Министерство энергетики США провело испытание созданного студенческой командой из Университета Западного Вашингтона двухместного легкого гибридного автомобиля на автострадах Лос-Анджелеса. Показанный результат составлял 1,16 л на 100 км. Осенью 1994 г. научный руководитель ИРМ председательствовал на международной конференции в Аахене, посвященной сверхлегкому гибридному варианту, который теперь называют «гиперавтомобилем». Небольшая швейцарская фирма «ЭСОРО» продемонстрировала легкий четырехместный гибридный автомобиль, потребляющий 2,4 л на 100 км. Среди заслуживающих особого внимания достижений следует назвать четырехкратное уменьшение цены на углеродное волокно за последние два года. Данное обстоятельство может подорвать позиции стали как материала для изготовления автомобильного кузова при любом объеме производства.

К концу 1996 г. более 25 известных производителей во многих странах решили выпускать на рынок гиперавтомобили. Некоторые компании связали себя обязательствами, вложив значительные средства (составляющие в сумме примерно два миллиарда долларов), для того чтобы достичь цели прежде, чем это сделают их конкуренты. Десятикратный потенциал гиперавтомобилей в плане сокращения продолжительности производственного цикла, расходов на оборудование и оснастку, количества деталей кузова, персонала, занятого сборкой, и рабочих площадей мог бы дать в конкурентной борьбе решающее преимущество компаниям, которые выйдут на рынок первыми.

Не занимают позицию сторонних наблюдателей и правительства. Организованное президентом Клинтоном «Партнерство по созданию нового поколения транспортных средств», заключившее в 1993 г. с тремя крупнейшими производителями автомобилей в США соглашение о разработке в течение 10 лет автомобиля с утроенной экономичностью, оказывает весьма действенную поддержку. Ожидается, что в 1997 г. калифорнийские органы технического надзора отнесут гиперавтомобили к категории «транспортных средств с нулевым выбросом выхлопных газов», поскольку они выбрасывают меньше токсичных веществ, чем энергоустановки для подзарядки электромобилей. Это дополнительный стимул для выпуска гиперавтомобилей на рынок к 2003 г., когда 10 % продаваемых в Калифорнии автомобилей должно иметь «нулевой выхлоп».

 

Готов или не готов — вот он

Сегодняшние автомобили отличаются поразительной сложностью и изощренностью, представляя собой высочайшее достижение Железного века. Но многие эксперты полагают, что они будут сметены грядущим крупнейшим со времени создания микросхемы изменением в промышленности. Подобно производству компьютеров, такие изменения могут произойти в любой части света при относительно небольших капитальных затратах и с поразительной скоростью. Ожидается, что это приведет к исчезновению смога в городах, увеличению числа автомобилей, покрывающих еще большие расстояния (что свидетельствует о необходимости срочного проведения транспортных реформ, описанных в разделе 6.3), и позволит сберечь больше нефти, чем сейчас добывают страны-экспортеры нефти.

Это может произойти очень быстро. Два ведущих американских эксперта в области экономичных автомобилей — Пол Мак Криди (изобретатель солнечного автомобиля «Санрейсер», приводимого в движение человеком самолета «Госсамер Кондор», автомобиля с ударной аккумуляторной батареей и многих других уникальных транспортных средств) и Роберт Камберфорд (корреспондент журнала «Автомобиль») — считают, что к 2005 г. большинство автомобилей, демонстрируемых в выставочных залах, будут иметь электрическую тягу, и почти все они будут гибридными. Американцы разделяют мнение других экспертов о том, что за сверхлегкими гибридами, обладающими преимуществами, которые дает электрическая тяга, и свободными от недостатков, связанных с использованием аккумуляторов, будущее, и оно не за горами.

Большинство людей станут покупать гиперавтомобили не потому, что они экономят 80 %—95 % топлива и уменьшают смог на 90 %— 99 %, а скорее потому, что это машины более высокого класса — иными словами, по той же причине, по которой люди теперь покупают компакт-диски вместо виниловых граммофонных пластинок.

 

1.2. Штаб-квартира Института Рокки Маунтин

8

В Скалистых горах Западного Колорадо, в 25 км к западу от Аспена, на высоте 2200 м над уровнем моря расположена банановая ферма с пассивным солнечным освещением. Это не совсем подходящее место для выращивания бананов. Бывает, что столбик термометра опускается здесь до -44 °C. Сезон роста растений между сильными морозами составляет 52 дня, а заморозки случаются в любой день. Однажды они наступили 4 июля, нарушив тем самым привычное правило, что есть два времени года — зима и июль. Часто бывает солнечно, но солнечная погода неустойчива — в середине зимы насчитывается до 39 облачных дней, а иногда за декабрь и январь бывает не более семи солнечных дней.

Тем не менее в январе, когда пишутся эти строки, в метель и буран, прекрасно созревают бананы на трех кустах, один из которых пустил побеги во время зимнего солнцестояния. Две большие зеленые игуаны дают студентам возможность изучить передовой опыт в разведении ящериц. Поспевают апельсины, шумит водопад, резвится полосатая зубатка, и начинаешь думать, что очень похожие на настоящих обезьян куклы-орангутанги на книжных полках ночью оживают — как иначе объяснить нехватку бананов? По мере того, как дни в марте и апреле становятся длиннее, джунгли покрываются буйной растительностью — появляются авокадо, манго, виноград, папайя, японская мушмула, съедобный страстоцвет. Заходишь с улицы, где воет вьюга, и сразу ощущаешь аромат жасмина и бугонвиля (см. илл. 1 на вкладке).

И все же здесь нет традиционной системы отопления, поскольку таковой и не требуется и потому, что она неэкономична. Две небольшие дровяные печки, используемые время от времени для обогрева или просто чтобы доставить удовольствие обитателям, дают 1 % от того тепла, которое требуется обычному дому в этом районе, тогда как остальные 99 % являются «пассивным солнечным теплом». Даже в пасмурные дни солнечное тепло улавливается через «суперокна» (см. раздел 1.5), которые обеспечивают теплоизоляцию, равноценную 6 или, в последних моделях, 12 листам стекла: прозрачные бесцветные окна пропускают три четверти видимого света и половину всей солнечной энергии, но практически не позволяют теплу улетучиваться. Изоляция из пенопласта внутри каменных стен толщиной в 40 см, а также в крыше по крайней мере вдвое уменьшает тепловые потери. Свежего воздуха сколько угодно — он предварительно подогревается теплообменниками, возвращающими три четверти тепла, которое обычно уносится спертым воздухом, выходящим из дома.

Сколько же дополнительно стоила вся эта теплоизоляция? Дополнительные затраты на нее были меньше, чем экономия при строительстве, связанная с отсутствием печи и воздуховода. Оставшиеся деньги, плюс еще немного (16 долларов за квадратный метр), истрачены для сбережения 50 % расходуемой воды, 99 % энергии на нагревание воды и 90 % бытовой электроэнергии. При тарифе в 0,07 доллара за киловатт-час счет за бытовую электроэнергию составляет примерно 5 долларов в месяц.

Дневной свет, поступая со всех сторон, обеспечивает 95 % необходимого освещения; сверхэкономичные лампы сберегают три четверти энергии, требуемой для дополнительного освещения. Яркость накала ламп регулируется в зависимости от присутствия дневного света, а когда в комнате никого нет, они просто выключаются. Холодильник потребляет только 8 %, а морозильная камера— 15 % обычного количества электроэнергии, так как они снабжены сверхизоляцией и охлаждаются в течение полугода пассивной «тепловой трубой», подсоединенной к находящемуся на открытом воздухе металлическому ребру. Сушилка получает свое тепло от солнечного «фонаря» или световой шахты. Стиральная машина представляет собой новую горизонтально-осевую конструкцию с загрузкой сверху, которая экономит около двух третей воды и энергии и три четверти мыла, лучше стирает одежду и продлевает срок ее носки. Даже традиционная кухонная газовая плита сберегает энергию благодаря использованию швейцарских горшков с двойной стенкой и британского чайника, теплоизоляция которых позволяет сэкономить треть пропана и уменьшить время, необходимое для кипячения воды. Вне помещения суперизолированный пассивно-солнечный фотоэлектрический «загон» помогает поросятам набирать вес, а курам нести яйца, поскольку им не приходится затрачивать слишком много энергии на поддержание температуры собственного тела.

Таким образом, для сбережения 99 % энергии, идущей на обогрев помещения и на нагревание воды, 90 % бытовой электроэнергии и 50 % воды общие дополнительные затраты составили 16 дол./кв. м х 372 кв. м, или около 6000 долларов, т. е. примерно 1 % от общей стоимости проекта в районе, где государственные средние затраты на строительство в два раз выше. По сравнению с обычными в этой местности домами такого же размера энергосбережение составляет по меньшей мере 7100 долларов в год. Следовательно, дополнительные затраты окупились за 10 месяцев, после чего сбережения накапливаются со скоростью, в среднем составляющей 19 долларов в день, что эквивалентно нефтяной скважине, дающей 1,3 барреля в день, или достаточно для содержания студента медицинского колледжа. Разумеется, 10 месяцев — это долгий период ожидания, но все это было сделано с использованием новейших для того времени технологий. Сегодня все можно сделать гораздо лучше. Например, окна сейчас дешевле, но тепло они сохраняют в 2 раза лучше.

Окупив себя за первые 10 месяцев, энергосбережения будут идти на оплату всего здания примерно в течение 40 лет. (Здание должно прослужить по крайней мере в 10 раз дольше; оно построено для будущих археологов, которые по его ориентации на юг и по необычной форме изогнутых каменных стен, несомненно, придут к выводу, что это храм первобытного поклонения Солнцу. Но чтобы работать, оно может иметь любую форму, быть адаптированным практически к любому климату и любой культуре и в то же время должно сберегать определенное количество энергии и денег.) В течение 40 лет одна лишь экономия электроэнергии позволит избежать сжигания на электростанции такого количества угля, которым можно было бы дважды засыпать здание. Только один холодильник каждый год экономит угля столько, сколько вмещается в него. А пиво остается таким же холодным.

Здание уже посетило более сорока тысяч гостей; оно получило большую рекламу в журналах и телевизионных передачах, показанных во всем мире. Некоторые приезжают для того, чтобы увидеть используемые технологии, другие — чтобы посмотреть, что представляет собой объединение под одной крышей фермы и научно-исследовательского центра с 20 рабочими местами. Приятно ежедневно ходить на работу через джунгли, протяженность которых не превышает 10 метров; кто-то предлагал нам посадить лианы и допрыгивать до работы, раскачавшись на ветке. Но большинство отмечают: самая важная особенность здания в том, что оно помогает его обитателям лучше себя чувствовать и лучше работать.

Почему люди, сидящие вокруг стола, весь день остаются бодрыми и пребывают в хорошем настроении, но если их поместить в обычный рабочий кабинет, то за полчаса они могут стать вялыми и раздражительными? На наш взгляд, это связано с царящей здесь атмосферой покоя, естественным освещением, здоровым воздухом внутри помещения, который не должен быть слишком горячим и сухим; звуком водопада (настроенным на альфа-ритм мозга и оказывающим успокаивающее воздействие); отсутствием механических шумов и электромагнитных полей, запахом, кислородом и ионами (а иногда и привкусом) зеленой растительности джунглей, которая видна отовсюду. Быть может, есть и другие вещи, которые мы еще не понимаем, но, кажется, для начала и этого достаточно.

В конечном счете, в здании должно быть удобно и красиво. Штаб-квартира ИРМ является одним из первых и пока одним из лучших по своей конструкции «зеленых» сооружений. Многие детали этого здания можно было бы значительно усовершенствовать, но основные принципы и совершенство его планировки продолжают волновать воображение.

 

1.3. Дармштадтский «Пассивный дом»

В 1983 г. Швеция ввела стандарт на тепловую изоляцию, сделав 50–60 кВт-час/м2 в год максимально допустимыми тепловыми потерями для домов. В Германии же дома обычно в среднем теряют 200 кВт-час/м2 в год. Следовательно, «фактора четыре» в Германии можно было бы достичь простым принятием шведского строительного стандарта для всех зданий, в том числе и старых. Тем не менее вышедший с поправками германский стандарт 1995 г. требует сокращения тепловых потерь к 2000 г. для новых зданий лишь на 20 %.

И все же шведский стандарт может быть значительно улучшен. Один из наиболее известных примеров — «пассивный дом», построенный в Дармштадте, в 50 километрах южнее Франкфурта. На фото 2 на вкладке это обыкновенное, ничем не бросающееся в глаза здание. Оно получило свое название благодаря использованию пассивной солнечной энергии и почти полному отсутствию активного обогрева. У «пассивного дома» потребность в дополнительном тепле составляет менее 15 кВт-час/м2 год и достигается преимущественно за счет высокоэффективной изоляции стен и окон (Файст и Клин, 1994).

Дом выглядит солидным и надежным, как, впрочем, все немецкие дома. Но здесь равномерное распределение температуры создает ощущение комфорта, а отсутствие механических шумов (поскольку нет печи и почти никакого механического оборудования) и уличного шума (благодаря звукопоглощающим суперокнам и мощной изоляции) обеспечивает умиротворяющую тишину. Дом не мрачный и не затхлый, он полон света и свежего воздуха. Всякого, кто сюда входит, сразу же охватывает чувство покоя, надежной защиты от сурового внешнего мира и в то же время единения с природой, поскольку через большие окна открывается зеленый мир.

Этот дом потребляет только 10 % от обычного количества энергии на отопление жилой площади и 25 % от обычного количества электроэнергии. Действительно, общая потребляемая домом энергия едва ли превышает энергию, которая расходуется электрическими бытовыми приборами в обычном немецком доме. Потребность в энергии на отопление настолько мала, что она легко удовлетворяется сверхэффективным газовым водонагревателем, который необходим для получения горячей воды. Специальная печь для обогрева помещения не нужна.

В здании используются несколько устаревшие окна, теплоизоляция которых эквивалентна восьми листам обычного стекла. Лучшие современные окна обеспечивают примерно на 50 % лучшую изоляцию, и в случае, если они были бы здесь использованы, это устранило бы последние 5 % затрат на обогрев помещения. Кроме того, потребовалось бы еще одно важное техническое новшество, недавно впервые внедренное в дармштадтском «пассивном доме»: слой пенной изоляции, образующий шапку над всей оконной рамой и покрывающий на ширину 3 см кромки самого стекла как изнутри, так и снаружи. Этот вариант оконной коробки типа стеганого чехла для чайника устраняет обычные потери тепла, уходящего через оконную раму, причем кромки стекла изолированы столь же хорошо, как и центральная часть. Производство такой системы вполне может стать массовым, она пригодна для установки и в строящихся, и в существующих зданиях.

Другим важным новшеством является доведение до нужной кондиции входящего свежего воздуха путем пропускания его сначала через пластмассовую трубу, закопанную в земле на глубине 3–4 метра. Даже в середине зимы земля на такой глубине достаточно теплая для того, чтобы холодный наружный воздух прогрелся по меньшей мере до 8 °C. Предварительно согретый воздух поступает в теплообменник, где проходит остальные 70 % пути и подогревается до температуры теплого, спертого воздуха, выходящего из дома. Таким образом, практически воздухонепроницаемый дом все время получает большое количество свежего воздуха, почти не теряя энергии. Воздушный поток можно разделять, направляя его в различные части дома, и чем больше людей находятся в том или ином месте, тем больше свежего воздуха будет туда поступать, поскольку при дыхании срабатывает датчик углекислого газа, увеличивая скорость бесшумного вентилятора.

Циркулирующий в доме и выходящий из него поток тепла точно измерен и тщательно изучен. Необходимо было учесть слагаемые, которые обычно слишком малы, чтобы о них беспокоиться: размещение датчиков в стенах с точностью до доли миллиметра; отвод тепла холодной водой, которая поступает в дом, находится в туалетных бачках и затем спускается при сливе; и даже то, что штукатурка имеет тенденцию «дышать», поглощая и повторно испаряя водяной пар, — эффект, отвечающий примерно за одну десятую нагрузки по обогреву помещения.

Из-за высокой стоимости новейших материалов и нестандартных технологий затраты здесь были выше, чем на обычные здания. Следующий шаг состоял в адаптации этой концепции к стандартизованным и экономичным методам строительства. Уже в 1996 г. проект ратуши дармштадтского архитектора Фолькмера Раша получил награду Шулера за эффективное использование ресурсов. Ко времени проведения в Ганновере Международной выставки «Экспо-2000» должен быть построен целый город — Кронсберг Зидлунг, где энергетическая эффективность будет повышена в четыре раза без каких-либо дополнительных затрат.

 

1.4. Дома для жаркого климата в Калифорнии

В двух предыдущих примерах речь шла о зданиях, требующих лишь от 1 до 10 % от обычного отопления жилых площадей в условиях холодного климата и пасмурной погоды. А как сделать более прохладными помещения в жарком климате?

Крупнейшее частное американское предприятие коммунального хозяйства «Пасифик гэс энд электрик» проводит эксперимент под названием «Испытание передовых потребительских технологий на максимальную энергоэффективность» (сокращенно ACT2). Цель эксперимента заключается в том, чтобы с помощью тщательных измерений определить наибольшее количество энергии, которое можно сберечь с выгодой для предприятия и его клиентов путем внедрения самых современных комплексов и технологий. Экспериментом руководит комитет, в него входят представители «Пасифик гэс энд электрик», ИРМ, Национальной лаборатории им. Лоуренса в Беркли (ведущий научно-исследовательский центр по энергоэкономичным зданиям) и Совета по охране природных ресурсов (ведущая национальная группа по сохранению естественных богатств).

По проекту стоимостью 18 миллионов долларов, учрежденному в 1989 г. руководителем исследований из «Пасифик гэс энд электрик» Карлом Вайнбергом и научным руководителем ИРМ Эймори Ловинсом, сейчас уже построены или модернизированы все 12 экспериментальных зданий. Данные подтверждают первоначальную гипотезу о том, что примерно три четверти потребляемой в большинстве случаев электроэнергии можно сэкономить без каких-либо дополнительных затрат и при обеспечении тех же или даже лучших условий.

Новый дом в Дэвисе (Калифорния, рядом с Сакраменто) стал первой проверкой того, как далеко могут зайти проектировщики, бросив вызов климату. «Расчетная температура» здесь составляет 40 °C, но в самые жаркие дни она может достигать 45 °C. Широко проводимое летом орошение находящихся на этой территории сельскохозяйственных ферм и угодий существенно повышает влажность. Хотя летние ночи часто прохладны, здесь бывают и многодневные «горячие бури» с незначительным спадом температуры в ночное время.

Задача состояла в проектировании стандартного дома со всеми удобствами общей площадью в 255 квадратных метров, который потреблял бы как можно меньше энергии. Еще до внесения усовершенствований «базовый» дом удовлетворял самым строгим в США энергетическим стандартам — нормам Документа 24, принятого в Калифорнии в 1993 г. Согласно этим нормам, конструкция должна была быть примерно на треть экономичнее, чем средний американский дом. Цена дома составляла 249 500 долларов и также была типичной для Калифорнии.

Сначала команда архитекторов из Энергетической группы Дэви-са за счет улучшения планировки уменьшила на 11 % (семь метров) периметр пола, на который впустую тратится энергия, а затем занялась аналогичной работой над контуром крыши. Проектировщики расположили окна в нужных местах, усовершенствовали оконные рамы, разработали стену, которая экономила дерево (см. «Использование дерева при постройке дома», раздел 2.20), сокращала строительные затраты и удваивала изоляцию. В результате энергосбережение составляет 17 %, затраты меньше обычных почти на 3 500 долларов; 57 % этой суммы сэкономлено за счет уменьшения периметра пола.

Проектировщики внесли также целый ряд мелких новшеств в корпус, освещение, бытовые приборы, систему горячего водоснабжения и окна. В результате общее энергосбережение увеличилось до 60 %, что соответствует сумме примерно в 1900 долларов. Единственным необычным мероприятием стало использование отработанного тепла холодильника для подогрева воды, что повышает эффективность его работы и экономит энергию в системе горячего водоснабжения. Кроме того, надо упомянуть вытяжные вентиляторы, тщательный выбор которых при покупке дал экономию в 80 % без каких-либо дополнительных затрат. Обычный коэффициент полезного действия вентиляторов в североамериканских домах составляет лишь 1–3 %; они, в сущности, являются небольшими электрическими нагревателями, которые, используют крошечную долю своей энергии для движения воздуха. Двойная стенная и кровельная изоляция и более совершенные окна устранили необходимость в печи, вытяжках и другом оборудовании, что сэкономило 2050 долларов. Вместо этого в самые холодные ночи можно через радиатор в виде плоской спирали стоимостью в 2400 долларов пропускать немного горячей воды из газового водонагревателя с коэффициентом полезного действия 94 %.

И все же оставалась необходимость в кондиционере, хотя и менее мощном, чем исходный трехтонный. Самые дорогостоящие усовершенствования уже достигли предела экономичности: ни одно мероприятие не должно было стоить больше, чем ожидаемая, рассчитанная на длительное время цена сэкономленной электроэнергии (6 центов на киловатт-час). Что же можно было сделать еще?

К счастью, проектировщики имели наготове так называемый потенциальный комплексный план по устранению охлаждения. В него входили все энергосберегающие мероприятия, ранее отвергнутые из-за того, что каждое из них в отдельности не сберегало достаточно энергии, чтобы окупить себя. Эти меры снижали потребности в охлаждении, но нуждались в экономическом обосновании. Когда в проект было добавлено семь таких усовершенствований, стоящих 2600 долларов, они сделали ненужными кондиционер стоимостью 1500 долларов и систему вентиляционных труб (плюс 800 долларов будущих расходов на их содержание), т. е. оказались экономичными. Таким образом, большая экономия оказалась дешевле, чем малая.

Проектировщики ожидали, и первое же лето подтвердило это, что никакого дополнительного охлаждения не потребуется. Изоляция и обычные суперокна не пропускали снаружи нежелательное тепло;

экономичные лампы и бытовые приборы внутри помещения испускали мало тепла; тепловая масса (двойная стена сухой кладки и пол из керамической плитки в центральной части) сохраняла прохладу в самые жаркие дни. При необходимости дополнительное радиационное охлаждение можно обеспечить прохладной водопроводной водой, пропускаемой через плоский змеевик. Этот способ применить не удалось, поскольку водопроводная магистраль была закопана на слишком малой глубине и водопроводная вода оказалась неожиданно теплой; к счастью, расчеты были правильными, так что водяное охлаждение не потребовалось.

Компьютерное моделирование показало, что дом будет потреблять на 53 % меньше электроэнергии, на 71 % меньше электроэнергии в часы пиковой нагрузки и на 69 % меньше природного газа, чем достаточно экономичный «базовый» дом. Но это не предполагает каких-либо усовершенствований в небольших бытовых приборах, которые потребляли одну треть первоначальной электроэнергии. Если учесть их, энергосбережение возрастает в среднем до 80 % для всей энергии или до 79 % для электроэнергии: 78 % экономятся на обогреве помещений, 79 % на нагревании воды, 80 % на холодильниках, 66 % на освещении, 100 % на охлаждении и 92 % на охлаждении и вентиляции вместе взятых. На рынке готовых сооружений дом в Дэвисе при условии применения всех 20 видов энергосберегающих мероприятий стоил бы примерно на 1800 долларов меньше, чем обычный, а его эксплуатация обходилась бы на 1600 долларов дешевле.

Судя по первым результатам проверки, дом ведет себя лучше, чем предусмотрено проектом. (Фактические сбережения несколько уменьшились благодаря внесенным в последний момент изменениям: например, жильцы пожелали иметь другой тип холодильника. Но и с учетом этих изменений реальная экономия хорошо согласуется с прогнозом.) Жильцы, въехавшие в дом в декабре 1993 г., комфортно чувствуют себя здесь даже в сильную жару. Поскольку предполагается, что раздел 24 Калифорнийского энергетического стандарта должен включать в себя все, что является практичным и экономичным, дом в Дэвисе может потребовать принципиального пересмотра этого стандарта.

В соответствии с другим проектом ACT2, завершенным несколько месяцев спустя, похожий дом построен на земельном участке, расположенном в еще более жарком месте — Стэнфорд Ранч (Калифорния). Этот дом сберегает еще больше энергии. Теплоизоляция, окна, светлые стены и крыша, а также двойная стена сухой кладки понижают затраты на охлаждение на 44 %. В нем также используется включаемый только ночью испаритель-охладитель, который служит в качестве вентилятора для всего дома и охлаждает воду, циркулирующую по размещенной под полом системе труб; здесь экономия энергии на охлаждение возрастает до 86 %. Дом в Стэнфорд Ранч стоит примерно на 1000 долларов, или на 0,4 %, дороже, чем постройка обычного дома, но экономия на оборудовании и эксплуатации перекрывает незначительное превышение затрат на строительство, поэтому чистая стоимость приблизительно четырехкратного увеличения эффективности всех основных потребителей энергии равна нулю.

Третий проект ACT2 — модификация обыкновенного одноэтажного дома, находившегося в эксплуатации 15 лет, — реализован весной 1994 г. Дом расположен в жарком районе Стоктон (Калифорния), где люди обычно пользуются кондиционерами с июня по сентябрь. Планировка здания и особые требования жильцов ограничили масштаб выполненных работ. Тем не менее модернизация дома даст возможность сэкономить 64 % от общего потребления электроэнергии и 60 % природного газа (не считая экономии на небольших электроприборах), что позволяет сэкономить 5500 долларов на амортизационных расходах, включая будущие затраты на замену оборудования и эксплуатацию. Простые усовершенствования кондиционера — более эффективные вентиляторы и двигатели, а также первичный охладитель испарительного типа — вносят вклад в ожидаемое 76-процентное сокращение затрат энергии на охлаждение. Кроме того, по прогнозам, затраты энергии на обогрев уменьшатся на 59 %, расход на основные бытовые приборы — на 63 %, освещение и небольшие приборы — на 76 %, подачу насосом воды для бассейна и из родника — на 76 %. Если бы жильцы этого дома придерживались модели потребления, более характерной для американских семей, то некоторые из приведенных цифр могли бы быть еще выше.

Все три дома находятся в зоне жаркого, но не сырого и теплого тропического климата. Однако сравнительно высокая экономия может быть достигнута и там. Ни жара, ни влажность не являются препятствием для четырехкратного энергосбережения при отличном комфорте и рентабельности.

 

1.5. Суперокна и их модификации для крупных помещений

В суперокнах применяются невидимые прозрачные высокотехнологичные пленки, отделяющие видимое излучение от инфракрасного (теплового). Видимый свет проходит через окно; инфракрасное излучение отражается. Сейчас существуют суперокна с сотнями тысяч различных «оттенков», причем каждый отдельный вариант предназначен для конкретного климата, здания и ориентации. Опытные проектировщики «настраивают» окна здания, впуская много света и тепла с северной стороны и минимизируя накопление тепла с солнечной южной стороны, и т. п. Все эти варианты суперокон выглядят одинаково, но их способность отражать инфракрасное излучение различна. Управляя входящими в здание и выходящими из него с каждой стороны потоками тепла и света, проектировщик может повысить комфорт, значительно уменьшить потребность в нагревательном и охлаждающем оборудовании и в энергии, необходимой для работы такого оборудования, и тем самым сократить как строительные, так и эксплуатационные затраты.

Суперокна стали появляться на рынке США только в начале 80-х годов. В штаб-квартире ИРМ, вероятно, был реализован первый коммерческий проект, в котором суперокна сочетали в себе спектрально-селективные тонкие пленки с тяжелым газом в роли тепло-изолирующего наполнения. Улучшенные многослойные конструкции, испытанные в ИРМ в начале 80-х годов, появились на рынке несколько лет спустя. Тепловое зеркало, покрытое с обеих сторон пластмассовой пленкой и обеспечивающее улучшенное качество при уменьшенной толщине, стало выпускаться только в ноябре 1993 г. Производство же его аналогов в Европе отстало на много лет — современные суперокна достаточно приемлемой толщины, имеющие умеренную цену, начали появляться только в 1993–1994 гг.

* По существу, все европейские суперокна все еще предназначаются для максимального увеличения температуры в помещениях в холодную, пасмурную погоду. Но оборудование для охлаждения стоит намного дороже, чем оборудование для обогрева зданий. Поэтому гораздо более ценной является оптимизация выпускаемых большинством фирм США суперокон, предназначенных для районов с жарким и с более прохладным климатом. Последнее относится к большей части крупных современных административных зданий: в Торонто или Стокгольме приходится использовать кондиционирование воздуха даже при -10 °C!

Традиционно окна для жаркого климата делают либо отражающими, в результате чего снаружи возникает раздражающий ослепительный блеск, либо темными и поглощающими тепло, но при этом половина тепла все равно переизлучается внутрь. Оба решения ограничивают проникновение не только нежелательного тепла, но и желаемого дневного света. С темнотой приходится бороться с помощью электрического освещения. Лампы потребляют электричество, что приводит к выделению тепла внутри здания, и таким образом мы возвращаемся почти туда же, откуда начинали. Но суперокна можно сконструировать так, чтобы они пропускали дневной свет и в то же время в значительной мере блокировали доступ нежелательного тепла. Некоторые последние конструкции, в которых используется стекло, слегка подкрашенное в цвет морской волны или в зеленоватый цвет, пропускают видимый свет примерно в 2 раза лучше, чем всю солнечную энергию. Это почти идеально: лучше и не сделаешь, поскольку половину солнечной энергии составляет инфракрасное излучение.

Суперокна для жаркого климата помогут обеспечить тепло зимой. Их изолирующие свойства определяются заполнением тяжелым газом и способностью спектрально-селективных пленок отражать обратно в здание инфракрасные лучи, которые стремятся ускользнуть, лишая жильцов ценного тепла. Таким образом, можно выбрать суперокна, обеспечивающие отличные теплоизоляционные характеристики в течение всего года в условиях климата как с жарким летом, так и с холодной зимой.

Обычно считается, что суперокна целесообразно использовать только при строительстве новых зданий. Кто же захочет тратиться на замену существующих окон, особенно на верхних этажах многоэтажного здания? Действительно, иногда дополнительные ценные качества окна не стоят затрат на них, в частности, расходов на оплату труда по установке окна. Но есть важные исключения.

В 1988 г. ИРМ изучал по заданию тогдашнего губернатора Арканзаса Клинтона возможности сбережения электроэнергии в этом штате (Ловинс, 1988). Применительно к типичному деревянному односемейному дому комплекс из примерно 20 тщательно выбранных мероприятий мог сэкономить 77 % годового потребления электроэнергии и 83 % электроэнергии, расходуемой в часы пиковой нагрузки (а также 60 % газа просто благодаря лучшей изоляции, без усовершенствования газовых приборов), окупив себя лишь за три года. Ключом к решению проблемы явилось добавление теплоизолирую-щих суперокон поверх существующих — незатененных одинарных прозрачных оконных стекол. Это нововведение уменьшало мощность, расходуемую на охлаждение, в гораздо большей степени, чем любое другое. В результате размер устанавливаемого кондиционера уменьшился в 3 раза. С увеличенной в 2 раза эффективностью и уменьшенным в 3 раза временем осушения он стоил практически столько же, так что экономия электроэнергии достигалась почти бесплатно. Если учесть все соотношения между размером, стоимостью и эффективностью различных мероприятий, то использование относительно дорогостоящих суперокон намного увеличило общую экономию электроэнергии при уменьшении расходов на одну треть.

В 1994 г. ИРМ вернулся к этой концепции и реализовал ее в еще большем масштабе (Ловинс, 1995). Владелец крупной корпорации производил реконструкцию целиком остекленной башни, в которой располагались офисы. Это 13-этажное здание общей площадью в 18 587 квадратных метров было построено близ Чикаго 20 лет назад. Оно представляло собой стандартную конструкцию начала 70-х годов: на стальной раме были заподлицо установлены большие окна, причем прозрачные «смотровые стекла» чередовались с окрашенными в темный цвет «заграждающими стеклами», которые заслоняли стальные и бетонные элементы междуэтажных перекрытий. Каждый вид стекла покрывал половину площади боковой поверхности здания. Поскольку смотровое стекло было двойным, а заграждающее — одинарным и неизолированным, то средняя теплоизоли-рующая способность оболочки здания была меньше, чем изолирующая способность двух листов стекла, что крайне недостаточно для сурового в течение всего года климата; кроме того, в помещение проникали воздух и вода. Несмотря на огромные системы отопления и охлаждения, внутренний комфорт оставлял желать много лучшего.

Блоки с двойным остеклением имеют недостаток: герметичность соединения их кромок в конечном счете нарушается, в результате чего они изнутри запотевают. У лучших сегодняшних блоков ресурс уплотнения составляет 23 года; у более дешевого вида — 12 лет. Двадцать лет назад такие уплотнения были еще хуже. Поэтому, когда в ИРМ установили, что 8 % из 900 блоков с двойным остеклением уже вышли из строя, эксперты предложили провести специальные испытания на запотевание для остальной части блоков. Как оказалось, практически любой из них может потребовать замены в течение ближайших шести лет — серьезная неприятность для будущих арендаторов. Поэтому владелец решил заново застеклить все здание, прежде чем сдавать его в аренду.

Существовавшее остекление представляло собой темный бронзовый стеклопакет с серой солнцезащитной пленкой, пропускала только 9 % дневного света, создавая «пещерное» настроение и изолируя обитателей от внешнего мира. Более того, такое остекление настолько дорого, что покупка суперокон едва ли обошлась бы дороже, а их установка стоила бы чуть меньше. В то же время суперокно изолировало бы тепло в три раза лучше, пропускало бы дневного света в шесть раз больше и препятствовало бы проникновению солнечной энергии настолько эффективно, что вместе с экономичными лампами и оргтехникой охлаждающую нагрузку можно было бы уменьшить вчетверо — с 750 до менее чем 200 тонн кондиционирования.

Владелец получил бы еще одно преимущество. Оборудование для кондиционирования воздуха обычно нуждается в ремонте каждые 20 лет, поскольку движущиеся детали, такие как вентиляторы и насосы, изнашиваются. Кроме того, в 90-е годы владельцу пришлось бы столкнуться со сворачиванием производства используемого в больших холодильниках хладоагента хлорфтороуглерода (фреона). Но вместо обычной замены на такой же агрегат, стоящей порядка 800 долларов за тонну, владелец мог бы заменить всю систему охлаждения помещений и кондиционирования воздуха на улучшенную и почти в 4 раза более эффективную конструкцию при стоимости всего 2 тысячи долларов за тонну. Это удачная покупка: стоимость за тонну возрастает примерно в 2,5 раза, но количество требуемых тонн — величина производительности кондиционирования — падает почти в 4 раза. Затраты на строительство снижаются. Экономию, достигнутую при обновлении системы кондиционирования, владелец может использовать для оплаты работы по модернизации электроосвещения и дневного освещения.

Расчеты ИРМ дали поразительный результат. Потребление энергии в часы пик (оно больше всего волнует коммунальные предприятия, так как определяет, сколько дорогостоящего оборудования надо построить) сократилось бы на 76 %. Годовое потребление электрической энергии уменьшилось бы по меньшей мере на 72 %, а может быть, и больше. Существенно улучшились бы благоустройство и эстетика, что намного облегчило бы привлечение арендаторов помещений: здание установило бы совершенно новый стандарт комфорта, тишины и красоты. Эксплуатационные расходы сократились бы на 12 долларов за квадратный метр в год — примерно в 10–20 раз по сравнению с конкурентной разницей в арендной плате, что дало бы первопроходцам громадное преимущество на рынке. Сопоставив все затраты на строительство и достигнутую экономию, можно сказать, что реконструкция в целом, сберегающая три четверти энергии, окупила бы себя за 5–9 месяцев, т. е. практически мгновенно.

Проект не был реализован, но заложенные в нем принципы по-прежнему не утратили своей актуальности. При его анализе использовались общепринятые подходы и предположения, подтвержденные в реальных условиях. Аналогичные нововведения остаются выгодной возможностью для более чем 100 тысяч больших зданий со стеклянными стенами той же эпохи (достаточно старых, построенных около 20 лет назад, требующих восстановления окон и механического оборудования) в США, и, вероятно, для еще большего числа зданий за границей.

Почему же за столь выгодную возможность не ухватились владельцы зданий, которые первыми попросили провести такое исследование? Из-за неудач на рынке, которые мы более подробно обсудим в части II. Здесь же назовем следующие причины:

• отсутствие в то время путей распределения сэкономленных средств между владельцами и арендаторами, а также способов вознаграждения проектировщиков за их работу по обеспечению таких больших сбережений; нужны были дополнительные усилия, чтобы объяснить арендаторам выгодность повышения эффективности ламп и оргтехники;

• неправильный акцент на выжимание экономии из каждого отдельно взятого компонента здания вместо сбережений по всему сооружению в целом;

• в данном конкретном случае было еще одно мелкое препятствие: местное арендное агентство, которое управляло собственностью, стремилось поскорее заселить здание арендаторами и не желалооткладывать получение своих комиссионных от этих сделок на срок, достаточный для осуществления реконструкции.

В итоге здание было отремонтировано старым, неэффективным способом. Оно оказалось слишком дорогостоящим и непривлекательным для рынка и, будучи непригодным для сдачи в аренду, было продано за ничтожную цену — вот к чему привело игнорирование новых возможностей при реконструкции здания. ИРМ, однако, не теряет надежды: ведь можно достаточно легко найти контакт с конкурирующим владельцем другого здания на той же улице. Рано или поздно, владелец осознает, что выгодно с точки зрения рынка. Конкуренция со стороны более эффективно работающих хозяйств может заставить соображать лучше.

 

1.6. «Здание Королевы» — новый инженерный корпус Университета Де Монфора, Лестер, Соединенное Королевство

Официально открытое в декабре 1993 г. королевой Елизаветой II, это британское учебное здание, спроектированное Аланом Шортом и Брайеном Фордом из компании «Пик, Шорт и партнеры», пребывает во впечатляющей гармонии с природой (см. илл. 3 на вкладке). Архитекторы были готовы взять на себя в одном и том же проекте решение как экологической, так и архитектурной задачи, а не пренебрегать одной ради другой. Ответственность за окружающую среду — это не декорация.

Будущие машиностроители изучают здесь нарисованные мелом на доске схемы холодильников, которых нет в этом здании, а студенты электротехнических специальностей овладевают премудростями проектирования электроосвещения, находясь в помещениях, освещаемых естественным дневным светом. «Нам казалось, — говорили проектировщики, — что ощущение естественного ритма внешнего мира помогает достичь спокойной сосредоточенности и что школа для инженеров, которая добивается значительной экономии энергии, сама может быть инструментом обучения и орудием для проведения исследований».

Место для нового корпуса тщательно выбиралось — он расположен вдоль дороги, идущей на северо-восток. Большая часть участка оставлена открытой и естественно сочетается с территорией университета, благодаря парку, разбитому с южной стороны. Первоначальный проект здания включал три основных принципа:

• использование традиционных трудоемких методов строительства с тем, чтобы обеспечить занятость местных рабочих;

• демонстрация инновационных концепций, создающих отличную среду для обучения и бросающих вызов традиционной архитектурной практике;

• использование более чистой и более «зеленой» технологии.

Проект сделан под явным впечатлением от Тринити лейн — средневековой улицы в Кембридже. Здания дополнены рядом внутренних дворов, которые также используются как классы для занятий на открытом воздухе, поэтому территория площадью 10223 квадратных метра не подавляет своими размерами. Это очаровательное сооружение считается первым удачным примером возрождения готической архитектуры за последние 100 лет. Жившие здесь каменщики, многим из которых нужна была работа в округе, создали прекрасную многоцветную кирпичную кладку, замечательную разнообразием традиционных фрагментов и деталей из кирпича.

«Здание Королевы» — самое большое в Великобритании строение с естественной вентиляцией. Дневной свет глубоко проникает в него с двух сторон, обеспечивая естественное освещение. Практически целиком пассивное перемещение воздуха происходит как за счет поперечной вентиляции, так и благодаря подъему теплого воздуха по восьми большим декоративным дымоходам, которые увенчаны украшенными орнаментом металлическими башенками. Частично поддержанные правительством проектировочные работы, включавшие картографирование потоков, физические макеты и компьютерное моделирование, обеспечили схему пассивной вентиляции для аудиторий, в которых можно открывать или закрывать окна с тем, чтобы добиться наиболее комфортных условий. Для этого используется 60 % площади стен. Автоматическая система управляет заслонками, вытяжными отверстиями и регуляторами обогрева.

Выступы крыши и массивные кирпичные стены сводят охлаждение к минимуму, а вся конструкция здания значительно ограничивает потребность в тепле и кондиционировании. Тепло обеспечивается главным образом пассивным солнечным обогревом, внутренним накоплением тепла от работы значительного количества приборов и от присутствия тысячи сотрудников и студентов. Эти тепловые нагрузки могут быть достаточно высокими — от 84 ватт на квадратный метр для оборудования в электротехнической лаборатории до 100 ватт на квадратный метр в механической лаборатории. В типичных административных зданиях Великобритании оборудование и работники создают тепловые нагрузки не более 25–32 ватт на квадратный метр. Дополнительное тепло дает природный газ.

Все эти подходы минимизируют потребление электроэнергии, что уменьшает размеры оборудования или даже устраняет необходимость в нем, давая экономию как энергии, так и капитальных затрат. По сравнению с типичными капитальными затратами в 34—40 %, объем капитальных затрат на механические и электрические системы в «Здании Королевы» составил лишь 24 %. Здесь используется только 25–30 % топлива, необходимого для эквивалентного здания. Общие затраты на здание с отделкой и полным оборудованием составили всего 12 миллионов долларов, или 1980 долларов за квадратный метр, а без отделки — 1184 доллара за квадратный метр. В любом случае это чрезвычайно низкая цена.

 

1.7. Ремонт выстроенных в ряд кирпичных домов

В Сент-Луисе, штат Миссури, как в большинстве американских городов и во многих городах других стран, большая часть жилой застройки — однообразные улицы, вдоль которых тянутся ряды узких трехэтажных домов, сделанных из дикого камня или кирпича. Многие из когда-то солидных, старинных классических сооружений порядком обветшали и даже брошены владельцами. Что можно сделать с такими домами?

Руководитель Управления энергетики Сент-Луиса Джим Сэккетт пришел к выводу, что эти здания нужно восстановить. Но многие из них находились в ужасном состоянии. Разваливалась на куски внутренняя отделка домов, переживших пожары, перекашивались стены, неровными становились полы. Нанять квалифицированных специалистов для того, чтобы все сделать вертикальным, прямоугольным и горизонтальным, было не по средствам. Но даже если бы деньги удалось найти, многим городским беднякам все равно оказалось бы не по силам оплачивать счета за энергию в домах с тонкой или отсутствующей изоляцией, в климате с очень жарким и влажным летом и холодной зимой.

Путем проб и ошибок было найдено удачное решение. В основание в качестве самовыравнивающегося фундамента заливался «плавающий бетонный пол». Расположенный по соседству цех в массовом количестве производил сборные панели, заполненные изолирующей пеной. Панели вставлялись между жаропрочными слоями стены из сухой кладки, так, чтобы края их плотно прилегали друг к другу. Используя простую монтажную систему, приспособленную для совсем не идеальных стен, все здание можно было облицевать этим привлекательным отделочным и сверхизоляционным материалом.

Затем был найден простой способ прорезания отверстий для дверей и окон. Поскольку в то время суперокна еще были недоступны, Сэккетт выбрал другой широко известный вариант: два окна с двойной подвеской. Каждое окно состояло из верхней и нижней частей, скользящих по направляющим. Открывая и закрывая внутреннюю и внешнюю, верхнюю и нижнюю рамы в различных комбинациях, можно было заставить окна обогревать, охлаждать, проветривать или изолировать дом в различные времена года.

Результат оказался замечательным как по своему эффекту, так и по простоте. Без использования сверхсложных методов или материалов — никаких суперокон, никаких теплообменников типа воздух-воздух и т. п. — сверхизоляция вполовину сократила издержки на каждый дом за срок службы. Потребность в отоплении упала более чем на 90 %; даже при отсутствии отопления в самую суровую зиму температура в помещении почти никогда не падала ниже 12 °C благодаря поступлению через окна пассивного солнечного тепла. Необходимость в охлаждении сократилась примерно на столько же — один установленный в окне кондиционер мог охладить и осушить весь дом, обеспечивая комфорт.

Стоимость? Менее 2000 долларов сверх затрат на обычный капитальный ремонт, и этого достаточно, чтобы превратить заброшенное каменное строение в элегантный, долговечный, привлекательный, надежный и недорогой дом.

 

1.8. Штаб-квартира Банка ИНГ

В 1978 г. банк «Недерландше Мидденстандсбанк» (НМБ) был в Голландии банком номер четыре. Сейчас он переименован в «ИНГ Банк» и занимает второе место, неуклонно расширяя свою деятельность. Что же произошло? Это долгая история, похожая на сказку, но все в ней правда, и многое связано с эффективностью использования ресурсов.

В прежние дни НМБ был, как признался один из его управляющих, «неповоротливым и консервативным». Нуждаясь в равной степени и в новом имидже, и в новой штаб-квартире, служащие банка проголосовали за выбор участка в растущем районе к югу от Амстердама. Совет директоров банка хотел иметь здание из природных материалов, органично вписанное в ландшафт, в котором много солнечного света, зеленой растительности и воды, здание, отличавшееся энергетической эффективностью и низким уровнем шума.

Банк сформировал команду проектировщиков и строителей. По словам управляющего недвижимостью банка Тие Либе, кроме архитекторов и дизайнеров в нее входили представители и других специальностей. Она работала над проектом три года, регулярно консультируясь с будущими арендаторами. Строительство началось в 1983 г. и завершилось в 1987 г. Результатом явилась крайне необычная конструкция: архитектор Антон Албертс описывает этот стиль как «антропософский», исходя из основанной Рудольфом Штейнером «Науки о духе». Посмотрите на это сооружение, и вы увидите, что у него нет прямых углов (см. илл. 4 на вкладке).

Здание, в котором размещается 2400 служащих на площади примерно в 50 тысяч квадратных метров, разбито на 10 скошенных облицованных кирпичом башен из сборного железобетона. В плане участок представляет собой неправильную S-образную кривую. Тут над площадкой в 30 тысяч квадратных метров, отведенной для стоянки машин и зон обслуживания, разбросаны парки и внутренние дворы. Вдоль внутренней улицы, соединяющей все башни, тянутся рестораны и конференц-залы. Историк архитектуры Чарльз Дженкс (1990) охарактеризовал здание как «землескреб», с «волнообразно изгибающимся телом, крепко обнимающим землю». Густонаселенные жилые кварталы, офисы и предприятия розничной торговли вокруг банка усиливают образ средневекового замка с окружающей его деревней.

Как в большинстве учреждений в северной части Европы, в этом комплексе используются плиты настила, которые уже, чем в США. Рабочий стол поэтому находится от окна на расстоянии, не превышающем 7 метров, что обеспечивает отличное естественное освещение. Внутренние жалюзи отбрасывают естественный свет, проникающий через верхнюю треть каждого внешнего окна, на потолки помещений. Наряду с внутренними застекленными атриумами, проходящими через башни к внутренней улице на уровне антресоли, это поэтажное боковое освещение дает значительную часть общего освещения здания, дополняемого настольными лампами, декоративными настенными бра и ограниченным количеством подвесной арматуры.

Аналогичным уровнем комфорта отличается и проект тепловой схемы здания, обеспечивавший в основном пассивное накопление тепла в ненастную голландскую погоду. В то время в Европе суперокон еще не было, и проектировщики ограничились обыкновенным двойным остеклением. От конструкции из сборного железобетона кирпичную оболочку отделяет слой изоляции. Сама конструкция используется для сохранения тепла, получаемого благодаря пассивному накоплению солнечной энергии и внутренним источникам тепла — освещению, оборудованию и людям.

Дополнительное тепло подается через водяные радиаторы, соединенные с системой накопления горячей воды емкостью в 100 кубических метров в подвале. Вода нагревается размещенным внутри конструкции теплоизлучателем и регенерацией тепла от двигателей лифтов и компьютерных залов. В здании банка применяются также теплообменники типа воздух — воздух, которые используют тепло от выходящего отработанного воздуха для подогрева входящего воздуха. Как и многие здания в северной части Европы, банк не имеет системы кондиционирования; вместо нее используются тепловая емкость текстуры здания, механическая вентиляция, естественная вентиляция через регулируемые окна и дублирующая абсорбционная система охлаждения (главным образом для осушения), питаемая отработанным теплом от теплоизлучателя.

Этот уровень интеграции конструктивных элементов здания, естественного дневного освещения и энергетической системы дает впечатляющие результаты. Старое здание главного отделения банка потребляло 4,8 гигаджоулей на квадратный метр первичной энергии в год, новое потребляет 0,4 гигаджоуля на квадратный метр в год, что на 92 % меньше. Для сравнения, соседний банк, построенный одновременно со зданием НМБ, расходует энергии на квадратный метр в пять раз больше, а затраты на его строительство были примерно такими же (Оливье, 1992). Дополнительные затраты на строительство, отнесенные к энергетическим системам НМБ, составляли порядка 700 тысяч долларов; однако годовое энергосбережение оценивается в 2,6 миллиона долларов, что окупает затраты за три месяца. Либе отмечает, что у НМБ «самые низкие затраты на энергию в голландских административных зданиях и одни из самых низких в Европе».

Наряду с простыми природными отделочными материалами в ансамбль включены произведения искусства, растения и вода. Коридоры в банке увешаны настоящими картинами, и видно, что при оформлении здания художественности исполнения придавалось большое значение. Например, поверхности из окрашенного металла в верхней части портиков башен отражают окрашенный свет на светлые скульптуры внизу, а от них свет переизлучается на оштукатуренные стены. Внимание к деталям распространяется даже на обработку температурных швов. Латунная пластинка, закрывающая такой шов в основном коридоре, поднимаясь вверх по стене, превращается в рельефную скульптуру, утопленную в стену и окруженную розеткой из мрамора различных оттенков со скрытой подсветкой. Верхние площадки на крыше, внутренние дворики, атриумы и другие внутренние помещения в различных стилях украшены зелеными насаждениями. Для фонтанов и полива растений используется собираемая в цистерну дождевая вода. Скульптурные фонтаны — они установлены даже в качестве ограждения площадок на верхних этажах — преобразуют постоянный поток воды в пульсирующую, журчащую струю. Кроме того, что они радуют глаз, водные потоки увлажняют воздух и создают акустический фон, что очень важно, поскольку в здании, которое пропускает мало внешних шумов и почти не создает собственных, тишина может быть гнетущей.

Затраты на приобретение земли, строительные работы, благоустройство, покупку произведений искусства, мебели и оборудования составили примерно 1500 долларов на квадратный метр. Другие административные здания в Голландии обошлись в такую же или даже в большую сумму. Сократилось количество случаев невыхода на работу банковских служащих, что Либе объясняет улучшением условий для работы (Ромм и Браунинг, 1994). И наконец, благодаря зданию, НМБ обрел в глазах общественного мнения привлекательный имидж. Сейчас он считается прогрессивным, творческим банком, а его здание — самое известное в стране после парламента. Деловые операции банка резко увеличились в объеме.

 

1.9. Сокращение потребления электроэнергии датскими электроприборами на 74 процента

Примерно 30–50 % электроэнергии в большинстве промышленных стран (в Дании — 45 %) расходуется на электрические приборы и установки (включая бытовое освещение, горячую воду и вентиляцию) в жилых домах и в сфере услуг. Весьма тщательный и подробный анализ, проведенный в Техническом университете Дании по основным видам бытового оборудования, показал, что можно поддерживать современный уровень таких услуг, как охлаждение, чистка и уборка, приготовление пищи и снабжение чистым воздухом, используя лишь 26 % от сегодняшнего потребления электроэнергии, если направить усилия на разработку и реализацию эффективной энергосберегающей технологии (Нергард, 1989).

Расчетные дополнительные затраты на такие энергосберегающие приборы и оборудование в среднем составляют 2,5 цента на сэкономленный киловатт-час, что эквивалентно стоимости топлива для электростанции, сжигающей сырую нефть по цене 14 долларов за баррель. Большую часть сбережений можно получить путем использования уже имеющихся на рынке лучших приборов и устройств, дополнительные затраты на которые составляют в среднем 0,6 цента на сэкономленный киловатт-час. Эти затраты на сэкономленную энергию могут немного увеличиться с учетом несколько большего объема отопления помещений, которое потребуется, когда приборы и устройства станут более эффективными (поскольку раньше две пятых их энергии давали полезное тепло типичному датскому дому). Но в действительности затраты даже сократились благодаря появлению более совершенных технологий.

Как может такая страна, как Дания, которая уже относительно эффективно экономит энергию, в 4 раза повысить экономичность типичного бытового оборудования по сравнению с 1988 г.? В общем-то, это не так трудно. Судите сами.

• Лучшие изоляция, компрессоры, охладители, теплообменники и регуляторы уже уменьшили годовое потребление энергии, необходимое для типичного датского 200-литрового холодильника (без морозильника), с 350 киловатт-часов для старых аппаратов, еще бывших в продаже в 1988 г., до 90 киловатт-часов для новых образцов 1988 г., пользующихся наибольшим спросом. Датский опыт продемонстрировал возможность снижения потребления до уровня 50 киловатт-часов, благодаря использованию усовершенствованной схемы мотор/компрессор либо «бесплатного» охлаждения за счет обычно холодного наружного воздуха. Как отмечено в разделе «Суперхолодильники», эти оценки оказались заниженными: описанный подход снизил в одной из новейших голландских машин потребление до 50 киловатт-часов, последний вариант ИРМ дошел до 38 киловатт-часов, а добавление вакуумной изоляции в голландский вариант сократило бы энергопотребление примерно до 30 киловатт-часов.

• Лучший морозильник на датском рынке в 1988 г. потреблял электроэнергии примерно на 64 % меньше, чем средний, используемый в то время (180 против 500 киловатт-часов в год примерно на 250 литров), но более совершенная конструкция может легко дойти до 100 киловатт-часов в год, т. е. сократить расход на 80 %. Такое же сокращение на 80 % вполне достижимо и для сочетания холодильник-морозильник.

• Средняя датская бытовая стиральная машина производительностью в четыре килограмма в 1988 г. работала около 200 раз в год (при этом использовалось примерно столько же времени, сколько требовалось для стирки белья вручную в предыдущем поколении!). Вместе с обычным европейским электрическим подогревателем для поступающей воды она потребляла около 400 киловатт-часов. Но лучшая доступная модель расходовала лишь 115 киловатт-часов, что можно сравнить с лучшей стиральной машиной на рынке США к 1994 г. Четко просматривались дальнейшие пути сокращения потребления электроэнергии до 40 киловатт-часов (замена электрических источников нагрева воды на неэлект-ричеекие). Усовершенствования касались не только самой стиральной машины. Было улучшено также качество моющих средств, некоторые из них могут эффективно растворять жиры даже в холодной воде. В ряде машин были разделены и оптимизированы процессы замачивания (для которого требуется концентрированное моющее средство) и механического перемешивания (для которого требуется больше воды). В числе инноваций — датчики, продолжающие добавлять воду и мыло до тех пор, пока вода, в которой полощется белье, не будет выходить чистой и нежирной, и затем прекращающие их подачу. В этих машинах расход энергии и мыла сокращается во много раз по сравнению с «глупыми» машинами, не имеющими датчиков.

• Расход электроэнергии посудомоечными машинами также удалось уменьшить со средней в 1988 г. величины в 500 киловатт-часов в год (с использованием 4 раза в неделю), или с 310 киловатт-часов в год для доступной тогда лучшей модели, до 165 киловатт-часов в год благодаря улучшенной конструкции или даже до 35, если для нагревания воды использовались другие источники. Основные усовершенствования относятся к двигателям и насосам, качеству моющих средств, теплоизоляции и системе управления.

• Аппараты для сушки одежды, в среднем потреблявшие в 1988 г. 440 киловатт-часов в год при 130 загрузках по 3,5 кг, могли быть доведены до 350 киловатт-часов в год для лучших сушилок 1988 г., до 180 для еще более совершенных моделей и лишь до 100 киловатт-часов при использовании неэлектрического нагрева. Наиболее очевидные усовершенствования относятся к изоляции, двигателям с высоким к.п.д., улучшенной системе управления, тепловым насосам и, возможно, микроволновой сушке. Существенная экономия достигается, кроме того, благодаря значительному увеличению скорости вращения одежды (при этом прирост потребления энергии двигателем в 19 раз меньше, чем последующее уменьшение расхода энергии на сушку), к тому же машины автоматически встряхивают одежду для удаления складок.

• Датское кухонное электрооборудование в 1988 г. обычно расходовало порядка 700 киловатт-часов в год, но лучшие существовавшие тогда модели потребляли только 400, а самые современные, в которых использовались передовые технологии, могли работать еще лучше, потребляя 280 даже без перехода на природный газ. Некоторые усовершенствования в электроплитах очень просты. Это, скажем, лучший термоконтакт между нагревательным элементом и кастрюлей (в обычную кастрюлю, как правило, попадает только 30 % тепла), встроенные нагревательные элементы, духовки с улучшенной изоляцией, изолированные кастрюли и скороварки. Группа исследователей разработала электронный регулятор, измеряющий температуру на дне кастрюли и обеспечивающий ровно столько тепла, сколько необходимо. Даже классический датский рисово-молочный пудинг, который обычно надо тщательно перемешивать, чтобы не пригорало молоко, получался великолепным вообще без всякого перемешивания!

• Другое важное устройство, — маленький насос, обеспечивающий циркуляцию горячей воды от печи по всему дому. Стандартный датский насос в 1988 г. потреблял 65 ватт, хотя фактически для циркуляции воды требовалось всего лишь порядка 1 ватта. К 1988 г. более дешевый 20-ваттный насос и улучшенные регуляторы сократили потребление с 400 киловатт-часов до 100 киловатт-часов в год. Более экономичная 5—10-ваттная модель, в которой использовалась новая технология, могла, очевидно, снизить потребление до 50 киловатт-часов в год. Разумеется, сверхизоляция и вентиляционная регенерация тепла, а также суперокна способны значительно уменьшить размер печи или даже устранить необходимость в ней и, следовательно, в ее циркуляционном насосе.

• Вентиляция в больших зданиях и в относительно воздухонепроницаемых домах часто крайне неэффективна. К.п.д. общепринятых в Северной Америке вытяжных вентиляторов, устанавливаемых на кухне и в ванной комнате, составляет всего 1–3 % (японские модели по той же цене более эффективны). Датские исследователи установили, что для систем, обслуживающих весь дом, лучшее доступное на рынке в 1988 г. оборудование могло сэкономить 45 % энергии, а более совершенное даже до 85 %. Тем не менее и эти показатели не предел: лучшая сингапурская технология, используемая в зданиях очень большого размера, которые, по определению, должны быть более экономичными, в среднем сберегает около 90 % энергии и понижает капитальные затраты.

• По прогнозам датских аналитиков, от других приборов (главным образом, телевизоров) можно ожидать экономии лишь на 30 % в краткосрочной перспективе и на 50 % за счет применения передовых технологий. Ясно, однако, что эта оценка занижена. На сегодняшнем рынке никого не удивляет и более ощутимая экономия, причем она никак не связана со стоимостью оборудования.

Что происходит, когда складываются все эти вполне доступные и оправданные способы экономии? Потребление электроэнергии сокращается на 74 % благодаря использованию передовых технологий, которые уже были реализоваы в 1988 г. и стали доступны на рынке с 1994 г. (если их не превзошли лучшие образцы). Только одни эти мероприятия сохранили или улучшили бы качество обслуживания при одновременном снижении среднего потребления электроэнергии электроприборами и освещением на душу населения в Дании с 3200 киловатт-часов до 825 киловатт-часов. Если добавить сюда экономию от замены электричества на другие источники тепла, то сбережения составили бы 80 % — величина, которая уже достижима применительно к освещению (раздел 1.11), — а энергопотребление на душу населения сократилось бы до 620 киловатт-часов в год. И, как подчеркивают датские эксперты, затраты на такие сбережения электроэнергии, на каждый сэкономленный киловатт-час, меньше, чем затраты на дополнительное производство электроэнергии в любой части света.

Специальный анализ, проведенный в 1983 г. той же командой, показал возможность экономически эффективных сбережений потребляемой в Дании электроэнергии на 72 % для охлаждения и на 65 % для отопления. Сегодня обе цифры можно было бы значительно повысить, например, благодаря суперокнам. Действительно, к 1987 г. официальный анализ Министерства энергетики установил энергосберегающий потенциал величиной в 66 % для потребляемой в Дании электроэнергии на охлаждение и в 62 % для вентиляции, исходя из предположения, что появление новых технологий на рынке будет происходить скорее спонтанно, а не в результате целенаправленной политики.

 

1.10. Суперхолодильники

Холодное пиво, свежие рыба, овощи, молоко — эти блага, обеспечиваемые бытовыми холодильниками, хорошо знакомы жителям всех развитых стран мира. Еще важнее, когда в деревнях, расположенных на юге, небольшой питаемый солнечной энергией медицинский холодильник по сути дела представляет собой грань между жизнью, спасаемой хранящимися в нем вакцинами, и смертельным исходом болезни. Что же позволяет надежно поддерживать температуру, которая на десятки градусов ниже температуры окружающей среды? Изолированная коробка и метод охлаждения — это традиционное устройство, которое попеременно сжимает фреон и затем снова расширяет его, отводя тепло от пищевых продуктов к «конденсатору» на наружной части коробки.

Слабым местом большинства холодильников является их изоляция. Примерно с 1950 по 1975 год, по мере того, как электроэнергия дешевела, производители уменьшали толщину изоляции, чтобы сделать внутренний объем холодильника более вместительным, не увеличивая внешних размеров. Дай им волю, они, пожалуй, сделали бы внутренние размеры больше внешних. Иногда в холодильниках использовались весьма неэффективные компрессоры, часто устанавливаемые снизу, в результате чего в камеру для хранения продуктов поднималось тепло, которое необходимо было заново отводить. Конструкция компрессора и конденсатора была настолько плохой, а охладитель настолько мал, что им требовался шумный, малопроизводительный вентилятор, который обдувал бы их, предупреждая перегрев. Запутанный змеевик конденсатора с трудом поддавался чистке; скопившаяся грязь мешала отводу тепла, заставляя компрессор работать дольше. Дверца не имела хорошего уплотнения, а когда ее открывали, весь холодный воздух выходил наружу. Во влажную погоду из-за такой изоляции наружная поверхность коробки запотевала, поэтому для ее осушения устанавливались электрообогреватели; до недавнего времени их даже нельзя было отключить в сухом месте или в сухое время года. Такие обогреватели работали в одной упряжке с тонкой изоляцией, облегчая поступление избыточного тепла вовнутрь. Для равномерного охлаждения (а заодно и высу-шивания пищевых продуктов), вместо того чтобы улучшить конструкцию, были добавлены малопроизводительные вентиляторы. Для уменьшения обмерзания внутри, наряду с неэкономичными лампочками, также были поставлены электрообогреватели, просто чтобы показать, что у системы охлаждения большие возможности. Они продолжали работать даже безо всякого обмерзания. Появлялись новые варианты, в которых лед или напитки можно достать, не открывая дверцу. Это небольшое удобство добавляло еще одно отверстие в изоляции.

Какой нелепый способ охлаждения продуктов! Тем не менее были проданы сотни миллионов таких холодильников. Каждый из них тратит впустую настолько много электричества, что сжигаемый для ее производства уголь (за который вы платите, чтобы без всякой на то нужды превратить его в глобальное потепление и кислотные дожди) мог бы в течение года целиком заполнить внутренность холодильника.

В конце 80-х годов американские холодильники и холодильники-морозильники (наиболее распространенный тип) расходовали одну шестую часть всей электроэнергии, потребляемой жилыми домами, что примерно эквивалентно производству энергии 30 электростанциями размером в Чернобыльскую АЭС. Между тем новые аппараты, которые могут служить 20 лет, но нередко перепродаются до истечения этого срока, становились гораздо более экономичными.

Начиная с середины 70-х годов, и особенно в 90-е годы, производители стали осознавать, насколько это просто — улучшить конструкцию, изоляцию и уплотнение, увеличить размеры змеевиков, применить более экономичные лампочки, компрессоры и регуляторы для того, чтобы сохранять продукты прохладными и не высушивать их, расходуя при этом намного меньше электроэнергии. Эффект был поразительным.

• Средняя модель холодильника-морозильника, продаваемая в США в 1972 г., потребляла 3,36 киловатт-часа в год на один литр объема.

• К 1987 г., когда в Калифорнии вступили в силу стандарты экономичности, эта цифра упала до 1,87 киловатт-часа в год.

• В 1990 г. новый федеральный стандарт запрещал продажу моделей, имеющих показатель выше 1,52 киловатт-часа в год, тогда как лучшая модель массового производства расходовала только 1,32 и при этом стоила меньше, чем средний новый агрегат в своем классе размеров.

• В 1993 г. федеральный стандарт подтянули до 1,16.

• В 1994 г. компания «Верлпул» выиграла конкурс «Золотая морковка» (подход, заимствованный из ранее проведенного шведского конкурса на лучшую разработку, победителем которого стала компания «Электролюкс»), продемонстрировав аппарат, потребляющий 1,08 киловатт-часа в год. Основные производители в США договорились к 1998 г. сократить потребление электроэнергии до 0,86.

• Начиная с 1988 г. «Грам» в Дании производит холодильники с улучшенной изоляцией, потребляющие всего лишь 0,45 киловатт-часа в год. Путем дальнейших усовершенствований этот показатель можно легко понизить до 0,26.

Некоторое специально изготовленное оборудование работало еще лучше.

• Уже в начале 80-х годов небольшая американская фирма «Сан Фрост» вручную производила (главным образом, для работающих на солнечной энергии домашних хозяйств, стремящихся минимизировать закупки дорогостоящих солнечных батарей) модели, которые расходовали только 0,45—0,53 киловатт-часа в год. Эти аппараты стоили дороже, потому что производились в малом объеме, но при массовом производстве стоимость их должна быть ниже, чем традиционных моделей, поскольку по своей конструкции они гораздо проще. Современные модификации с частичным размораживанием, вытесняющие более старые модели с ручным размораживанием, потребляют 0,60—0,70 киловатт-часа в год.

• С 1983 г. холодильник фирмы «Сан Фрост» в Институте Рокки Маунтин расходует только около 0,19 киловатт-часа в год. Охлаждение этой модели наполовину обеспечивается «тепловой трубой», соединяющей холодильник с находящимся в тени наружным охлаждающим ребром, благодаря чему тепло от пищевых продуктов отбирается наружным воздухом, который часто бывает холодным.

Можно было бы предположить, что сокращение потребления энергии от стандарта США 1972 г. до уровня «Сан Фрост» начала 80-х годов займет очень много времени, если вообще будет когда-либо осуществлено и признано целесообразным. Ничего подобного!

Привлекают и многие другие возможности.

• По крайней мере пять видов наиболее передовых изоляционных материалов могут обеспечивать изоляцию на единицу толщины в 2—12 раз лучше, чем самый лучший пенопласт, который, в свою очередь, обладает вдвое более высокой изоляционной способностью, чем стекловолоконная или минеральная вата. Пожалуй, самым удивительным новым материалом являются просто два листа нержавеющей стали, сваренные по краям и отстоящие друг от друга на расстояние нескольких миллиметров (разделенные маленькими стеклянными шариками), с высоким вакуумом между ними. Внутренняя поверхность покрыта специальной пленкой для защиты от теплового инфракрасного излучения. Слой толщиной в картонный лист такой изоляции с «компактным вакуумом» может столь же хорошо останавливать тепловой поток, как семь сантиметров минеральной ваты. Стальная изоляция стоит дороже, но она может резко повысить теплоизоляцию холодильника при значительном уменьшении толщины его стенок. Увеличенный благодаря этому внутренний объем компенсирует затраты на экзотическую изоляцию.

• Компрессоры обычно велики по размерам и неэффективны: даже у «Сан Фрост» они не самые лучшие, потому что компания не могла себе позволить массовые закупки более эффективных моделей. Но «Сан Фрост» использует компрессоры, оптимизированные отдельно для холодильника и морозильной камеры, и устанавливает их наверху. Имеется много других усовершенствований, включая компрессоры с регулируемой скоростью, а значит, и с регулируемым охлаждением.

• Новые конструкции компрессоров с двигателями «Стерлинг» могут увеличить эффективность наполовину или на две трети. Их легко уменьшить до соответствующих размеров для холодильников со сверхизоляцией. Они также повышают надежность, понижают уровень шумов, а вместо хлорсодержащих хладоагентов используют инертный гелий.

• Размеры змеевика конденсатора можно увеличить, присоединив его к тяжелой металлической пластине в шкафу холодильника, что почти вдвое повышает эффективность. Утяжеленная задняя часть не позволяет агрегату опрокинуться, даже если на двери повиснет ребенок.

• Улучшенные материалы и конструкция могут сократить утечки воздуха через уплотнения.

• Лучшие вентиляторы и лампочки могут понизить рабочую энергию и меньше нагревать продукты питания. Лампочки могут даже подавать вовнутрь только свет — а не греть — через светопроводы или волоконные световоды. Некоторые модели имеют улучшенную конструкцию, в которой устранены внутренние вентиляторы, в частности, в камере холодильника, что позволяет дольше сохранять продукты свежими. А хорошо продуманные с инженерной точки зрения агрегаты используют достаточно большой змеевик конденсатора, устанавливаемый наверху и не требующий вентилятора.

• Новые датчики могут включать режимы замораживания и оттаивания только тогда, когда это необходимо, уменьшая энергию на размораживание примерно в 10 раз.

• Размораживание можно осуществлять жидкостью, согреваемой отработанным теплом конденсатора, а не с помощью электричества.

• Вся теплота конденсации может быть использована для нагревания воды в домашнем хозяйстве.

Представляется, что использование этих усовершенствований увеличит уже достигнутую экономию в 86 % по крайней мере до 96 % — без каких-либо потерь рабочих характеристик, надежности или материальных затрат. Революция, связанная с созданием суперхолодильников, только началась.

 

1.11. Освещение

 

Одна пятая всей электроэнергии, потребляемой в США, идет непосредственно на освещение, а если учесть энергию, используемую для отвода тепла от ламп, фактически одна четверть. Примерно столько электроэнергии могут выработать 120 гигантских электростанций. В таких странах, как Россия или Китай, примерно по 15 электростанций мощностью в одну тысячу мегаватт каждая полностью заняты тем, что просто обеспечивают неэффективное освещение.

 

Лампы накаливания

Примерно половина энергии, идущей на освещение в США, и еще более высокая доля в большинстве развивающихся и бывших социалистических стран потребляется обыкновенными лампами накаливания, которые с 30-х годов этого столетия мало изменились. Такие лампы по существу являются электронагревателями, излучающими лишь 10 % своей энергии в виде света. Почти все лампы накаливания можно без труда заменить миниатюрными люминесцентными лампами, впервые выпущенными в Голландии и Германии. На североамериканском рынке они появились в 1981 г., позже — в Восточной Европе и Китае. Сейчас во всем мире выпускается более 200 миллионов люминесцентных ламп в год, их выпуск ежегодно возрастает на 15–20 %. Те, что были проданы в 1994 г., сэкономят с учетом потребляемой ими электроэнергии на протяжении своего срока службы по меньшей мере пять миллиардов долларов.

Может показаться, что это не очень много, в мире ведь используется почти 10 миллиардов ламп накаливания в год. Но компактные люминесцентные лампы служат примерно в 10 раз дольше, поэтому 200 миллионов таких ламп, продаваемых ежегодно, эквивалентны примерно двум миллиардам ламп накаливания, что составляет одну пятую долю количества поставляемого света. Различие в сроке службы означает также, что если в половину патронов во всем мире ввернуть компактные лампы дневного света, то их продажа все равно составит только около 5 % от продажи ламп накаливания. Но по крайней мере на производстве, где люди считают затраты на замену ламп и труд по их установке (обычно под потолком), экономия ресурса более чем окупает компактные лампы дневного света, делая сбережения электроэнергии не просто бесплатными. Можно сказать так: вам дают не бесплатный обед, а обед, за который еще доплачивают.

Только с учетом подлежащих замене ламп, а не труда по их установке, компактная люминесцентная лампа многократно окупает затраты на протяжении своего срока службы.

Компактные люминесцентные лампы иллюстрируют также, как можно избежать загрязнения окружающей среды без каких-либо затрат и даже с выгодой, потому что дешевле экономить энергию, нежели ее производить. Одна 18-ваттная компактная люминесцентная лампа, заменяющая стандартную 75-ваттную лампу накаливания, способна на протяжении своего срока службы сэкономить (Ловинс, 1990):

• тонну двуокиси углерода, 4 кг окислов серы и 1 кг окислов азота, не считая других выбросов от работающей на угле станции;

• полкюри стронция-90 и цезия-137 (среди других высокоактивных отходов) и плутония в количестве, эквивалентном 0,4 тонны тринитротолуола, на атомной электростанции;

• по меньшей мере 200 литров нефти, потребляемой электростанцией, работающей на жидком топливе. (Этого достаточно, чтобы проехать 1600 км на серийном автомобиле или пять раз пересечь США на гиперавтомобиле.)

Топливная энергия, сэкономленная благодаря замене восьми ламп накаливания, работающих непрерывно, на компактные люминесцентные лампы, достаточна для обычной заправки топливом средней американской автомашины. Более того, завод стоимостью в 7,5 миллиона долларов производит до пяти тысяч компактных люминесцентных ламп в день. Электроэнергия, сберегаемая лампами, которые выпускает этот завод, позволяет обойтись без строительства электростанций, стоящих по меньшей мере в 40 раз больше. Экономится столько энергии, сколько поступает с морской нефтяной платформы, стоящей несколько сот миллионов долларов; либо столько, сколько используют 188 тысяч американских автомобилей, или шесть полностью загруженных, высокоэкономичных пассажирских реактивных самолетов «Боинг-757», выполняющих регулярные рейсы на дальние расстояния.

Компактные люминесцентные лампы могут, например, сократить пиковую нагрузку в Бомбее на одну треть, экономя скудные запасы энергии; или увеличить на одну четверть прибыль фермера в Северной Каролине, занимающегося разведением кур; или увеличить чистый доход в очень бедной стране, скажем, в Гаити, примерно на одну пятую. Неплохо для небольшого устройства, которое вы можете уместить у себя на ладони и сами ввернуть в патрон!

Компактные люминесцентные лампы — не единственный выбор. Крупные лампы накаливания лучше всего заменять металлогалоид-ными или натриевыми лампами высокого давления. Некоторые из них сейчас дают чистый белый свет, практически не отличимый от дневного. Там, где требуется концентрированный пучок света, например, на выставке товаров розничной торговли, можно использовать специально сконструированные лампы с отражением света от кварцевой галогенной капсулы; при этом применяются тонкие пленки, подобные пленкам в суперокнах, отражающие тепло обратно на нить накала, которой поэтому необходимо меньше электроэнергии, чтобы оставаться раскаленной добела. Эта конструкция расходует 60 ватт для создания такого света, на который раньше обычно требовалось 150 ватт.

 

Трубчатые люминесцентные лампы

Половина идущей на освещение энергии в США, или примерно 360 долларов на человека в год (а во многих других западных странах даже больше), потребляется трубчатыми люминесцентными лампами и балластными сопротивлениями, которые поджигают их и управляют ими. Но около 80–90 % этой энергии растрачивается впустую, а производимый свет совершенно неудовлетворителен. Основные необходимые усовершенствования таковы.

• Обеспечение гораздо большего выхода света из арматуры в помещение. При правильном выборе формы блестящие материалы внутри арматуры могут повысить эффективность почти вдвое. Нужное количество света подается в заданном направлении, улучшается видимость и уменьшается ослепительный блеск.

• Проектирование или доработка арматуры с целью достижения наилучшей температуры, при которой работают лампы и балластные сопротивления: обычно они сильно перегреваются, в результате чего теряют больше энергии и служат меньше.

• Использование ламп, испускающих нужные цветовые гаммы, ко-торые согласуются со зрительными рецепторами, воспринимающими красный, зеленый и синий цвета. Цвета становятся более определенными и привлекательными, а глаза лучше видят при меньшей освещенности.

• Использование более тонких ламп, испускающих на одну четверть больше света на ватт и облегчающих проектирование оптики для управления направленностью света.

• Эксплуатация ламп в высокочастотном режиме, что устраняет мерцание и шум, вызывающие у многих людей усталость и головную боль. Электронные балластные сопротивления, работающие с высокой частотой, также экономят по меньшей мере четверть энергии непосредственно и значительно больше, если учесть более трудноуловимые эффекты.

• Использование электронных регуляторов для уменьшения яркости освещения в зависимости от наличия дневного света, отключение светильников, когда его уже достаточно или в помещении никого нет, установление на нужную яркость освещения для определенной части помещения или для выполнения людьми своих задач, автоматическое увеличение яркости ламп по мере того, как они тускнеют в результате старения или загрязнения.

• Содержание ламп и арматуры в чистом состоянии и регулярная замена ламп до их потускнения или выхода из строя.

 

Проектирование освещения

В совокупности эти мероприятия по меньшей мере учетверят эффективность типичных люминесцентных систем освещения и окупят себя за несколько лет. Но улучшив использование света, можно достичь дополнительной очень крупной экономии даже с меньшими затратами.

• Облегчите себе чтение простым методом, подобным настройке фотокопировальной машины, дающей расплывчатые изображения.

• Выберите такое положение в помещении, чтобы свет, отражающийся прямо от страницы, не слепил вас: вам помогает видеть не свет, а контраст (например, между чернилами и бумагой), который яркий фон размывает. В обычном офисе гораздо важнее уменьшить этот фон, нежели добавить еще света.

• Продумайте, как рассеять свет, используя потолок или стены; свет должен поступать со многих различных направлений и тем самым практически устранять яркий фон. Подобное «косвенное» освещение позволит вам видеть лучше при наличии только одной пятой того освещения, которое чаще всего требуется.

• Обеспечьте нужное количество света. Оно зависит от зрения конкретного человека, его возраста, сложности и важности решаемой им задачи, времени дня, а также других факторов. Поэтому важно, чтобы люди могли регулировать уровень освещения в соответствии со своими текущими потребностями.

• Используйте при необходимости дополнительное «целевое» освещение. Например, направленное освещение поможет вам читать бумаги, лежащие рядом с компьютером без того, чтобы чрезмерно освещать экран, что мешает различать на нем детали. К тому же тем самым устраняется разница в яркости экрана и бумажного документа, из-за которой ваши глаза устают, переключаясь туда и обратно.

• Используйте более светлые ковровые покрытия, краски и мебель — в таких условиях свет лучше «гуляет» по помещению.

• Обеспечьте более глубокое проникновение дневного света в здание с помощью различных методов — от посеребренных жалюзи до специальных «световых полок» (которые сейчас могут «передвигать» свет на сколь угодно большое расстояние, вплоть до десятков метров) — и равномерное его распределение без ослепительного блеска. Прямые солнечные лучи бывают настолько яркими, что затрудняют рассматривание объектов и утомляют глаза; дневной свет следует направлять вверх, чтобы он освещал потолок. Стеклянные перегородки могут отделять офисы друг от друга и при этом пропускать дневной свет.

• В сложных случаях сконцентрируйте солнечный свет снаружи, быть может, на крыше, и затем введите его внутрь здания с помощью атриумов, фонарей, световых шахт, светопроводов, волоконных световодов и других современных методов. (Японские архитекторы доставляют такими методами дневной свет даже под землю на глубину в несколько этажей.)

В сочетании с улучшенным осветительным оборудованием эти и другие подходы к проектированию освещения могут сэкономить с небольшими затратами свыше 90 % энергии, идущей на освещение, в то же время такая техника выглядит привлекательнее и позволяет людям видеть лучше. Это, в свою очередь, может существенно повысить объем и качество выполняемой работы.

 

1.12. Оргтехника

 

В большей части индустриального мира быстрее всего развивается коммерческий сектор, а в нем максимальный рост потребления электроэнергии связан с офисным оборудованием. Это — естественный результат развития информационной экономики. Значительная доля оборудования находится не только в офисах, но и в контрольно-кассовых пунктах магазинов розничной торговли, в больницах, школах и других местах, где людям нужна информация.

 

Компьютеры

Неэффективный современный настольный компьютер с монитором в рабочем режиме расходует 150 ватт (что делает компьютер, почти не имеет значения). Обычно по крайней мере половина этой мощности приходится на цветной монитор, который можно сравнить с цветным телевизором. Но при тщательном выборе цветного телевизора обнаруживается, что самые эффективные модели потребляют в 4 с лишним раза меньше электроэнергии по сравнению с наименее эффективными, обладающими такими же размерами, характеристиками и ценой. Относится ли это в равной степени к компьютеру?

Конечно, и по той же самой причине: из-за качества конструкции. Некоторые виды компьютерных микросхем и источников питания потребляют гораздо больше энергии, чем другие. Дисководы жесткого диска, которым около пяти лет, могут расходовать в 5—10 раз больше энергии, чем современные, которые работают лучше и стоят меньше. Портативные компьютеры, предназначенные для долгой работы на легких батареях, потребляют всего несколько ватт, но по своим возможностям не уступают настольным персональным компьютерам: например, этот раздел пишется на субноутбуке, который потребляет лишь 1,5 ватта, или 1 % от нормы для неэкономичной и громоздкой настольной ЭВМ с точно такими же возможностями. Упомянутый компьютер работает в течение шести — девяти часов на никелево-металлогидридных батареях весом всего лишь в 150 г, или на 100-граммовых литиевых батареях. Некоторые из самых последних компьютеров типа записной книжки могут работать месяц на двух маленьких щелочных батарейках типа АА.

Отчасти отличие заключается в том, каким образом мы распоряжаемся энергией. Регистрируя нажатие клавиш на клавиатуре, канадские исследователи установили, что примерно 90 % времени, в течение которого компьютеры включены, они фактически не используются. К большинству существующих компьютеров можно добавить устройства и программное обеспечение, чтобы погружать их в своего рода сон или зимнюю спячку до тех пор, пока они снова не понадобятся — они моментально просыпаются при нажатии клавиши. В портативных компьютерах проблема решается просто — когда в тех или иных частях нет необходимости, они выключаются. В некоторых моделях действие основного процессора замедляется до скорости черепахи или его работа приостанавливается всякий раз, когда он не нужен — даже на столь короткий период, как интервал между нажатиями клавиш.

Такие эффективные компоненты и управление потреблением электроэнергии не приводят к увеличению стоимости портативных компьютеров (за исключением плоских цветных дисплеев); действительно, некоторые переносные компьютеры сейчас стоят столько же, сколько их настольные собратья, или даже меньше, поскольку они сберегают материалы. Большинство производителей выпускают оба вида компьютеров и для упрощения производства сейчас начинают использовать одни и те же компоненты и конструкции. Единственное отличие состоит в ящике, в котором есть место для блоков, расширяющих возможности компьютера, и в типе дисплея. Более того, портативные компьютеры предоставляют дополнительное удобство — свою работу вы можете выполнять в поезде или находясь в коридоре. За этим тоже кроется экономическая выгода: работая на встроенной батарее, компьютеры не требуют специального источника бесперебойного питания и специального монтажа для подачи питания на каждый стол, т. е. устраняют затраты, часто составляющие сотни долларов на работника.

 

Синергизм конструирования

Несколько лет назад крупный производитель компьютеров захотел построить настольный аппарат типа ноутбука со сравнимой энергетической эффективностью. Первая задача заключалась в улучшении питания. Почти все блоки питания изготавливаются несколькими фирмами в Азии и имеют одинаково плохую конструкцию: их коэффициент полезного действия при высоких нагрузках зачастую ниже 50–60 %, а при малых он катастрофически падает. Но большую часть времени блок питания работает с малой нагрузкой.

Оказалось, что за чуть более высокую цену можно добиться коэффициента полезного действия примерно в 95 % по всему диапазону нагрузок. Те, кто подсчитывал каждую копейку, были против более высокой цены. Но вскоре разработчики осознали, что могут сэкономить больше, устранив вентилятор: блоки питания, интегральные схемы и дисководы стали сейчас настолько эффективными, что могут охлаждаться благодаря естественной конвекции. Кроме того, блоки питания ужались до таких размеров, что уменьшился размер и самого ящика, а это экономит материалы и сокращает затраты. Затем пришел черед сбытовиков, которые поняли, что наткнулись на «золотую жилу»: они могли продавать компьютер как первую настольную модель, работающую бесшумно, занимающую очень мало места на столе и более надежную, поскольку без вентилятора нет протока воздуха через машину, что вело к осаждению пыли на микросхемах и в конечном итоге к их перегреву. Потребителям даже предлагалось запирать очень маленький, но ценный компьютер в ящике стола.

 

Энергоэффективные изображения

Компьютеры — не единственный вид офисного оборудования, который может сэкономить львиную долю энергии без увеличения цены. Принтеры, факсы и другие «отображающие» аппараты обычно потребляют в офисе даже больше электроэнергии, чем компьютеры и мониторы. В современных устройствах для получения изображения на светочувствительном барабане применяется лазер, а затем идет стандартный ксерографический фотокопировальный процесс, заканчивающийся наплавлением пластмассового тонерного порошка на бумагу горячим барабаном. На нагревание барабана уходят многие сотни ватт, причем, нужно это или нет, но обогревается офис. Лазерный принтер — тоже очень точный электрооптический аппарат, включающий в себя многие сложные компоненты.

Что касается современных устройств струйной печати, то в них вместо горячего барабана для подогрева быстросохнущих чернил используются микроскопические токи, пронизывающие печатающую головку величиной с грецкий орех. Головка разбрызгивает на бумагу мельчайшие капельки, создающие изображение. Вся «соль» — в печатающей головке; механизм принтера очень дешев и прост, его назначение — только передвигать бумагу. Цена головки не высока, поскольку она выпускается в массовых количествах, подобно микросхемам (к тому же ее можно повторно заполнять свежими чернилами). Струйные принтеры и факсы потребляют лишь 1 или 2 % электроэнергии, которую расходуют их лазерные эквиваленты; в то же время качество изображения примерно одинаково, как одинакова и скорость выполнения типичной печатной работы. Кроме того, они меньше, легче, надежнее и стоят вдвое дешевле.

Или рассмотрим фотокопировальные машины — самые большие «пожиратели» электричества в типичном офисе. В Институте Рок-ки Маунтин несколько лет назад мы сэкономили треть энергии, потребляемой стандартной фотокопировальной машиной, благодаря тому, что просто тщательно выбирали и купили более совершенную конструкцию. Стоила же она на 15 % меньше. Недавно мы сэкономили более половины расходуемой энергии при еще меньших капитальных затратах и более высокой надежности, перейдя на новую модель. Она не потребляет энергии в дежурном режиме, поскольку ее устройство для наплавления (обычно наплавляющее термопластический тонер-ный порошок на бумагу) представляет собой не металлический ролик, а резиновый ремень, который не нагревается до того момента, пока бумага не приблизится к нему. Нам также хотелось иметь небольшое копировальное устройство, способное сделать копию мгновенно, без затрат времени на прогрев. Мы достали подержанную, более старую модель копировального устройства, которая выдавливает вос-кообразный тонерный порошок на бумагу холодным прижимным роликом вообще без использования нагрева. Эта модель сэкономила 90 % как энергии, так и капитальных затрат, и она гораздо более надежна, чем модели с горячим наплавлением. Для печати большого числа документов, например счетов, уже широко применяются крупные высокоскоростные модели.

В ближайшем будущем новые виды тонера смогут плавиться при помощи вспышки ультрафиолетового излучения вместо того, чтобы наплавляться на бумагу. Многие производители уже ввели новые машины, делающие большое количество копий документа, не прибегая к ксерографии — совсем как старые множительные аппараты, но полностью с цифровым управлением. Они потребляют лишь 1 % энергии, которую расходует фотокопировальная машина.

В технику отображения и копирования быстро внедряется и управление мощностью. Почти все новые лазерные принтеры и компьютеры удовлетворяют стандарту «Энерджи Стар» Агентства по охране окружающей среды США, который требует использования энергосберегающих дежурных режимов. (Президент Клинтон приказал федеральным ведомствам не покупать никаких других видов оргтехники без особых на то причин, и многие частные компании приняли аналогичные обязательства.) Теперь, когда почти все производители выполняют это требование, следующий шаг состоит в том, чтобы стандарты лучше соответствовали современным технологиям. Другие принимаемые меры помогают «спящим» компьютерам просыпаться, например, для приема входящих сигналов модема, а не оставаться включенными всю ночь на случай, если они понадобятся.

 

Выгоды нарастают

К чему приводят эти сбережения? Внедрение управления энергией и выработка у людей привычки отключать все, чем они некоторое время не будут пользоваться, могут сэкономить минимум две трети энергии. Приобретение самого эффективного нового оборудования сэкономит 80–90 %, а тщательный выбор покупки — почти 96 %, если использовать оборудование, которое работает так же или лучше, и стоит столько же или меньше. Только в США за ближайшие несколько десятилетий такой подход позволит сэкономить столько, сколько производят десятки гигантских электростанций.

Более эффективная оргтехника, помноженная на миллионы единиц, сохранит владельцам зданий колоссальные суммы на электромонтаж, охлаждение и вентиляцию. Заказ очень эффективного оборудования в типичном большом новом административном здании может сократить общие затраты на его строительство примерно на 6–8 %. Этого достаточно, чтобы оправдать приобретение нового офисного оборудования, даже если существующее могло бы проработать еще несколько лет. Эффективное офисное оборудование, подобно эффективному освещению, поможет избежать слишком высоких затрат на монтаж электропроводки и системы охлаждения в более старых зданиях, не приспособленных для современной оргтехники. В общей сложности один энергоэффективный настольный компьютер может сэкономить обществу сумму, составляющую от одной до нескольких тысяч долларов — примерно столько же, сколько стоит сам компьютер! (Ловинс, 1993).

 

1.13. Фотоэлектричество при 48 вольтах постоянного тока: вспомнили о гениальном Эдисоне

Томас Альва Эдисон (1847–1931) был величайшим изобретателем своего времени. Он изобрел лампу накаливания (с угольной нитью), микрофон, значительно усовершенствовал телефон, придумал граммофон и киносъемочный аппарат. В 1882 г. в Нью-Йорке он основал первую электроэнергетическую компанию и энергосистему общего пользования.

К большой досаде для Эдисона, после того как он изобрел электростанцию, безопасный и эффективный в использовании низковольтный постоянный ток был постепенно вытеснен переменным током высокого напряжения. Победа переменного тока стала возможной благодаря усилиям по сокращению потерь в электрических сетях. Для эффективной передачи электроэнергии на большие расстояния по кабелям с ограниченной площадью поперечного сечения необходимо очень высокое напряжение, например, на уровне 50 тысяч вольт. Для конечного пользователя его нужно преобразовать обратно в низкое напряжение, например, 110 или 220 вольт, — то, что физика не позволит сделать с постоянным током.

Переменный ток во многих случаях неэкономичен по двум причинам. Во-первых, изменение направления намагниченности в электродвигателях примерно 100–120 раз в секунду выделяет много тепла в железе. Во-вторых, преобразование переменного тока в постоянный — неэкономный процесс: попробуйте прикоснуться к горячим трансформаторам любого бытового электронного оборудования.

Работающий на переменном токе 20-ваттный насос может быть заменен 8-ваттным, работающим на постоянном токе. При этом потребление электроэнергии уменьшается в 2,5 раза. Для компьютеров, видеомагнитофонов или вентиляторов потенциальные сбережения еще более впечатляющи: здесь использование постоянного тока могло бы быть в 6—10 раз эффективнее, чем переменного. Для бытовых электроприборов, таких как холодильники и телевизоры, повышение эффективности в связи с использованием постоянного тока (т. е. без усовершенствований, упоминаемых в разделе 1.9) составило бы около 60 %.

Фридрих Лапп, Гюнтер Шарф и Герд Эрманн из Нюрнбергской школы профессионального обучения решили, что давно пора воспользоваться преимуществами постоянного тока и мудростью великого Эдисона, хотя Эдисон и не мог представить себе их конкретный мотив: идею фотоэлектричества. Однако солнечные батареи дороги. Чтобы произвести в Германии электроэнергию, необходимую для типичной семьи из четырех человек, которая обычно использует неэффективные электроприборы, работающие на напряжении 220 вольт переменного тока, требуется по меньшей мере 30 квадратных метров солнечных батарей, стоящих примерно 50 тысяч долларов. Вместо этого достаточно было бы использовать электроприборы на постоянном токе, какие-нибудь 8 квадратных метров солнечных батарей стоимостью в 15 тысяч долларов, плюс пассивную солнечную систему обогрева воды за дополнительную пару тысяч долларов. Эффективные электроприборы уменьшают необходимую площадь для генерации фотоэлектричества.

Нюрнбергская команда, занимающаяся применением солнечной энергии, исследовала оптимальное напряжение для питания постоянным током.

При 12 вольтах, т. е. при напряжении автомобильных аккумуляторных батарей, для удовлетворения потребности в энергии обычной семьи потребовались бы толстые медные провода (площадью поперечного сечения в 24 квадратных миллиметра), они обошлись бы дорого и потянули бы за собой тяжелый «экологический рюкзак» (см. раздел 9.2). При напряжении 24 вольта необходимая площадь поперечного сечения уменьшается до 6 квадратных миллиметров, а при 48 вольтах сокращается до приемлемой величины —1,5 квадратных миллиметра.

Таким образом, команда из Нюрнберга определила интересную стратегию прорыва в области фотоэлектричества и использования потенциала эффективности (и преимуществ в плане безопасности для семей с малыми детьми) низковольтного постоянного тока в частных домах. С учетом снижения уровня выбросов СО2 их стратегия могла бы дать гораздо больше, чем «фактор четыре». Беда, однако, в том, что электроприборы, работающие на постоянном токе напряжением в 48 вольт, практически не выпускаются (производители заявляют, что на них нет спроса), производятся только приборы на 12 вольт (редко на 24 — для лодок, автоприцепов и т. д.). Это неудивительно для стран, где в каждом доме традиционно используется переменный ток напряжением 220 или 110 вольт и где зимний провал в производстве фотоэлектричества ставит вопрос о получении дополнительной энергии от электрической сети.

Прорыв в реализации мудрых идей Эдисона в наше время мог бы произойти в странах, не имеющих развитой энергетической системы, но располагающих солнечным светом в течение всего года, или там, где есть небольшие ресурсы ветряной или водной энергии. Здесь идея достичь эффективности с помощью постоянного тока кажется намного более целесообразной, нежели возведение неэкономной инфраструктуры для переменного тока.

Но будем честными. Если бы мы в Европе или Северной Америке были бедными, а богатые мира сего демонстрировали нам жизнь, которую они ведут при централизованной подаче электроэнергии, и завалили бы нас предложениями установить такую же систему энергоснабжения в нашей стране, то, конечно, мы бы не устояли и повторили расточительный путь, избранный богатыми.

 

1.14. Воспроизводимые ресурсы в холодном климате

Нильс Мейер и др. (1993) считают, что если скандинавские страны сократят выбросы СО, на 95 %, они тем самым внесут весомый вклад в стабилизацию климата на Земле. По их мнению, устойчивое развитие энергетики должно опираться на четыре стратегии:

• улучшенные технологии (т. е. революция в эффективности);

• экологически чистые источники энергии (т. е. воспроизводимые ресурсы);

• структурные изменения, особенно в транспортном секторе;

• снижение объема услуг энергетических компаний.

Эти авторы в принципе согласны с выдвинутым нами тезисом о возможности революционного подъема эффективности. Они предлагают сокращение полного потребления первичной энергии в Дании на 79 % (более чем в 4 раза), в Норвегии на 59 % и в Швеции на 54 %. Суммарное сокращение для этих трех стран составляет 66 %. В таблице 1 приведены данные, характеризующие положение дел в Норвегии в 1987 г., а также прогнозные оценки на 2030 г. Прогноз примечателен во многих отношениях.

• Поскольку в Норвегии практически все отопление помещений и снабжение горячей водой как жилых домов, так и сектора услуг обеспечиваются дешевым электричеством, прямой солнечной энергии (фотоэлектрической и пассивной) не отводится сколь-либо заметной роли.

• Исключительное богатство Норвегии гидроресурсами, создающее благоприятные условия для таких в высшей степени энергоемких отраслей, как выплавка алюминия, не дает оснований считать, что общее потребление энергии сократится здесь, как в Дании, в 4 раза.

• Предполагается, что свыше 60 % норвежской гидроэнергии будет экспортироваться в другие страны.

По мнению авторов, парк частных автомобилей в скандинавских странах будет состоять преимущественно из высокоэффективных электрических, гибридных или работающих на топливных элементах машин.

Наконец, по сценарию для всех скандинавских стран до 2030 г. уровень снабжения энергией не понизится, поскольку к этому времени будет достигнут устойчивый уровень потребления энергии на душу населения в глобальном масштабе. В действительности реализовать этот амбициозный постулат будет чрезвычайно трудно.

• Хотя общее уменьшение потребления энергии в сценарии меньше, чем в четыре раза, мы полагали, что нам следует включить его в нашу книгу по следующим причинам.

• Возобновляемые источники энергии в определенном смысле эквивалентны выигрышу в эффективности. При использовании критерия «углеродной эффективности» сценарий представляет собой примерно 30-кратное улучшение.

• Исследование дает, быть может, единственный хорошо просчитанный сценарий для всех секторов современной экономики, вместе взятых, и не только для одной страны, а для целого ряда стран с совершенно различными географическими и демографическими условиями Дания вообще не располагает водной энергией и имеет большую плотность населения).

• Если Скандинавия в целом способна в условиях сценария экспортировать почти 30 % вырабатываемой энергии в другие страны, то она помогла бы им достигнуть устойчивых уровней выбросов СО2

• «Фактор четыре» не был обозначен в качестве задачи исследования. Как свидетельствует датский пример, вполне возможно добиться достижения этой цели для каждой страны.

Таблица 1. Потребление первичной энергии в ТВт-ч (миллиардах киловатт-часов) в год для Норвегии в 1987 г. и расчет по сценарию на 2030 г. (Мейер и др., 1993)

Хотя работа Мейера и его коллег из Швеции и Норвегии чрезвычайно ценна и очень впечатляет, их анализ не может быть непосредственно перенесен на другие страны. Скандинавская ситуация — особая, благодаря наличию гидроэнергии и низкой плотности населения. Вообще, возобновляемые источники энергии не следует рассматривать как панацею.

 

1.15. Говядина, полученная с малыми затратами энергии

Сельское хозяйство всегда являлось для людей источником энергии. В традиционном обществе около 80 % всего потока энергии в человеческом организме обеспечивали калории, содержащиеся в пище. Хотя крестьяне и домашние животные вкладывали некую механическую энергию во время сельскохозяйственных работ, соотношение вложенных затрат и выхода продукции составляло приблизительно 1 к 100. Все изменилось, когда в XX в. сельское хозяйство, в том числе фермерское хозяйство в США, стало механизироваться и все больше потреблять энергии. В современном производстве риса и пшеницы соотношение «затраты/выход» находится в пределах от 0,1 до 0,4 (выход в 10 или 2,5 калории на 1 вложенную калорию). Для фруктов и овощей аналогичный показатель располагается в диапазоне между 0,5 и 10. Но упомянутое соотношение может достигать экстремальных значений — на уровне 500 — для зимних тепличных овощей, которые в Нидерландах являются обычным продуктом питания.

В целом применительно к продуктам растениеводства соотношение затрачиваемой и получаемой энергии более благоприятное, чем для продуктов животноводства. Для молока оно составляет от 0,8 до 8, яиц — от 0,5 до 10, мяса — от 0,5 (для содержащихся на воле цыплят, которые питаются в основном тем, что находят на ферме) до 35 (для промышленного производства мяса с использованием зарубежных кормов). Даже в процессе рыболовства потребляется энергия, что удивительно, поскольку выращивание рыбы не требует никаких усилий человека. Соотношение в данном случае составляет от 1 (широкомасштабный отлов рыбы в прибрежных водах) до 250 (высокомеханизированный отлов в океане, см. илл. 5 на вкладке). Данные основываются на классической работе Иммо Люнцера (1992).

Стратегической точкой отсчета повышения энергетической эффективности в сельском хозяйстве следует избрать говядину. Этот продукт массового производства играет центральную роль в современном сельском хозяйстве. Самое простое решение — снизить субсидии и тем самым сократить перепроизводство говядины в Европе. Только с помощью экспортных субсидий на говядину фермеры в Европе могут выращивать крупный рогатый скот, который питается (в основном) кукурузой и заморскими соевыми бобами, рыбной мукой, отходами с бойни и другим довольно неестественным кормом. Сокращение субсидий на экспорт сэкономило бы налогоплательщикам громадные суммы денег и коренным образом уменьшило бы потребление энергии фермами. Фермеров это побудило бы вернуться к более экологически приемлемым методам ведения хозяйства и производить в Европе, быть может, на 50 % говядины меньше. Потребители платили бы больше за килограмм мяса, но тратили бы меньше денег в месяц за меньшее количество более вкусной и здоровой пищи.

В «Глобальном докладе на 2000 год» (Барни, 1980) представлена энергетическая блок-схема производства пищевых продуктов в Америке. На 3,6 ГДж (на душу населения) энергии человеческой пищи затрачивается 35 ГДж технической энергии, не считая «солнечного подарка» в 80 ГДж, поглощаемого растениями, которые участвуют в процессе (рис. 6). Мы уверены, что потребность в энергии со стороны сельского хозяйства и переработки пищевых продуктов может быть уменьшена в 4 раза без всякого ущерба для благосостояния.

 

1.16. Оправдано ли расточительство дешевой энергии?

12

Несмотря на неблагоприятные для выращивания помидоров климатические условия, Нидерланды являются одним из крупнейших в мире экспортеров этого вида овощей. Растение из семейства пасленовых было завезено в Европу в конце XVI в. как декоративное и стало широко распространенным пищевым продуктом только в XX столетии.

Превращение помидоров в продукт массового производства Голландии произошло после открытия в ее прибрежных районах больших запасов газа. Были построены отапливаемые природным газом огромные теплицы, позволяющие круглый год выращивать овощи, цветы и многие другие растения. В 1991 г. в Нидерландах собрали 650 тысяч тонн помидоров с 1600 гектаров тепличного хозяйства на сумму приблизительно 400 миллионов фунтов стерлингов.

При таких масштабах нужна особая система сбыта. Сегодня аукционы помидоров привлекают производителей со всей Европы, включая даже Канарские острова. Примерно 15 % томатов потребляется в Голландии, остальная часть экспортируется, в том числе и в Венгрию, где они выращиваются в гораздо более подходящих климатических условиях. Но голландская продукция, как правило, дешевле.

Причиной успеха на рынке — считают специалисты по окружающей среде — является низкая цена энергии, которая позволяет выращивать помидоры при соотношении затрат к выходу энергии, равном 100 и выше. 79 % используемой энергии идет на отопление теплиц, примерно 18 % — на переработку овощей.

Как уменьшить такое расточительство энергии? Конечно, можно намного лучше изолировать теплицы, даже без применения суперокон. По мнению Вутера ван Дирена и Геерта Поема, при сохранении существующих методов выращивания помидоров в Нидерландах эффективность увеличивается в 4 раза. Можно достичь и большего, если выращивать фрукты (например, бананы или манго) в странах, в которых для этого более подходящий климат. Даже перевозка помидоров авиатранспортом в Голландию, скажем, из Сицилии стоила бы меньше, чем одна треть энергии, идущей на голландские теплицы.

 

1.17. Вентиляторы, насосы и системы двигателей

 

В промышленном районе Сингапура спокойный, со сдержанным юмором китайский инженер Ли Энглок конструирует самые эффективные в мире системы кондиционирования воздуха (см. илл. 6 на вкладке). В Сингапуре тяжелый климат: относительная влажность воздуха составляет 84 %, а температура колеблется от высокой до невыносимой. Большинство инженеров считало бы, что им повезло, если бы они использовали только 1,75 киловатта электрической мощности для обеспечения 1 тонны охлаждения. Многие используют 2 кВт или более. Системы Ли Энглока потребляют только 0,61 киловатта на тонну, т. е. на 65–70 % меньше. Эта величина ежеминутно тщательно измеряется с помощью откалиброванных вручную датчиков, которые посылают сигналы с шестью значимыми цифрами в компьютерную программу.

Системы Ли обеспечивают гораздо больший комфорт, занимают гораздо меньше места, более надежны и намного дешевле в изготовлении. Они стоят дешевле отчасти потому, что каждая деталь — нужного размера, не слишком большая.

Элегантная бережливость — вот девиз Ли. Энергия, деньги, время, металл, каждый ресурс используются в нужном количестве, там, где надо и как надо. Нет никаких затраченных впустую усилий, движений или капиталовложений. Действительные потребности измеряются, а не определяются на глазок. Энергия используется снова и снова, до тех пор, пока почти ничего не останется. Когда Ли однажды поздравили с особо остроумным решением — использованием выходящего воздуха для предварительной сушки входящего воздуха с помощью простого устройства без каких-либо движущихся деталей — и спросили, в чем секрет его успеха, он ответил: «Я руководствуюсь правилом китайской кухни. Используй все. Снимай пенки».

Большинство инженеров предположило бы, что место для экономии энергии, затрачиваемой на кондиционирование, находится в «холодильнике», который охлаждает воду, поскольку это единственный потребитель энергии в системе охлаждения. Действительно, Ли сберегает треть энергии, главным образом увеличив размеры теплообменников в 3—10 раз (обычные теплообменники для этого чрезвычайно малы) и заставляя холодильный агрегат крутиться с нужной скоростью. Но это составляет только одну пятую от всего энергосбережения. Две пятых заключены в больших «приточных вентиляторах», которые подают в здание охлажденный воздух, а другие две пятых экономятся в насосах и вентиляторах градирни, рассеивающих тепло наружу.

Приточные вентиляторы Ли потребляют не обычную, считающуюся стандартной норму в 0,60 кВт/т, а лишь 0,061 кВт/т, т. е. на 90 % меньше. Его насосы для подачи охлажденной воды расходуют не 0,16, а 0,018 кВт/т — на 89 % меньше. Его насосы для охлаждающей воды в конденсаторе, которые удаляют тепло из холодильников, потребляют не 0,14, а 0,018 кВт/т, т. е. на 87 % меньше. Его градирни потребляют не 0,10, а 0,012 кВт/т — на 88 % меньше. Откуда берется эта почти десятикратная экономия энергии при улучшенных рабочих характеристиках?

Источник — в здравом смысле, технике конструирования системы в целом, здоровом скептицизме по отношению к традиционной практике и в строгом применении часто игнорируемых общепризнанных технических принципов. Прежде всего, это безжалостное устранение трения, где бы оно ни проявлялось.

 

Пять вопросов «почему?»

Таиичи Оно, пионер бережливого и четко хронометрированного поточного производства на «Тойоте», разделял одержимость Генри Форда в том, чтобы избавиться от расточительства, и привычку Фрэнка Банкера Джилбрета докапываться до самой сути. Т. Оно писал: «За видимой причиной скрывается истинная. В каждом случае мы обязаны вскрыть истинную причину возникновения проблемы, задавая себе вопрос "почему?", "почему?", "почему?", "почему?", "почему?"». Джозеф Ромм приводит пример: «Почему остановилась машина? Была перегрузка, и вылетел предохранитель. Почему случилась перегрузка? Недостаточно был смазан подшипник. Почему? Плохо работал нагнетатель смазки. Почему? Сносился и дребезжал стержень нагнетателя. Почему сработался стержень? Не был поставлен фильтр, и внутрь попала металлическая стружка» (Ромм, 1994).

Вентиляторы и насосы должны гнать воздух или воду против трения. Откуда оно берется? Ли прослеживает причины трения, пять раз задавая себе вопрос «почему?».

• Труба в первоначальной конструкции имеет слишком большое трение, так как она чересчур длинна и в ней слишком много изгибов. Это случилось потому, что инженер сначала скомпоновал оборудование, а затем соединил его трубами, которые должны были проходить по всевозможным углам и закоулкам, чтобы попасть из А в Б. (Монтажники труб не возражали: у них почасовая оплата.) Вместо этого давайте сначала проложим трубы, а затем разместим оборудование.

• Труба имеет большое трение, поскольку она внутри шероховата, а должна быть гладкой. Выбор правильного материала и чистовая обработка поверхности уменьшат трение в 40 и более раз.

• Труба к тому же слишком тонка. Проводимость трубы для воды примерно пропорциональна пятой степени диаметра. Если ее диаметр увеличить на 10 %, трение уменьшится на 37 %; если на 20 %, то — на 59 %; если на 50 %, то — на 86 %. Поэтому более толстые трубы почти устраняют трение. Это стоит чуть дороже, но первый проектировщик сопоставлял дополнительные затраты только со стоимостью сбереженной энергии и при этом использовал старые цены. Он забыл, что, поставив более толстую трубу, можно по крайней мере в 2 раза уменьшить размеры, а значит, и цену всех дорогостоящих деталей — насоса, двигателя, инвертора, электрических устройств. Это лучше, чем чересчур тонкая труба.

• У трубы слишком много вентилей. Дело в том, что вода через некоторые части трубопровода протекает в меньшем количестве, чем нужно, и вентили увеличивают трение для того, чтобы направить избыточный поток на те участки, которые испытывают недостаток воды. Почему же просто не сделать все трубы достаточно большими? Тогда вода попадала бы туда, куда надо. Точно так же, как мы делаем провод достаточно толстым, чтобы подвести ток в нужные места, а не «распределяем» его с помощью реостатов.

• Вентили способствуют увеличению трения, потому что они не того типа, который нужен: никто этого не заметил. В результате течение становится неравномерным, и это, в свою очередь, требует установки дополнительных вентилей. И так далее.

То же происходит с приточными вентиляторами.

• Рассеивающие диффузоры, направляющие воздух в комнату, неэффективны. Кроме того, они создают шум и трение.

• Они соединены воздухопроводами, которые имеют резкие, а не плавные изгибы, слишком малы в диаметре и слишком длинны, потому что расположены не в нужном месте.

• Змеевики выполнены неправильно и поэтому охлаждают или осушают плохо, и трение воздуха в них в 20 раз больше, чем должно быть.

• Фильтры слишком малы, поскольку кто-то думал, что это делает их более дешевыми; в действительности же гораздо дешевле, с учетом времени эксплуатации, делать их большего размера. Тогда они будут служить значительно дольше. При этом трение становится почти незаметным.

• Для преодоления всех сил трения ставится мощный вентилятор, создающий слишком много шума и требующий установки глушителя, который привносит еще больше трения.

Разумеется, принципиальные усовершенствования, подобные этим, являются лишь началом процесса проектирования. Ли начинает с того, насколько большим должен быть поток. Затем ставит вопрос, насколько короткой, гладкой и изогнутой должна быть труба или воздухопровод, чтобы доставить этот поток. Затем находит вентилятор или насос, имеющий нужные размеры и характеристики для наиболее эффективной доставки потока. Затем достает самый лучший британский вентилятор или немецкий насос, чтобы устранить остатки неэффективной работы. Затем просчитывает в обратном направлении, против потока, механическую систему привода, двигатель, инвертор (который заставляет работать вентилятор на необходимой скорости, а не на более высокой), электрические устройства. На каждом этапе он избегает накопления потерь. Детали становятся меньше, проще, дешевле. Все это действительно очень просто, как все гениальное: надо только очень постараться.

В конструировании, как и везде, добродетель вознаграждается. Когда Ли сделал систему кондиционирования и все ее составные части в несколько раз более эффективными, уменьшилась необходимая величина теплоотвода (например, вся энергия, которую вентилятор сообщает воздуху для его движения, делает воздух более горячим и должна снова отводиться). Таким образом, вместо борьбы со все новыми и новыми недостатками системы кондиционирования не только сберегается энергия, но и уменьшаются размеры наиболее дорогостоящих компонентов — подобно тому, как в гиперавтомобилях (раздел 1.1) экономия, достигаемая благодаря уменьшению веса, нарастает как снежный ком. Составные элементы системы охлаждения становятся меньше и эффективнее, значит, они могут стать еще меньше и еще эффективнее.

 

Двигатели заставляют мир вращаться

Вентиляторами и насосами дело не кончается. Они приводятся в движение электродвигателями. Институт Рокки Маунтин в 1989 г. показал, как объединить 35 усовершенствований на участке между электрическим счетчиком и входным валом вентилятора, насоса или другого приводимого во вращение устройства. Усовершенствования касаются, в частности, размеров, технической эксплуатации и срока службы двигателей; систем, подводящих электрический ток к двигателю, и систем, передающих вращающий момент машине, которую он приводит в движение. В совокупности они позволяют сэкономить половину подводимой к двигателю энергии, даже без улучшения конструкции участков на дальнейшем пути потока (Хау и др., 1993). Эти сбережения окупаются за период чуть больше года. Заплатив за семь видов усовершенствований, вы получаете остальные 28 в качестве бесплатного приложения.

Толковые ребята из предприятий коммунального хозяйства США согласны с этими выводами (Фриккет и др., 1990).

Ли также хорошо разбирается в двигателях и электронных регуляторах скорости вращения, но он пока не использует целиком весь этот потенциал; в своей практике он основной упор делает на охлаждение помещений, а не на системы двигателей. (Он получает основную часть экономии, все более снижая охлаждающие нагрузки и уменьшая размеры своих систем охлаждения. А большинство двигателей находится в местах, где они не приносят тепло обратно в здание.)

Но это гораздо более широкий вопрос, не ограничивающийся практикой Ли.

Двигатели потребляют в мире более половины электроэнергии. Если полностью использовать все 35 усовершенствований, это сэкономит свыше одной четверти мировой электроэнергии, что эквивалентно 160 гигантским электростанциям только в США и примерно вчетверо дешевле, чем просто подавать топливо на существующую станцию, работающую на угле, даже если ее строительство ничего не стоит.

 

Для чего нужно это охлаждение?

Большинство американских офисов спроектировано таким образом, что на каждые 25–40 квадратных метров площади им требуется тонна охлаждения. Тем не менее после хорошей модернизации эта площадь обычно достигает 93 квадратных метров, а новые проекты, выполненные по последнему слову техники, приближаются к показателю в 112 квадратных метров, что примерно в 3–4 раза экономичнее. В то же время люди чувствуют себя более комфортно, а строительство всего здания стоит меньше благодаря соответствующему уменьшению количества оборудования для кондиционирования воздуха при затратах на всю систему порядка 3000 долларов за тонну (половина этой суммы уходит на воздухопроводы и трубы).

Достижения Ли Энглока поразительны. И все же они — не конец пути. Ниже мы рассмотрим виды холодильного оборудования, которые эффективнее, чем громадные центробежные холодильники, и более разумные способы создания комфортных условий.

 

1.18. Рубежи кондиционирования воздуха

 

На превращение американских зданий из солнечных печей в большие электрические холодильники идет примерно 16 % электроэнергии. Многие считают США самой холодной страной в мире в лет-нее время — внутри помещений. Что еще хуже, в жаркий летний полдень на кондиционирование, составляющее около 43 % пиковой нагрузки, работают более 200 гигантских (в тысячи мегаватт) электростанций, каждая из которых обходится в несколько миллиардов долларов.

Только в 1982 г. жители и компании города Хьюстона (Техас) заплатили 3310 миллионов долларов за «холодный воздух», что больше валового национального продукта 42 африканских стран. Подобная практика распространяется, что очень тревожно, на Восточную Азию, где потребление населением (которое быстро забывает о традиционных методах охлаждения) энергии на кондиционирование воздуха добавляет от 25 тысяч до 50 тысяч МВт пиковой нагрузки в год. Это потребует капиталовложений, крайне необходимых для решения других задач развития азиатского региона.

Так было не всегда. На протяжении по крайней мере восьми тысячелетий люди искусно устраивали свое жилище таким образом, чтобы избежать нежелательного тепла. От Турции до Туниса, от Кипра до Мальты, от Алжира до страны зулусов сложные системы пассивного охлаждения позволяли достигать комфорта, который сегодня «современные» здания в этих же районах едва ли могут обеспечить. Например, в XI–XII вв. в безоконных жилищах индейцев пуэбло на американском юго-западе поддерживалась температура, колебания которой были в 4 раза меньше колебаний температуры на открытом воздухе. На северном побережье Австралии в традиционных тропических домах поддерживается температура на 19 °C ниже, чем снаружи. То же можно сказать о классических персидских и греческих домах. Систему пассивного кондиционирования воздуха имел целый римский город. Арабские шатры из козлиной шерсти являются чудом пассивного охлаждения.

Сегодня наука и техника располагают еще большими возможностями. Энергия на охлаждение помещений уменьшается почти в 100 раз только благодаря систематическому применению лучших современных методов (Хьютон и др., 1993).

 

Прохлада — это отсутствие жары

Первый шаг — не допустить жару в здание. Через суперокна в помещение проникает дневной свет, лишенный ослепительного блеска, и при этом почти полностью отсекается тепло. Дневное освещение и осветительные приборы улучшенной конструкции снижают необходимость охлаждения по меньшей мере в 10 раз. Тут же цель преследует эффективная оргтехника. В результате «тепловой вклад» осветительных приборов и офисного оборудования оказывается в 3 раза меньшим, чем то тепло, которое выделяет организм человека. Последнее уменьшить невозможно, разве что если попытаться снизить стресс и сократить лихорадочную деятельность. Не следует сбрасывать со счетов и усовершенствование холодильников, торговых автоматов, устройств для охлаждения питьевой воды, кофеварок и т. д. Все они окупятся в течение трех — восьми лет, а замена окон практически сразу же.

В новом строительстве особое значение имеет и хорошая планировка. Построив дом нужной формы и сориентировав его в правильном направлении, можно сэкономить треть его энергии без каких-либо дополнительных затрат. Так, в одном административном здании ACT2 в Антиохии (Калифорния) общую энергетическую эффективность удалось повысить на 38 % при затратах на шестую часть меньше того, что сэкономлено. Затенение, теплоотражающая отделка поверхности (вспомним побеленные стены домов в городах Средиземноморья) могут сочетаться с благоустройством участка, посадкой деревьев и созданием тени растительностью: одно большое дерево заменяет десятки комнатных кондиционеров. И в любом здании обычно помогают изоляция и уменьшение утечек воздуха.

 

Расширить оболочку комфорта

Ощущение комфорта зависит от того, как усердно человек работает, сколько тепла выходит сквозь его одежду, от радиационной температуры окружающих предметов, температуры, влажности и движения воздуха. Каждый из этих факторов определяет поиск возможностей для создания условий, в которых люди чувствуют себя удобно.

Например, потолочные вентиляторы способствуют поддержанию комфортных условий, офисные стулья с сетчатыми сиденьями (типа модели «Аэрон» Германа Миллера) вентилируют тело, уменьшая его разогрев примерно на 10–15 % по сравнению с мягкими стульями. Суперокна в значительной степени снижают температуру солнечных лучей, попадающих на тело. Даже сняв галстук, можно сэкономить обществу 50 долларов, идущих на оборудование для кондиционирования воздуха и подвода энергии. Многие крупные американские корпорации уже смягчили свои прежние требования относительно официальной формы одежды.

В совокупности эти простые мероприятия могут уменьшить потребность в охлаждении на 20–30 %. Нужно также учитывать, что нервная система человека реагирует на дискомфорт не сразу. Правительство канадской провинции Альберта использовало это обсто-тельство следующим образом: в больших зданиях система кондиционирования во второй половине дня не включалась. В этом не было нужды, поскольку к тому времени, когда помещение нагревалось, люди уже уходили домой. Продолжительность работы холодильного оборудования сокращалась в 4—6 раз, что экономило много энергии и денег, но на дискомфорт никто не жаловался.

 

Пассивное охлаждение

С нежелательным теплом, которое нельзя устранить, но и нельзя игнорировать, нужно бороться путем нормального функционирования самого здания, не применяя специального оборудования. Даже в середине августа в Майами установленный официальными норма-ми комфорт можно поддерживать лишь с помощью потолочных вентиляторов и бассейна на крыше, который накапливает тепло в течение дня, а затем излучает его обратно в ночное небо.

Некоторые весьма эффективные методы почти пассивны. Например, энергетическая группа в Дэвисе (Калифорния) разработала «белый капюшон» — мелкий пруд на крыше под слоем изоляции из белого пеноматериала. В течение дня тепло здания переносится в воду. Ночью небольшой насос разбрызгивает воду в воздух, так что она охлаждается — две трети путем излучения и только одна треть путем испарения. Холодная вода стекает затем обратно тонкими струйками через трещины между изолирующими панелями и остается прохладной под ними. Электропитание насоса составляет лишь несколько процентов от сэкономленной энергии, идущей на охлаждение. Дополнительные капитальные затраты равны нулю, отчасти потому, что оболочка крыши служит в несколько раз дольше, будучи защищенной сверху слоем воды от озона, ультрафиолетового излучения, температурных колебаний, хождения по крыше и других неблагоприятных воздействий. Сочетание «белого капюшона» с использованием дневного света могло бы сэкономить более 90 % всей энергии в многочисленных одно- и двухэтажных зданиях с плоской крышей в западной части США при повышенном комфорте и без каких-либо дополнительных строительных затрат.

Другой пример пассивных методов — ледяные бассейны, сохраняющие зимнюю прохладу на протяжении всего лета. Это может быть просто холодный талый снег под слоем соломы. Талая вода при температуре замерзания просто прокачивается насосом по зданию. Для этого нужны лишь несколько процентов энергии, которая иначе потребовалась бы для охлаждения здания. В местах, где есть свободные участки, данный метод может обеспечить экономию даже в такой климатической зоне, где мороз зимой стоит только неделю или две.

 

Альтернативное охлаждение

Остальную работу в любой части света могут обеспечить три основных альтернативных метода охлаждения. Абсорбционное охлаждение и осушение, связанные с проблемой влажности, достигаются не вращающимся валом, а теплом от сжигания топлива, электрическим генератором, технологическим процессом или коллектором солнечного излучения. Испарительное охлаждение может подавать прохладный влажный или сухой воздух в помещение при довольно низких температурах. Хорошо рассчитанное охлаждение, обеспечиваемое небольшим вентилятором, потребляет скромные количества воды и совсем мало энергии.

Особенно эффективно сочетание методов. Например, осушитель сначала высушивает и нагревает воздух (даже во влажном климате), затем испарительный охладитель прямого действия охлаждает воздух путем испарения в него воды, после чего в теплообменнике прохладный влажный воздух преобразуется в прохладный сухой. Если сухость воздуха достаточно высока, можно испарить немного больше воды, он будет еще более холодным, но не настолько влажным, чтобы вызвать дискомфорт. В другой комбинации отработанное тепло работающего на газе абсорбционного охладителя используется для осушителя, который делает процесс продуктивнее и эффективнее.

В первом эксперименте ACT2 был переоборудован участок научно-исследовательских отделений Тихоокеанской газовой и электрической компании в Сан-Рамоне (Калифорния). Площадь участка — 1900 квадратных метров, он оснащен эффективными лампами, усовершенствованной оргтехникой и окнами с несколько улучшенной изоляцией, устраняющей сквозняки. Все это сократило необходимость охлаждения наполовину. Затем система охлаждения была заменена испарительным охладителем косвенного действия, в дополнение к которому лишь на 5—10 % времени включался очень маленький, специально сконструированный, весьма эффективный охлаждающий аппарат. Коэффициент полезного действия конструкции, вероятно, поставил мировой рекорд: только 0,14 кВт/т, или 25 единиц охлаждения, даваемых за каждую единицу потребленного электричества. Австралийский инженер, сконструировавший систему, уверен, что в следующий раз он сделает ее еще лучше. Данные по текущему контролю пока не поступали, но комфорт стал намного ощутимее. Переход от первоначально установленных на крыше блоков с расходом 2,0 кВт/т к 0,14 кВт/т сократил потребление энергии на единицу охлаждения на 93 %. Поскольку необходимый объем охлаждения также был уменьшен вдвое, общее сокращение идущей на охлаждение энергии, предназначенной для здания с поэтическим названием «Закат Солнца», достигает 97 %. По мере того, как старая оргтехника постепенно будет заменяться более эффективным оборудованием, нынешнее двукратное сокращение охлаждающих нагрузок составит две трети. Это увеличит сбережение энергии на охлаждение с 97 до 98 % — в климатической зоне, где столбик термометра поднимается до 38 °C.

 

Сверхэффективное охлаждающее кондиционирование воздуха

После первых четырех этапов традиционное кондиционирование для создания комфорта больше не понадобится. А если оно где-то все же будет использоваться, его можно сделать в несколько раз более эффективным при уменьшенных капитальных затратах.

По проекту ACT21992 г. Калифорнийская государственная автомобильная ассоциация построила в Антиохии новый офис, сэкономив три четверти всей энергии, разрешенной самым строгим энергетическим стандартом страны. В то же время комфорт и благоустройство здесь просто исключительны, и это самый дешевый офис, который когда-либо построила ассоциация. Кондиционер на 40 % более эффективен, чем обычный агрегат, устанавливаемый на крыше, а при частичной нагрузке работает даже лучше. Тепловая нагрузка также уменьшена примерно вдвое благодаря использованию дневного света, суперокон, более эффективных осветительных приборов и офисного оборудования. Проектировщики не захотели избрать самый эффективный вариант («белый капюшон» плюс застекленная крыша), который вероятно, сэкономил бы более 90 % при еще меньшей стоимости. Но и достигнутые 72 % экономии — неплохой результат.

 

Органы управления и запасы

Какая бы ни использовалась конструкция, если она не является полностью пассивной, ею нужно управлять. Более совершенные регуляторы и программное обеспечение обычно экономят еще 10–30 % остающегося энергопотребления, сбережения за счет управления могут даже возрасти примерно до 50 %. Обязательное условие при этом — тщательная подготовка обслуживающих здание операторов на компьютерном тренажере, аналогичном тем, на которых обучают авиапилотов. Без такой помощи в больших зданиях одной интуицией операторов не обойтись.

Иногда сэкономить энергию могут также запасы охлажденной воды или льда. Это определенно сберегает электроэнергию в периоды пиковой нагрузки, когда коммунальные службы повышают плату за электроэнергию.

 

Приумножение сбережений

Последовательные сбережения не складываются, они умножаются. Каждое сбережение оставляет меньше энергии, которую можно сэкономить дальнейшими мероприятиями. Но сбережения на самом деле быстро накапливаются. Предположим, например, что вы экономите:

• 70 % объема требуемого охлаждения путем установки лучшей изоляции, усовершенствованных окон, осветительных ламп и т. д. (примерно две трети, что находится в пределах между реальной и заниженной величиной);

• 20 % потребности в охлаждении путем расширения условий, в которых люди чувствуют себя комфортно (разумная и часто заниженная оценка);

• 80 % энергии на тонну охлаждения пассивными или альтернативными методами (вспомните экономию в 93 % в здании «Закат Солнца»);

• 50 % энергии на тонну в остающемся охлаждении с помощью холодильных аппаратов (если это еще необходимо);

• 20 % благодаря улучшенным регуляторам (обычно это нижний конец диапазона). В оптимальном случае общий результат может составить:

(1–0,7) х (1–0.2) х (1–0,8) х (1–0,5) x (I — 0,2) = 0,0192.

Таким образом, ваша энергия на охлаждение сейчас равна только 2 % от того, с чего вы начали. Вот как работает «цепочка» последовательных сбережений: вам не надо чересчур экономить на каждом этапе для того, чтобы добиться заметного умножения общих сбережений, ведь этапов много.

 

1.19. Четырехкратное увеличение энергетической производительности пятью маленькими шагами

Добиться повышения производительности энергоресурсов за один большой этап не всегда удается. Но ведь можно сделать это за несколько небольших этапов. Проиллюстрируем это простым примером. Начнем с электростанций.

• Новое поколение электростанций, в которых используются так называемые газовые турбины с комбинированным циклом, может повысить полный к.п.д. с 34—40 %, характерных для классических тепловых электростанций, по меньшей мере до 50–55 % (коэффициент полезного действия самых последних работающих на газе станций с комбинированным циклом составляет 60 %, а в перспективе достигнет 65 %). Это означает, что для производства 1 киловатт-часа на электростанции необходимо сжечь топлива на 28 % меньше.

• Комбинируя получение тепла и электроэнергии и установив оптимизированные газовые котлы, можно в среднем выиграть еще 25 %, необходимых для удовлетворения типичных потребностей в электричестве и тепле. Тогда остается 75 % от прежнего потребления.

• Использование довольно скромных мероприятий по улучшению изоляции и повышению эффективности электроприборов даст еще 33 %, сократив тем самым первоначальное потребление со 100 % до 67 %. (Учитывая консервативные привычки среднего гражданина, мы забудем здесь все, что было сказано выше об изоляции и более эффективных машинах.)

• Кроме того, типичным семейным хозяйствам удастся уменьшить расход энергии на скромные 7 % и согласиться с экономией еще на 3 % благодаря улучшенным регуляторам, которые фактически не лишают привычных удобств (например, меньший перегрев или отключение — вручную либо автоматически — ламп, вентиляторов или отопления при выходе из помещения более чем на несколько минут). Эти небольшие улучшения дают экономию еще на 10 %.

• Наконец, мы предполагаем, что дополнительные 20 % в суммарную энергию могут внести возобновляемые источники, например, пассивный обогрев солнечной энергией, использование биомассы и биогаза, небольшие гидроэлектростанции, энергия ветра и немного фотогальванической энергии. Все эти источники вместе взятые сократили бы потребность в традиционном энергоснабжении на 20 %.

В совокупности перечисленные весьма скромные изменения способны уменьшить потребность в энергии, производимой угольными, атомными и крупными гидроэлектростанциями, не на сумму, а на произведение частей:

0,70 х 0,75 х 0,67 х 0,90 х 0,80 = 0,25.

Таким образом, нужна была бы только четверть от сегодняшних потребностей. При решительных действиях как государства, так и частного сектора, эта цель могла бы быть достигнута за какие-нибудь 30 лет в Западной Европе и, быть может, на 5—10 лет скорее в Восточной Европе. Для развивающихся стран расчет был бы иным. Его пришлось бы скорректировать с учетом быстро растущей потребности в услугах электроэнергетических компаний, более теплого климата, но менее эффективного парка существующих электростанций и более богатых воспроизводимых ресурсов.

 

1.20. Выгодное энергосбережение и сокращение потерь на заводе в штате Луизиана

Кен Нельсон — инженер, который ранее возглавлял работы по энергосбережению в «Доу США» и уже давно помогает насчитывающему 2400 работников Луизианскому отделению химической компании «Доу кэмикл» экономить энергию и сокращать потери. «Доу» — одна из крупнейших в мире и самых передовых химических компаний, лидер отрасли, в которой царят острейшая конкуренция и режим жесточайшей экономии. Конкуренты вряд ли сказали бы, что «Доу» глупа или ленива. Однако «Доу» сделала ошеломляющее открытие: на территории ее завода повсюду разбросаны купюры достоинством в 10 тысяч и 100 тысяч долларов — и чем больше их подбираешь, тем больше находишь.

В течение 12 лет — с 1981 по 1993 г. — Кен Нельсон ежегодно проводил конкурс среди сотрудников Луизианского отделения, занимающих посты не выше контролера. По условиям конкурса предложения в области энергосбережения или сокращения потерь должны были окупаться в течение одного года при первоначальных затратах не более 200 тысяч долларов. Представленные проекты подвергались тщательному анализу, и наиболее перспективные и экономически выгодные из них реализовывались. Как показал последующий анализ, более тысячи проектов в среднем дали экономию, равную с точностью до 1 % прогнозируемой сумме.

• За первый год доход на инвестированный капитал для осуществленных проектов достиг 97 % в год. Остальные 11 лет дали доход, выражаемый трехзначным числом, а за все 12 лет доход от 575 проектов в среднем составил 204 % в год (прогнозировалось 202 %), при общей экономии 110 миллионов долларов в год (Нельсон, 1993).

• В дальнейшем энергосбережения возросли и стали еще прибыльнее. Далеко не истощив наиболее дешевые возможности, конкурсы Нельсона привели к еще более высоким результатам, благодаря обучению на производстве и технологическим усовершенствованиям. (Это похоже на то, как если бы подняв с пола банкноту в 100 тысяч долларов, мы обнаружили под ней еще две.)

• В первый год 27 проектов общей стоимостью в 1,7 миллиона долларов дали доход на инвестированный капитал в 173 %. Многие полагали, что других проектов, обеспечивающих столь высокий доход, не будет. Но они ошибались. На следующий год 32 проекта на общую сумму в 2,2 миллиона долларов в среднем дали 340 % дохода на инвестированный капитал. Быстро набираясь опыта, Нельсон изменил правила и отменил предел в 200 тысяч долларов — зачем при таких выгодных возможностях цепляться за малые? — и включил проекты, которые повысили бы выпуск продукции. В 1989 г. 64 проекта стоимостью в 7,5 миллиона долларов сэкономили компании 37 миллионов долларов в первый и последующие годы при 470 % прибыли на инвестированный капитал (пока это наилучший показатель). Даже на десятом году конкурса, когда 700 проектов уже были реализованы, доход на инвестированный капитал 109 победивших проектов в среднем составил 305 %, а в 1993 г. 140 проектов дали в среднем 298 % прибыли.

• Все эти чудеса сотворили обыкновенные работники. Они даже не получили никакого специального вознаграждения, если не считать признательности со стороны членов конкурсного жюри. Руководство компании не только не вмешивалось в процесс, но и ничего не знало о нем, а потому не могло помешать. Прибавки Нельсона к итоговой сумме доходов «Доу», хотя и были скрупулезно измерены и документально обоснованы, не базировались на каких-либо хитроумных теориях, они не являлись итогом расширения полномочий, руководства со стороны комитетов или иных управленческих процедур. Скорее, во главу угла здесь был поставлен производственный процесс, в ходе которого добровольная изобретательность претворялась в сэкономленные деньги. Вот так работают рынки, когда они работают по-настоящему — и все же как мало Кенов Нельсонов, чтобы заставить их работать! Сколько экономистов-рыночников требуется для того, чтобы ввернуть миниатюрную люминесцентную лампу? Ни одного — это сделает свободный рынок. Но без Кена Нельсона, равно как без здравого смысла и усердного труда работников, которых он организовал, лампа никогда не попала бы с полки в патрон.

• Нелегко назвать общую сумму экономии энергии и уменьшения потерь, достигнутую Кеном Нельсоном за 12 лет самоотверженной работы, или оценить выгоды, полученные благодаря аналогичным усилиям еще где-нибудь. Существуют десятки примеров увеличения производительности в 4 раза на протяжении ряда лет. Логично предположить, что многие постараются повторить этот коммерческий успех, однако, как ни странно, этого, кажется, не происходит. Даже Техасское отделение той же компании «Доу» не вняло призывам перенять опыт Луизианского отделения, поскольку в Техасе свои взгляды на то, как поступать. Таково классическое сопротивление инновациям, основанное на принципе «это не наша идея». Действительно, после того как Нельсон в 1993 г. ушел на пенсию, а его оргкомитет был распущен при реорганизации, отслеживание дальнейшего прогресса прекратилось, и оценить последующие результаты нововведений стало невозможно. Таков разрыв между продемонстрированным (не говоря о теоретическом) потенциалом и фактической реализацией. К этой важной особенности мы вернемся во второй части книги при рассмотрении сбоев и провалов в функционировании рыночных механизмов и путей их преодоления.

 

Глава 2. Двадцать примеров революционного повышения продуктивности использования материалов

 

Введение

Понятие «продуктивность использования материальных ресурсов» ввел в оборот Фридрих Шмидт-Блеек, директор Отделения движения материалов и экономической перестройки Вуппертальского института. Шмидт-Блеек разработал концепцию материалоемкости услуги или материальных затрат на единицу работы — MIPS (Material Inputs Per Service Unit), позволяющую оценивать количество материалов, которое необходимо переместить для выполнения любой четко определенной работы или услуги. Например, для какой-то работы нужно доставить сырье с медного рудника в Чили, воду и другие материалы из Мехико, упаковку, производимую в Чикаго, и т. д. Более подробно это понятие рассматривается в главе 9.

Продуктивность использования материалов (или производительность материалов) является, следовательно, компонентом сокращения MIPS. Очевидно, что долговечность продукции способствует повышению производительности материалов, если качество оказываемых услуг не меняется во времени. Подумайте о старой мебели, которая с течением времени может фактически приобрести большую ценность. С другой стороны, долговечность находится в конфликте с современностью, модой и техническими характеристиками (в том числе и с эффективностью). Производительность материалов — это более широкое понятие, чем прочность и долговечность; она связана с жизненным циклом продукта «от колыбели до могилы» — или «от колыбели до колыбели».

Шмидт-Блеек (1994) полагает, что сокращение MIPS в четыре раза будет недостаточным. По его мнению, для стран ОЭСР необходим «фактор десять» (см. «Клуб фактора десять»). Надеемся, что наш друг простит нам наше малодушие, поскольку мы пока осмеливаемся приводить примеры, относящиеся лишь к «фактору четыре». Давайте договоримся называть их достойным началом.

Институт долговечности изделий в Женеве, руководимый Вальтером Штаэлем, разработал стратегии, направленные на оптимизацию эффективности ресурсов. Основу составляет «экономика услуг», в которой учитывается только услуга конечному потребителю (Джиарини и Штаэль, 1993). Для осуществления такой стратегии целесообразно следующее:

• сдача в аренду вместо продажи, если производитель заинтересован в долговечности;

• усиление ответственности за качество выпускаемой продукции, побуждающее производителей гарантировать низкий уровень загрязнения окружающей среды, отсутствие затруднений при повторном использовании продукции или при ликвидации ее остатков;

• совместное владение или использование (например, автомобилей или электроприборов), что потребовало бы меньшего количества изделий для того же объема услуг;

• обновление — сохранение устойчивой основы изделия после использования; замена только изношенных деталей;

• оптимизация конструкции изделия, с точки зрения долговечности, обновления и переработки.

Ясно, что перечисленные элементы подразумевают комплексную, многоцелевую стратегию. Движение материалов зависит от того, насколько большую часть задачи мы выполняем; как эффективно используем материалы; сколько руды нужно извлечь и переработать, чтобы получить необходимые материалы; как далеко приходится их отправлять; сколько перемещений совершено в предыдущие годы для создания инфраструктуры, заводов и средств доставки.

Сколько разнообразных вещей имеет каждый из нас в течение всей жизни, и, стало быть, сколько таких вещей необходимо делать каждый год? Ровно столько, чтобы компенсировать те из них, которые ломаются, изнашиваются или выбрасываются, плюс еще столько, сколько требуется, чтобы не отстать от прироста населения. Ключевой переменной, очевидно, является то, как долго служат эти вещи. Чтобы из чего-то пить, керамических кружек нужно намного меньше, чем бумажных или пластиковых стаканчиков, поскольку керамика — материал почти вечный (нужно только ее не ронять), тогда как «потребительские однодневки» используются раз или два и затем выбрасываются. А если мы сделаем небьющуюся керамическую кружку, она будет служить и нашим праправнукам. Если изготовить достаточно небьющихся кружек (чтобы у каждого была одна или сколько нужно), потом ежегодно не потребуется производить их в большом количестве.

 

2.1. Долговечная офисная мебель

Долговечность — одна из наиболее очевидных стратегий по сокращению потерь и повышению продуктивности использования материала. Некоторые детали изнашиваются или теряют свою эстетическую привлекательность из-за капризов моды. Если детали сделаны так, что они способны заменять друг друга, повысить долговечность можно весьма эффективно.

Один из основателей теории долговечности Вальтер Штаэль (мы обязаны ему большей частью материала, излагаемого в этом разделе) считает, что самый перспективный технический подход к борьбе с преждевременным «выбрасыванием на свалку» заключается в отделении «конструктивных элементов» от «видимых». В сочетании с рыночным подходом, согласно которому производитель забирает изделие назад и монтирует на нем усовершенствованные видимые элементы, это в скором времени может привести к созданию «вечного» кабинетного кресла. Действительно, второй крупнейший производитель офисной мебели в Америке Герман Миллер открыл завод, предназначенный специально для бесконечного обновления всевозможных когда-либо выпущенных им видов мебели. Программа, получившая название «Феникс», реализуется весьма успешно.

Видимые и заменяемые элементы могут быть «дематериализованы» (произведены с минимальным MIPS) и предназначены для легкого обновления или переработки. Когда наступает время замены изношенных элементов, они легко разъединяются. Элементы конструкции офисного кресла включают в себя его «подошву», «ножку» и механизм сиденья. Их можно оптимизировать с тем, чтобы достичь наилучших эргономических качеств, комфорта, прочности, долговечности и легкого ремонта. И все же остается большой простор для применения творческой фантазии в оформлении подушки. Если мебель переходит к новым владельцам, компания выбирает новый дизайн, желает изменить имидж или просто хочет дать своим работникам ощущение, что в офисе появилась совершенно иная мебель, замена подушки и ткани не составит труда ни с финансовой, ни с экологической точки зрения.

Знаменитая мебель многих мастеров сделана так, что в ней можно отделить элементы конструкции от видимых элементов. Музеи мебели гордятся, выставляя кресла Ле Корбюзье или Имса, которые сконструированы именно таким образом, хотя и были штучным товаром. Этот принцип стал определять рынки массовой продукции в Германии, когда правительство в законодательном порядке ввело обязательный возврат предметов длительного пользования. Известные производители мебели — Седус, Вилькхан, Граммер — начали распространять упомянутый принцип на свои новые коллекции.

Пока нет данных, ясно доказывающих достижение «фактора четыре» в сокращении MIPS этим методом. Однако поверхностная оценка позволяет заключить, что возможны факторы от 5 до 20, в зависимости, конечно, от используемых материалов и базовой модели.

Теоретически долговечная конторская мебель могла оказаться кошмаром для всей обрабатывающей промышленности, потому что насыщение рынка произошло бы очень быстро. Замена подушек и обивки кресел превратилась бы в доходный бизнес скорее для местных мастерских, а наиболее перспективным для производителей стал бы лизинг, который поощрял бы их к максимальному увеличению срока службы продукции. Такое малозаметное изменение могло бы существенно сказаться на структуре всей индустриальной экономики — оно явилось бы стартовым сигналом к экономике услуг, где в центре внимания стоит коэффициент использования.

 

2.2. Автомобили/гиперавтомобили с низким MIPS

 

Ездить на автомобиле означает больше, чем перемещать свое тело. Вы также перемещаете автомобиль массой в тонну или более. Кроме того, большие материальные потоки движутся только для его изготовления. Группа Фридриха Шмидта-Блеека считает, что в последовательных процессах добычи, аффинажа (получения высокой чистоты) и транспортировки металла, производства пластмассы и стекла, а также сборки машины перемещается более 1520 тонн различных материалов. Один десятикилограммовый каталитический конвертер, содержащий несколько граммов платины, требует перемещения материалов весом более двух тонн, поскольку для получения каждой крупицы платины необходимо переместить очень много породы и переработать много руды. Но сконструировав автомобиль заново в расчете на низкую материалоемкость, более высокий срок службы и пониженный расход топлива, можно добиться «фактора четыре» в сокращении MIPS.

 

Гиперавтомобили

Гораздо более радикальная стратегия — сконструировать автомобиль заново в соответствии с философией «гиперавтомобиля» (см. раздел 1.1).

В США автомобильная промышленность и прямо или косвенно связанные с ней отрасли составляют одну десятую по числу занятых и по уровню потребительских расходов и одну седьмую валового национального продукта. Они потребляют приблизительно 70 % свинца, 60 % резины, ковровых покрытий и ковкого чугуна, 40 % инструментов и платины, 34 % железа, около 20 % алюминия, цинка, стекла и полупроводников, 14 % стали и 10 % меди. За последние десятилетия потребление материалов для производства автомобилей изменялось довольно медленно: с 1984 по 1994 г., например, средний американский автомобиль стал на 1 % тяжелее и изменился по «массовому составу» только на У/о, в основном за счет перехода со стали на цветные металлы и полимеры. Но с появлением сверхлегких гибридных гиперавтомобилей большая часть громадных материальных потоков в автомобильной промышленности быстро претерпела бы глубокие изменения.

Гиперавтомобили скоро станут весить примерно в 3 раза меньше, чем сегодняшние автомобили, сделанные из стали, благодаря переходу к использованию полимерных композиционных материалов. Согласно обстоятельному исследованию Института Рокки Маунтин (Ловинс и др., 1996), даже очень ранняя, демонстрационная и не оптимизированная конструкция гиперавтомобиля для четырех-пяти пассажиров, в которой применяется двигатель внешнего сгорания с водяным охлаждением мощностью в 20 кВт (15л. с.), металл-гид-ридная буферная батарея на основе никеля весом 50 кг, застекление, кондиционирование воздуха с охлаждением и другие доступные технологии, легко могла бы весить на две трети меньше, чем средний американский автомобиль выпуска 1994 г. — по самым скромным подсчетам, 521 кг вместо 1439 кг. Разработанная ИРМ структура массы со 110 позициями, основанная на сопоставлении с существующими изделиями и опытными образцами, приводит к выводу, что такой гиперавтомобиль по сравнению со средним американским автомобилем выпуска 1994 г. мог бы содержать приблизительно:

• вдвое больше композиционных материалов и других полимеров,

• на одну восьмую больше меди,

• на 92 % меньше железа и стали,

• на треть меньше алюминия,

• на две трети меньше резины,

• на четыре пятых меньше платины и нетопливных жидкостей.

Эта ранняя конструкция ориентирована на максимальное применение металлов. Альтернативные электрические буферные аккумуляторы и силовые установки, которые, как ожидалось, будут широко распространены в конце 90-х годов, вытеснили бы около трех пятых металлов, в том числе железо, никель и сплав гидрида металла, половину алюминия и значительную долю стали. (По сравнению с автомобилями, выпускаемыми сегодня, использование железа и стали могло бы тогда сократиться не на 92 %, а на 96 % или более). Эти и другие усовершенствования позволили бы также уменьшить общий вес машины до 400 кг. Медь использовалась бы умеренно, примерно как сегодня, то же относится к платине. Небольшие, но важные ниши на рынке могли бы завоевать некоторые специфические металлы, например, магний и титан, но в целом металлы в конструкции были бы вытеснены современными полимерами.

Привело бы увеличение использования современных композитов — пластичных смол, армированных сверхпрочным углеродным волокном, — к значительному расширению пластмассовой промышленности? Отнюдь нет. Автомобили сегодня потребляют 7 % полимеров, производимых странами ОЭСР, 5 % мирового производства и 3 % полимеров, производимых в США. Более того, доля полимеров и композиционных материалов достигает 8 % (в США) или 9 % (в среднем по всему миру) от веса обычной автомашины и, может быть, 20–30 % от объема остальных материалов, из которых она изготовлена. Однако эти 8 % сегодняшнего автомобиля составляют в среднем 111 кг пластмассы и композитов, что уже превышает вероятный общий вес (равный примерно 100 кг) самой конструкции гиперавтомобиля, кузова и закрывающихся элементов (дверей, крышек капота и багажника), за исключением крепящихся деталей и узлов, относящихся к отделке интерьера и карданной передаче. Это также больше половины общего веса (примерно равного 227 кг) полимеров и композиционных материалов, использованных в первых моделях гиперавтомобиля. Учитывая сказанное, перевод всей автомобильной промышленности США на гиперавтомобили повысил бы суммарное использование полимеров только на 3 %, что меньше обычных темпов ежегодного увеличения выпуска продукции. Однако масштабы промышленности, производящей передовые композиционные материалы (годовой оборот которой в 1995 г. составлял около 10 миллиардов долларов), возросли бы на порядок, а пока незначительное производство углеродного волокна — в несколько сотен раз.

Примерно две трети массы гиперавтомобиля составят комплектующие, добавляемые к сделанному из композиционных материалов кузову без покраски и грунтовки. Большинство из них будет аналогично сегодняшним, но значительно меньших размеров и намного легче. Однако многие компоненты с устранением таких элементов, как управление мощностью, тормоза, оси, трансмиссия, сцепление, муфта, дифференциалы, генератор переменного тока, стартер и т. д., исчезнут совсем. Силовая установка на первом этапе могла бы быть двигателем внутреннего сгорания, приблизительно в 10–25 раз меньших размеров, чем сегодняшние, но вскоре, вероятно, ему на смену пришел бы другой двигатель — с умеренными (двигатель Стирлинга или газотурбинный) или принципиальными отличиями (на топливных элементах или термофотогальванический, без движущихся частей). Электрическое буферное аккумуляторное устройство первоначально будет выполнять функции нетоксичной, подлежащей переработке никелевой металл-гидридной батареи, которая примерно в 3 раза тяжелее, чем обычная свинцовая стартерная аккумуляторная батарея в сегодняшних автомобилях, весящая около 14 кг. Но вскоре ее, вероятно, заменит углеродно-волоконный супермаховик (предшественник которого — отпрыск британских центрифуг для обогащения урана — появился на рынке в конце 1995 г.) или ультраконденсатор весом 10–20 кг, или, быть может, даже тонкопленочная литиевая батарея весом всего лишь 5 кг. В любом случае устройство не будет содержать свинца, а лишь очень малое количество какого-либо металла.

Гиперавтомобилям потребуется на порядок меньше жидкостей, чем сегодняшним автомобилям (в основном останутся лишь топливо, расход которого уменьшится примерно в 10 раз, и жидкость для омывания лобового стекла). В хорошо продуманных гиперавтомобилях будут устранены 6–8 из 14 видов жидкостей, необходимых сейчас и нередко частично или полностью попадающих в окружающую среду. Так, использование моторного масла с его бензолом, примесями тяжелых металлов и другими загрязняющими веществами будет сокращено в значительной степени или сведено к нулю, что даст большую выгоду, поскольку средний американский автомобиль потребляет 22 литра такого масла в год. Кроме того, сильно сократятся или совсем не будут использоваться топливно-масляные присадки (для очистки двигателя, продления срока службы или пуска в холодную погоду), дистиллированная вода для аккумуляторных батарей, антифриз (плюс вода с антикоррозионными добавками или, в некоторых случаях, промывающими веществами в обогревателе), тормозная жидкость, жидкость для гидроусилителя рулевого управления, смазки, различные жидкие и твердые смазочные материалы и хладоагент для воздушного кондиционера.

Примерно 12–13 из 21 основной категории регулярно заменяемых механических узлов тоже исчезли бы или служили столько, сколько автомобиль. Остальная часть деталей и узлов значительно уменьшилась бы в размерах и реже требовала замены. Материалы, которые были бы сокращены или сведены к нулю, в зависимости от деталей используемой силовой установки, включают в себя приводные ремни (для вентилятора радиатора и водяного насоса, генератора переменного тока, компрессора кондиционера, насоса гидроусилителя руля, воздушного насоса для рециркуляции выхлопных газов и т. д.);

шланги (для воздуха, хладоагента, топлива, масла, охлаждающей жидкости и вакуума); стартерные аккумуляторные батареи; детали сцепления; зубчатые ремни привода; лампочки (десятки на машину); тормозные колодки; воздушные и масляные фильтры; свечи зажигания. Кроме того, значительно уменьшились бы поток запасных частей, частота и объем ремонта кузова, а в связи с этим — загрязнение окружающей среды.

Что касается самих автомобилей, то каждый год в Северной Америке более 10 миллионов машин, или 94 % всех используемых автомобилей, разбираются на части, затем три четверти из них идут на переработку (что составляет 37 % стального металлолома США) и одна четверть закапывается в землю в виде гетерогенной и иногда токсичной измельченной смеси (которая обычно состоит из 42 % волокна и 19 % полимеров). Перерабатываемые металлы эквивалентны по тоннажу примерно всей стали и одной трети цветных металлов, из которых ежегодно изготавливаются новые автомобили (хотя на практике переработанная сталь разбавляется другим металлоломом, который меньше загрязнен медью, и затем повторно используется главным образом как конструкционный материал). Автомобильная пластмасса пока обычно не подвергается переработке, хотя новые немецкие и шведские технологии, сокращающие количество и улучшающие маркировку полимеров, могут изменить эту ситуацию в Северной Америке, как они это сделали в Европе. Однако гиперавтомобили устранили бы стальной кузов и большую часть металлических узлов, стоимость лома которых сейчас вкладывается в переработку.

За исключением стадии демонтажа, да и то после переквалификации работников, гиперавтомобили невозможно перерабатывать в рамках существующей инфраструктуры. Сейчас это не очень беспокоит специалистов, поскольку по меньшей мере еще пару десятков лет им придется избавляться от стальных автомобилей. Если, однако, измельченные отходы будут признаны опасными, большие затраты на их захоронение могут превысить стоимость утилизируемых металлов и приведут к распаду отрасли по переработке автомобилей.

С другой стороны, гиперавтомобили открывают новые привлекательные возможности переработки, состоящей из последовательных стадий:

• продление ресурса на десятилетия и даже «перевоплощение» для различных рынков, быть может, даже для различных обществ; этому помогут программное обеспечение, сменная цветная обшивка и другие возможности повышения качества и «изменения внешности»;

• широкое повторное применение и модернизация;

• первичная переработка, позволяющая извлекать ценные композиционные волокна (в настоящее время посредством сольволиза, в основном метанолиза — разложения смолы под воздействием сжатого и нагретого метанола и извлечения ценного волокна для повторного использования; есть и целый ряд других возможностей);

• вторичная переработка путем измельчения и использования в качестве ценного наполнителя;

• третичная переработка посредством пиролиза для извлечения запаса энергии и молекулярных строительных элементов.

Наиболее ценные процессы оказываются весьма экономичными и уже используются в промышленности, хотя и могут быть значительно улучшены при наличии технологий извлечения длинного волокна для нового применения. Третичная и, вероятно, вторичная переработка, разрушающие ценные длинные волокна, потребуются редко, если вообще потребуются.

Более того, даже если бы каждый автомобиль был гиперавтомобилем и служил не дольше, чем стальные автомобили, а вся масса композиционных материалов и полимеров каждого гиперавтомобиля закапывалась в землю вместо переработки, то получающаяся в результате масса выброшенных полимеров и композиционных материалов была бы все же меньше, чем 331 кг измельченной смеси, которая сегодня подлежит захоронению в Северной Америке, и в отличие от нее была бы по существу нетоксичной. Для получения дополнительной информации по этому вопросу мы отсылаем читателя к работе Ловинса и др. (1996).

 

2.3. Электронные книги и каталоги

 

Врачам нравится «Мерк Маньюэл» — самый авторитетный медицинский справочник в мире, толщиной в три тысячи страниц. Беда в том, что вы не можете постоянно таскать с собой столько бумаги, когда посещаете больных на дому, особенно если они живут на четвертом этаже старомодного дома без лифта.

Теперь, в электронный век, есть альтернатива: справочник «Мерк Маньюэл» плюс «Настольный справочник врача» — все на CD-ROM'e размером с ладонь. С подходящим портативным компьютером с CD-ROM-ным дисководом доктора сейчас могут заглянуть в оба справочника, сидя у постели своего пациента. Какое это для них облегчение, и какое повышение эффективности использования материала!

Аналогично на одном CD-ROM'e за 70 долларов можно купить «Дневники Джона Галдемана: в Белом доме при Никсоне» (книгу в 700 страниц) плюс еще 2 тысячи страниц дневника с 700 фотографиями и 45-минутным видеоматериалом, отснятым покойным главой аппарата. Эта цена приблизительно эквивалентна затратам на материал, печать и доставку того же чтива в виде бумаги и пленки весом более 5 кг.

Электронные издания обеспечивают большие преимущества не только для книг. По электронной почте можно получать газеты и читать их на экране дома или во время поездки на работу (если только вы не за рулем). Статьи и новости, которые заслуживают того, чтобы их сохранили, можно отметить для распечатки и/или электронного копирования. Запись в электронные файлы не только сберегает материальные ресурсы, она гораздо более удобна и надежна при поиске информации, чем сегодняшнее вырезание и подшивание бумаг (см. илл.7 на вкладке).

 

Замена бумажных каталогов битами и байтами

Типичное архитектурное или строительное учреждение содержит целые помещения с обширными стеллажами, набитыми тяжелыми и неудобными каталогами деталей. Каждый производитель обычно раз в году должен нести затраты на подготовку, печатание и отправку этих чудовищ, потребляя тем самым несметные площади леса и нефтяные ресурсы. А профессионалы конструкторского дела, в свою очередь, должны тратить большую часть своего времени, занимаясь перелистыванием тысяч страниц только для того, чтобы найти нужную им деталь, а затем усердно скопировать ее для занесения в электронные чертежи своих проектов. В заметке, помещенной в «Уолл-стрит джорнэл», сообщается, что «многие конструкторы и проектировщики проводят от 16 до 20 часов в месяц за копированием (и сканированием) чертежей деталей в этих книгах, для того чтобы отредактировать их на своих персональных компьютерах».

Самое странное в этой изжившей себя системе — то, что около 2,5 миллионов тех же самых потребителей уже используют единое программное обеспечение, именуемое AutoCad, для конструирования всего, от станков до зданий, и свыше 80 % этих конструкторов должны получить спецификации деталей от изготовителей, многие из которых используют ту же программу прежде всего для проектирования деталей. Вот где очевидная возможность для сбережения ресурсов и времени.

По требованию заказчиков компания «АутоДеск» в Сан-Рафаэле (Калифорния), пятый по величине продавец программного обеспечения для персональных компьютеров и поставщик программы AutoCad, начала публиковать эти громадные каталоги фирм-производителей в цифровом виде с тем, чтобы чертежи и спецификации на детали переносились бы электронным путем непосредственно на рабочие чертежи. Например, диск CD-ROM за 99 долларов под названием PartSpec (спецификация деталей) содержит более 200 тысяч деталей 16 ведущих производителей. Другой лазерный диск стоимостью 199 долларов под названием MaterialSpec (спецификация материалов) включает более 25 тысяч материалов, производимых 300 фирмами.

Не все производители приветствуют эту систему, поскольку благодаря ей заказчикам гораздо проще сравнить конкурирующие изделия, чем с помощью бумажных каталогов. Но «АутоДеск» использовала мудрую стратегию, убедив по одному ведущему продавцу в каждой категории деталей прорекламировать свои материалы в первом выпуске cd-rom'ов. Потребителям, полагает фирма, настолько понравится удобство, что другим продавцам придется либо последовать этому примеру, либо рисковать тем, что их продукция станет гораздо менее доступной для конструкторов, от которых зависит сбыт. Со временем «АутоДеск» планирует издать чертежи всех фирм, которые пожелают это сделать.

Диапазон применения этой концепции легко расширить, скажем, от зубчатых шестерен, двигателей, шкивов, вентиляторов и других деталей, применяемых инженерами-машиностроителями, до обоев и мебели, используемых дизайнерами интерьера, окон и дверей, с которыми имеют дело строители, или всего того, что подсказывает ваша фантазия. Вероятно, тогда останется лишь небольшой шаг до электронной подачи заказов, наподобие уже существующих каталогов для заказа бытовых товаров по телекоммуникационным сетям.

«Уолл-стрит джорнэл» приводит слова одного эксперта, считающего, что в перспективе это отвлечет многих профессионалов от бумажных каталогов. Так возникает еще один побудительный мотив для экономии ресурсов (в данном случае — деревьев, энергии и воды): использовать электронную продукцию несравненно легче и быстрее, поскольку ее можно моментально отыскать и вставить в рабочие чертежи. Выигрыш во времени и более качественные чертежи с меньшим количеством ошибок принесут выгоды, далеко выходящие за рамки сбережения материальных ресурсов. Может вполне оказаться, что легкость сопоставления продукции повысит конкурентоспособность — отчасти благодаря тому, что потребители смогут с одного взгляда определить, какая продукция наиболее элегантна и экономична (см. Кларк, 1995).

 

2.4. Сталь против бетона

Для возведения зданий, мостов, опор высоковольтных линий и многих других сооружений используются сталь, дерево или бетон. Хотя древесина способна выдерживать высокую нагрузку (см. раздел 2.19), для оценки эффективности материалов целесообразнее сравнить сталь с бетоном. Руководствуясь концепцией MIPS, «стальная группа» в Вуппертальском институте, которую возглавляет Криста Лидтке, сравнила стальные и бетонные опоры, несущие магистральные провода сети напряжением 110 кВ. Их функцию можно определить как передачу электроэнергии напряжением 110 кВ в течение фиксированного периода времени, например 40 лет. С помощью такого определения была оценена оборачиваемость материалов или входящий поток на единицу выполненной работы — MIPS (Лидтке и др., 1993).

В соответствии с положениями упомянутой концепции сталь предпочтительнее по двум основным причинам.

• На бетонные опоры требуется в 3 раза больше материала, чем на стальные (соответственно 90 тонн и 36 тонн для типичной опоры в Центральной Европе). Сама бетонная опора весит около 45 тонн, а стальная — 6 тонн.

• Стальные опоры служат в 2 с лишним раза дольше, чем бетонные, правда, через каждые 10–20 лет, в зависимости от климатических условий, требуется профилактический ремонт.

Кроме того, стальные опоры можно делать из чугунного и стального лома, что тоже смещает баланс в пользу стали. Здесь достижим фактор 2,5.

В общем и целом переход от бетонных опор к стальным обеспечивает шестикратное увеличение эффективности использования материала (см. рис. 8).

Для линий электропередач, опор, мостов и т. д. традиционно использовалась только сталь. Но после Второй мировой войны бетон завоевал ведущие позиции даже в странах с развитой сталелитейной промышленностью. Историко-экономический анализ Лидтке и соавторов показывает, что причины вытеснения стали бетоном мало связаны с затратами. Скорее, это было данью моде или объяснялось субъективным выбором инженерных школ. Бетон считался более современным и более «изящным», но сооружения из него нуждаются в частом ремонте, и потому он может потерять свою привлекательность.

Преимущества стали еще более очевидны, если оптимизировать эффективность ее производства. Она по-прежнему производится в кислородных конвертерах, при этом вхолостую тратятся энергия, вода и материалы. Внедряемый метод электрической выплавки все еще далек от того, чтобы заменить старые способы, хотя он требует значительно меньшей массы материалов, чем оксигенизация. На тонну электростали — одна десятая часть топлива, одна восьмая воды, одна пятая воздуха и менее одной сороковой части других материалов по сравнению с традиционной конвертерной сталью. С другой стороны, на электрическую выплавку идет на 30 % больше электроэнергии. Если при этом учитывать «экологический рюкзак», который обычно формируется в условиях Германии, то баланс уже не выглядит столь выигрышным для этого метода. И все же, «фактор четыре» в повышении эффективности материалов при переходе от кислородной стали к электростали можно обосновать.

Коммерческий интерес к конструкциям и сооружениям, имеющим большой срок службы, и, следовательно, интерес к стали можно подстегнуть, если опоры, мосты и другие подобные сооружения сдавать в аренду, а не продавать. При лизинге строительная фирма уделяла бы чрезвычайно большое внимание долговечности и малым эксплуатационным затратам. Действительно, быть может, уже настало идеальное время для введения концепции лизинга. У многих муниципальных корпораций в Германии и других странах высокая задолженность, и им пришлось бы занять деньги для строительства новых мостов. Договора о долгосрочной аренде станут привлекательными, когда их стоимость не будет превышать обременительных капитальных и эксплуатационных затрат на бетонные мосты — если, конечно, технологии углеродных волокон, которые подешевеют с развитием новых отраслей типа производства гиперавтомобилей, не выиграют эту гонку благодаря своей высокой коррозионной стойкости, усталостной прочности и другим возможностям уменьшения веса, растущим как снежный ком.

 

2.5. Подпочвенное капельное орошение

«Сандэнс фармз» в аризонской долине Каса Гранде представляет собой образец эффективности в орошаемом земледелии. Как показывает Говард Вюрц, на 830 гектарах, где выращиваются хлопок, пшеница, ячмень, сорго, кукуруза, арбузы без косточек, мускусная дыня, эффективность сельскохозяйственных ресурсов является результатом целого комплекса мероприятий.

Для некоторых ресурсов и видов человеческой деятельности характерная на сегодня производительность делает «фактор четыре» труднодостижимым. В орошаемом земледелии, где отдельные хозяйства используют воду очень неэффективно, многие более крупные промышленные фермы достигают эффективности водопользования на уровне 40–60 %. Это означает, что из всей воды, подаваемой на поля, 40–60 % сначала забирается культурами для удовлетворения своих потребностей, а затем испаряется каждым растением. Остальная часть теряется из-за поверхностного стока, просачивания воды в глубь почвы или уносится ветром при разбрызгивании дождевальной установкой. Повышение эффективности водопользования до 100 %, так, чтобы каждая подаваемая на поле капля воды в конечном итоге испарялась самим растением, увеличило бы экономию ресурсов лишь в 1,7–2,5 раза.

Когда Говард Вюрц в 1980 г. начал переходить с полива по бороздам и по поверхности на подпочвенное капельное орошение, он повысил эффективность использования воды на поле примерно с 60 % до 95 % и более, т. е. в 1,6 раза. Линии капельного орошения, закопанные на глубину 20–25 см, испускают небольшие количества воды прямо в зоне корней растения. Поверхность почвы обычно остается сухой, что уменьшает поверхностное испарение, а корневая зона никогда не смачивается до насыщения, что сокращает объем стока и просачивание в глубину. Несколько процентов теряемой воды приходятся в основном на то, чтобы время от времени промывать линии капельного орошения.

Экономия воды важна для засушливой Аризоны, но, быть может, еще важнее были другие выгоды. Сначала Вюрц установил, что может сократить операции по обработке почвы, заменив вспашку, обработку бороной, разравнивание земли (отдельные этапы подготовки ложа для посадки семян и эффективного поверхностного полива) просто неглубокой обработкой поверхности. Исследования, проведенные Ари-зонским университетом на его ферме, показали, что он сократил потребление энергии на обработку почвы на 50 %. Упрощенная обработка обеспечивала также ускоренный севооборот полей после сбора урожая, позволяя в отдельные годы снимать по два урожая. Далее, поскольку линии капельного орошения сократили потери воды, с полей меньше вымывалось гербицидов и удобрений. Использование гербицидов сократилось на 50 %, а расход азотных удобрений уменьшился на 25–50 %. Кроме того, меньше воды нужно было качать турбинами из глубоких скважин, что сократило расход энергии на 50 %.

Наконец, урожайность возросла на 15–50 %. Этому, вероятно, способствовал ряд факторов: более равномерная подача воды, большая эффективность системных инсектицидов, подаваемых теперь через линии капельного орошения непосредственно к корням растений, лучшее решение проблемы борьбы с понижающими урожайность солями, которые часто накапливаются на полях при поверхностном орошении. Более высокие урожаи при меньшем потреблении воды означали сокращение расхода воды в 1,8–2,4 раза в жаркой пустыне, где затраты на орошение сводили на нет даже самые очевидные возможности экономии.

«Сандэнс фармз» — не какой-нибудь пижонский участок, на котором выращиваются овощи. Это серьезное промышленное производство. Установка линий капельного орошения, закопанных на глубину, недоступную для сельскохозяйственной техники, обошлась дорого, но совокупное сокращение затрат и повышение производительности сделали капиталовложения весьма эффективными. В будущем, следуя примеру таких фермеров, как Говард Вюрц, бережливые хозяева крупных сельскохозяйственных предприятий будут все больше стремиться к достижению тех многочисленных выгод, которые обеспечиваются передовыми сельскохозяйственными технологиями и методами управления.

А тем, кто заинтересован в «факторе четыре» или в еще большем повышении эффективности, скажем, что необходимо либо перейти на культуры, потребляющие меньше воды (хлопок едва ли предназначен для выращивания в пустынях), либо использовать сами культуры более эффективно.

Как вы думаете, кто изобрел способ подачи драгоценной воды растущим в пустыне культурам по капле, непосредственно к корням и со скоростью, которая им необходима? Конечно же, анасази — индейцы, жившие когда-то на американском юго-западе. Они закапывали неглазурованный глиняный горшок по горлышко в землю, заполняли его водой, закрывали крышкой и сажали вокруг него кукурузу и бобы. Питаясь медленно просачивающейся через глиняный горшок влагой, растения начинали расти вокруг горшка, их корни проникали во влажную глину, а листья затеняли крышку от солнца. Каждую неделю добавлялся другой такой же горшок. Сегодня у нас есть высокотехнологичные полимерные эмиттеры и трубы вместо глиняных сосудов и компьютерное управление для поддержания водоснабжения, но принцип современной капельной системы удивительно похож на древние методы.

 

2.6. Эффективное использование воды в промышленности

Бумага и картон

 

В 1900 г. производители бумаги в Европе обычно расходовали тонну воды на 1 кг продукции. К 1990 г. это соотношение улучшилось более чем в 15 раз, понизившись до 64 кг воды, расходуемой на 1 кг бумаги и картона. Из них 34 кг шло на производство целлюлозы и 30 кг на изготовление бумаги и картона из целлюлозы (Лидтке, 1993).

В Германии в результате роста платежей за сточную воду и благодаря дальнейшим усовершенствованиям расход воды сокращен до 20–30 кг. А некоторые производители добились, кажется, невозможного. Бумажной фабрике на севере страны удалось совсем исключить сточные воды из производства упаковочной бумаги. Вся вода, участвующая в технологическом процессе, собирается и фильтруется для повторного использования. К ней добавляются лишь минимальные количества свежей воды с целью введения молекул воды, необходимых для механохимической стойкости бумаги и для того, чтобы компенсировать испарение. В конечном счете эта фабрика стала расходовать не более 1,5 кг пресной воды на 1 кг упаковочной бумаги (успехи в сокращении расхода воды представлены на

рис. 9).

Полный возврат воды в производственный цикл достигается последовательными процессами седиментации, флотации и фильтрации частиц, содержащихся в воде, которая используется в циклах производства и целлюлозы, и бумаги.

На языке факторов этой книги достижение данного производителя составляет примерно «фактор двадцать» по сравнению с нынешним европейским средним показателем, а для упаковочной бумаги имеется дополнительный «фактор восемь» по сравнению с тем, что та же фабрика обеспечивала ранее, до последней модернизации. Однако можно утверждать, что сегодняшнее состояние близко к пределу, поскольку часть воды должна идти на химию бумаги, а регенерация воды из пара привела бы к чрезмерно высоким затратам.

 

Бритвенные лезвия, авторучки и микросхемы

14

Компания «Джиллетт», один из ведущих в мире производителей бритвенных приборов, в 1993 г. в своем промышленном центре в южном Бостоне использовала на 96 % меньше воды, чем в 1972 г. Другой промышленный центр этой компании, в Санта-Монике, также использовал в 1993 г. на 90 % меньше воды, чем в 1974 г.

Была ли достигнута эта громадная экономия благодаря количественно определенным задачам, поставленным главными управляющими? Нет. Управляющие просто заявили о своем желании сделать эффективность ресурсов приоритетной задачей, что стимулировало работников к постоянному поиску путей совершенствования производственных процессов. Команды сотрудников на каждом участке «Джиллетт» стремились найти и реализовать идеи, комбинация которых дает результаты, нереальные для отдельного человека.

На одном заводе сотрудник предложил повторное использование технической воды, но это потребовало бы создания новой системы охлаждения. Другой работник предложил использовать в качестве системы охлаждения плавательный бассейн. Эти идеи были доложены европейским отделам компании, где был внесен еще ряд усовершенствований. В итоге завод в Бостоне стал получать все необходимое тепло от тепловых потоков, которые раньше улетучивались.

С подобными ресурсосбережениями связаны и усовершенствования технологических процессов, значительно уменьшивших загрязнение среды. Например, выбросы трихлорэтана, трихлорэтилена и метилэтилкетона (трех распространенных, но достаточно токсичных растворителей) сократились на 98 % по сравнению с уровнем 1991 г. благодаря тому, что промывка лезвий и других деталей переориентирована на системы с использованием воды. К 1993 г. объем отходов, внесенных в «Перечень токсичных выбросов», уменьшился по сравнению с 1987 г. на 97 %.

Существенное улучшение имеет место даже в самых сложных высокотехнологичных производствах, где, казалось бы, возможности для замены материалов наиболее ограничены. Так, с 1991 г. «Мицубиси семикондакторс Америка» начала сокращать потребление воды и выбросы отходов на своем комбинате в Северной Каролине. Хотя производство возросло на 30 %, потребление воды упало на 70 %, а донные отложения из промышленной сточной воды — на 75 % (от уровня 1992 г.). Сэкономлены также реактивы для обработки, улучшено качество воды, выросла производительность. Затраты на сумму в 1,2 миллиона долларов на два основных мероприятия по повышению эффективности — деионизацию и обратный осмос — окупились за два года. Первая фаза водосберегающей технологии обошлась в 40 тысяч долларов и сэкономила в первый год 240 тысяч долларов (при сроке окупаемости девять недель).

Более того, с 1991 г. производство опасных отходов сократилось в общей сложности на 75 %, включая полное устранение хлорфторуглеродов и уменьшение на 96 % отходов, образующихся в процессе нанесения гальванических покрытий (путем изменения химической технологии без ухудшения качества продукции). Например, электрохимическое извлечение металлов сократило концентрацию свинца в осадке от гальванического процесса с 1100 до 30 частей на миллион, т. е. на 97 %. Это сопровождается дальнейшим снижением использования химических реактивов, а значит, и отложений.

 

2.7. Эффективность бытового потребления воды

15

Жители типичного дома в США расточительно расходуют воду, потребляя около 303 литров воды на человека в день только для использования внутри здания. Выполнение требований национальных сантехнических стандартов США, вошедших в силу в 1992 г., могло бы сократить эту цифру на 35 % лишь благодаря замене старой сантехники на оборудование, отвечающее нормам нового закона — туалеты с расходом 5,7 литра на слив и душевые головки и смесители, расходующие 9,5 литров в минуту. А если внедрить туалеты по австралийским стандартам (с двойным сливом и расходом до 5,7 литра на один слив), более эффективные посудомоечные и стиральные машины и «серую» воду для смыва в туалете, соответствующий показатель можно уменьшить еще на 50 % и направить 113 литров сточной воды для других целей.

Подобные технологии работают по меньшей мере столь же хорошо, как и старые, и не должны стоить дороже. Австралийский туалет с двойным сливом обеспечивает сокращение расхода воды на 80 % по сравнению с некогда стандартным туалетом, в то же время он работает лучше и обходится примерно во столько же (а иногда и меньше). Весьма надежным оказался шведский туалет с расходом 3 литра на слив, которым с 1983 г. пользуются многие из 40 тысяч посетителей Института Рокки Маунтин. Такие конструкции обеспечивают лучший смыв, чем модели с расходом 19 литров на слив, поскольку уменьшенный на 84 % объем воды вместо бесцельного кружения в водовороте концентрируется в сильный, точно направленный поток. Аналогичным образом, горизонтально-осевая стиральная машина с загрузкой сверху, разработанная «Стэйбер индаст-риз» — небольшой фирмой в Грувпорте (Огайо), обеспечивает в несколько раз более мощное вихреобразование в воде, проходящей через одежду; при этом на стирку расходуется лишь одна треть воды (и энергии на ее нагревание) и одна четверть мыла по сравнению с обычной машиной.

Еще более крупные сбережения дает специально разработанное оборудование. В 1980 г. один американский изобретатель выпустил на рынок мощный душ, в котором умеренная струя воды при расходе 2 литра в минуту интенсивно разгоняется потоком теплого воздуха под низким давлением. В конструкции использовались элементы предложенного Бакминстером Фуллером капельного душа для подводных лодок. Потребляя в 4–5 раз меньше воды, чем достаточно эффективная душевая головка, или в 8—15 раз меньше, чем модель, существовавшая до 1992 г., этот душ расходует для работы вентилятора только 1–2 % энергии, сберегаемой благодаря уменьшению нагреваемого количества воды: 0,43 кВт по сравнению с 20–75 кВт. Дополнительные затраты на оборудование в значительной степени компенсировались снижением расходов на монтаж, поскольку горячая вода подается по очень маленькой гибкой трубке, а не по большой и жесткой трубе, для установки которой нужен сантехник. Трубка настолько мала, что ее не нужно изолировать: любая теплоизоляция, за исключением очень толстой, привела бы к большей потере энергии за счет увеличения общей площади поверхности трубы.

Эффективное водопотребление можно сочетать с альтернативным водоснабжением. Например, использование дождевой воды для всего оборудования, за исключением подачи питьевой воды, могло бы сократить коммунальное водоснабжение на 90 %, сэкономить мыло (дождевая вода настолько мягкая, что требует меньше мыла), а также дать существенное количество сточной воды для внешнего потребления.

Хотя использование сточной и собираемой с крыши дождевой воды может показаться необычным, эти источники уже сейчас используются во всем мире. Во многих районах штата Гавайи, на Карибских островах, в Австралии, в Техасе люди нередко удовлетворяют свои потребности частично или полностью за счет дождевой воды. В Германии в качестве одного из решений проблемы ливневого стока поощряется развитие систем сбора дождевой воды. В Токио многие новые административные здания и бейсбольный стадион «Токио доум» оборудованы системами сбора дождевой воды, поставляющими воду для туалетов и башенных охладителей. В Калифорнии аналогичные системы приобрели популярность после принятия законов, разрешающих применение сточной воды для подпочвенного орошения и смыва в туалетах.

Наружное потребление воды также можно значительно сократить. Во многих районах США в засушливые месяцы оно такое же или даже больше, чем внутреннее. Заложенные здесь возможности для сбережений почти беспредельны и во многом зависят от благоустройства участка. Эффективные ирригационные системы, сохранение дерна и посадка невлаголюбивых растений могут легко сократить потребление на 50 % или больше. Использование сточной и дождевой воды может уменьшить расход из городского водопровода. Все эти методы зачастую позволяют экономить топливо, удобрения, гербициды и труд. Кроме того, хорошо продуманный ландшафт, в котором эффективно используется вода, может быть эстетически привлекательным, давать естественную прохладу и обеспечивать противопожарную защиту, а также привлекать птиц и других животных.

«Каса дель аква» (Дом воды) в Таксоне (Аризона) — на вид совершенно обыкновенный, полностью благоустроенный, симпатичный дом. Но по сравнению с другими домами в районе он расходует на 67 % меньше воды из системы коммунального водоснабжения. В этом созданном по экспериментальному проекту здании сочетание систем дождевой и сточной воды, водосберегающего благоустройства территории и эффективной арматуры снизило общее потребление воды на человека примерно до 200 литров в день. Сейчас в Фениксе осуществляется аналогичный проект под названием «Дом в пустыне», который, как предполагается, обеспечит сокращение водопотребления по меньшей мере на 50 %. Оба проекта разработаны Отделом по изучению засушливых районов в Архитектурном колледже Аризон-ского университета (Мартин М. Карписак и др., 1990).

Эффективность использования воды можно улучшить не только в отдельных зданиях, но и в целых населенных пунктах. Когда в Голета (Калифорния) во время засухи пришлось столкнуться с высокими затратами на новые водные ресурсы, управление водоснабжения помогло 74 тысячам жителей установить свыше 17 тысяч экономно расходующих воду туалетов (из них 14 700 были проданы со скидкой), раздало около 35 тысяч высокоэффективных душевых головок, определило более эффективные методы орошения для сотен хозяйств и привело тарифы на воду в соответствие с предельными издержками, чтобы люди понимали, во сколько обходится общине каждая дополнительная единица водопотребления. С мая 1989 г. по апрель 1990 г. бытовое потребление воды на человека упало более чем на 50 % по сравнению со средней величиной за предыдущие пять лет. Общее потребление сократилось более чем на 30 % — плановая экономия в 15 % была превзойдена в 2 раза. Сбережения на одну семью, несколько семей или мотель составили в среднем соответственно 50,40 и 40–50 %. Последующая экономия увеличила общие сбережения с 30 до 40 %. Вся программа стоимостью в 1,5 миллиона долларов к июню 1990 г. сократила объем сточных вод с 25 до 15 миллионов литров в день. Это отодвинуло на неопределенный срок расширение ранее перегруженной водоочистной станции, которое считалось необходимым для удовлетворения стандартам Управления по охране окружающей среды и на которое потребовался бы не один миллион долларов (ИРМ, 1994).

Практикуя методы повторного использования, первоначально разработанные для космических кораблей, некоторые американские экспериментаторы обеспечили вполне достаточное водоснабжение для своих семей без потребления внешних водных ресурсов, возвращая в оборот буквально каждую каплю. В конце концов, именно это земля делает ежедневно, и чтобы осуществить то же самое, но в меньших масштабах, просто необходимо специальное оборудование. На этом принципе Тэг Бейкуэлл из Ладью (Миссури) разработал передвижные дома, не требующие подсоединения к коммунальным источникам водоснабжения. В повторном цикле такие дома используют всю свою воду и стоки, получают всю энергию от солнечных батарей и небольшого ветряка. Они снабжены беспроволочной телекоммуникационной связью и могут доставляться по воздуху, по воде (это дома-амфибии) или сбрасываться с парашютом в любое место, где хотят жить люди. Никакой инфраструктуры: если вы решили сменить местожительство, вы просто забираете свой дом, не оставляя после себя никаких канав или труб.

Конечно, чтобы избежать производства мусора, вам пришлось бы быть столь же скрупулезным в закупках, повторном использовании и компостировании, как одному калифорнийскому инженеру. Он не выносил мусор на улицу в течение многих лет, потому что в этом не было нужды: за месяц у него образовывалось менее 40 г твердых отходов!

Некоторые задают вопрос: каковы практические пределы повторного использования бытовых отходов? В 1987 г. Барри Коммонер из Центра биологии природных систем при Куинз-колледже Нью-Йоркского университета осуществил опытный проект, цель которого заключалась в определении процента мусора, пригодного для реальной переработки в приемлемый для продажи вид. Мусор, который добровольно сдавали жители, сортировался на компостируемые материалы, а также материалы, подлежащие и не подлежащие переработке. Было забраковано 2,4 % собранного бытового мусора, 84,4 % — было утилизировано путем компостирования или переработки.

 

2.8. Производство хлопка при уменьшенном расходе воды

Всем нам нужна одежда. Текстильные изделия относятся к самым важным видам продукции в условиях любой цивилизации. В 1990 г. в мире было произведено 37 миллионов тонн текстиля. В том же году в промышленно развитых странах на душу населения приходилось примерно 20 кг проданного текстиля. В развивающихся странах продажа изделий из ткани составляла лишь 1 кг на человека.

Текстильное производство порождает многие хорошо известные проблемы, связанные с загрязнением окружающей среды, — от загрязнения воды красителями до пестицидов, используемых для защиты шерсти, и вредных химических реактивов, применяемых в производстве искусственного волокна.

Менее известны экологические проблемы, вызываемые потоками материалов в производстве текстильных изделий. Один из таких потоков особенно неприятен — это потребление воды хлопковыми плантациями и эрозия почвы. На каждый килограмм хлопчатобумажного волокна обычно затрачивается пять тонн воды. Таким образом, мировое производство хлопка в количестве 18 миллионов тонн в год подразумевает перемещение 100 миллиардов тонн воды. Правда, большая часть этой воды текла бы и без вмешательства человека, но если бы не было хлопка, она улучшала бы, а не ухудшала пахотный слой почвы. В районах, где выпадает много осадков, теряется около 44 кг верхнего слоя почвы на килограмм произведенного хлопка.

Движение материалов, связанное с производством хлопка, вызывает большую обеспокоенность с точки зрения экологии у некоторых текстильных предприятий, в том числе фабрик компании «Брин-кхаус» в Варендорфе (Германия). Представители компании приветствовали исследования движения материалов на протяжении их производственного цикла, которые проводил Кристиан Рихард-Эльснер из Вуппертальского института. Вначале было изучено движение материалов на самих фабриках.

В 1987 г. вода, которая здесь потреблялась, оценивалась в 165 литров на килограмм проданной хлопчатобумажной продукции (в основном постельного белья и одежды). Кроме того, на килограмм хлопчатобумажной ткани расходовалось 2,4 кг других материалов и 6,3 кВт-ч электроэнергии. Позднее расход воды был уменьшен на 80 %, объем сточной воды — на 92 % и потребление энергии на 13 %. Если отапливать здания при помощи отработанного тепла, эффективность использования энергии может увеличиться еще на 60 %.

С использованием полного цикла водопотребления можно добиться большего. При переходе от выращивания хлопка в районах, где выпадает большое количество осадков, к полузасушливым районам с подпочвенным капельным орошением, потери поверхностного слоя почвы можно сократить более чем в 15 раз. Еще один путь, который пока недостаточно изучен, заключается в почвозащитной культивации в районах, где выпадает много осадков.

 

2.9. Уменьшение потоков материалов в промышленности

Существует немало информации о производствах, которые в значительной степени сократили или даже устранили потери различных материалов. Многие руководители промышленных предприятий понимают, что отходы представляют собой просто неиспользованный ресурс, т. е. являются свидетельством неэффективного управления, которое сказывается на конечном результате. Устранение потерь и превращение нежелательных, часто опасных, побочных отходов в ценные попутные продукты рассматривается сейчас как распространенный и выгодный путь увеличения прибыли. В 1992 г. в США на 75 конкретных примерах в различных отраслях промышленности проведено исследование мероприятий по предупреждению загрязнения окружающей среды. Оказалось, что средний период окупаемости капиталовложений на сокращение отходов составляет только 1,58 года:

годовая прибыль на инвестированный капитал находится на уровне 63 % (Ромм, 1994). Некоторые компании добились почти фантастических результатов. Например, корпорация «Ксерокс» планирует к 1997 г. сокращение отходов на 90 %, а фирма AT&T уже сократила токсичные выбросы в воздух на 95 % и выбросы хлорфторуглеродов на 98 %.

Рассмотрим несколько уже осуществленных мероприятий по сокращению отходов и предупреждению загрязнения окружающей среды, которые сопровождаются уменьшением потоков материалов в целом ряде отраслей.

Постояльцам гостиницы при казино «Харра» в Лас-Вегасе (Невада) был задан вопрос: хотят ли они, чтобы им каждый день меняли простыни и полотенца? Неожиданно почти все (95 %) ответили, что они рады такому вопросу, причем подавляющее большинство сказали «нет». Затраты на энергию и воду для стирки двух тысяч комплектов белья в день — что нелегко сделать посреди пустыни, раскаленной палящим солнцем, — снизились на 70 тысяч долларов в год. Простыни стали служить дольше. Уменьшилось загрязнение окружающей среды.

За последнее десятилетие компания «Бакстер хэлскэа» переработала 99,9 % отходов пластмассы, что сэкономило 9 миллионов долларов. Устранив выбросы хлорфторуглеродов и повторно использовав почти 5,5 тысячи килограммов отработанного масла, компания получила чистую прибыль в 1,7 миллиона долларов в год.

На заводе компании «Рипаблик стил» в Кантоне (Огайо) предложенные рабочими усовершенствования за два года сократили водопотребление на 80 %, дав экономию примерно в 50 тысяч долларов в год. Масштабы сбережений менялись от малых (замена двух питьевых фонтанов охладителями воды) до более крупных (ремонт протекающих труб) и огромных (повторное использование воды для промывки вместо однократного).

На заводе «Сиба гейджи» в Нью-Джерси внедрение двух усовершенствований технологии изготовления красителей повысило производительность на 40 %, сократило отходы железа на 100 %, а общие отходы органического углерода на 80 % и дало экономию в 740 тысяч долларов в год. Позже была выявлена возможность повысить производительность еще на 15 %.

Но лучше всего вообще исключить красители. Компания «Нэчэрэл коттон калорз инкорпорейтед» (что переводится как «естественные цвета хлопка») в Виккенбурге (Аризона) менее чем за пять лет построила предприятие стоимостью в пять миллионов долларов по продаже недавно разработанного сорта цветного хлопка, качество волокна которого не уступает самому белому хлопку. Сорт, называемый «фоксфайберз» («лисьи волокна»), дешевле, чем крашеный белый хлопок. Устраняя дорогостоящий, загрязняющий и энергоемкий процесс окрашивания тканей, «фоксфайберз» имеет, кроме того, уникальные свойства: текстиль из него обладает огнестойкостью и окраска его усиливается со стиркой. Компании «ЛЛ Бин», «Эспри» и «Сэвэнс дженерэйшн» — всего лишь немногие из хорошо известных производителей одежды, использующих «фоксфайберз».

Производитель мебели «Хаворт инкорпорейтед» когда-то для очистки расходовал в день 113 литров органических растворителей, покупка которых обходилась ему в 30 тысяч долларов в год, а удаление отходов — еще в 9 тысяч долларов. Установка двух простых перегонных кубов позволила получать растворители высокой степени чистоты, уменьшив использование одного в 4 раза (при сроке окупаемости в 1 год), а другого в 10 раз (при сроке окупаемости в 1,5 года) (Ромм, 1994).

«Холлмарк» — крупнейшая компания, выпускающая поздравительные открытки, с 1980 г. сократила выбросы летучих органических соединений от своего масштабного печатного производства более чем на 80 %, главным образом, благодаря переходу на краски на водной основе. С 1990 г. компания сократила производство твердых отходов на 62 % и поставила себе цель достичь к концу 1995 г. 70 %. Сотрудничая с Институтом Рокки Маунтин, компания «Холлмарк» сберегает половину энергии на освещение в новых и реконструируемых сооружениях.

В цехе мойки бутылок компании «Курз» в Голдене (Колорадо) отказались применять лимонную кислоту для нейтрализации щелочных растворов, идущих на удаление этикеток. Рабочие этого предприятия и соседнего консервного завода предложили использовать вместо лимонной кислоты отходы серной кислоты с консервного завода. Осуществление этого проекта обошлось компании в две тысячи долларов, экономия составила 200 тысяч долларов, которые раньше тратились на покупку лимонной кислоты. Одновременно уменьшилось вредное воздействие кислот на рабочих. В цехе упаковки аналогичные мероприятия устранили необходимость в фосфорной кислоте, причем их реализация не потребовала каких-либо затрат и дала экономию в 12 тысяч долларов в год.

Кроме того, компания сократила с 1987 г. количество опасных отходов, образуемых в процессе технологических операций более чем на 75 %, хотя за это время увеличилось производство. В таких же масштабах сократилось содержание в сточных водах серебра и ртути. Это позволило «Курз» закрыть свою патентованную установку по утилизации опасных отходов. Компания сократила выбросы потенциально вредных химических реактивов, включенных в федеральный «Перечень токсичных выбросов», требующий снижения выбросов.

Компании «Клин тэст» в Порт-Вашингтоне (Висконсин), выпускающей влажные полотенца, предложила свои услуги команда «Доубрэндз контракт оперэйшнз» из Маулдина (Южная Каролина), которая специализируется на сокращении отходов, в частности, полихлорвинила и полипропилена. Отходы с производственной линии сократились на 77 % и продолжают уменьшаться. Более того, 85 % отходов «Клин тэст» используются повторно, а остальная часть сжигается. Повторное использование означает в данном случае продажу отходов пластмассы местным компаниям, выпускающим из нее целый ряд полезных изделий, в том числе столбы для заборов и лотки для покрасочных валиков. Проект входил в программу «Сокращение отходов всегда себя окупает», реализуемой «Доу кемикл компани».

 

2.10. Холодильная камера «ФРИА»

Урсула Тишнер — выходец из школы дизайна Вуппертальского университета. Под влиянием идеи MIPS Фридриха Шмидта-Блеека она разработала аппаратуру для новых способов охлаждения. Как значительно сократить расход энергии и материалов без ущерба для функции охлаждения в быту — вот главный вопрос ее диссертации.

Результат оказался поразительным. Тишнер называет свое детище «ФРИА». Расположение этой камеры в доме подобно расположению кладовой или погреба. Кладовая всегда была фиксированным элементом в архитектуре дома, хорошо изолированным от кухонной плиты и источников тепла. В Северном полушарии она обычно обращена на север. В таких странах, как Германия, в кладовой три — пять месяцев в году такая же прохладная температура, как и в обычном холодильнике.

«ФРИА» представляет собой своего рода многокамерный холодильник с определенными конструктивными особенностями, заимствованными у кладовой. Но «ФРИА» использует для охлаждения высокие технологии, более толстую и более качественную изоляцию, чем обычные холодильники. У нее чрезвычайно долгий срок службы, причем камеры могут ремонтироваться или заменяться отдельно друг от друга. В нее можно включить морозильные камеры. На рис. 10 показана конструкция стандартной модели «ФРИА». Она удобна, прекрасно работает и имеет привлекательный вид.

В зависимости от охлаждающего устройства, используемого в холодильнике «ФРИА», энергосбережения могут достигать значительной величины. Стандартная модель «ФРИА» в 1994 г. потребляла не более 0,40 кВт-ч за сутки по сравнению с 0,85 кВт-ч для более традиционных немецких холодильников. Если бы холодильный агрегат, установленный в холодильнике «ФРИА», был сделан фирмой «Грам», то энергопотребление

снизилось бы до 0,26 кВт-ч в день. Еще один путь — интегрировать в холодильник «ФРИА» систему подогрева горячей воды «Цеолит». Эта система подачи горячей воды, изобретенная мюнхенской фирмой «Цеотех», обладает на 30 % более высокой эффективностью, чем нагреватели горячей воды, соответствующие промышленному стандарту. Дополнительным ее достоинством является то, что она обеспечивает эффективное охлаждение.

«ФРИА» может пережить, вероятно, пять — десять поколений традиционных холодильников. К тому же она обладает по меньшей мере в 2–4 раза более высокой энергоэффективностью. Поэтому общая эффективность использования ресурсов характеризуется здесь «фактором четыре — восемь» по сравнению с традиционными холодильниками.

 

2.11. Услуги по стирке белья и вертикальный транспорт в зданиях

16

 

Чтобы снизить расход ресурсов, многие устройства в зданиях можно оптимизировать. Применяя правильную систему стимулирования для перехода от больших количеств продуктов с непродолжительным сроком службы к небольшому количеству продуктов длительного пользования, можно резко снизить материальные потоки, участвующие в оказании услуг. Проиллюстрируем это на двух примерах: стиральных машинах и лифтах.

 

Автоматические прачечные вместо индивидуальных стиральных машин

В современных многоквартирных домах в Северной Европе, а также в штатах на восточном и западном побережье США достаточно широкое распространение получила практика установки автоматических прачечных с тем, чтобы семьи не прибегали к услугам стиральных машин в своих квартирах (Штаэль и Гомрингер, 1993). Среднее увеличение энергоэффективности при стирке оценивается в этом случае на уровне «фактора четыре». Эффективность использования материалов может возрасти еще больше, приблизительно в 10 раз. Ресурсосберегающая стратегия состоит в том, чтобы вместо большого количества машин, которые будут находиться в личной собственности, продать несколько машин в совместное пользование.

Выигрыш энергии зависит главным образом от выбора источника энергии. Личные машины, как и барабанные сушилки, — почти всегда электрические. Что касается автоматических прачечных, то здесь вода нагревается природным газом (это гораздо более эффективный и экономичный метод), причем часть горячей воды используется повторно или тепло регенерируется благодаря более высокой частоте цикла стирки. Кроме того, отработанное тепло пригодно для повторного применения в барабанных сушилках.

Повышение эффективности использования материала обусловлено более интенсивной работой стирального автомата. Имеющая прочную конструкцию машина «Лондромат» обычно обладает ресурсом в 30 тысяч стиральных циклов. Семейные машины отрабатывают в среднем только 23 тысячи стиральных циклов.

В социальном плане недостатком «Лондромата» является его расположение в непривлекательных местах, например, в холодных и пустующих подвальных помещениях или на крыше дома. В Калифорнии нашли выход. В комплексах кондоминиумов стиральные автоматы нового поколения размещаются рядом с плавательным бассейном и площадками для отдыха.

Производя более долговечные машины, организуя их коллективное использование, а главное, переходя от товарного рынка к рынку услуг, можно уменьшить расход материалов для многих других бытовых функций (Джиарини и Штаэль, 1983).

 

Лифты

Еще одна иллюстрация принципа услуг — это «вертикальный транспорт», т. е. лифты. Высокие здания (и, следовательно, сбережение площадей при строительстве) немыслимы без эффективных подъемных систем. Лифты в основном состоят из набора рельсов, передвигающейся по ним кабины, противовеса, тягового двигателя с зубчатой передачей, механизма управления и системы аварийного торможения. Благодаря своей модульной конструкции, защищенной от вмешательства, это устройства с продолжительным сроком службы, которые можно сравнительно легко довести до уровня новых технологий (например, ввести электронное управление и двигатели с тиристорным управлением) и современной моды (замена пульта, изменение отделки или, наконец, всего интерьера кабины) (Штаэль и Гомрингер, 1993).

Компания «Шиндлер АГ» в Эбиконе (Швейцария) — вторая в мире по производству лифтов — решила воспользоваться долговечностью своих лифтов и сдавать их в аренду. Контракты на долгосрочную аренду включают в себя регулярное техническое обслуживание и услуги. Таким образом, клиенты получают гарантию, что не застрянут в «вертикальном пространстве». Ясно, что коммерческий интерес фирмы вытекает из замечательной долговечности и надежности ее продукции. К 1992 г. 70 % доходов этой компании поступало от таких услуг.

Принимая во внимание долговечность лифтовой системы, можно сказать, что лифты примерно в 40 раз эффективнее по энергии и в 10 раз — по затратам материалов, чем средний автомобиль 1995 г.

 

2.12. Восстановление домов вместо их сноса

 

Старые дома часто оказываются ненужными новым владельцам, а иногда становятся даже убыточными, поскольку местные законы могли измениться со времени их постройки. В результате они нередко сносятся, и на их месте строятся новые. Между тем путем модернизации старого здания без какой-либо потери качества предоставляемых услуг можно увеличить сбережение как энергии, так и материалов в 4 раза. В этом случае можно также сохранить общественные и эстетические ценности, т. е. культурное наследие и привычную атмосферу ансамбля зданий.

«Фактор четыре» возникает, в основном, в результате сохранения «серой энергии», которая содержится в несущей конструкции здания, т. е. в кирпичах и строительном растворе.

Даже если все технические устройства для отопления, охлаждения, питания, освещения, лифтов и окон заменить современными (можно надеяться, более эффективными), то сохранится 75 % энергии и материалов, на которые первоначально были затрачены средства.

А вот экономии труда не будет: совсем наоборот. Реконструкция может оказаться более трудоемкой, чем снос старого здания и постройка нового с нуля. Баланс затрат существенно сместится в сторону реконструкции и, следовательно, экономии ресурсов, если налоговое бремя на человеческий труд будет снижаться с введением налогов на ресурсы.

 

Повторное использование материалов от снесенных зданий

Что происходит с материалами, когда здание сносится, а не реконструируется? Большая их часть в виде строительных отходов попадает в места захоронения, которые быстро заполняются. Например, район Большого Ванкувера в Британской Колумбии (Канада) производит в год 1,4 миллиона тонн общегородских отходов. Отходы от строительства и сноса зданий добавляют примерно поровну, еще 0,3–0,6 миллиона тонн в год, большая часть которых подлежит захоронению. В ситуации, когда к 2000 г. ожидается закрытие 60 % мест захоронения в Британской Колумбии, Министерство охраны окружающей среды призвало к сокращению к этому времени городских твердых отходов по меньшей мере на 50 %. Плата за свалку отходов в связи с этим с 1989 по 1992 г. возросла вдвое, а к концу 1995 г. увеличится еще в 2 с лишним раза. В Торонто за последний пятилетний период плата выросла в 5 раз.

Столь резкое увеличение затрат на устранение отходов заставило строителей хорошенько пошевелить мозгами. В результате появился экспериментальный проект строительной корпорации Британской Колумбии — знаменитой «Краун корпорэйшн», проектирующей и эксплуатирующей здания в основном для государственного сектора. Цель проекта состояла в проверке новой концепции: снос зданий без ущерба окружающей среде. В качестве испытательного полигона было выбрано построенное в 1963 г. здание «Вест-Гейт Аннекс» старого тюремного комплекса «Оакалла». Размером 24 х 46 м, оно имело бетонный пол, стены из бетонных блоков, деревянные балки и настил крыши, внутреннюю отделку из дерева и сухой штукатурки и решетки на окнах.

После того, как был удален асбест, подрядчики получили четкое техническое задание: направить отходы не в места захоронения, а на повторное использование и переработку. При этом проект должен был быть экономически сравнимым с обычным методом сноса зданий. В предложениях для каждого типа материалов необходимо было указать количество отходов, стоимость их удаления, стоимость альтернативного использования, а также те компании, которые возьмут материалы на повторное использование и переработку. Кроме того, предложения должны были включать в себя два показателя: цену обычного сноса и цену, которая бы максимально расширяла возможности утилизации материалов. Выиграло предложение, в котором было подсчитано, что схема «утилизация — повторное использование — переработка» на 24 % дешевле, чем обычный снос.

Проведенный в 1991 г. демонтаж оказался весьма успешным; там, где необходимо, применялись трудоемкие методы. Три четверти бетонных стенных блоков были использованы повторно юношеским клубом для строительства новых сооружений, остальная часть дробилась для получения заполнителя. Деревянные балки, настил и другие пиломатериалы были на 97 % утилизированы и перепроданы, так же как и металл, разнообразное оборудование, стена из сухой кладки (отправлена на гипсовый завод на переработку), окна, решетки и другие изделия. Сыпучий гравий был перемещен к одному концу крыши с помощью пожарного рукава и убран бульдозером для пешеходной дорожки. Фундамент и опоры, содержащие большое количество проволоки и поэтому непригодные для переработки в наполнитель, отправлялись для повторного использования на участок засыпки дороги в качестве подложки. Единственными материалами, отправленными на захоронение, оказались 60 кубических метров крошащегося кровельного материала (его стекловолокно было пропитано горячей смолой, что делало восстановление без повреждений невозможным) и 46 кубических метров обрезков древесины, слишком обломанных для повторного использования (хотя это дерево все же могло бы найти применение, по крайней мере, в качестве топлива).

Согласно оценкам, после сноса в общем объеме материалов 64 % составляло дерево, 30 % — цемент, 2 % — металл и 3 % — кровля из смолы и гравия. При обычном сносе 92 % этого объема было бы отправлено на свалку. Но в экспериментальном проекте захоронено только 5 %, а остальные 95 % использованы повторно либо переработаны. Полтора месяца дополнительного труда для команды, занимавшейся сносом, компенсировались продажей материалов. Подрядчик полагает, что, хотя в этом здании и содержалось много ценной древесины, подход, основанный на утилизации материалов, если создать для них рынок, вероятно, окажется выгодным и для других зданий. Необходимо только, заключил он, поставить задачу, спланировать ее выполнение и предоставить время.

 

2.13. Многолетняя поликультура

 

Изобретая заново сельское хозяйство

Уэса Джексона одолевают заботы о сельском хозяйстве. Не то, как мы хлебопашествуем, а само сельское хозяйство. Рискуя быть обвиненным в желании вернуться к жизни времен каменного века, Джексон задается вопросом о последствиях возделывания земли, каким мы его знаем. «С геологической точки зрения, — говорит он, — сельское хозяйство, связанное с обработкой почвы, конечно, представляет собой наиболее значительное и революционное событие, которое изменяет нашу планету быстрее, чем само происхождение жизни» (Джексон, 1980).

Экологический ущерб, наносимый обработкой почвы, велик и в то же время привычен для западных концепций сельского хозяйства. Джексон рассказывает о коренном американце, который наблюдал, как фермер-земледелец, недавно прибывший на великие равнины Среднего Запада, погонял упряжку лошадей, вспахивая девственную прерию. Не меняя выражение лица, индеец пристально смотрел на отвальный плуг, врезающийся в густой ковер степной травы и переворачивающий его корнями в воздух. Через какое-то время фермер остановился и спросил индейца: «Ну, что скажешь?» Индеец ответил: «Не та сторона наверху» — и ушел.

До сих пор наверху не та сторона. За несколько тысяч лет земледелие преобразило безбрежные просторы земли из богатых пространств с их симфонией растительного мира в небольшие лоскутные участки для выращивания монокультур. Более того, сопровождающие обработку потери почвы — в некоторых местах происходящие быстро, в других медленно, но неумолимо — не могут продолжаться вечно. В последние годы река Миссисипи ежесекундно проносит через Новый Орлеан целый самосвал, груженный плодородной землей. При той скорости, с которой мы движемся, западная часть штата Айова останется без верхнего слоя почвы (половина уже исчезла) прежде, чем иссякнут грунтовые воды в западной части штата Небраска. По словам Джексона, для сельского хозяйства необходим «биотехнический баланс».

Многолетняя поликультура — вот цель Уэса Джексона. В Институте земли в Салинасе (Канзас) доктор Джексон, занимающийся генетикой растений, собирает передовых исследователей. Вместе они учатся у американской прерии — разнообразной экосистемы сотен видов многолетних растений, где почва «остается на месте». Проводимые в институте эксперименты по селекции растений направлены на то, чтобы вывести многолетние зерновые культуры и заменить ими однолетние, составляющие основу пахотного земледелия. Многолетние культуры практически устраняют необходимость обработки, приводящей к эрозии почвы. Выращивание поликультур будет способствовать развитию многообразной почвенной флоры, фауны и микроорганизмов, важных для естественных процессов гниения органических веществ, поддерживающих плодородие почвы.

В учебниках говорится, что многолетние растения не могут давать высокий урожай. Учебники заблуждаются. Научным сотрудникам Института земли потребовалось только два года, чтобы показать, и десяток лет, чтобы с полной строгостью доказать, что тщательно отобранные культурные сорта из обычных местных степных трав могут состязаться и даже превосходить по выходу семян и белка на один акр в высшей степени гибридизированные, генетически уязвимые и требующие больших затрат зерновые. На их выведение потребовался целый век, однако они не выдерживают неблагоприятной погоды и не сопротивляются сельскохозяйственным вредителям без постороннего ухода. Так родился принцип Института земли, который гласит: «Если был бы возможен более совершенный способ использования солнечного света, чем дикая прерия, то он бы уже реализовался здесь». Использование природы в качестве образца и наставника, а не помехи, которую необходимо устранить, приносит богатые дивиденды. Их источник — в уважении к насчитывающему несколько миллиардов лет опыту конструирования, в котором все, что не работало надежно, исправлялось Создателем. Хотя работа еще продолжается, сегодня большинство живых существ уже хорошо «усовершенствовано» естественным процессом проб и ошибок.

Не удовлетворившись многолетними злаковыми травами, простирающимися до горизонтов Канзаса (в тех немногих местах, где еще сохранилась первозданная прерия), команда Института земли начала серию скрещиваний. Восточный трипсакум, мелантум иллинойсский, сибирская дикая рожь — все они при относительно малых усилиях дали поразительно морозоустойчивые и высокоурожайные культуры. Подобно своим диким предкам, эти новые культуры могли использоваться для приготовления вкусного хлеба, причем они либо смешивались, либо разделялись традиционными механическими способами. Когда несколько растений выращиваются вместе, они могут заботиться друг о друге — одно поставляет азот, другое выделяет защитные гербициды, третье предохраняет от нашествия насекомых. И, разумеется, любая поликультура менее привлекательна для паразитов, которые доставляют много неприятностей монокультурным зерновым системам.

Конечным результатом этого имитирующего природу подхода к сельскому хозяйству станут плодородные поля, больше похожие на прерию. Злаковые растения многих перемешанных между собой видов всходят каждый год без какой-либо обработки земли, без посева, без эрозии почвы. Они растут, не требуя ни орошения, ни удобрений, ни пестицидов. Когда они созревают, их урожай собирается либо техникой — зерноуборочным комбайном, либо местными копытными животными, такими, как бизон или антилопа, которые оптимально эволюционировали для того, чтобы питаться этими травами.

Эксперт биохимической фирмы, которому недавно описали эту систему, пришел в замешательство:

— Когда вы их опрыскиваете?

— Мы их не опрыскиваем.

— А какие требуются удобрения?

— Никаких.

— Так что же вы делаете, чтобы все это выросло?

— Ничего. Просто сидим и смотрим, как это растет.

«Фактор 10», «фактор 100» — насколько велика в конечном счете возможная экономия ресурсов: воды, энергии и агрохимикатов? Почти бесконечна, поскольку кроме обычных затрат энергии на сбор урожая и того незначительного количества энергии, которое необходимо фермеру, чтобы обойти или объехать поля и порадоваться их виду, других затрат нет.

Как полагает Джексон, для выведения многолетних поликультур может потребоваться полвека или более. Но научный фундамент, необходимый для реализации этого плана, уже продемонстрирован. Нескольким поколениям остается уточнить детали.

Джексон смотрит в будущее, но его волнует и ближайшее время. «Задолго до того, как мы приступим к тонкой настройке такой системы, нашим фермерам необходимо будет использовать весь комплекс надежных мероприятий по сохранению почвы» (Джексон, 1980). С этой целью Институт земли исследует также возможность внедрения новаторских методов в традиционную систему сельского хозяйства. Проект «Солнечная ферма» — одна из таких попыток. Используя принципы низких затрат, передовую практику обработки почвы, фотогальваническую технику и ветряные турбины, сотрудники института, проводящие исследования на «Солнечной ферме», приближаются к обеспечению ее энергетической самостоятельности. Вот вопрос: «Какой объем производства семян масличных культур требуется для заправки тракторов, необходимых для выполнения сельскохозяйственных работ, чтобы получить в итоге продовольствие, не расходуя при этом ископаемых углеводородов?»

Со временем проект «Солнечная ферма» будет объединен с исследованиями многолетних поликультур. Джексон и его коллеги считают возможной замену потребляющего энергию и теряющего почву сельского хозяйства земледелием, производящим энергию и воссоздающим почву. В этой второй сельскохозяйственной революции тот, кто прекратит войну против земли и восстановит дипломатические отношения между мудростью природы и человеческим разумом, может, по меньшей мере, досыта накормить наших потомков.

 

2.14. Биоинтенсивное миниземледелие

Тенденция неуклонного роста производительности в сельском хозяйстве, долго наблюдавшаяся на всем земном шаре, в последнее время дала сбой. Сейчас мы вступили в эру замедляющихся темпов роста урожайности и даже понижения абсолютной урожайности («Ситуация в мире 1994» и «Роковые предзнаменования 1994», Эртскэн пабликэйшнз, Лондон, 1994). Эрозия и уменьшающееся плодородие почвы, снижение прибыли при увеличении затрат, не связанных непосредственно с фермой, — все это затрудняет решение проблемы производительности и устойчивости традиционного земледелия. Однако решения могут появиться оттуда, откуда мы их меньше всего ожидаем.

На крутом склоне холма в Северной Каролине, на почвах, которые многие сочли бы непригодными для сельскохозяйственных работ, Джон Дживонс и его коллеги из «Экологического действия» разрабатывают систему высокопроизводительного и устойчивого сельского хозяйства (Дживонс, 1991, Дживонс и Кокс, 1993). Они прокладывают путь для создания, по выражению Дживонса, «биоинтенсивного фермерского минихозяйства». Их система опирается на четыре основных принципа. Это — глубокая обработка почвы с целью обеспечения оптимального роста корней; производство компостных культур для питания почвы; интенсивное выращивание растений широкими рядами для создания благоприятного климата; смешанный посев различных культур, чтобы сбить вредителей со следа. Система не механизирована, и в то же время потребность в рабочей силе удивительно мала. Для оборудования биоинтенсивных грядок требуются некоторые усилия, но как только элементы системы установлены, обслуживать их легко, поскольку большую часть работы выполняет природа.

Исследователи из «Экологического действия» не просто заинтересованы в выращивании большего количества овощей. Их цель — разработать методы, позволяющие регулярно обеспечивать все потребности человека в калориях и питательных веществах, используя при этом возможно меньшие площади. Они проводят эксперименты по интенсивному производству зерновых, бобовых и других высококалорийных культур. Значительная часть их усилий направлена на компостные культуры, что воссоздает почву, а не истощает ее.

Согласно «Экологическому действию», механизированные и трудоемкие сельскохозяйственные методы в США требуют 4 тысяч квадратных метров или более для того, чтобы обеспечить человеку рацион с высоким содержанием мяса, или приблизительно одной тысячи квадратных метров, необходимых для вегетарианского рациона. Однако в развивающихся странах к 2000 г. на душу населения будет приходиться только восемьсот квадратных метров пахотных участков. Этот показатель значительно уменьшится с дальнейшим ростом населения и по мере того, как опустынивание, эрозия почвы, урбанизация и другие нежелательные процессы будут истощать запасы земли. К счастью, биоинтенсивные технологии могут полностью обеспечить потребности вегетарианца в продуктах питания всего лишь на 200–400 квадратных метров земли. По сравнению с традиционными методами эти технологии могут также снизить потребление воды на единицу продукции примерно на 88 %, сократить энергетические затраты, не связанные с работой на ферме, на 99 % и удвоить чистый доход на единицу площади фермы. За исключением земли и немногих ручных инструментов, начальный капитал практически равен нулю, никаких вложений на химикаты также не требуется.

Многие из методов биоинтенсивного, миниатюризованного сельскохозяйственного производства известны в Китае и других частях света уже на протяжении тысячелетий. Некоторые восточноазиат-ские системы, сочетающие сельское хозяйство с аквакультурой, получают даже более высокий, почти невероятно высокий, выход пищевых калорий или белка с весьма небольших участков. Обычно несколько систем устанавливаются друг на друга штабелем по вертикали: например, кролики, отходы которых попадают в пруд, где разводится рыба, или водоем, где плавают утки, и удобряют его; в свою очередь, водоем соединяется с рисовыми чеками и овощными грядками, отходами от которых питаются кролики. В других схемах используются две рисовые чеки, которые поочередно затопляются и осушаются. Рис чередуется с рыбой, моллюсками и утками.

Группа «Экологическое действие» с начала 1970-х годов ведет эксперименты с использованием этих методов, тщательно документируя успехи и неудачи, затраты и отдачу. В последние годы она организовала выездную программу по обучению биоинтенсивной системе ведения хозяйства на миниферме. Дживонс и его коллеги проводят семинары в разных странах, делясь накопленным ими опытом.

К ним присоединились новые последователи. Сейчас в Мексике, Индии, на Филиппинах, в России, Кении и других странах организованы демонстрационные центры. Результаты многих дочерних ферм и исследовательских проектов сообщаются в «Экологическое действие».

 

2.15. Аренда химикатов: стратегия повышения эффективности материалов

19

*

 

Хлорированные растворители

Хлорированные углеводородные растворители (ХУВР) чрезвычайно полезны. Они действительно вносят вклад в качество современной жизни. Мы используем их как очистители (обезжириватели), клеящие материалы, растворители в текстильной, фармацевтической, пластмассовой и металлообрабатывающей промышленности, а также для химической экстракции. Химически они совершенно устойчивы, не горят и не растворяются в воде, т. е. обладают свойствами, необходимыми для достижения тех целей, ради которых используются.

В год производится около 1,2 миллиона тонн ХУВР, и именно поэтому они привлекли большое внимание специалистов в области окружающей среды. Дело в том, что те же свойства, которые так ценятся в промышленном производстве, опасны для здоровья человека и окружающей среды. Замечательная способность ХУВР растворять жиры в сочетании с химической устойчивостью позволяет им входить в жировые ткани людей и животных. Доказано, что ХУВР токсичны для печени; полагают также, что они канцерогенны. Из 600 тысяч тонн хлорированных растворителей, проданных в Европе в 1992 г., было переработано только около 90 тысяч тонн, т. е. 15 %. Примерно 450 тысяч тонн испарилось, внеся тем самым «вклад» в загрязнение воздуха; 20 тысяч тонн сожжено (надеемся, что в современных печах для сжигания отходов без выбросов диоксина); приблизительно 40 тысяч «пропало без вести», вероятно, нанеся ущерб грунтовым водам во многих местах. Очистка грунтовых вод от загрязнения ХУВР — чрезвычайно трудоемкое и дорогостоящее дело.

Все эти экологические проблемы побудили законодателей в Германии принять закон, ограничивающий испарение растворителей и делающий прием их назад обязательным для производителей химических продуктов. Результатом боязни ХУВР явилось резкое уменьшение продаж, что обеспокоило производителей.

Благоприятным выходом как для производителей, так и для окружающей среды стала новая философия сбыта, именуемая «арендой химических продуктов». Идея была внедрена «Доу Джермани» через «СэйфКем» — совместное предприятие с местной компанией по повторному использованию. Суть идеи в том, что производитель химической продукции «Доу» осуществляет контроль над опасными химическими веществами на протяжении всего их жизненного цикла. Кроме того, следует соблюдать принцип солидарной ответственности за качество выпускаемой продукции (Фуслер и Джеймс, 1996).

«СэйфКем» хранит и транспортирует растворители в специально сконструированных контейнерах, имеющих сверхвысокую степень безопасности. Во избежание испарения (которое теперь не разрешается ужесточенным германским законодательством в области загрязнения воздуха) используется герметичная система перекачивания. С помощью этого метода устраняется также непосредственный риск для здоровья операторов. Благодаря контролю за использованием и транспортировкой химических продуктов заказчики повторно получают определенное количество бывших в употреблении растворителей. Кроме того, во много раз увеличиваются их повторное использование и переработка. «СэйфКем» поставляет заправочный стабилизатор и комплект инструментов, позволяющий проверять и поддерживать качество растворителя как можно дольше и на каждом этапе.

Таким образом, растворители можно регенерировать и повторно использовать более сотни раз. Конечно, при создании системы безопасной транспортировки неизбежны материальные затраты, но в конце концов главное — это предупредить загрязнение воздуха и воды, сохранив использование чрезвычайно ценных химических продуктов.

Когда «СэйфКем» впервые ввела эту систему, клиенты и конкуренты отнеслись к ней скептически. Но система работала хорошо, и уже в начале 1995 г. конкуренты поспешили последовать за лидером. «Доу» сейчас уже рассматривает другие химические продукты, для которых можно реализовать идею лизинга.

Есть планы пойти дальше путем предоставления услуги вместо растворителя, что вполне согласуется с политикой Института долговечности изделий. Такую услугу можно было бы, например, назвать «обезжириванием на квадратный сантиметр». Коммерческий интерес к производству растворителей еще более снизился бы, а заинтересованность в избежании потерь, удовлетворении клиентов и сохранении окружающей среды возросла бы.

 

2.16. Использовать меньше бетона без потери устойчивости стен

Представьте себе, что вы собираетесь построить новый дом очень близко или даже впритык к дому своего соседа — ситуация типичная в густонаселенных европейских городах. Чтобы как можно эффективнее использовать имеющуюся площадь, вам, вероятно, захочется иметь подвальное помещение, и поэтому строительная фирма выкопает в земле глубокую яму. Если не укрепить обращенную к вам стену дома вашего соседа, есть вероятность, что она ослабнет, а то и обрушится в процессе выемки земли и строительства.

Устойчивость соседней стены можно обеспечить при помощи нескольких методов. В основном используется усиление фундамента: подстенное и фасадное. Профессор С. Й. Дидерикс из Вуппертальского технологического университета попросил двух студентов — Ф. Й. Фольманна и Т. Шредера — исследовать различие этих двух методов с точки зрения расхода материалов. Они использовали расчет MIPS по методу Шмидта-Блеека (глава 9) и установили, что традиционные технологии с подведением фундамента под стену (нагнетание под высоким давлением или известная свайная система) требуют примерно в 4 раза больше материалов, чем более передовые фасадные методы — скрепление земли костылями, шпунтовая или свайная стенка.

В приведенной ниже таблице представлены результаты, опубликованные Дидериксом и Фольманном (1995). Для каждой технологии были рассчитаны «экологические рюкзаки» применительно ко всем материалам, участвующим в процессе, таким, как технологическое топливо, сталь, цемент и другие добавки, используемые при производстве бетона (в тоннах на линейный метр примыкающей стены). Основной вклад в «рюкзаки» дают вода и сжатый воздух. Энергопотребление значительно ниже для фасадного крепления по сравнению с подстенными методами.

Авторы честны в отношении общих экологических воздействий. Поскольку подведение фундамента является лишь небольшой частью строительных работ, сбережения на все новое здание остаются довольно скромными. Даже дающая наибольшую экономию материалов свайная стенка требует подготовительных мероприятий, общее воздействие которых способно превысить эффект самого подведения фундамента. Наименьшего воздействия можно было бы добиться, не углубляя фундамент, как это имеет место в большинстве голландских сооружений; однако такой метод пригоден для более высоких зданий или требует увеличения площади участка на полезный квадратный метр.

Таблица 2. Пять различных методов обеспечения устойчивости соседней стены. Они значительно отличаются друг от друга по потокам материалов

Подведение фундамента — небольшая часть строительного процесса, другие элементы которого тоже можно улучшить с точки зрения материало- и энергоэффективности. Согласно оценкам, энергоемкость современного строительства в 100 раз превышает энергоемкость строительства в доиндустриальный период.

 

2.17. Материал «белланд»: переработка упаковочной пластмассы

В деле избавления от отходов пластмасса — это настоящий кошмар. Обычно она не гниет, и поэтому в местах захоронения изделия из пластмассы выглядят настолько уродливо, что становятся мишенью для обвиняющих фотокамер специалистов по охране окружающей среды. Но и сжигание пластмассы не намного привлекательнее. Факелы пламени могут превратить хлор и другие галогены, часто содержащиеся в пластмассе, в диоксин и прочие высокотоксичные вещества. Высокотемпературные печи разрушают диоксины, а современные газоочистители очищают отработанные газы. Но и они не лишены недостатков. Эти методы дороги и весьма неудовлетворительны с точки зрения эффективности использования ресурсов.

Сейчас пластмассу стали перерабатывать. Но из бытовых отходов чистую пластмассу получить трудно. Механохимическая сепарация измельченной смешанной пластмассы возможна, но не на 100 %, а лишь до определенной степени, к тому же это очень дорого. В некоторых американских штатах, например в Вермонте, жителей просят сортировать бытовые отходы из пластмассы и помещать их в семь различных мусорных контейнеров. Может ли это быть решением для всего мира? Много ли семей имеют достаточно места, чтобы разместить семь мусорных ящиков для пластмассы и еще три для органических отходов, бумаги и металлов или стекла?

В Германии, казалось бы, пришли к решению «мусорной проблемы». Все упаковочные материалы, будь то металл, пластмасса или картонно-пластмассовая упаковка, должны иметь маркировку «зеленой точкой», свидетельствующую о том, что плата за переработку произведена заранее. Материалы с «зеленой точкой» идут в желтые мусорные ящики. Для бумаги введены голубые ящики, а остальная часть мусора поступает в черные ящики меньшего размера. Стекло должно выноситься в иглу — эскимосские хижины, расположенные в основных торговых районах.

Но пластмасса, собранная в желтые контейнеры, доставляла массу неприятностей. Она отправлялась за границу, иногда очень далеко, даже в Индонезию. Она сжигалась (с нарушением правил «зеленой точки»), зарывалась в землю (также против правил) или не проходила полный цикл переработки и шла на изготовление шумопоглощающих стен (отходов при этом быль больше, чем стен). В конце концов власти установили дорогостоящее оборудование для химического разложения пластмассы до «сырой нефти», которую затем можно сжечь. Все это сделало в Германии систему «зеленая точка» посмешищем. Иностранные производители, желающие экспортировать упакованные товары конечным потребителям в Германии, считают эту систему нетарифным торговым барьером и досадной помехой.

Что же нам делать? Совсем отказаться от пластмассы, как предлагают некоторые «зеленые фундаменталисты»? Конечно, нет. Современным супермаркетам нужна гигиеническая упаковка для всех продуктов, а потребителям — полная ее прозрачность. Многие скажут, что, раз это так, то пластмассовой и формованной упаковке нет никакой реальной альтернативы.

Но альтернатива традиционной поливинилхлоридной (ПВХ), полиэтиленовой (ПЭ) и другой упаковочной пластмассе есть, это «белланд», разработанный Роландом Бельцем, немецким инженером, живущим в Швейцарии. «Белланд» обладает очень ценным свойством: при водородном показателе рН несколько выше семи он растворяется в воде. «Белланд» имеет практически все типичные качества пластмассы: прозрачность, эластичность и различные степени жесткости, что позволяет использовать его при производстве как мягкой упаковочной фольги, так и различных прочных деталей.

В обществе, использующем «белланд» для разных целей, включая упаковку товаров для конечных потребителей, этот материал можно было бы найти в больших или меньших количествах во всех мусорных ящиках. Промывание их содержимого основной водой позволяет утилизировать весь «белланд». Он целиком переходит в сточную воду. Добавив несколько капель лимонной кислоты или другого безвредного вещества с малым рН, «белланд» можно заставить коагулировать. Осажденный материал легко собрать и превратить в химически чистые гранулы для дальнейшей переработки.

Там, где удается обеспечить раздельный сбор бытового мусора, отходы «белланд» нужно выбрасывать в контейнеры с бумагой. На первом же этапе, когда она перерабатывается в бумажную массу, «белланд» можно отделить при минимальных дополнительных затратах. Звездный час для пластмассы «белланд» наступит, если из нее изготовить посуду и столовые приборы для кафе типа «Бистро» и «Макдональдс», а также для крупных спортивных мероприятий или торговых ярмарок. Собранную грязную посуду легко переработать для изготовления новой без всяких органических отходов. На крупнейшей в мире Международной ярмарке пластмасс «К» (Дюссельдорф, ноябрь 1995 г.) система обслуживания «белланд» успешно прошла испытание.

Как и в случае с алюминием, переработанный материал обладает точно такими же свойствами, что и исходный, но для его переработки требуется гораздо меньше энергии и материалов. С учетом жизненного цикла, при переходе, скажем, с ПВХ на «белланд» легко достичь увеличения эффективности материала примерно в 4—10 раз.

 

2.18. Повторное использование бутылок, банок и крупных сосудов

 

Чем перерабатывать материал для производства тары, так лучше не разрушать эту тару. Во всей Северной Европе для бутылок под минеральную воду и пиво широко используется система «возврат денег — повторное использование». По статистике, бутылки используются около 20 раз, в некоторых случаях — 50 раз. По сравнению с одноразовыми стеклянными бутылками, алюминиевыми банками или комбинированными пластмассовыми емкостями, здесь легко достичь «фактора четыре» в повышении общей эффективности ресурсов. Но есть два исключения. Во-первых, чтобы избежать опасного загрязнения микробами, тара для молока и других содержащих белки продуктов требует очень интенсивной очистки перед повторным использованием. Горячая вода или пар для очистки, а также дезинфицирующие моющие средства могут в результате легко свести на нет экологические выгоды от повторного использования стеклянной тары. Во-вторых, отправка пустых стеклянных бутылок на расстояния свыше 250 км экологически нецелесообразна. Отсюда следует, что системы возврата предпочтительно должны быть региональными. Чрезмерно централизованные отрасли производства напитков и продуктов питания не вписываются в эти системы возврата.

Тем не менее поборники использования отходов не должны сдавать свои позиции относительно экономии ресурсов путем повторного применения тары. Мюнхенские защитники идеи лучшей переработки мусора вступили в конфронтацию со сторонниками централизации пищевой промышленности. Они требуют районирования поставок пищевых продуктов, предлагают стандартизировать всю тару для продуктов и напитков, призывают покупателей по возможности использовать корзины, сумки и т. п. и настоятельно рекомендуют местным фермерам, а также предприятиям пищеперерабатывающей промышленности продавать свежие, а не консервированные продукты. Но при необходимости длительного хранения продуктов банки или другая тара должны без каких-либо исключений приниматься обратно по принципу «сдача — возврат денег». Защитники идеи применения отходов утверждают, что такая система технически реализуема, что банки можно систематически собирать, мыть и повторно использовать, соблюдая все гигиенические требования местных поставщиков. Очевидно, можно ожидать формирования коалиции между группами, контролирующими состояние отходов, и местными фермерами, которые применяют в своем хозяйстве только органические удобрения и доход которых зависит от «зеленых» заказчиков.

В схемах с использованием возвращаемой тары всегда присутствует элемент протекционизма. Когда в 1987 г. Дания ввела обязательное использование возвращаемых бутылок для широкого набора напитков, Европейская комиссия, после лоббирования французскими производителями минеральной воды, предъявила этой стране иск за нарушение правил свободной торговли в Сообществе. Но Европейский суд в Люксембурге вынес постановление в пользу Дании, создав тем самым важный прецедент для национальных законов, защищающих окружающую среду даже за счет частичных ограничений свободной торговли.

 

Повторно используемая тара для деталей автомобилей

На первых автомобильных заводах Генри Форда целый цех занимался производством решетчатых деревянных ящиков и поддонов для трас-портировки. Но сейчас в автомобильной промышленности, поставляющей огромные объемы деталей во все страны света, претворяется в жизнь более совершенная идея: повторно используемые стальные ящики.

В апреле 1994 г. «Мицубиси моторс корпорэйшн» — крупнейший японский производитель автомобилей — учредил на фирме проект по глобальным вопросам охраны окружающей среды для реализации «зеленого» перехода. Цель проекта, осуществляемого совместно с немецкой оптовой фирмой «ММС Ауто Дойчланд», — использование стальных ящиков вместо деревянной и картонной тары. Из Нагойи, Мизушимы и Такацуки «ММС» отгружает в Германию в месяц примерно 2800 ящиков запасных частей для автомобилей. После месячного путешествия по морю ящики распаковываются. Раньше упаковочные материалы из картона и дерева выбрасывались. Теперь же новые стальные ящики опорожняются, складываются, отсылаются в Японию и повторно используются. Предполагается, что они прослужат 10 лет.

Ожидается, что в ближайшее время при аналогичном переходе с одноразовых решетчатых деревянных ящиков на упаковочную тару, которая укладывается в штабели, возвращается и используется повторно, объем повторно используемой тары в «Даймонд стар моторс» достигнет 95 %. Фирма также повторно использует днища ящиков, которые отправляются обратно в Японию и участвуют еще в трех-четырех поездках, и указывает в своем «Руководстве по упаковке для поставщиков», что более 500 ее североамериканских поставщиков должны по возможности повторно использовать упаковочные материалы и тару.

 

2.19. Долговечная прочная деревянная конструкция

Древесина — это удивительный строительный материал, легкий, привлекательный и естественный. При должном отборе, обработке и уходе он более надежен и долговечен, чем бетон. На его производство идет менее одной четверти («фактор четыре»!) энергии, необходимой для бетона. Лес пригоден для решения практически любых задач, поскольку его можно восстановить, непрерывно выращивать и рубить. Появляются системы сертификации, дающие покупателям уверенность в том, что используемая ими древесина обладает нужными качествами. Среди недостатков обычно называют непригодность дерева, в отличие от других материалов, для продолжительной работы в тяжелом режиме и старомодность. Кроме того, считается, что если древесину снова широко применять в строительстве, строевой лес будет страдать от постоянной рубки.

«Нет, нет и еще раз нет, — говорит Юлиус Наттерер, баварец, преподающий технологию строительства из лесоматериалов в Федеральном технологическом институте в Лозанне (Швейцария), — это вымышленные недостатки». Наттерер делает впечатляющие широкопролетные деревянные конструкции (см. фото 8 на вкладке).

Но Юлиус Наттерер не ограничивается демонстрационными проектами. Он предлагает доступную деревянную конструкцию для многоквартирных домов, которая обеспечивает отличный энергетический баланс по сравнению с бетонными и кирпичными зданиями, причем выполняются все требования энергоэффективности, отмеченные в главе 1.

Если сравнить деревянные дома с каменными с точки зрения затрат невоспроизводимых минеральных ресурсов, то весы, очевидно, еще более склонятся в пользу дерева. Несомненно, здесь вполне достижим «фактор 10».

А что можно сказать о вырубках строевого леса, если произойдет ощутимое смещение в сторону использования дерева в строительстве? Наттерер обдумал этот вопрос. Он обращает внимание на позицию швейцарских политиков, известных своей строгостью в отношении охраны окружающей среды. Пьер Ore, национальный депутат из кантона Во, говорит: «Мы можем стабильно вырубать семь-восемь миллионов кубометров в швейцарских лесах, и это пойдет им во благо, поскольку тем самым окажется возможным финансировать все необходимые мероприятия по защите леса. Семи или восьми миллионов кубометров хватит для постройки около 250 тысяч квартир в год — намного больше того, что когда-либо потребуется Швейцарии». Мнение Ore разделили еще 50 национальных депутатов из всех политических лагерей.

То же самое могли бы сделать и другие европейские страны. Даже использование тропического леса не обязательно принесет ущерб. Все зависит от сохранения лесных массивов и от рационального и эффективного использования материала.

 

2.20. Дерево в строительстве домов

Примерно 90 % американских домов строится из бревен — т. е. при помощи традиционного, трудоемкого и во многих отношениях довольно примитивного метода. Наружные стены крепятся вертикальными стойками — длинными деревянными деталями, с номинальным поперечным сечением 5,1 х 10,2 см, но фактически несколько меньшим. Чтобы сделать стену достаточно прочной, от центра одной стойки до центра другой обычно берется расстояние 40 см. Такая конструкция должна быть прочной, если на дерево приходится всего 10–15 % сплошной поверхности стены (т. е. без оконных и дверных проемов).

В действительности же конструкция иная. Сплошную часть стены обычно составляют 30–35 % дерева — в 2 или 3 раза больше, чем надо. Плотники получают почасовую оплату, и у них нет стимула сохранять древесину, за которую им не платят. У них даже есть поговорка: «Если сомневаешься, делай попрочнее». Они добавляют лишнюю древесину повсюду: в детали порогов и углов, в каркас (диагональное крепление, заполняющее пустые пространства), делают тройную и четырехслойную обшивку и т. д. Кроме того, много дерева тратится попусту, поскольку строители редко заботятся об экономии пиломатериалов, а стандартная длина стоек не кратна длине строительных элементов.

С другой стороны, по мере того, как старые леса исчезают, качество стоек ухудшается. Вскоре после крепления одну десятую часть их, возможно, придется выпилить цепной пилой и заменить, поскольку стойки так сильно коробятся, что материал для отделки стены невозможно выровнять.

А так как в конструкции много лишнего дерева, изоляция из стекловолокна и минеральной ваты между стойками охватывает меньшую площадь, чем нужно. Избыточное дерево, которое проводит тепло в 3 раза лучше, пропускает больше тепла через свои «тепловые мосты», заложенные в изоляцию. Это может легко уменьшить фактическую изолирующую способность каркасной стены на 20–25 %.

Дом в Дэвисе в экспериментах ACT2 (раздел 1.4) проложил путь к важному нововведению «Дэвис энерджи груп»: «технической стене», предназначенной для того, чтобы делать большее меньшими средствами. Вместо обычной мягкой древесины хвойных пород типа пихты здесь использован продукт из «технической древесины» или «древесины с ориентированными слоями», выпускаемый крупной фирмой «ТрасДжойст МакМиллан» (Айдахо). Этот продукт прессуется при высокой температуре и под давлением из низкосортной, обычно мелкой мягкой древесины низкой плотности, (например, осины или тополя), в плотную заготовку толщиной 20 см и шириной несколько метров. На практике получается «синтетическая твердая древесина», обладающая прочностью, однородностью, предсказуемостью свойств и, в отличие от обычной древесины, она свободна от сучков и других дефектов.

Распиленный на тонкие стойки, продукт из «технической древесины» настолько прочен, что стойки размером 3 х 9 см, установленные под кружала размером 61 см на сплошной ригель 3 х 36 см, прочнее, чем обыкновенная каркасная стена. (На самом деле, в первоначальном проекте использовались кружала размером 122 см, но их пришлось изменить, так как местный строительный стандарт требовал более близкого расположения, причем не для того, чтобы сделать стену достаточно прочной — она уже была прочной — а для того, чтобы применить один из утвержденных методов нанесения наружной штукатурки.) Доля древесины в стене при этом падает с 30–35 % до 9 %, что означает экономию на 70–74 %, которая намного перевешивает более высокую стоимость «технической древесины».

Поскольку требуется нарезать меньше деталей и использовать меньше гвоздей для их соединения, чем в обыкновенной каркасной стене, сэкономленное дерево и труд более чем окупают удвоение толщины изоляции между стойками. Изоляция представляет собой высококачественный, облицованный фольгой и армированный стекловолокном пеноматериал из полиизоцианурата, который заполняет пространство более плотно, создает паровой барьер, экономит труд, повышает жесткость и обеспечивает дополнительную звукоизоляцию. Более мощная изоляция плюс уменьшенная тепловая перемычка повышают изолирующую способность на 85 %. Утечки воздуха также значительно уменьшаются. Результат: сохраняющая форму, более герметичная, более прочная, быстрее сооружаемая стена. На нее расходуется в 4 раза меньше древесины, теплоизоляция в 2 раза лучше, а цена для стандартного американского дома с участком на 2 тысячи долларов меньше.

«Фактор четыре» — не предел возможностей. Сейчас некоторые фирмы прокладывают между слоями естественной или технической древесины тонкие слои углеродного волокна или полиамидного волокна «кевлар». Это более чем вдвое увеличивает прочность деревянного элемента, уменьшает расход древесины, делает элемент более легким и позволяет производить его из низкосортного лесоматериала. Кроме того, «Беллкомб» — фирма в Миннеаполисе — разработала картоноподобную сотовую структуру (с возможностью повторного использования), из которой изготавливаются разнообразные детали определенных форм и размеров. Они прокладываются между недорогими листами из слоеной древесины и плотно пристыковываются друг к другу, как при сборке миниатюрного дома в детском конструкторе. Два взрослых человека, не имеющие никакой специальной подготовки, могут соорудить из этого материала конструкцию размером с коттедж за 20 минут и снова разобрать ее за 10 минут. Она герметична, огнестойка, в ней легко обеспечить сверхизоляцию путем добавления в «сэндвич» слоев пеноматериала. Такая конструкция экономит примерно 75–85 % древесины, а в дальнейшем можно ожидать увеличения экономии.

 

Глава 3. Десять примеров революционного повышения производительности транспорта

 

Мы посвящаем отдельную главу производительности транспорта. Любая транспортировка товаров или людей влечет за собой потребление как энергии, так и материала, но воздействие транспорта на окружающую среду этим не ограничивается. Разрушение естественной среды обитания (при строительстве дорог), шум, массовый туризм и постоянно растущий доступ к природным объектам следует обсуждать не только с точки зрения ресурсов, поэтому мы рассмотрим эти проблемы отдельно. Разумеется, конфликты между транспортом и окружающей средой очень важны, и любое увеличение эффективности транспорта — желанная цель, особенно если при этом сберегаются ресурсы. Более того, описание путей и средств повышения производительности транспорта в 4 раза даст представление о новой цивилизации, которую нам так или иначе придется создавать по причинам, выходящим за пределы революции в эффективности.

 

3.1. Видеоконференции

 

Магистрали данных стали одним из наиболее мощных символов технического прогресса. Бестселлер Альберта Гора 1992 г. «Земля в равновесии» помог широкой общественности осознать ту важную роль, которую играют телекоммуникационные магистрали в гармонизации экологических проблем и в процветании общества. В этом разделе мы расскажем о предварительном количественном исследовании потенциала электронных телекоммуникаций, содействующих умножению производительности ресурсов.

По нашим данным, этот потенциал намного превышает «фактор четыре». Мы осуществили ориентировочную оценку замены пересылки писем электронной почтой и замены делового совещания видеоконференцией (см. илл. 9 на вкладке).

Институт Рокки Маунтин с самого начала стал систематически использовать телекоммуникации для передачи данных и проведения видеоконференций. В ИРМ применяется аппаратура, которая сжимает цвет и звук в двоичный цифровой сигнал. Текст и графические изображения можно послать по телефонным каналам с использованием электронной почты и модемов. Телефон и факс вытесняют значительную часть путешествий. Например, вскоре после установки аппаратуры для проведения видеоконференций в 1993 г. одному из нас удалось избежать четырехдневного путешествия в Западную Австралию и сопряженных с ним неудобств и усталости. Это обошлось в значительно меньшую сумму, чем стоимость авиабилета. Можно было участвовать в большой конференции, включающей показ рисунков через проектор, просто сидя в ИРМ в удобном кресле перед видеокамерой, нажимая на несколько кнопок для вызова аппарата в Австралии и нормально разговаривая.

Микросхемы, запрограммированные израильскими алгоритмами сжатия данных, посылали изображение того, что двигалось (губы, брови и т. д.), но прекращали передачу тех частей, которые не двигались (например, уши). Сжатый сигнал проходил через несколько медных проводов до Базалта (Колорадо), с помощью оптического волокна — до Денвера; через серию спутников — до Перта (Западная Австралия), снова благодаря оптоволокну — до Фримантла; посредством линии микроволновой связи — от крыши здания «Телеком» до крыши гостиницы, в которой проводилась конференция; с помощью коаксиального кабеля — до конференц-зала; через аналогичные микросхемы, которые воссоздавали высококачественное, движущееся, полноцветное изображение — на видеопроектор. И менее чем через четверть секунды после того, как было произнесено слово в горах Западного Колорадо, изображение, идеально синхронизированное в результате цифровой обработки со звуком, уже было на сетчатках глаз и на барабанных перепонках аудитории в Фримантле.

 

Аукционы подержанных машин

Обычно североамериканские дилеры, торгующие автомобилями, раз в месяц посещают аукционы, где осматривают и покупают автомобили, которые потом перепродают. Для дилеров, сотрудничающих с «Мицубиси мотор сэйлс Америка», трех-четырехчасовой аукцион проводится в шести районах США. Но поскольку дилеры разбросаны по многим районам, в том числе отдаленным от тех, где проводится аукцион, им приходится совершать поездки, которые иногда отнимают три дня. Теперь система интерактивного телевидения, действующая уже 10 лет, обещает устранить это тяжелое бремя путешествий.

Оперативная аукционная система под названием «Ауку-Нет», созданная в Атланте (Джорджия), освобождает дилеров от необходимости поездок на аукционы, сокращает издержки обращения и продолжительность цикла реализации продукта, улучшает учет запчастей. Фирма-продавец устанавливает в офисе дилера (с его разрешения) свое оборудование: компьютер и цифровой приемник, цветной монитор, специальный факс и спутниковую тарелку. Каждый вторник в течение 90 минут дилер может использовать это оборудование для осмотра автомобилей, изучения их технических характеристик и участия в электронных торгах. Дилеры остаются на своих местах, как и автомобили до тех пор, пока какой-то из них не куплен и не отправлен дилеру.

Дилеры могут также покупать и продавать автомобили на открытом аукционе, проводимом каждую пятницу. Вначале некоторые опасались покупать машину, не будучи в состоянии увидеть и потрогать ее, но очень скоро такое отношение сменилось страстным желанием воспользоваться огромной экономией топлива, времени и денег. Сейчас программа расширяется за пределы первоначальных трех регионов. Между тем все 530 дилеров экономят бумагу благодаря связи по электронной почте со штаб-квартирой, где с 1985 г. развивается система безбумажного офиса.

 

«Фактор 100», но, быть может, лишь «фактор четыре»

Возвращаясь к главному вопросу этой книги, мы можем спросить, какое количество ресурсов способны сэкономить телекоммуникации. Возникают методологические неясности относительно того, что считать и что сравнивать. Мы выбрали метод MIPS Шмидта-Блеека, т. е. расчет затрат материала на единицу оказываемой услуги (см. главу 9 и введение к главе 2). Хартмут Штиллер из Вуппертальского института и Томас Эгнер из базирующегося в Ульме Научно-исследовательского института по обработке данных для потребителей получили следующие предварительные результаты.

Для трансатлантической командировки необходимо учитывать «экологические рюкзаки» потребления топлива в воздушном полете и эксплуатации самолета, пребывание в гостинице для проведения деловых переговоров и несколько других позиций, связанных с путешествием. В качестве оценки общий «экологический рюкзак» составляет около одной тонны. С другой стороны, видеоконференция продолжительностью шесть часов может потребовать менее 10 кг материальных затрат. Это означает, что видеоконференция длительностью в полдня могла бы обеспечить (ориентировочно) коэффициент уменьшения MIPS примерно в 100 раз.

Конечно, к этим результатам необходимо относиться с большой осторожностью. Не все служебные командировки можно адекватно заменить видеоконференциями. Значение крупных конференций в значительной степени обусловлено беседами во время перерыва за чашкой кофе, стендовыми докладами, специальными дискуссиями и восхитительными обедами, а также побочными программами и завязыванием и возобновлением личных знакомств. Это не поддается передаче электронным способом. Более того, электронная почта и видеоконференции создают свой собственный импульс и могут даже побудить участников к планированию дополнительных путешествий, о которых они бы иначе и не подумали. Поэтому какими бы ни были математические результаты сравнения между физическим перемещением и виртуальным или электронным транспортом, сокращение потребления ресурсов в реальном мире может оказаться довольно скромным, скорее всего — в 4 раза.

С другой стороны, громадный потенциал такого сокращения вполне может получить законное обоснование, если проводить политику, направленную на то, чтобы «заставить цены на транспорт раскрыть экологическую правду», т. е. сделать транспорт значительно дороже. В таком случае многие охотнее откажутся от некоторых поездок и утешатся осознанием того, что существенная часть спроса на транспорт в действительности не основана на необходимости.

Возможности видеоконференций многочисленны и поражают воображение. Благодаря телекоммуникациям, можно реализовывать специальные товары, даже произведения искусства. В популярной сети фотокопировальных предприятий США полным ходом идет установка оборудования, позволяющего жителю любого города провести видеоконференцию в другом городе без предварительной подготовки. Существуют также десятки тысяч частных установок. Например, недавно мы с коллегой обсуждали некое техническое устройство благодаря любезности картинной галереи, которая обычно пользуется видеоаппаратурой для показа произведений искусства будущим покупателям. Даже если на другом конце нет соответствующей аппаратуры, вы всегда можете сделать высококачественную запись своего выступления на видеоленту, отправить ее для воспроизведения на стандартном видеоплейере и телевизоре, а затем провести обсуждение по телефону. Можно использовать и более простые, не столь высокого качества, но для многих целей вполне приемлемые видеокарты, которые вставляются в обыкновенные персональные компьютеры. Такие видеокарты становятся все доступнее, они недороги и просты в обращении.

Пожалуй, одним из самых бурно развивающихся является «телекомьютинг» (дистанционный доступ), который обычно обеспечивает обмен данными, но мог бы обеспечить и проведение видеоконференции. Многие рабочие задания можно выполнять на расстоянии, т. е. работать, не выходя из дома, что особенно важно для родителей с маленькими детьми. Далее, для техобслуживания и ремонта не всегда нужно личное присутствие специалистов. Многое можно сделать через видеосвязь. Когда, например, ИРМ потребовалось заменить электронную плату японского производства, то расстояние и языковой барьер были мгновенно преодолены простой установкой неисправной платы перед видеокамерой; таким образом, поставщик смог точно увидеть, что необходимо отремонтировать.

 

3.2. Электронная почта

При создании этой книги обмен рукописями с самого начала осуществлялся по электронной почте через Атлантику из Сноумасса (Колорадо) в Вупперталь и Бонн (Германия). Кроме того, делались запросы в Сингапур, Бразилию, Японию и другие места по факсам, электронной почте и телефону. Представьте себе, сколько времени было бы потеряно и какое количество ресурсов было бы израсходовано, если бы этот обмен сообщениями и черновиками производился с помощью обычной авиапочты. Может быть, на написание первого чернового варианта книги ушло бы два года вместо двух месяцев. Несомненно, текст выглядел бы гораздо более «зрелым», но во многих отношениях он бы отстал от жизни ко дню опубликования.

Что можно сказать о ресурсосбережениях благодаря замене, скажем, физической передачи почты факсимильной связью? В Японии, где эксперт по энергии Харуки Цучия изучил этот вопрос, телефонная сеть потребляет энергию, эквивалентную примерно 553 Вт за время каждого телефонного разговора. В 1991 г. в Японии было 56 миллионов телефонов, состоялось 74 миллиарда разговоров, в общей сложности продолжавшихся 3,4 миллиардов часов, или в среднем 1316 разговоров на телефон в год (2,8 минуты на разговор). Таким образом, потребление энергии на разговор равно 0,026 кВт. Заменяя путешествие, телефонный разговор экономит громадное количество энергии. Если письмо отправлено по почте, сравнение менее показательно: в Японии, где внутренняя почта пересылается наземным транспортом, а не по воздуху, на доставку письма в одну страницу требуется в 2 раза больше энергии, чем при передаче по факсу, который используется только 5 раз в день (поскольку его 15-ваттная энергия резервирования должна распределяться на эти несколько сообщений). Но если факс используется, скажем, 50 раз в день, то он становится примерно на 92 % менее энергоемким, чем почта.

Используя аналогичный подход, Хармут Штиллер и Томас Эгнер оценили средние затраты на отправку по почте 10-граммового письма из Вупперталя в Сноумасс. «Вес» MIPS составлял бы примерно 0,5 кг. Эта величина представляет собой сумму пропорциональных затрат на производство бумаги и на наземный и воздушный транспорт. Электронная почта не требует прямых затрат, а основана на предыдущих материальных вложениях, необходимых для изготовления домашних компьютеров, кабелей и спутников. Если разделить эти вложения на примерный средний срок службы деталей аппаратуры, мы получим ориентировочную оценку MIPS, например, письма объемом в 10 килобайтов. Результат равен 5 г. Следовательно, коэффициент уменьшения MIPS составляет приблизительно 100. В зависимости от исходных предположении и от типа сравниваемых отправлений коэффициент мог бы вполне составить или 1000, или только 20.

 

3.3. Клубничный йогурт

 

Немцы очень любят клубничный йогурт. Каждый год в стране съедают около 3 миллиардов баночек этого восхитительного продукта. До зимы 1992/1993 г. никто никогда не задумывался о том, сколько перевозок необходимо для его производства и продажи. Исследования Стефани Беге произвели сенсацию: йогурт, его ингредиенты и материалы, используемые для стеклянного стаканчика, требовали в общей сложности перевозок на расстояние в 3500 км. К этому можно добавить еще 4500 км на транспорт поставщика. На рис. 11 представлены данные, полученные Беге.

Эту карту напечатали все германские газеты. За один день Стефани Беге стала самым знаменитым исследователем Вуппертальского института, где она работает в транспортном отделе вместе с Рудольфом Петерсеном.

Конечно, всем известно, что руда, металлы, пластмасса и фрукты перевозятся не только в пределах Центральной Европы. Но немцы питали иллюзию, что в стране, производящей в изобилии клубнику и молоко, столь любимый ими йогурт доставлен из соседнего переулка. Вероятно, именно поэтому общественность с таким интересом отнеслась к результатам Беге.

Обратимся теперь к вопросу о «факторе четыре». Можно ли сегодня изготовить этот стаканчик восхитительно вкусного клубничного йогурта, значительно уменьшив километраж?

Да, действительно, клубнику, молоко, сахар и другие ингредиенты можно производить и перерабатывать в местных условиях, а стеклянные баночки возвращать на местные или региональные рынки. Однако сокращать расстояние для перевозки легких алюминиевых крышек нецелесообразно, поскольку для этого потребовались бы крупные капиталовложения, а сэкономлено было бы всего лишь небольшое число поездок грузовиков.

Сбережения можно увеличить благодаря децентрализации молочных хозяйств. Так как потребителей теперь интересует вопрос транспортировки, и они начинают предпочитать местную продукцию, для нее создаются рынки. Это предполагает установку на каждом предприятии оборудования для гигиенической обработки, автоматического розлива, хранения переработанных фруктов, упаковки и т. д.

Гораздо меньше капиталовложений потребовалось бы, если бы люди возродили продукцию домашнего производства. Технически это осуществимо, и йогурт, по всей видимости, получится вкусным. Домашнее производство, несмотря на всю его технологическую неэффективность, могло бы оказаться экономически привлекательным, особенно для семей, которые рассматривали бы такое собственное производство как приятное времяпрепровождение, активный отдых, а не как экономическую деятельность с ее сложными технологиями.

По-видимому, в этом случае «фактор четыре» вовсе не представляет технической проблемы. Между прочим, предложения по снижению объема перевозок подразумевают скорее более простую, чем сложную технику и технологию. Но человеческого труда потребовалось бы больше.

Однако переход к «фактору четыре», вряд ли реален в странах ОЭСР, где дорогая рабочая сила и дешевый транспорт. Экономия на тоннаже просто себя не оправдывает. В то же время для страны, в которой высокий уровень безработицы и которая импортирует сырую нефть для производства бензина или дизельного топлива, снижение объема перевозок и увеличение трудоемкости могло бы оказаться выгодным.

 

Сбыт продукции с низким объемом перевозок: рассказ о грибах

Когда результаты исследования Стефани Беге стали широко известны в Германии, производители пищевых продуктов занервничали, опасаясь, как бы их продукция не оказалась предметом столь нежелательной рекламы. Ассоциация производителей грибов решила, что должна встретить проблему во всеоружии. Руководители ассоциации попросили Беге провести исследование и дать оценку их экологических усилий.

Для производства тонны грибов требуется примерно 10 тонн конского навоза. Немецкие производители выращивают 58 тысяч тонн грибов в год. (Мы были удивлены тем, что в Германии оказалось достаточно лошадей для того, чтобы обеспечить необходимое количество навоза!) В среднем на один фунт белых грибов грузовик с 10 тоннами навоза должен проехать 65 метров. На грядках, где выращиваются грибы, поверх навоза имеется тонкий слой чернозема. В основном это истощающийся торф. Производители грибов дали поручение экспериментально разработать покров, состоящий главным образом из бумажных отходов. Яну Лелли из Крефельда удалось создать «Шампирос» (80 % бумажных отходов), который великолепно справляется с задачей и не требует перевозки на дальние расстояния.

Тщательно проанализировав объем перевозок, немецкие производители грибов стали подчеркивать в рекламе, что их продукция не требует перевозок на большие расстояния. Кажется, это первый зарегистрированный случай, когда рекламируется именно эта особенность производства, способная привлечь потребителей, сознательно относящихся к охране окружающей среды.

 

3.4. Местный сок из черной смородины или заморский апельсиновый сок?

Немцы стали чемпионами мира по потреблению апельсинового сока — не потому что климат в Германии хорош для выращивания апельсинов, а просто потому, что апельсиновый сок им нравится. Он недорог и полезен для здоровья. Так почему же им не выпить какие-нибудь полтора миллиарда литров этого напитка (около 20 литров на человека) в год? Мы не говорим, что им этого делать не стоит, мы только хотим показать, что существуют менее транспортоемкие возможности.

Чтобы произвести эти 1,5 миллиарда литров сока, для выращивания апельсинов необходима территория, равная площади земли Саар, одной из 16 земель Германии. Таким образом, потребление апельсинового сока вносит значительный вклад в размер немецких «экологических следов». Кроме того, для транспортировки концентратов апельсинового сока расходуется около 40 миллионов литров нефтяного топлива, а в атмосферу выбрасывается более ста тысяч тонн СО2.

Те 1,5 миллиарда литров апельсинового сока, которые выпивают сейчас немцы каждый год, — в 100 раз больше, чем в 1950 г. Местные напитки, в том числе сок из черной смородины (где витаминов больше, чем в апельсиновом), потеряли за эти годы свою долю на рынке. В 1965 г. продавалось в 3 раза больше сока из черной смородины, чем сегодня, не считая очень больших количеств сока домашнего приготовления, совсем не поступающего на рынок. Вернувшись от апельсинового сока к соку из черной смородины, легко достичь «фактора 10» в транспортной эффективности и при этом добиться значительного увеличения (быть может, в 2 раза) производительности площади, т. е. количества напитка на гектар. Более подробная информация содержится в работе Кранендонк и Брингезу (1993).

Примеры, подобные этому, не означают технической революции в эффективности. Скорее они сигнализируют читателям, проживающим в богатых европейских странах, что нужна определенная степень самостоятельности, чтобы повторно открыть удовольствие есть и пить восхитительные продукты, приготовленные в домашних условиях.

 

3.5. Четырехкратное увеличение пропускной способности железных дорог

Сценарии ужасов изобилуют сюжетами о столпотворении на европейских автомагистралях. Как ожидается, единый рынок, в котором в 1995 г. было уже 15 стран-участниц, приведет к 2010 г. к удвоению транспортных перевозок через границы. Падение «железного занавеса» добавило к вечно перегруженному транспортному потоку линию Восток — Запад. Для водителей грузовиков перевозки в этом направлении стали кошмаром. Они регулярно проводят по многу часов, а иногда целые дни, ожидая прохождения таможни между Польшей и Германией. Строительство дорог стоит недешево, продвигается медленно и встречает понятное сопротивление, особенно на перенаселенном Западе.

Решит ли рельсовый транспорт проблему? Для планирования и постройки новых путей потребуется 15 лет, причем стоимость строительства, включая затраты на охрану окружающей среды, ужасающе высока, а их пропускная способность обычно в 2 раза ниже, чем у четырехполосной автострады.

Можно ли осуществить революционный перелом в пропускной способности железных дорог? Профессор Рольф Краке из Ганновер-ского университета утверждает, что можно. В 1990 г. он руководил разработкой концепции под названием «умная железная дорога» (Краке, 1990), а сейчас развивает свои идеи в новом крупном исследовании по заказу частной германской железнодорожной компании «Бан АГ».

Основное предложение Краке — безопасное увеличение частоты движения поездов на линиях и повышение грузоподъемности товарных составов. Сегодня движущиеся поезда разделяет расстояние примерно в 3 км. В зависимости от скорости и системы сигнализации для полной остановки после первого сигнала об опасности требуется 3–5 км. Краке и его команда предложили новую электронную систему управления для уменьшения безопасной дистанции. На рис. 12 показан теоретический потенциал повышения пропускной способности железнодорожных путей применительно ко всему диапазону скоростей.

Пропускная способность зависит не только от путей, проложенных в открытой сельской местности. Узловые станции также необходимо не расширять, а улучшать. Между прочим, сортировочные станции, сделанные по технологии XIX в., слишком велики и прискорбным образом отстали от жизни с точки зрения как землепользования, так и технического прогресса. Современные маневровые операции производятся при помощи горизонтального перемещения через платформу одних только контейнеров, а не всех железнодорожных вагонов. Из одного состава в другой или в большой склад можно перегрузить одновременно 20 и более контейнеров. Используя передовые методы, весь товарный состав можно переформировать всего лишь за 15 минут.

 

3.6. Пендолино и Кибертран: гибкие варианты для скорых поездов

 

Как отмечалось в предыдущем разделе, с учетом расхода ресурсов на пассажиро-километр или тонно-километр железная дорога обычно предпочтительнее автомобильного и воздушного транспорта. Более того, пассажиры поезда могут получить удовольствие от удобного места, вздремнуть или приятно пообедать в ресторане — этих удобств человек лишен, когда едет в своем автомобиле. Недостаток поездов в отличие от автомобилей — отсутствие гибкости при местных перевозках. Нижний предел, где поезда способны конкурировать с отдельными машинами, находится в интервале от 50 до 100 км. Верхняя граница конкурентоспособности поездов по сравнению с самолетами составляет около 400 км. Это расстояние может увеличиться для скоростных поездов. Поэтому современные скорые поезда — французский экспресс TGV, японский «Шинкансен» и немецкий междугородний экспресс ICE — стали излюбленным средством передвижения людей, совершающих деловые и частные поездки на расстояния до 800 км. Германия планирует построить «Трансрапид» — поезд на магнитной подвеске, предназначенный для «полета» со скоростью 500 км в час.

Беда в том, что Трансрапид стоит очень дорого и, конечно, при такой высокой скорости будет создавать ужасный шум. Экологи вовсе не убеждены, что с точки зрения воздействия на окружающую среду Трансрапид лучше, чем автомобильный или воздушный транспорт. Их оценка TGV или ICE не намного благоприятнее, поскольку эти традиционные скорые поезда двигаются только по прямолинейным путям, которые варварски врезаются в ландшафт и опять-таки очень дороги.

К счастью, для быстрых поездов имеется лучшее решение. Оно изобретено итальянскими инженерами и называется «Пендолино». На криволинейных участках пути поезд будет наклоняться таким образом, что сможет сохранять свою высокую скорость. Типичная скорость составит порядка 150 км в час. Капиталовложения будут намного меньшими, чем в случае TGV или ICE, не говоря уже о Трансрапиде; и в то же время почти вдвое увеличится конкурентоспособность железной дороги. Отрадно, что несколько европейских железных дорог, включая приватизированную «Джерман бан АГ», делают крупные капиталовложения в технологию «Пендолино», которая, как мы полагаем, легко удовлетворяет критерию «фактор четыре» по сравнению с пассажирскими автомобилями или воздушным транспортом.

 

Кибертран

Если уж конструировать совершенно новую систему, то она должна использовать ресурсы гораздо эффективнее, чем существующие. Одним из таких новшеств является изобретение, сделанное в США. Группа «Передовые транспортные системы» в Национальной технической лаборатории (Айдахо) разработала прототип транспортной системы, потребляющей в 10 раз меньше топлива на человека, чем в автомобилях или воздушных лайнерах. Постройка одного километра ее также стоит в 5, а может быть, и в 10 раз меньше, чем одного километра шоссе или железной дороги. Путешествие на таком транспорте обошлось бы пассажиру значительно дешевле, чем на автобусе, самолете, поезде или легковом автомобиле. Называется это замечательное новшество «Кибертран» (Дериан и Плам, 1993). Модель показана на фото 10 на вкладке.

Кибертран — это управляемое компьютером (т. е. не имеющее машиниста) сверхлегкое железнодорожное транспортное средство с небольшим количеством пассажирских мест. Каждый вагон весит 4,5 тонны (одна десятая веса обычных вагонов), включая всех 14 пассажиров (при более плотном размещении можно усадить до 32 пассажиров). Кибертран приводится в движение двумя электродвигателями мощностью по 75 кВт при скорости до 240 километров в час по надземной направляющей дороге на опорах. Его стальные колеса опираются на две простые стальные трубы, приваренные к горизонтальной стальной плите; трение на малом участке контакта достаточно велико, чтобы преодолевать крутые подъемы. Надземная направляющая колея настолько узка, что ее можно провести над центром существующей дороги. При установке пути с нуля не требуется строить дороги для обеспечения подъезда к строительству.

Самое интересное, пожалуй, что Кибертран представляет собой транспортную систему, работающую по требованию. Это означает, что поезд пойдет только тогда, когда этого пожелает пассажир (как в автомобилях и лифтах), и идет, насколько это возможно, непосредственно к месту назначения путешествующего пассажира. В отличие от этой системы, все традиционные системы массовых пассажирских перевозок работают по расписанию или периодически. Независимо от того, велика или мала загруженность Кибертрана пассажирами, используется столько поездов, сколько требуется. В периоды малой загруженности свободные поезда распределяются по железной дороге (например, через каждый километр) и готовы обслужить потенциальных пассажиров. Таким образом, по сравнению с автобусами или самолетами, которые перевозят пассажиров периодически или по расписанию и работают и при низкой загрузке, Кибертран в 10 с липшим раз экономичнее по затратам энергии и при этом не ухудшает качество обслуживания. Кроме того, он экономичнее, чем автобус, делающий остановки по требованию, поскольку не нуждается в услугах операторов.

Благодаря скромным размерам и весу отдельного вагона на Кибертран уходит значительно меньше капитальных затрат и энергопотребления на человека. В новой железнодорожной системе обычно 70–80 % капитальных затрат идет на инфраструктуру — строительство дорожного полотна, мостов, прокладку путей и монтаж силовых линий. Эти затраты столь велики потому, что дорожные сооружения должны быть спроектированы так, чтобы выдерживать железнодорожные вагоны, весящие 45 тонн. Уменьшение веса вагона на 90 % сокращает инфраструктурные затраты на строительство системы «Кибертрана» более чем в 10 раз. Например, проектная стоимость в два миллиона долларов на постройку одной мили «Кибертрана» примерно на 87 % меньше, чем затраты на новую скоростную железную дорогу. К тому же, капитальные затраты на милю для Кибертрана в 5 раз меньше, чем средние затраты в 10 миллионов долларов на строительство одной мили автомобильной шоссейной дороги.

Легкая конструкция Кибертрана делает его также более энергоэффективным по сравнению с другими видами транспорта. В расчете на один пассажиро-километр, он расходует 10 % топлива, необходимого автомобилю с одним пассажиром, и 7 % топлива, необходимого для заполненного на 60 % «Боинга-737» (средняя загрузка для авиакомпаний США). Кибертран использует также намного меньше топлива, чем стандартный скоростной рельсовый транспорт, такой, как TGV во Франции. Действительно, TGV расходует больше энергии на пассажира, чем Кибертран, за исключением тех случаев, когда TGV перевозит 500 пассажиров, т. е. при полной загрузке.

Высокая энергоэффективность и низкая стоимость Кибертрана обеспечиваются не за счет удобства или качества услуг. Для расстояний от 150 до 500 километров он столь же быстр, как и самолеты, если учесть время, необходимое для того, чтобы добраться до аэропорта, сесть в самолет и т. д., и в 3–5 раз быстрее легковых автомобилей при том же расстоянии. И, в отличие от этих видов транспорта, Кибертран может работать в плохую погоду.

Создатели Кибертрана полагают, что в ближайшее время оптимальная ниша для их новшества — это междугородное сообщение на расстояния от 150 до 800 километров. Как уже говорилось выше, использование Кибертрана для такой дальности путешествия привлекательно, поскольку он был бы столь же быстр, как и самолеты, и быстрее, чем автомобили, при гораздо меньших затратах на охрану окружающей среды и меньших издержках. Однако Национальная техническая лаборатория в Айдахо ожидает, что Кибертран будет также более экономичен и эффективен, чем большинство систем городского рельсового транспорта. Есть лишь два исключения — интенсивно используемый метрополитен и скоростной рельсовый транспорт, постоянно работающий с высокой степенью загруженности. В качестве примера можно привести большую часть лондонского метро и французский экспресс TGV.

Остается гадать, кто первым воспользуется этим наиболее эффективным и экономически выгодным новшеством. Город Бойсе (Айдахо) уже рассматривает возможность введения экспериментальной системы.

 

3.7. Наземное метро Куритибы

Куритиба — столица штата Парана в южной части Бразилии, в 200 км от Сан-Паулу. Его население за последнюю четверть века выросло более чем втрое и составляет 1,6 миллиона жителей, что делает Куритибу самым быстрорастущим городом страны. Несмотря на феноменальные темпы роста, это один из самых удобных для жилья городов в Бразилии, а быть может, и на всем континенте.

В основе успеха Куритибы лежит генеральный план развития города (1964), главным образом — транспорта и землепользования. Город структурно ориентирован вдоль двух осей, задающих направления строительства коммерческих объектов и жилых домов. Каждая ось образуется тремя параллельными дорогами. Центральная предназначена для транспорта, осуществляющего массовые перевозки пассажиров, тогда как обе внешние дороги обеспечивают одностороннее движение всех прочих транспортных средств. Прежде чем план был утвержден, город приобрел большие участки земли вдоль этих осей и построил там жилье для малоимущих, обеспечив им связь с центральными районами. С 1964 г. к первоначальному плану добавлено еще три оси.

Комплексное планирование лежит в основе развития города с момента принятия генерального плана. Жители Куритибы добились больших успехов в инновационных подходах к сбору мусора, улучшению благоустройства, к работе транспорта и даже к борьбе с наводнениями.

Одной из ключевых составляющих успеха стала система пассажирских перевозок, впервые введенная бывшим мэром (теперь губернатором провинции) Джеймом Лернером. В 1971 г. ставший мэром города Лернер собрал специальную группу, главным образом из коллег-архитекторов, с целью принципиального пересмотра потребностей и возможностей города — автомобиль быстро становился доминирующим видом транспорта. Лернер осознал, что эта тенденция ограничивает доступность отдельных районов города для многих жителей, и принял решительные меры, направленные на борьбу с господством автомобиля. Строительство метро было не по карману, поэтому Лернер разработал альтернативную систему в надежде, что она сможет работать столь же эффективно, но при капитальных затратах в 500 раз меньших.

Лернер внедрил сеть автобусов, движущихся по направленным вдоль основных осей маршрутам общественного транспорта, а также доставляющих людей из других районов. С самого начала спрос на эту сеть стремительно пошел вверх, и система претерпела целый ряд коренных изменений для перевозки возросшего потока пассажиров — от 50 тысяч в день в 1974 г. до 800 тысяч в 1994 г. Усовершенствования повысили пропускную способность системы более чем в 4 раза по сравнению с традиционными схемами автобусного обслуживания. (Более подробная информация содержится в работе Рабиновича и Лейтмана, 1996.)

Первым фактором, повысившим пропускную способность, стали предназначенные исключительно для движения автобусов полосы, которые удвоили перевозки. Поскольку спрос возрастал, плановики задумались над дальнейшими усовершенствованиями движения и решили ввести более длинные, двухсекционные автобусы. Гибкое сочленение секций облегчает поворот. Это увеличило пропускную способность в 2,5 раза.

Следующее усовершенствование было уникальным. Для того чтобы автобусы перевозили людей быстрее, команда Лернера изобрела «трубчатые остановки» — расположенные на краю тротуара автобусные станции в виде трубы из стекла и стали, закрытые с одной стороны и оборудованные приподнятыми погрузочными платформами. Пассажиры оплачивают свой проезд, входя в открытый конец трубы. Это ускоряет посадку, поскольку пассажирам не нужно тратить время на то, чтобы оплатить проезд внутри автобуса, и всё двери автобуса можно открыть для посадки. Таким образом, когда автобус подъезжает к трубе, одновременно открываются несколько расположенных напротив друг друга дверей как в автобусе, так и в стене трубы. Пассажиры совершают посадку столь же быстро, как и в поезде метрополитена, и автобус отъезжает. При этом в час пик автобусы прибывают с интервалом в одну минуту. Вход в автобус также осуществляется быстрее (и инвалидам можно использовать кресла на колесах), благодаря посадочной платформе на уровне пола. Не нужен и контролер. По сравнению с обычной системой автобусного обслуживания трубчатые станции повысили пропускную способность в 3,2 раза.

Самым последним техническим достижением явилось введение трехсекционного автобуса, обеспечившего пропускную способность в четыре раза выше, чем у традиционных автобусов (см. илл. 11 на вкладке).

Транспортное управление Куритибы также усовершенствовало маршрутную систему, добавив автобусы-экспрессы и построив 20 пересадочных станций, соединяющих осевые маршруты с кольцевыми и с маршрутами из пригорода. Управление ввело единую «социальную плату за проезд», эквивалентную 20 пенсам и действительную для неограниченного количества пересадок. Такая структура стоимости проезда была выбрана для того, чтобы не ставить в невыгодное положение тех, кто живет в бедном предместье города.

Для каждого, кто ездил на метро в любом крупном городе в «развитой» стране, плата за проезд в Куритибе покажется очень низкой, и это действительно так. Но, как это ни удивительно, автобусное обслуживание в Куритибе не субсидируется. Взимаемая плата за проезд полностью покрывает затраты на эксплуатацию системы, которая находится в ведении частных компаний и города. Город строит и эксплуатирует инфраструктуру — дороги, пересадочные узлы и трубчатые станции, тогда как частные компании владеют и управляют системой сбора платы за проезд по лицензии города. Частные компании получают плату за километр автобусного маршрута, а не за отдельного пассажира. Это стимулировало создание более 500 км автобусных маршрутов в самом городе и его окрестностях.

Если оставить в стороне уникальность и эффективность системы автобусного транспорта в Куритибе, то ее действительное значение заключается в том, насколько полно она охватывает своими услугами население города и сколько дает дополнительных выгод. Почти 70 % населения пользуется автобусом каждый день. Дополнительные преимущества — потребление бензина на душу населения на 30 % ниже, чем в таких же городах Бразилии, а атмосферный воздух чище. В Куритибе множество автомобилей и очень мало водителей, пользующихся ими. Будучи составной частью комплексного плана развития города, система автобусного обслуживания позволила обеспечить по 52 квадратных метра свободного пространства на человека, что выше, чем в любом городе мира. В сочетании с инновациями в области просвещения (старые автобусы используются в качестве передвижных классов, клиник и библиотек) и улучшением сбора мусора городские власти демонстрируют понимание необходимости комплексного решения проблем, чему могли бы поучиться все другие города.

 

3.8. Совместное владение автомобилями в Берлине

Одни не имеют средств для покупки собственного автомобиля, у других нет места для его стоянки, третьи не желают обзаводиться собственной машиной по экологическим мотивам. А некоторые исходят из практических соображений и считают, что иметь машину — это лишние хлопоты, если есть другие возможности для повседневных поездок, например — совместное владение автомобилем. Несколько сотен людей в городе или поселке покупают в складчину несколько десятков машин, которые принадлежат всем и доступны каждому.

Для вступления в автомобильный фонд необходимо заплатить взнос в размере 1000 немецких марок. Кроме того, каждый член платит паевой взнос — ту же сумму — и ежегодный членский взнос в 120 немецких марок. Взимается также плата за расстояние и топливо (52 пфеннига за километр) и плата за время использования (3,90 немецких марки в час). На эти деньги содержится парк машин на некоммерческой основе.

Маркус Петерсен (1994) специально исследовал очень популярную систему совместного владения автомобилями в крупнейшем и наиболее населенном городе Германии Берлине. Немцы называют ее «Штатауто». В названии использована игра слов: Statt означает «вместо», но созвучно слову Stadt (город). Сначала Петерсен решил узнать, у скольких членов был собственный автомобиль до того, как они вступили в объединение. Оказалось, что только у 21 %. После вступления в «Штатауто» 50 % членов группы сообщили, что у них нет никаких других автомобилей, кроме тех, которые имеются в фонде.

Совладельцы автомобилей очень довольны своим нынешним положением. Многие стали значительно мобильнее. Для тех, кто имел машину раньше, сократились ежемесячные затраты. Многие почувствовали облегчение — им теперь не нужно бояться повреждения или угона автомобиля. Поездки на работу на автомобиле резко сократились, соответственно возросло использование велосипеда и общественного транспорта. На рис. 13 показано сокращение использования автомобиля для различных нужд.

С точки зрения «фактора четыре» важно узнать, сколько было сэкономлено благодаря этой схеме. Согласно Петерсену, создание «Штатауто» сократило количество находящихся в личном владении машин на 105 (51 человек продал свою машину при вступлении в фонд, 54 человека решили вступить в фонд вместо приобретения автомобиля). С другой стороны, было куплено 27 автомобилей для коллективного владения. Количество купленных машин уменьшилось с 105 до 27, что приближается к «фактору четыре».

Кроме того, сократился километраж, но только вдвое. Это означает, что на автомобилях «Штатауто» ездили больше, чем на частных машинах, т. е. повысилось использование на единицу вложенного капитала, материала и площади.

Можно предположить, что сокращение километража связано с сигналом стоимости, который подается через каждый дополнительный километр. Обычные владельцы автомобилей «видят» стоимость автомобиля, только тогда, когда покупают новый. Для них дополнительный километр — это только плата за горючее. Затраты на топливо, как правило, составляют лишь одну пятую или менее (в США — ближе к одной восьмой) от средних общих затрат на километр, которые включают в себя амортизацию, страхование, налоги, техобслуживание и ремонт. Все эти постоянные расходы должны обеспечивать на основе равного долевого участия все члены фонда.

Владельцы автомобилей получили бы более верное представление о реальных затратах, если бы они оплачивали каждый дополнительный километр. Теоретически это возможно. Если бы производители автомобилей сдавали в аренду, а не продавали свою продукцию, и если бы большая часть платы за аренду взималась на основе затрат на каждый дополнительный километр, то покилометровая плата составляла бы примерно полмарки. Как следствие, пользователь имел бы заметный стимул использовать машину только в случае необходимости. Представьте себе, что такая структура стимулирования становится массовым явлением: в городе, подобном Берлину, был бы создан дополнительный миллион потенциальных потребителей услуг городского транспорта, как государственного, так и частного. Массовые перевозки получили бы мощный импульс для своего развития и смогли бы расширяться, обновляться и даже приносить прибыль.

 

3.9. Способность передвигаться без автомобилей

Большинство людей с радостью приветствовали бы сверхэффективные машины как по личным, так и по экологическим причинам. Но существуют более захватывающие перспективы для тех, кто хочет жить в лучших экологических условиях. Почему бы не попытаться обойтись вообще без автомобиля? Именно такая перспектива была запланирована примерно для 200 семей в Бремене — городе с полумиллионным населением на севере Германии. Здесь предпринята отважная инициатива по созданию городского района, свободного от легковых машин (Крэмер-Бадони, 1994). Осенью 1995 г. в Бремен-Холлерлан-де началось строительство нового комплекса домов, которые могут снимать или приобретать только семьи, отказывающиеся от обладания машиной.

Идея передвижения без автомобилей зародилась не столько по экологическим мотивам, сколько из соображений качества жизни. В благоприятных условиях жизнь без машин многими воспринимается как вполне приемлемая. Благоприятные условия обычно связываются с расположением детских садов, школ и магазинов, с удовлетворительной работой общественного транспорта и имеющимися в округе возможностями для отдыха и развлечения.

Между тем органы, планирующие развитие города, традиционно рассматривают отсутствие автомобиля как серьезный недостаток. Согласно строительным и планировочным нормативам улицы должны быть достаточно широкими для парковки на одной или обеих сторонах и для проходящего транспорта. Так чего же беспокоиться об эксцентричном и давно уже вышедшем из моды образе жизни без автомобиля?

Социал-демократы и члены партии «зеленых», входившие в то время в муниципалитет Бремена, прислушались к мнению граждан, не имеющих машин, и решили, что необходимо оказать поддержку тем, кто с точки зрения занимаемых площадей, строительства и эксплуатации дорог стоит общине гораздо меньше, чем средний житель. Поэтому будущих обитателей Холлерланда пригласили принять участие в планировании района.

Однако приглашение переехать в Холлерланд не нашло широкого отклика. Это связано с рядом факторов: цена квартир оказалась выше средней, предложение жилья в Бремене превышало спрос, а местоположение новостройки было не самым удачным. Но наиболее существенным препятствием стало категорическое требование к будущему домовладельцу или квартиросъемщику отказаться от обладания машиной. Включение этого условия в кадастр в качестве юридически обязательного значительно снизило рыночную стоимость многоквартирных домов и превратило покупку в сомнительную сделку. И хотя первые владельцы были готовы жить без машины, они не хотели терять деньги в случае, если решат продать свои квартиры. Ожидается, что это условие будет смягчено и тогда программа «заработает».

Чтобы проект свободного от автомобилей города был по-настоящему успешным, нужно искать компромиссные решения. Очевидно, что пожарные машины, машины скорой помощи, такси и транспортные средства, осуществляющие поставки, необходимы в любое время. Автомобили, взятые на прокат, или автомобильный фонд совместного владения можно использовать для специальных целей и проведения отпусков. Будет смягчено и ограничение, предъявляемое к домовладельцам. Тем не менее интенсивность автомобильного движения в Холлерланде станет в 4 раза ниже, чем в других районах Бремена.

Проектом Бремен-Холлерланда заинтересовались в 40 других муниципалитетах Германии. Аналогичные планы начали разрабатывать, в частности, Нюрнберг и Фрайбург. Одной из причин такой заинтересованности явилось желание оказать помощь менее состоятельным гражданам, которые просто не могут позволить себе иметь автомобиль. Интенсивность движения транспорта в свободном от автомобилей районе города в среднем уменьшится более чем в 4 раза. Соответствующее увеличение перевозок трамваем или автобусом безусловно потребует меньше ресурсов, чем вытесненные автомобили.

Более всеобъемлющий — и более успешный — подход, обеспечивающий превышение «фактора четыре» в производительности ресурсов и резкое сокращение потребности в транспорте, реализован в Билефельде. Этот проект касается не только отсутствия частных машин. Жители 130 новых квартир в Билефельд-Вальдквел-ле будут потреблять примерно на 70 % меньше воды, чем в среднем, компостировать все органические отходы, в том числе продукты жизнедеятельности человека, жить в домах, построенных из местных материалов (в основном из дерева, кирпича и кровельной черепицы), и получать большую часть продуктов питания с близлежащих ферм. Инициатор проекта Ганс-Фридрих Бюльтманн спланировал также торговый центр в Вальдквелле. 200–300 рабочих мест для представителей различных профессий позволят большинству жителей ходить на работу пешком. Неподалеку разместится зона отдыха с небольшим искусственным озером.

 

3.10. Чувствовать себя в городе как в деревне

В вышедшей в 1989 г. книге «Мечта о Британии» принц Уэльский писал: «Надеюсь, мы сможем стимулировать развитие «городских деревень», чтобы воссоздать человеческий масштаб, близость друг к другу и атмосферу уличной жизни… что поможет вернуть людям чувство принадлежности к своему окружению и гордости за это окружение». Небольшая группа проектировщиков во всем мире следует этому пожеланию и уже начинает значительно сокращать потребность в моторизированном транспорте в нашей повседневной жизни.

После почти полувекового проектирования районов, предназначенных для машин, а не для людей, появляются новые схемы человеческого жилья. Архитекторы и строители осознают, что дома, расположенные небольшими кварталами, более узкие улицы, уменьшающие скорость и шум, полезное открытое пространство и сохранившиеся или восстановленные естественные участки представляют собой не только эстетическую, но и большую экономическую ценность. Этому подходу часто навешивают ярлык «неотрадиционной схемы» или «пешеходной зоны». Пешеходная зона считается наиболее энергоэффективным решением, которое способствует также созданию общины как таковой. Архитекторы, заботящиеся об окружающей среде и требованиях рынка, все чаще проектируют микрорайоны, где дома, рабочие места, производство продуктов питания и естественная окружающая среда интегрированы в единый комплекс. Все эти компоненты находятся в непосредственной близости друг от друга.

Важной движущей силой такого развития является стоимость инфраструктуры и земли, на которой сооружаются дороги и коммунальные предприятия. В США сравнивались районы с традиционной плотностью застройки и места с более высокой или смешанной плотностью, а также с групповой застройкой. Известное межведомственное исследование федерального правительства под названием «Цена разбросанности» установило, что на заданном участке плотная застройка могла бы сохранить более половины площади земли в виде открытого пространства и в значительной мере сократить капиталовложения на строительство дорог и коммунальных сетей по сравнению с традиционной пригородной планировкой. Уменьшение площади дорожного покрытия сократило бы ливневый сток, а более короткие расстояния снизили бы расход автомобильного горючего и загрязнение воздуха. При желании групповая застройка и соединение нескольких домов друг с другом уменьшили бы площадь внешних стен. Сравнительный анализ показал, что затраты на подготовку площадки под дом, дорог (шириной 6 метров вместо 9), подъездных путей, посадку деревьев, канализацию, водоснабжение и дренаж (производимый естественными болотистыми низинами, а не бордюрным камнем тротуара или водосточными желобами) уменьшаются на 35 %, или на 4600 долларов.

Эти результаты в полной мере подтверждаются на практике (даже в автоцентричной Америке) успешно работающими создателями районов массовой застройки, например, Майклом Корбеттом. Его проект «Деревенские дома» в Дэвисе (вблизи Сакраменто, Калифорния), где вопросам охраны окружающей среды уделяется большое внимание, осуществлялся с середины 70-х до начала 80-х годов. На 70 акрах земли было построено 200 зданий. Смешанная застройка на сравнительно узких улицах, зеленые пояса с фруктовыми деревьями, сельскохозяйственные зоны между домами, естественный поверхностный дренаж, ориентация на солнце и широкое открытое пространство создали замечательную атмосферу. Подобно сцепленным пальцам двух рук, каждый дом охватывают две раздельные сети доступа: к фасаду ведет пешеходная дорожка от общего зеленого пояса, а с другой стороны въезд для автомобилей связан с укрытой под тенью деревьев улицей шириной в 6–7 метров. Проход для пешеходов и проезд транспорта для оказания экстренной помощи защищены с каждой стороны метровой полосой отчуждения, где ничего нельзя строить и где посадки не могут иметь высоту более 15 см. Благодаря тесному общению жителей, преступность в микрорайоне составила лишь одну десятую от уровня преступности в других близлежащих районах.

В свободных от машин зеленых поясах люди передвигаются в основном пешком и на велосипеде. Велосипедные тропинки соединяются с велосипедными дорожками на проезжей части улиц. Людям разрешается заниматься бизнесом в своих домах (что во многих американских общинах считается незаконным). В этом первом проекте вопросам совмещения работы с местом жительства уделено немного внимания, в микрорайоне есть только одно небольшое коммерческое предприятие. Однако сильный упор на ведение пригородного фермерского хозяйства и садоводство (фруктовые и ореховые деревья) делает его, пожалуй, единственным американским земельным участком, который славится качеством своих овощей и способен финансировать значительную часть содержания парковых земель за счет продажи миндаля.

Более узкие улицы не только успокаивают движение и экономят деньги и землю, но и сберегают материал для дорожного покрытия, а также улучшают летний микроклимат, поскольку деревья накрывают своей тенью всю улицу и уменьшают площадь темного дорожного покрытия, которое поглощает и переизлучает солнечное тепло. Последние данные подтверждают, что более узкие и тенистые улицы в районах Центральной долины Калифорнии могли бы понизить летнюю температуру окружающего воздуха на 6–8 °C на всей территории, существенно сократив расход энергии на кондиционирование воздуха.

Использование естественных дренажных болотистых низин вместо дорогостоящих подземных бетонных водостоков сэкономило 800 долларов капиталовложений на каждый дом, что почти достаточно для оплаты разбивки парков и зеленых поясов. Но самой большой экономической выгодой оказался высокий спрос на рынке. «Деревенские дома» первоначально занимали скромное положение на рынке в расчете на единицу полезной площади, но сейчас их цена при перепродаже повысилась, они продаются гораздо быстрее (даже при продаже с аукциона) и за них дают на 150–200 долларов за квадратный метр больше, чем за дома в соседних микрорайонах. Хотя и трудно отделить рассчитанные на пешеходов основные особенности проекта от других «зеленых» характеристик, они, конечно, играют важную роль в его исключительной финансовой эффективности.

Еще одним подтверждением коммерческой выгоды пригородного строительства, в котором внимание сосредоточено на людях, а роль машин ограничена, является район Лагуна Вест площадью в 400 га в Сакраменто, где первые опытные дома построены в 1991 г. Перепроектированный архитектором Питером Калторпом и строителем Филом Анджелайдзом из традиционных пригородных схем с аллеями для прогулок в «пешеходную зону», Лагуна Вест объединяет в ансамбль парки, озера, торговые центры, магазины розничной торговли, промышленные районы и более 3000 домов с верандами, выходящими на улицу. Гараж скромно перенесен в тыльную часть дома вопреки американским правилам, согласно которым две или три гаражные двери выходят на улицу, словно объявляя о том, что «здесь живут машины» (по меткому выражению архитектора Андреса Дуани). Улицы и общественные места стали привлекательными для прогулок пешком и на велосипеде. Основной упор сделан на использование общественного транспорта и совместное пользование автомобилями. Тенистые улицы, суженные посадкой деревьев на тех полосах, где обычно стоят автомобили, понижают летнюю температуру и приглашают людей выйти на улицу.

Сначала администрация была против сужения улиц. Организации, эксплуатирующие пожарные машины, машины скорой помощи и мусоровозы, предъявляли разные требования к ширине дороги. Эти требования суммировались, и в результате стандартные улицы достаточно широки, чтобы на них приземлился самолет. «Поэтому, рассказала Сьюзен Белтейк из «Ривер вест девелопментс», мы построили демонстрационную улицу (со значительно уменьшенной шириной) на одном из наших соседних участков и сделали запись на видеокассету. Мы завезли посаженные в горшки деревья и бетонные барьеры, которыми окружают ямы для посадки таких деревьев. Все автомобили наших служащих стояли на улице. Мы арендовали машину скорой помощи, грузовик для перевозки мусора и пожарную машину, которая способна вести борьбу с пожаром в семиэтажном здании. (Самое высокое здание в районе было трехэтажным). Мы проехались на машинах взад и вперед по улице и засняли наше передвижение на пленку… Все это обошлось примерно в 5 тысяч долларов». Так было получено разрешение и проложен путь другим строителям, которые могли сослаться на этот прецедент.

Известный как «старомодный новый район», Лагуна Вест воссоздает почти забытую атмосферу общения людей у парадного подъезда, на улицах, скверах и на центральной лужайке, где расположены ратуша, остановка транспорта, библиотека и детский сад. (Это не кажется необычным жителям европейских городов, но в Америке за последние 40 лет такая атмосфера полностью забыта.) Большинство из 1858 односемейных домов расположены вокруг озера площадью в 30 га, а за двумя радиальными бульварами находятся территория начальной школы и парковая зона. Вдохновленная веяниями изящных искусств планировка дополняет уличный ландшафт плодами человеческой деятельности, а не машинами. Калторп отмечает, что пешеходам «нужны безопасные и удобные улицы, по которым можно ходить: тенистые, с домами и магазинами, вызывающими интерес и дающими ощущение безопасности. Они хотят видеть детали и масштаб человеческой деятельности во всех уголках района и предпочитают узкие улицы, которые ведут к магазинам, школам и паркам, а не извивающиеся улицы с гаражными воротами по обеим сторонам, которые выходят на шестиполосную магистраль». По имеющимся данным, рыночный спрос на такую инициативу высок. Что касается издержек на реализацию проекта, то они обычны, за исключением дополнительных 800 долларов на дом за озеро и 700 долларов за уличные деревья — эти мероприятия повысили стоимость недвижимости на порядок.

Третий пример ориентированного на пешеходов проекта — Хэй-маунт — представляет собой новый город, создаваемый компанией «Джон Кларк компани» на 1700 акрах вдоль реки Парраханок в Вирджинии. Спланированная Андресом Дуани площадка вместит 4400 компактно расположенных домов на 12 000 человек, причем 60 % территории останется нетронутой. Хэймаунт — первый проект такого масштаба, в котором уделяется внимание энергоэффективности, долговечным материалам, восстановлению и сохранению естественной среды (в том числе детальному картированию видов) и биологической очистке сточных вод. Исключительно привлекательна планировка города — разбитая на очень мелкие группы неотрадиционная комбинация домов, магазинов розничной торговли, коммерческих центров, предприятий легкой промышленности и сельскохозяйственных объектов, а также парки, естественные и восстановленные зоны, 14 церквей и вокзал. Рабочие места будут предоставляться местными предприятиями, чтобы жителям не пришлось тратить 40 минут на поездку на электричке в Вашингтон. Все дома находятся на расстоянии пяти минут ходьбы от центра деревни и от остановки пригородного автобуса. Планирование, сориентированное на интересы граждан, привлекло внимание общины к этому замыслу и обеспечило активное ее участие в проекте. Строительство должно скоро начаться, и можно с уверенностью говорить о неминуемом коммерческом успехе.

Пока слишком рано предполагать, что три рассмотренных проекта быстро изменят глубоко укоренившуюся американскую привычку поручать проектирование районов инженерам-дорожникам. Но благосклонное отношение к таким проектам населения и благоприятные экономические показатели свидетельствуют, что они могут приносить выгоды разработчикам и отвечать чаяниям тех, кто все больше начинает считать себя, говоря словами архитектора Уильяма Мак-Доноу, «людьми, которые живут, а не потребителями, которые ведут образ жизни».