Солдату о подрывном деле

Варенышев Борис Васильевич

Брошюра предназначается для солдат, сержантов и курсантов училищ всех родов войск Советской Армии, студентов гражданских вузов, а также членов ДОСААФ в качестве вспомогательного учебного пособия.

 

ВВЕДЕНИЕ

Взрывчатые вещества являются чрезвычайно мощным источником энергии, содержащим ее в концентрированном виде. С ними не может сравниться ни один другой источник энергии, кроме атомного. В самом деле, обыкновенная 400-граммовая тротиловая шашка при своем взрыве в течение 8 миллионных долей секунды может выполнить работу, на которую надо было бы затратить одновременное усилие почти одного с четвертью миллиарда человек. Котлован для вскрытия полезных ископаемых, на отрывку которого вручную потребовались бы тысячи человек и десятилетия изнурительного труда, а на механизированную отрывку экскаваторами 1–2 года, с помощью взрывов отрывается за 3–4 месяца.

Работы, связанные с использованием взрывчатых веществ, все шире применяются в военном деле и народном хозяйстве.

Большая мощность взрывчатых веществ позволяет выполнить многие виды важных и тяжелых работ за короткое время малым количеством людей. Кроме того, взрывчатые вещества не требуют сложных механизмов для их использования и просты в обращении, что чрезвычайно удобно для войск.

В некоторых случаях подрывные работы являются единственно возможным способом выполнения той или иной задачи, например, разрушения сооружений, разработки скалистого грунта, ликвидации ледяного затора и др.

Подрывные работы в военном деле применяются главным образом для разрушения различных объектов — важных сооружений, зданий, мостов, фортификационных сооружений, железных и шоссейных дорог, создания земляных и водных заграждений, преодоления любых заграждений противника, поражения его живой силы и техники.

Широко применяются подрывные работы при устройстве окопов, траншей, всякого рода котлованов и выемок, разработке строительных материалов, расчистке русел рек, при постройке дорог на косогорах и в горах, для защиты мостов от ледяных заторов при ледоходе и во многих других инженерных работах.

Великая Отечественная война наглядно показала ту важную роль, которую играет подрывное дело в любых видах боя при выполнении разнообразных задач, и дала огромное количество примеров умелого применения подрывного дела советскими саперами.

В начале июля 1941 г. подразделение младшего лейтенанта Байкова подготовило к взрыву железнодорожный мост через р. Великая в районе г. Пскова. В тот момент, когда Байков получил приказ взорвать мост, к мосту подходил советский артиллерийский дивизион, чтобы занять новые позиции на восточном берегу. Следом за дивизионом двигались фашистские танки. Саперы бросились на выручку своих товарищей — артиллеристов. Под огнем противника они быстро уложили деревянный настил на рельсы и пропустили советские орудия и артиллеристов на восточный берег реки. Но в результате непрерывного артиллерийского огня противника электровзрывная сеть и дублирующая сеть детонирующего шнура вышли из строя. Вражеские танки к этому времени уже вплотную подошли к берегу. Была угроза захвата моста противником. Команда подрывников во главе с Байковым бросилась на мост и огневым способом взорвала мост вместе с собой. Семену Байкову одному из первых воинов в Великую Отечественную войну было посмертно присвоено звание Героя Советского Союза.

В боях за г. Кенигсберг (ныне Калининград) в апреле 1945 г. группа саперов во главе со старшим сержантом Мордвянниковым получила приказ взорвать дом, превращенный врагом в огневую точку. Под сильным огнем саперы подползли к дому, заложили заряд весом 100 кг и взорвали дом вместе с его гарнизоном. Ликвидация опорного пункта позволила пехоте овладеть важным кварталом города. За успешные и отважные действия саперы были отмечены правительственными наградами, а Михаилу Мордвянникову было присвоено звание Героя Советского Союза.

Подрывные средства бШш одним из основных видов оружия и для партизанских отрядов в Великую Отечественную войну.

Партизаны подрывали мосты, железнодорожные линии и станции, пускали под откос фашистские поезда, уничтожали оборонительные' постройки, линии связи противника, выводя из строя его живую силу и технику. Исключительно широкое распространение имела так называемая «рельсовая война» белорусских и украинских партизан. В результате операций за пять месяцев (август — декабрь 1943 г.) было взорвано 363 262 участка рельсов, что в общей сложности составляет 2270 км одноколейного железнодорожного пути, т. е. расстояние от Архангельска до Одессы.

И в послевоенные годы воины Советской Армии умело применяют подрывное дело. Так, весной 1951 г. небольшая река Истра в Московской области в результате бурного таяния снегов разлилась, и начавшийся ледоход угрожал снести деревянный мост через реку длиной 60 м. Группа саперов во главе со старшим сержантом Сидоровым охраняла мост от ледохода. Саперы произвели необходимые предварительные операции по расчистке каналов в фарватере реки, а когда на мелком плесе стал образовываться ледяной затор — разбили его, бросая подготовленные заранее сосредоточенные заряды весом 2,5–3 кг.

Возрастают масштабы и области применения подрывных работ в народном хозяйстве. Взрывы используются в горной промышленности для разработки угля, руды и других полезных ископаемых, при строительстве предприятий и гидротехнических сооружений, в городском строительстве для сноса старых зданий, в сельском хозяйстве при осушении болот; садоводы используют взрывы при посадке фруктовых деревьев; пожарники при помощи взрывов ведут борьбу с лесными и степными пожарами, а геологи разведывают полезные ископаемые и т. д.

Чтобы уметь правильно и успешно применять взрывчатые вещества и подрывные средства, необходимо знать взрывчатые вещества, их свойства, материальную часть подрывной техники и как ею пользоваться. Нужно также иметь представление о способах проведения важнейших подрывных работ. Эта брошюра и знакомит с тем, что нужно знать каждому солдату о подрывном деле.

 

ГЛАВА I. ИЗ ИСТОРИИ ПОДРЫВНОГО ДЕЛА

Первым известным на земле взрывчатым веществам был черный (дымный) порох, состоящий из смеси селитры, серы и угля. Родиной пороха является Китай: в китайских хрониках (летописях) упоминается, что еще в 618 г. до нашей эры китайцы использовали взрывчатые и метательные свойства пороха для устройства ракет и праздничных фейерверков. Впоследствии порох и ракеты получили военное применение.

Процесс распространения пороха из Китая в другие страны занял более полутора тысяч лет. Лишь в XIII–XIV вв. нашей эры в Европе загремели первые огнестрельные выстрелы. К этому же времени относится появление пороха и огнестрельного оружия на Руси.

Сначала порох изготовлялся ручным способом, и рецепт его изготовления составлял секрет пороховых мастеров. К XV в. создаются крупные мастерские по изготовлению пороха, так называемые «пороховые мельницы», и масштабы производства пороха значительно возрастают. При царе Иване IV ежегодно добывалось 20 000 пудов селитры специально для военных целей. Создание больших запасов пороха позволило применять его не только в огнестрельном оружии, но и для разрушения неприятельских укреплений взрывами подземных зарядов. Так возникло минно-подрывное дело.

Блестящий пример умелого использования подрывного дела показали русские при взятии крепости Казань в 1552 г. Чтобы быстрее овладеть столицей казанского ханства, царь Иван IV, возглавлявший русские войска, решил сделать подкопы и взорвать под стенами крепости бочки с порохом.

Отрывкой подкопов и взрывом руководили воеводы Василий Серебряный и Алексей Адашев. Было произведено четыре взрыва, один заряд содержал 11 бочек (около одной тонны) пороха, остальные — почти по 4 т пороха каждый. В результате первого взрыва был разрушен потайной ход, ведущий к роднику, из которого осажденные татары брали питьевую воду, и часть городской стены. Второй взрыв разрушил дерево-земляное укрепление, прикрывавшее крепостные ворота. Наконец, третий и четвертый взрывы образовали широкие проломы в стенах крепости и решили исход штурма.

Проверяя величины зарядов, взорванных при осаде Казани, по современным расчетным формулам, нельзя не отметить того, что в 1552 г. наши предки уже умели с большой точностью определять необходимое количество пороха для достижения желаемых разрушений.

В развитие теории взрыва и взрывчатых веществ значительный вклад внес великий русский ученый М. В. Ломоносов, исследования которого позволили подобрать рациональное соотношение компонентов пороха и усовершенствовать процесс его производства. В своих трудах Ломоносов обосновал положения, на которых базируется современная теория взрывных волн.

С возникновением подрывного дела воспламенение зарядов осуществлялось единственно известным огневым способом. Простейшим средством передачи огня была пороховая дорожка — узкая лента пороха, которую насыпали непосредственно на земле или на доске — подкладке от заряда до подрывника, находящегося от места взрыва на безопасном расстоянии.

Дальнейшее свое развитие идея огнепровода получила в так называемых сосисах — трубках, сшитых из холста или кожи и набитых порохом. Применялись также огнепроводы из соломинок или бумажных трубочек, наполненных порохом. Предком нынешней зажигательной трубки является палительная свеча — бумажная гильза с горючим составом. За 5 мин., пока горела свеча, подрывник успевал отойти от заряда на безопасное расстояние.

Старейшим огнепроводом, перекочевавшим в подрывное дело из артиллерии и дожившим до нашего времени, является тлеющий фитиль, сплетенный из пеньковых нитей, пропитанных селитрой или другими горючими составами.

Для взрыва зарядов под Казанью в 1552 г. русские подрывники пользовались пороховыми дорожками и палительными свечами. Тогда же стал входить в употребление фитиль. Сосисы появились к концу XVII в.

Немало примеров успешного применения подрывного дела в подземно-минной борьбе насчитывает русская военная история и после взятия Казани: при обороне Пскова в 1581 г. от войск польского короля Стефана Батория, при обороне Троице-Сергиевой лавры (ныне г. Загорска) в 1608–1610 гг. от польских войск Сапеги, при обороне Смоленска в 1609–1611 гг., во время азовских походов Петра I в 1695–1696 гг., при осаде Нотебурга в 1702 г., при осаде Бендер в 1770 г. и т. д. Подземно-минную борьбу вели не только регулярные войска, но и восставшие против самодержавия крестьяне под руководством Ивана Болотникова и Емельяна Пугачева.

С давних пор русским подрывникам присущи не только смелость и мастерство, но и преданность родине и воинскому долгу. При вылазке осажденного гарнизона Троице-Сергиевой лавры в ночь на 9 ноября 1608 г. русский отряд захватил подкоп, который вел противник под круглую угловую башню. Два крестьянина Шилов и Слота вскочили в подкоп, камнями и землей заложили вход в него и вместе с собой взорвали поднесенный туда порох. Подземная галерея врага была разрушена, а монастырские стены остались невредимыми.

При осаде турецкой крепости Варны 23 сентября 1828 г. один подземный заряд не взорвался. Выясняя причину отказа взрыва заряда, унтер-офицер Андрей Шейдеванд обнаружил, что палительная свеча, вставленная в отрезок сосиса, сгорела и покрыла сосис толстым слоем пепла. Стремясь быстрее взорвать заряд, отважный сапер пошел на верную гибель: сдунул пепел, от чего сразу же последовал взрыв. Взрыв, произведенный Шейдевандом, не дал возможности туркам взорвать свой заряд.

В начале XIX в. техника подрывного дела совершает в своем развитии скачок вперед в результате открытия и применения электрического способа взрывания.

В 1802 г. русский академик В. В. Петров открыл явление электрической дуги с помощью мощной электрической батареи напряжением 1300 в. Это открытие создало непосредственные возможности применения электричества в военном деле и прежде всего для взрывания зарядов.

Идея применения «гальванизма» для взрывания пороха родилась у нескольких русских ученых. Так, в 1807 г. полковник русской службы И. И, Фицтум предложил взорвать плавучую якорную мину в Кронштадте электрическим способом. Однако руководство военно-инженерного ведомства не поддержало Фицтума, и ему пришлось для взрыва использовать кожаный сосис, подноска и укладка которого потребовали 800 солдат. Мысль о целесообразности воспламенения пороховых зарядов электрической искрой высказывалась также химиком С. П. Власовым.

Один из образованнейших людей своего времени, впоследствии создатель первого в мире телеграфа П. Л. Шиллинг изобрел искровой угольковый запал — первый электровоспламенитель. Запал Шиллинга представлял миниатюрное устройство для получения электрической дуги, состоявшее из двух угольных стерженьков, помещенных в коробочку с мелкозернистым порохом. К стерженькам присоединялись провода. При пропускании тока искра воспламеняла порох.

В октябре 1812 г. впервые в истории минно-подрывного дела Шиллинг осуществил взрыв подводной пороховой мины на Неве электрическим способом. Источником тока для этого взрыва служила электрическая батарея из медных и цинковых пластинок, называвшаяся «вольтовым столбом». «Вольтовы столбы» стали впоследствии табельным источником тока при электрическом способе взрывания в русской армии и применялись вплоть до первой мировой войны.

В боевых условиях электрический способ взрывания был впервые применен в 1829 г. при осаде турецкой крепости Силистрии видным военным инженером К. А. Шильдером, который известен также как изобретатель подводной лодки. Вслед за этим электрический способ завоевывает повсеместное признание и распространение в России. Учреждается даже специальный комитет «О подводных опытах», целью которого было проведение взрывов подводных мин электрическим способом. В 1840 г. было открыто свойство электропроводности воды, позволившее осуществлять взрывы подводных зарядов электрическим способом посредством одного провода. В 1841 г. производилась очистка р. Наровы ото льда взрывами зарядов электрическим способом.

В развитии и внедрении электрического способа взрыва большую роль сыграл русский академик Б. С. Якоби, который разработал первые электроуправляемые мины, в 1842 г. предложил «магнитоэлектрическую батарею» — первую в мире подрывную машинку, а в 1850 г. — первый запал накаливания с платиновым мостиком, представляющий собой прототип современных электровоспламенителей, принятых во всех армиях мира.

В 1848 г. «магнитоэлектрические батареи» сделались табельным средством в русской армии и применялись при подрывных работах во время боевых действий на Кавказе. Были разработаны первые электроизмерительные приборы: в 1845 г. — буссоль — предшественник малого омметра, в 1850 г. — полевой омметр капитана Сокольского. В 1852 г. поручик Д. К. Зацепин предложил пробковый запал — электровоспламенитель, мостиком накаливания которого служила обожженная поверхность пробки. Подпоручик Черниловский-Сокол ввел в практику калибровку пробковых запалов.

В начале XIX в. в России был открыт еще один способ взрывания — химический. Для воспламенения пороха Власовым был предложен простейший химический взрыватель, представлявший собой две трубки разных диаметров: большую картонную и малую стеклянную, вставленную одна в другую. Большая трубка содержала смесь бертолетовой соли с сахаром, малая — серную кислоту. При раздавливании стеклянной трубки между смесью и кислотой происходила химическая реакция, сопровождаемая вспышкой. Взрыв заряда с помощью «власовской трубки» осуществляли следующим образом: трубку помещали в ящик с порохом, укрепляя концы ее неподвижно, а середину обвязывали прочным шнуром, за свободный конец которого дергали с безопасного расстояния. Трубка раздавливалась, и вспышка вызывала взрыв пороха.

При подрывных работах химический способ взрывания широкого распространения не получил, но в инженерных минах химические взрыватели типа «власовской трубки» применяются до настоящего времени.

В дни одиннадцатимесячной обороны Севастополя (сентябрь 1854 г. — август 1855 г.) русским саперам довелось померяться силами с англо-французскими саперами в искусстве ведения подземно-минной борьбы. Не рассчитывая взять город штурмом, англо-французские войска решили подвести под русские позиции подземные мины и взорвать их. Однако осуществить это не удалось. Против англо-французских подземных галерей севастопольские саперы повели свои галереи, взрывали в них заряды, которые наносили врагу поражение и препятствовали ему вести дальнейшие работы под землей. Противник так и не смог сломить сопротивления контрминной системы русских, хотя израсходовал для взрывов в пять раз больше пороха.

Превосходство русских саперов сказалось и в технике подрывных работ. Русские пользовались передовым, электрическим способом взрывания и имели всего один отказ, приходившийся на 94 произведенных взрыва, тогда как противник имел 26 отказов на 136 взрывов, применяя еще весьма несовершенные изобретенный в 1831 г. англичанином Бикфордом огнепроводный шнур и французский быстрогорящий шнур Ларивьера — предшественник детонирующего шнура. Многие офицеры и солдаты своими умелыми, героическими действиями способствовали успеху русского военноинженерного искусства под Севастополем. Среди них мы находим имена подрывников-минеров штабс-капитана Мельникова, поручиков Преснухина, Барана-Ходоровского, Турбина, унтер-офицеров Самокатова, Абрамова, Бакланова, Блудова и др.

Выдержав испытание в Крымской войне, электрический способ взрывания подвергся дальнейшим усовершенствованиям. В 1858 г. в табель саперных и конно-пионерных частей были введены средства электрического способа взрывания, а в 1859 г. издано «Руководство для действия гальваническими приборами и принадлежностями», явившееся по существу первым самостоятельным наставлением по минно-подрывному делу. Были приняты новые конструкции электровоспламенителей: в 1872 г. — щелевой запал капитана Шах-Назарова, в 1874 г. — искровой запал поручика Дрейера, находившийся на вооружении до окончания гражданской войны 1918–1922 гг. На смену маломощной магнитоэлектрической машинке пришли в 1875 г. динамоэлектрическая подрывная машинка, способная взорвать 20 запалов Дрейера, и в 1892 г. малогабаритная машинка (индуктор), взрывавшая до 15 запалов. В 1893 г. на вооружение поступил саперный проводник, применявшийся с несколько видоизмененной изоляцией до настоящего времени. Теория запалов накаливания и способы расчета электровзрывных сетей были разработаны в 1875 г. лейтенантом русского флота В. А. Шпаковским.

Значительному усовершенствованию подверглось также производство огнепроводных шнуров, позволившее повысить их качество изготовления и надежность действия. В 1875 г. огнепроводный шнур был принят на вооружение русской армии.

Недостаточная мощность пороха и легкая подверженность его к возгоранию всегда толкали химиков разных стран на поиски других взрывчатых веществ. Еще в 1786 г.

французский химик Бертоле открыл хлорат калия, названный в честь изобретателя бертолетовой солью. Хлористые смеси были однако очень чувствительны к механическим воздействиям и не могли заменить собою черный порох. В 1788 г. Бертоле открыл взрывчатые свойства гремучего серебра, но и это взрывчатое вещество оказалось слишком опасным. В 1799 г. Говард получил гремучую ртуть, которая лишь более полувека спустя стала использоваться в качестве инициирующего взрывчатого вещества.

Развитие науки и промышленности привело в середине XIX в. к открытию первых бризантных взрывчатых веществ, пригодных для широкого применения. В 1845 г. швейцарский ученый Шёнбейн получил пироксилин, а в 1846 г. итальянец Сорберо — нитроглицерин. Однако предпринимавшиеся во многих странах попытки использовать эти взрывчатые вещества для снаряжения боеприпасов и в подрывном деле оканчивались неудачно. Изготовление и хранение этих взрывчатых веществ было сопряжено с большими опасностями. Один за другим взлетали на воздух заводы, склады, лаборатории в Австрии, Италии, Англии и других странах. Дело дошло до того, что в некоторых странах правительства издали специальные законы, запрещавшие проведение дальнейших опытов с пироксилином и нитроглицерином.

Промышленное производство нитроглицерина и пироксилина и их применение в практике подрывного дела стало возможным лишь благодаря усилиям Д. И. Менделеева,

Н. Н. Зинина, В. Ф. Петрушевского, А. Р. Шуляченко и других русских ученых. На основе разработанной Зининым и Петрушевским безопасной технологии в 1863 г. было организовано изготовление нитроглицерина в больших количествах. Безопасный способ обезвоживания пироксилина, предложенный Менделеевым, лег в основу промышленного производства пироксилина. Менделеев явился также создателем «пироколлодия» — одного из видов бездымного пороха, Петрушевский разработал состав «русского динамита». В 1867 г. нитроглицерин и динамит использовались при разработках золотоносных россыпей в Якутии, куда был командирован капитан Черниловский-Сокол. Динамит применялся для ускорения производства земляных работ при прокладке пути Тамбовско-Козловской железной дороги.

В 1875 г. на вооружение русской армии были приняты динамитные патроны, в 1880 г. шестигранные пироксилиновые шашки.

Новые взрывчатые вещества от огня не взрывались, как порох, поэтому потребовалось создать для них соответствующие средства взрывания. Для взрывания нитроглицерина Петрушевский пользовался промежуточным детонатором из пороха. В 1865 г. капитаном Д. И. Андриевским был предложен первый капсюль-детонатор. Позднее в качестве табельного был принят гремучертутный капсюль-детонатор в медной гильзе.

Крупнейшим теоретиком и практиком минно-подрывного дела XIX в. был военный инженер-подрывник М. М. Боресков, автор нескольких капитальных трудов, ставших настольными книгами для многих поколений русских подрывников. М. М. Боресков разработал и практически применил взрывной способ расчистки и углубления русел рек и лиманов, порохострельный способ прочистки дымоходных труб, разработал взрывной способ проделывания проходов в речных и морских минных заграждениях, вместе с Андриевским исследовал явление кумуляции в 1864–1865 гг. Для расчета зарядов при взрывах в грунте Боресков предложил формулу, носящую его имя, которой до последнего времени пользовались подрывники всего мира. Значительный вклад в теорию взрывчатых веществ и в исследование явления взрыва внесли русские ученые Менделеев, Зинин, Гесс, Михельсон, Чельцов, Фролов и др.

Боевое крещение бризантные взрывчатые вещества получили в русско-турецкую войну 1877–1878 гг., когда подрывное дело использовалось для решения разнообразных боевых задач. Динамитом взрывали скалы при прокладывании горных дорог на Балканах. Конные саперы, совершая набеги на железные дороги в тылу у турок, производили их разрушение динамитными патронами. При штурме крепости Карс саперы подорвали массивные железные ворота, запиравшие вход в один из фортов, образовав брешь для прохода атакующей пехоты. Для усиления обороны Шипкинского перевала устанавливались динамитные фугасы и камнеметы.

Успехи химии в конце XIX — начале XX вв. способствовали появлению новых взрывчатых веществ, применяемых в подрывном деле в настоящее время. В 1872 г. были открыты взрывчатые свойства мелинита, который около ста лет до этого применялся как желтая краска для тканей. В 1863 г. был открыт тротил, в 1877 г. — тетрил, в 1891 г. — ТЭН и азид свинца, в 1897 г. — гексоген, в 1914 г. — ТНРС. Промышленное освоение этих взрывчатых веществ и их применение для подрывных работ потребовало многих лет. В 90-х годах XIX в. в России испытывались первые подрывные мелинитовые шашки, опытные образцы детонирующих шнуров со свинцовой оболочкой и сердцевиной из зерненного пироксилина и мелинита.

В русско-японскую войну 1904–1905 гг. при отступлении русских войск широко применялось подрывание мостов на железных и шоссейных дорогах. Кавалерийские отряды, действовавшие в японском тылу, подрывали участки железной дороги Ляоян — Порт-Артур. Для преодоления японских проволочных заграждений создавались охотничьи команды, включавшие в себя подрывников, вооруженных удлиненными зарядами из пироксилиновых шашек, привязанных к распиленным пополам бамбуковым шестам. Огромную роль сыграло минно-подрывное дело в обороне Порт-Артура, для защиты которого впервые в истории по идее генерала Р. И. Кондратенко была создана система комбинированных инженерных заграждений, в которую вошли также управляемые и самовзрывные фугасы, камнеметы и прибрежные мины. Подрывные работы, изготовление и установка фугасов осуществлялись специальной «фугасной командой», возглавляемой поручиком Л. И. Дебогорием-Мокриевичем. При обороне Порт-Артура велась также подземно-минная борьба. Подрывным способом производилась расчистка местности для обзора и обстрела. В конце 1905 г. вышло первое издание наставления «Подрывные работы», учитывавшее опыт русско-японской войны.

В 1913 г., накануне первой мировой войны, на вооружение поступили новые подрывные средства — тротиловые шашки современных размеров, электровоспламенители и электродетонаторы накаливания с платиново-иридиевым мостиком (так называемые «запалы военно-инженерного ведомства»), подрывная машинка обр. 1913 г., взрывавшая как искровые запалы Дрейера, так и запалы накаливания. Были приняты также ударный и терочный воспламенители для зажигания огнепроводных шнуров. Однако мощность военной промышленности царской России была недостаточной, и она не могла обеспечить потребности армии во взрывчатых веществах и подрывных средствах в связи с все возрастающими масштабами применения подрывного дела в ходе войны. Большая часть тротила, мелинита, огнепроводного шнура, электродетонаторов ввозилась из-за границы. Детонирующий шнур полностью импортировался. С целью экономии взрывчатых веществ профессора А. А. Солонина и Е. Г. Тронов предложили применять аммотолы и аммоналы.

При наступлении на Варшаву немцев в августе 1915 г. русские войска при отходе произвели разрушения путей сообщения, мостов и т. д.

Массовые разрушения осуществили немцы на западном театре военных действий в марте 1917 г., отходя с линии фронта Аррас — Сунсон на позицию Зигфрида. Они разрушили до 1000 различных сооружений, 1300 мостов, подорвали во многих местах железнодорожные пути, линии связи, каналы, уничтожили водопроводные сооружения, шахты, заводы, т. е. буквально «выбрили местность». В результате созданного бездорожья ни французы, ни немцы не смогли развернуть на этом участке активных наступательных действий. Таким образом, выявилось, что заграждения и разрушения могут иметь не только тактическое, но и оперативное значение.

Подрывные работы вошли также в обеспечение наступательных действий. Саперы разминировали мосты, уничтожали фугасы противника, проделывали проходы в проволочных заграждениях взрывным способом. Кроме обычных удлиненных зарядов пироксилина, укладываемых на проволоку вручную, русскими саперами применялись удлиненные заряды, выдвигаемые под проволочное заграждение с помощью троса и блоков. Первым таким предложением, сделанным в 1915 г., была «ползучая мина» унтер-офицера Семенова в виде салазок с зарядом длиной около 7 м, весом 25 кг. При взрыве этого заряда в проволочном заграждении образовывался проход шириной до 10 м. Оригинальные конструкции «ползучих мин» были предложены рядовым Савельевым, унтер-офицером Дорониным, полковником Толкушкиным и другими.

В связи с применением на поле боя танков и насыщением армий автотранспортом в минно-подрывном деле возникает новое направление — минирование.

Для выполнения наиболее ответственных задач по созданию заграждений и разрушений на Западном фронте была сформирована минно-подрывная бригада особого назначения, которая с октября 1918 г. по июнь 1919 г. заминировала 37 железнодорожных и шоссейных мостов, из которых 27 подорвала, и подготовила к взрыву 113 станций и специальных сооружений. Многие бойцы и командиры бригады, выполняя свой революционный долг, показывали образцы героизма. Так, при отражении наступления войск белогвардейского генерала Юденича командир роты т. Чепурин взорвал в районе Пскова сначала железнодорожный, а затем шоссейный Ольгинский мост вместе с белогвардейцами и собой, сорвав переправу белых через р. Великая.

За годы Советской власти была создана социалистическая оборонная промышленность. На базе ее советские ученые и военные инженеры перевооружили инженерные войска новейшей боевой техникой, в том числе и подрывными средствами. Подрывное дело в нашей армии поднялось на еще более высокую ступень развития. Генерал-лейтенант инженерных войск Д. М. Карбышев разработал теорию массированного применения разрушений и заграждений в машинный период войны. Во время советско-финской войны штурмовые группы успешно уничтожали железобетонные сооружения противника, взрывая заряды тротила весом до 2,5 т.

В годы Великой Отечественной войны советские саперы умело применяли подрывное дело во всех видах боя. Они подрывали вражеские танки, взрывали мосты, разрушали дороги, выводили из строя коммуникации в тылу противника, расчищали взрывами проходы в заграждениях для наступающих войск, захватывали и разминировали мосты, штурмовали мощные укрепления. Родина достойно оценила ратный труд скромных тружеников войны: 648 солдатам, сержантам и офицерам инженерных войск присвоено высокое звание Героя Советского Союза, десятки тысяч воинов награждены орденами и медалями.

 

ГЛАВА II. ПОНЯТИЕ О ВЗРЫВЕ И ВЗРЫВЧАТЫХ ВЕЩЕСТВАХ

Взрывчатыми веществами (ВВ) называются вещества, способные под влиянием внешнего воздействия к чрезвычайно быстрому химическому превращению с выделением тепла и образованием сильно нагретых газов. Процесс такого химического превращения взрывчатого вещества называется взрывом.

Для взрыва характерны три основных фактора, которые определяют действие, производимое взрывом:

— очень большая скорость превращения взрывчатого вещества, измеряемая промежутком времени от сотых до миллионных долей секунды;

— высокая температура, достигающая 3–4,5 тыс. градусов;

— образование большого количества газообразных продуктов, которые, сильно нагреваясь и быстро расширяясь, превращают выделяющуюся при взрыве тепловую энергию в механическую работу, производя разрушения или разбрасывание окружающих заряд предметов.

Совокупностью указанных факторов и объясняется огромная, по сравнению с другими источниками энергии, кроме атомной, мощность взрывчатых веществ. При отсутствии хотя бы одного из перечисленных факторов взрыва не будет. Например, термит при горении развивает температуру 3000°, но газов не образует и поэтому не дает взрыва. При горении каменного угля образуется большое количество газов, а тепла выделяется в 8 раз больше, чем при взрыве тротила, однако и каменный уголь не способен к взрыву, так как превращение его в газообразные продукты происходит в десятки миллионов раз медленнее, чем взрывчатое превращение тротила.

Для возбуждения взрыва необходимо воздействовать на взрывчатое вещество извне, сообщить ему некоторую порцию энергии, величина которой зависит от свойств взрывчатого вещества. Взрыв могут вызвать различные виды внешнего воздействия: механический удар, накол, трение, нагревание (пламенем, накаленным телом, искрой), электрическое накаливание или искровой разряд, химическая реакция и, наконец, взрыв другого взрывчатого вещества (капсюлем-детонатором, детонацией на расстоянии).

Не все способы возбуждения взрыва одинаково пригодны для любого взрывчатого вещества. Чувствительность тех или иных взрывчатых веществ к внешним воздействиям различна и обусловливается их физико-химическими свойствами. Так, например, взрыв гремучей ртути или азида свинца происходит от легкого удара, небольшого трения или слабой вспышки огня; порох взрывается от огня; для взрыва тротила или мелинита удар и огонь непригодны, а нужен капсюль-детонатор. Степень чувствительности каждого взрывчатого вещества к внешним воздействиям определяет возможность и характер его практического применения и безопасность в обращении.

Не менее важным является стойкость взрывчатых веществ, т. е. их способность сохранять свои свойства при длительном хранении. Замечено, что некоторые взрывчатые вещества (пироксилин, мелинит и др.) с течением времени, особенно при несоблюдении правильного режима хранения, становятся более чувствительными и, следовательно, опасными в обращении, другие, наоборот, теряют свои взрывчатые свойства настолько, что взрываются неполностью или даже совсем не взрываются (например, аммониты).

Наконец, важнейшим свойством, характеризующим мощность взрывчатых веществ, является их бризантность, т. е. разрушительная способность. Бризантность зависит главным образом от скорости взрывчатого превращения, а также от количества образующихся газов и их температуры. По скорости все взрывные процессы делятся на два вида: детонацию и вспышку.

Детонация (собственно взрыв) протекает со скоростью нескольких тысяч метров в секунду. Так, аммонит детонирует со скоростью 3000–5000 м/сек, тротил — 6700 м/сек, гексоген — 8460 м/сек.

Вспышка — процесс в 10—1000 раз медленнее детонации. Она представляет собой быстрое сгорание без участия кислорода воздуха. Типичным примером вспышки является горение пороха на открытом воздухе, происходящее со скоростью нескольких метров в секунду.

При практической классификации взрывчатых веществ исходят из степени их бризантности и подразделяют все ВВ на две основные группы: бризантные и метательные. Бризантные взрывчатые вещества обладают способностью детонировать, у метательных преимущественным видом взрывчатого превращения является вспышка.

Скорость взрывчатого превращения, а тем самым и мощность взрывчатых веществ, зависит от внешних условий, в которых происходит взрыв. Особенно ярко это проявляется у метательных взрывчатых веществ. Если, например, порох поместить на дно колодца или пробуравленной скважины и засыпать сверху землей (сделать забивку), то взрыв его произойдет в 10–50 раз быстрее, чем на открытом воздухе. Такой заряд произведет и соответственно больше разрушений.

На скорость детонации бризантных взрывчатых веществ также можно повлиять, хотя и в меньшей степени, чем метательных, изменяя условия взрыва. Так, взрывая заряд аммотола, вещества менее мощного, чем тротил, в колодце с забивкой, разрушения будут такими же, как и от заряда тротила равной величины. Скорость детонации, а следовательно, и мощность заряда тротила в прочной металлической оболочке несколько выше, чем такого же заряда, но без оболочки. Некоторое влияние на скорость детонации оказывают плотность заряда, его форма и габаритные размеры.

В группе бризантных ВВ особое место занимают высокочувствительные взрывчатые вещества, называемые инициирующими за свою способность возбуждать (инициировать) взрывчатое превращение других ВВ, менее чувствительных к внешним воздействиям.

Остальные бризантные взрывчатые вещества сравнительно мало чувствительны ко всякого рода внешним воздействиям и безопасны в обращении, благодаря чему удобны для практического применения. Возбуждение в них детонации производится капсюлем-детонатором, снаряженным инициирующим ВВ. По степени бризантности и для упрощения расчета зарядов при производстве подрывных работ эти взрывчатые вещества подразделяются на ВВ нормальной, повышенной и пониженной мощности.

Высокая чувствительность инициирующих взрывчатых веществ ко всем видам внешнего воздействия делает недопустимым по условиям безопасности их применение в подрывном деле в виде самостоятельных зарядов. Инициирующие ВВ используются для снаряжения средств взрывания: капсюлей-детонаторов, детонирующих шнуров и др., куда они входят в небольших количествах. Главнейшими представителями инициирующих взрывчатых веществ являются гремучая ртуть, азид свинца и ТНРС.

Гремучая ртуть — мелкокристаллическое ядовитое вещество белого или светлосерого цвета, сладковатое на вкус, плохо растворимое в воде. К удару и трению гремучая ртуть наиболее чувствительна из всех инициирующих взрывчатых веществ. Химическая стойкость ее невелика, при нагревании до температуры 50° она начинает разлагаться, а при температуре, равной 160°, взрывается. При увлажнении взрывчатые свойства гремучей ртути сильно понижаются, так, при 10 % влажности она теряет способность к детонации. Крепкая серная кислота вызывает взрыв гремучей ртути.

Гремучая ртуть вступает в химическую реакцию с алюминием, поэтому она никогда не применяется в алюминиевых гильзах, а снаряженные ею капсюли-детонаторы имеют гильзы из картона или латуни.

Азид свинца по внешнему виду похож на гремучую ртуть, но по свойствам отличен от нее: к удару и трению он менее чувствителен, обладает большей стойкостью к нагреванию, взрываясь при температуре 310°, не так боится сырости и взрывается при 30 % влажности. Под влиянием солнечного света взрывчатые свойства азида свинца ослабляются.

Гильзы капсюлей-детонаторов, содержащих азид свинца, бывают обычно алюминиевые, так как с медью азид свинца вступает в химическую реакцию.

Тенерес (ТНРС, тринитрорезорцинат свинца) — темножелтое мелкокристаллическое вещество, нерастворимое в воде. Под влиянием прямого солнечного света темнеет и разлагается. Чувствительность тенереса к трению такая же, как у азида свинца, к удару он менее чувствителен, к лучу огня и искре — значительно больше. Тенересом покрывают поверхность азида свинца в капсюлях-детонаторах для безотказности взрыва.

Взрывчатые вещества нормальной мощности применяются во всех видах подрывных работ, ими снаряжаются инженерные, артиллерийские и авиационные боеприпасы. Важнейшими представителями этой группы ВВ являются тротил и мелинит. В иностранных армиях используются также подрывные заряды из пироксилина и тринитрокрахмала, по мощности приближающиеся к тротилу, но обладающие большей чувствительностью, особенно в сухом состоянии.

Тротил (тринитротолуол, тол) — кристаллическое вещество желтого цвета, горьковатое на вкус, практически нерастворимое в воде. К удару и трению тротил мало чувствителен, от удара и прострела пулей не загорается и не взрывается. От огня горит сильно коптящим пламенем. На солнце поверхность тротила приобретает бурый цвет. Плавится при температуре около 80°. Продукты взрыва тротила ядовиты вследствие присутствия окиси углерода.

При подрывных работах тротил применяется, как правило, в виде прессованных шашек, которые бывают трех видов (рис. 1):

— большие, весом 400 г, размером 5 X 5 X 10 см;

— малые, весом 200 г, размером 2,5 X 5 X 10 см;

— буровые, весом 75 г, диаметром 3 см, высотой 7 см.

Рис. 1. Подрывные тротиловые шашки: а — большая (400 г); б — малая (200 г); в — буровая (75  г)

Шашки имеют запальные гнезда для вставления капсюля-детонатора № 8. Для удобства крепления зажигательных трубок или запалов изготавливаются большие шашки с резьбовыми втулками. Шашки обвертываются бумагой и покрываются тонким слоем парафина.

Иногда встречаются подрывные шашки из плавленого тротила, который менее чувствителен к взрыву капсюля-детонатора, чем прессованный тротил. В таких шашках запальные гнезда окружены промежуточным детонатором из прессованного тротила.

Тротиловые шашки хранятся и перевозятся в деревянных ящиках, содержащих по 25 кг шашек в каждом. В крышке ящика имеется закрытое планкой отверстие, служащее для того, чтобы можно было вставить через него капсюль-детонатор и использовать ящик целиком как заряд ВВ без вскрытия крышки, лишь удалив планку.

Мелинит (пикриновая кислота) — кристаллическое вещество светложелтого цвета, очень горькое на вкус, плохо растворимое в воде, сильно окрашивает в желтый цвет кожу и ткани. Мелинит по свойствам близок к тротилу, но несколько чувствительнее его. При простреле пулей мелинит взрывается. Горение мелинита в количествах более 100 кг может перейти в детонацию.

Большим недостатком мелинита является меньшая стойкость его по сравнению с тротилом и способность взаимодействовать с металлами с образованием пикратов — веществ, очень опасных в обращении. По этим причинам в Советском Союзе мелинит применяется все реже и реже, вытесняясь более безопасным ВВ — тротилом. В иностранных армиях мелинит еще широко используется для подрывных работ.

Подрывные мелинитовые шашки имеют форму, размеры и вес такие же, как тротиловые.

Взрывчатые вещества повышенной мощности

Взрывчатые вещества повышенной мощности применяются для подрывания сооружений из прочных материалов (брони, железобетона), а также входят в состав снаряжения средств взрывания (детонирующих шнуров, капсюлей-детонаторов) и некоторых мин. К ВВ повышенной мощности относятся: тетрил, гексоген, тэн, а также их сплавы с тротилом.

Тетрил — кристаллический порошок бледножелтого цвета, без запаха, солоноватый на вкус, слабо растворим в воде.

Тетрил значительно чувствительнее к удару и трению, чем тротил, и менее стоек, что препятствует его широкому применению. От огня энергично горит, причем горение может перейти во взрыв.

В американской армии применяются стандартные заряды из тетритола — сплава тетрила с тротилом весом 2,5 фунта (1,13 кг).

Гексоген — кристаллическое вещество белого цвета без запаха и вкуса, нерастворимое в воде. Чувствительность к механическим воздействиям и трению гексогена несколько выше, чем тетрила, но химически очень устойчив и значительно мощнее тетрила. По силе взрыва гексоген в полтора — два раза сильнее, чем тротил.

В сплаве с тротилом гексоген применяется в кумулятивных зарядах.

Тэн (пентрит) — белое мелкокристаллическое вещество, нерастворимое в воде. Обладает такой же силой взрыва, как и гексоген, но к механическим воздействиям значительно чувствительнее и менее стоек. От огня загорается, и в количествах более 1 кг горение его переходит во взрыв.

Взрывчатые вещества пониженной мощности

Взрывчатые вещества пониженной мощности представляют собой смеси аммонийной селитры с горючими или взрывчатыми добавками. Аммонийно-селитренные взрывчатые вещества, как более дешевые, являются заменителями тротила и мелинита во всех видах подрывных работ, наиболее часто они применяются при взрывах в грунтах, для дробления скал и камней.

Аммонийная селитра — белое или светложелтое кристаллическое вещество со слабыми взрывчатыми свойствами, очень гигроскопичное и хорошо растворимое в воде. Стойкость аммонийной селитры невелика: при увлажнении она теряет восприимчивость к детонации, при длительном хранении, особенно в присутствии влаги, происходит слеживание, т. е. образование плотных комков, которые могут давать неполный взрыв или отказ. Слежавшиеся аммонийно-селитренные ВВ перед применением нужно обязательно размять руками или деревянным катком до порошкообразного состояния.

В практике встречается несколько типов аммонийно-селитренных взрывчатых веществ, которые отличаются друг от друга видом добавок, придающих ВВ серый, желтый или коричневый цвет. Существуют следующие основные типы аммонийно-селитренных взрывчатых веществ:

Аммотолы — смеси аммонийной селитры с тротилом, которого содержится от 20 до 50 %;

Аммоналы — смеси аммонийной селитры (около 80 %) с тротилом, ксилилом и алюминиевым порошком;

Аммониты и динамоны — смеси аммонийной селитры с невзрывными горючими добавками (торфом, древесной мукой, порошком каменноугольного пека и т. д.).

В обращении аммонийно-селитренные взрывчатые вещества безопасны: от огня они не загораются, к удару и трению мало чувствительны. Взрыв аммонийно-селитренных ВВ можно осуществить капсюлем-детонатором № 8 или детонирующим шнуром, на конце которого следует связать несколько узлов. Для надежности взрыва больших зарядов аммонийно-селитренных ВВ применяют промежуточные детонаторы из тротиловых шашек.

При хранении и перевозке аммонийно-селитренные взрывчатые вещества следует оберегать от сырости. Влажное ВВ просушивают в тени на брезентах или в сухом и теплом помещении, разминая комки. Высушенное ВВ восстанавливает большую часть своих взрывчатых свойств.

При подрывных работах аммонийно-селитренные ВВ применяются главным образом в порошкообразном виде, поступая с заводов в различной герметизированной укупорке.

Аммотолы бывают также в виде прессованных брикетов весом 1,35 кг, обвернутых в бумагу, пропитанную битумом. Шесть брикетов обвертываются бумагой в пакет, перевязываемый бечевкой. В деревянный укупорочный ящик входит 3 пакета (32,3 кг ВВ).

Метательные взрывчатые вещества

Группу метательных взрывчатых веществ составляют дымные (черные) пороха. Наиболее употребителен дымный порох, содержащий 75 % калиевой селитры, 15 % древесного угля и 10 % серы.

Как указывалось выше, бризантность пороха, особенно при горении на открытом воздухе, незначительна, поэтому в качестве подрывных зарядов он в настоящее время не применяется. Дымный порох используется для снаряжения огнепроводных шнуров, воспламенителей и в виде вышибных зарядов выпрыгивающих мин.

Порох имеет вид сизо-черных с металлическим блеском мелких зерен, легко воспламеняющихся от пламени и искры. К удару и трению он чувствителен более, чем тротил. Прострел пулей может вызвать взрыв пороха.

Отрицательным свойством пороха является его гигроскопичность. Отсыревший порох к употреблению непригоден: он теряет взрывчатые свойства, которые при высушивании не восстанавливаются.

При хранении порох тщательно оберегают от огня и влаги. Взрывание пороха производится с помощью огнепроводного шнура или электровоспламенителя.

 

ГЛАВА III. КАК ПРОИЗВЕСТИ ВЗРЫВ

 

Взрыв заряда взрывчатого вещества может быть произведен одним из следующих способов:

— огневым;

— детонирующим шнуром;

— электрическим;

— механическим;

— детонацией на расстоянии.

 

1. ОГНЕВОЙ СПОСОБ ВЗРЫВАНИЯ

При огневом способе взрыв заряда ВВ осуществляется зажигательной трубкой, состоящей из капсюля-детонатора и отрезка огнепроводного шнура.

Рис. 2. Капсюль-детонатор № 8

Для изготовления зажигательной трубки необходимо иметь следующие принадлежности и инструменты: капсюль-детонатор, огнепроводный шнур, фитиль, спички или воспламенители, а также изоляционную ленту, нож и обжим.

Капсюль-детонатор № 8 (рис. 2) представляет собой металлическую гильзу, в которой запрессован заряд взрывчатого вещества, состоящий из двух слоев: верхнего — из инициируют, его ВВ (азида свинца и ТНРС или гремучей ртути) и нижнего — из ВВ повышенной мощности (тетрила или тэна).

Азидо-тетриловые капсюли-детонаторы выпускаются в алюминиевой гильзе, гремучертутно-тетриловые — в медной.

Капсюли-детонаторы требуют особой осторожности в обращении ввиду наличия в них взрывчатых веществ, очень

чувствительных к механическим и тепловым воздействиям, их хранят в сухих, нежарких местах отдельно от других взрывчатых веществ и переносят только в упаковке.

Рис. 3. Круг огнепроводного шнура:

1 — оболочка; 2 — пороховая сердцевина; 3 — направляющая нить

Перед применением капсюли-детонаторы тщательно осматриваются. Если имеются сквозные трещины, помятости, опудренность внутренних стенок гильзы или налет коррозии, то такие капсюли-детонаторы к использованию не допускаются.

Соринки, попавшие в гильзу, удаляются легким постукиванием открытого конца капсюля о ноготь пальца. Прочистку капсюля-детонатора щепочкой или продуванием производить нельзя.

Капсюли-детонаторы упаковываются по 100 шт. в коробки белой жести. Для переноски при подрывных работах используются деревянные пеналы с гнездами на 10 капсюлей.

Огнепроводный шнур (рис. 3) состоит из пороховой сердцевины с направляющей хлопчатобумажной нитью и нитяной оболочки, асфальтированной (серого цвета) или покрытой пластикатовой пленкой (белого цвета).

На воздухе пороховая сердцевина огнепроводного шнура горит со скоростью 1 см/сек. Под водой горение шнура происходит с большей скоростью. Шнур поступает в войска отрезками длиной 10 м, свернутыми в круги. Хранение шнура производится в сухих помещениях, концы его заделываются изоляционной лентой или мастикой, чтобы не отсырела пороховая сердцевина. Оболочку шнура оберегают от жары, мороза, воздействия масел, бензина, керосина, от механических повреждений — изломов, скручивания,

Перед употреблением огнепроводного шнура проверяется скорость его горения и целость сердцевины.

Для этого кусок шнура длиной 60 см поджигают с одного конца, засекая время. Такой кусок шнура должен сгореть за 60–75 сек.

При изготовлении зажигательной трубки длину отрезка огнепроводного шнура выбирают, исходя из времени, необходимого для того, чтобы после зажигания трубки подрывник успел уйти в укрытие или на безопасное расстояние. Во всех случаях длина огнепроводного шнура зажигательной трубки должна быть не менее 50 см. Если зажигательная трубка делается с тлеющим фитилем, то длина огнепроводного шнура может быть уменьшена до 10 см, а отрезок тлеющего фитиля берется длиной 3 см.

В исключительных случаях в боевой обстановке и при подрывании льда во время ледохода с разрешения командира могут применяться зажигательные трубки с огнепроводным шнуром длиной 10–15 см.

Для зажигания огнепроводного шнура используются: тлеющий фитиль, обыкновенные или специальные спички подрывника, воспламенители — механический ВШ-МУВ или терочный.

Фитиль представляет собой пучок слабо скрученных хлопчатобумажных или пеньковых нитей в нитяной оплетке. Нити пропитаны раствором селитры или азотнокислого свинца, придающим фитилю определенную и равномерную скорость тления, равную 1–2 см/мин, в зависимости от состава пропитки. На ветру фитиль тлеет несколько быстрее.

Огнепроводный шнур срезают наискось и на конец его насаживают отрезок фитиля, который закрепляют ниткой, наложенной ниже косого среза шнура.

Для воспламенения огнепроводного шнура обыкновенными спичками головка спички плотно прикладывается к пороховой сердцевине наискось срезанного шнура, как показано на рис. 4. Шнур зажимают между средним и указательным, а спичку — между указательным и большим пальцами левой руки; правой рукой берут спичечный коробок и чиркают им по головке спички.

При воспламенении шнура специальной спичкой подрывника последнюю зажигают и подносят к сердцевине шнура. Спичка энергично тлеет без пламени и не гаснет на ветру. Со спичками подрывника необходимо обращаться осторожно, особенно при переноске в кармане, где они могут загореться от трения одна о другую. Спички подрывника нужно оберегать от сырости, которая делает их непригодными.

Вместо спичек для воспламенения огнепроводного шнура можно пользоваться курительными или специальными зажигалками.

Рис. 4. Зажигание огнепроводного шнура обыкновенной спичкой

Механический воспламенитель огнепроводного шнура ВШ-МУВ (рис. 5) состоит из ударного механизма взрывателя МУВ, свинченного с ниппелем, на который надета медная или алюминиевая гильза.

В корпусе взрывателя находится подпружиненный ударник, удерживаемый во взведенном положении чекой. В ниппель запрессован капсюль-воспламенитель и пороховой столбик. Гильза при хранении закрывается резиновой пробкой.

Огнепроводный шнур обрезается под прямым углом, вставляется в гильзу до отказа и закрепляется обжимом так же, как при изготовлении зажигательной трубки, о чем говорится ниже.

При выдергивании чеки боек ударника накалывает капсюль-воспламенитель, форс огня которого увеличивается при сгорании порохового столбика и воспламеняет огнепроводный шнур.

Терочные воспламенители отличаются от механических тем, что в них вместо ударного механизма взрывателя МУВ в корпусе заключен терочный состав, через который пропущена проволочная спиралька, конец которой в виде петли выходит из корпуса воспламенителя. В гильзу корпуса вводится конец огнепроводного шнура. При дергании за петлю спиралька протаскивается через терочный состав, который от трения воспламеняется и своим пламенем поджигает огнепроводный шнур.

Рис. 5. Механический воспламенитель огнепроводного шнура ВШ-МУВ

Рис. 6. Стандартная зажигательная трубка:

1 — воспламенитель ВШ-МУВ; 2 — огнепроводный шнур; 3 — резьбовая втулка; 4 — капсюль-детонатор

Зажигательные трубки бывают стандартными — заводского изготовления и самодельными, изготавливаемыми в войсках.

Стандартная зажигательная трубка СЗТ (рис. 6) состоит из капсюля-детонатора, огнепроводного шнура длиной 50 или 150 см, механического воспламенителя ВШ-МУВ и резьбовой втулки, насаженной на шнур и служащей для закрепления зажигательной трубки в запальном гнезде шашки, имеющей резьбу.

Самому изготовить зажигательную трубку (рис. 7) можно следующими приемами:

— на деревянной подкладке чистым и острым ножом отрезать под прямым углом кусок огнепроводного шнура необходимой длины, второй конец шнура обрезать наискось (рис. 7, а, б, в);

— вынуть капсюль-детонатор из коробки (рис. 7, г), проверить его пригодность и очистить гильзу;

— ввести конец огнепроводного шнура, отрезанный под прямым углом, в капсюль-детонатор до упора в чашечку (рис. 7, е); при этом нельзя нажимать или вращать шнур или капсюль, чтобы капсюль-детонатор не взорвался от трения; если шнур входит в гильзу свободно, конец его обвертывают слоем изоляционной ленты или бумаги;

— закрепить капсюль-детонатор на шнуре при помощи обжима (рис. 7, ж), для чего взять шнур в левую руку и, придерживая капсюль-детонатор указательным пальцем, наложить правой рукой обжим так, чтобы боковая поверхность обжима была на уровне среза гильзы. Нажимая на рукоятки обжима и поворачивая его у края гильзы, создают кольцевую шейку, обеспечивающую прочность соединения капсюля-детонатора со шнуром.

При отсутствии обжима капсюль-детонатор закрепляется на шнуре путем обвертывания огнепроводного шнура изоляционной лентой (рис. 7, к).

Обрезанный наискось конец огнепроводного шнура предназначается для его воспламенения посредством спички. Если шнур зажигается воспламенителем ВШ-МУВ, то второй конец его также обрезается перпендикулярно оси и закрепляется в гильзе воспламенителя.

В тех случаях, когда зажигательные трубки применяются не сразу по изготовлении, их свободные концы заделываются воском, мастикой или обвертываются изоляционной лентой.

Зажигательную трубку вставляют в заряд ВВ после закрепления заряда на подрываемом объекте. Капсюль-детонатор должен входить до упора в запальное гнездо и не выпадать из него. Крепление зажигательной трубки производится шпагатом, тонкой мягкой проволочкой, осторожным заклиниванием гильзы деревянным колышком или путем ввинчивания резьбовой втулки стандартной зажигательной трубки в капсюльное гнездо заряда.

Рис. 7. Изготовление зажигательной трубки:

а — отрезание огнепроводного шнура; б — концы шнура, обрезанные для изготовления зажигательной трубки; в — конец шнура, обрезанный под прямым углом (обернут изоляционной лентой или бумагой); г — вытаскивание капсюля-детонатора из коробки; д — очистка гильзы капсюля-детонатора; е — ввод шнура в капсюль-детонатор; ж — обжатие капсюля-детонатора; з — правильно введенный шнур; и — обжатый капсюль-детонатор; к — закрепление капсюля-детонатора на шнуре изоляционной лентой; л — готовая зажигательная трубка

При подрывных работах допускается зажигание одним человеком не более пяти зажигательных трубок. По команде старшего «зажигай» все подрывники одновременно поджигают зажигательные трубки и отходят в указанное место. По команде «отходи» все подрывники, в том числе и те, которые почему-либо не успели поджечь свои зажигательные трубки, отходят от зарядов на безопасное расстояние.

 

2. ВЗРЫВАНИЕ ДЕТОНИРУЮЩИМ ШНУРОМ

Детонирующий шнур (ДШ) применяется для одновременного подрывания нескольких зарядов. Шнур (рис. 8) имеет сердцевину из взрывчатых веществ инициирующих и повышенной мощности, гремучей ртути, гексогена, тетрила и др. с направляющей нитью. Оболочка шнура — нитяная, пропитанная парафином или пластикатовая. Цвет оплетки, как правило, красный. Шнур детонирует со скоростью 7–8 тыс. м/сек.

Рис. 8. Бухта детонирующего шнура:

1 — взрывчатое вещество; 2 — оболочка; 3 — направляющая нить

Детонирующий шнур выпускается отрезками длиной по 50 м, свернутыми в бухты. При хранении детонирующие шнуры оберегают от жары, прямого воздействия солнечных лучей и сырости. Лежавший на солнце или заплесневелый шнур не применяется. Резать шнур можно чистым и острым ножом на деревянной подкладке, предварительно раскатав всю бухту.

Детонирующий шнур можно применять и в воде с условием, чтобы шнур не находился в ней долее 10 часов.

На конце шнура, вводимом в заряд, должен быть оживляющий капсюль-детонатор, который крепится на нем так же, как и на огнепроводном шнуре при изготовлении зажигательной трубки. Обрезать детонирующий шнур, вставленный в капсюль-детонатор, воспрещается.

Для взрывания детонирующего шнура конец его или концы нескольких шнуров (до шести) плотно привязывают к капсюлю-детонатору зажигательной трубки (рис. 9, а, б), а при числе концов более шести их привязывают к буровой шашке ВВ (рис. 9, в), которую взрывают зажигательной трубкой.

Рис. 9. Взрывание детонирующего шнура:

а — взрывание одного конца шнура; б — взрывание от двух до шести концов шнура; в — взрывание более шести концов шнура;

1 — концы детонирующего шнура; 2 — капсюль-детонатор зажигательной трубки; 3 — огнепроводный шнур зажигательной трубки; 4 — фитиль зажигательной трубки; 5 — шашка ВВ (буровая); 6 — капсюль-детонатор, вставляемый в заряд

Сращивание концов детонирующего шнура производится внакладку или узлами — простым и морским. Наиболее простым является сросток внакладку (рис. 10, а). Специальные шнуры должны плотно соприкасаться по длине не менее 10 см, для чего в двух местах перевязываются изоляционной лентой или шпагатом. Лучше передает детонацию сросток внакладку с оживляющим капсюлем-детонатором (рис. 10, б).

Сросток морским узлом безотказно передает взрыв присоединяемому шнуру. При изготовлении этого сростка концы шнуров следует туго стянуть между собой, но так, чтобы не повредить сердцевину (рис. 10, в).

Если заряды располагаются сбоку от основной магистрали, сростки делаются под углом (рис. 10, г).

Рис. 10. Сростки детонирующего шнура:

а — внакладку; б — внакладку с оживляющим капсюлем-детонатором; в — морским узлом; г — под углом

Для одновременного взрыва заряды взрывчатого вещества соединяются между собой по определенной схеме отрезками шнуров, образующих сеть детонирующего шнура. Сети детонирующих шнуров (рис. 11) бывают трех видов: последовательные, параллельные и смешанные.

При последовательной сети (рис. 11, а) прокладывается магистральный шнур, а от него к зарядам отходят участковые ответвления. Во избежание отказов при сростках внакладку необходимо следить, чтобы направление распространения детонации в шнурах ответвлений совпадало с направлением детонации в магистральном шнуре.

Для большей надежности взрыва в случае отказа ДШ на каком-либо участке между зарядами в последовательных сетях применяют замыкающий шнур, соединяя им между собой крайние заряды. Ответвления к магистрали следует присоединять не внакладку, а узлом. Только при этом условии замыкающий шнур передаст детонацию в противоположном направлении и обеспечит взрыв всех зарядов.

Если заряды соединяются отдельными отрезками ДШ без магистрального, то каждый отрезок должен иметь капсюль-детонатор на обоих концах.

При параллельной сети (рис. 11,6) от зажигательной трубки или запального заряда к каждому подрываемому заряду подается самостоятельный отрезок ДШ, благодаря чему отказ какого-либо отрезка ДШ не влияет на взрыв остальных зарядов. По сравнению с последовательным параллельное соединение требует большего расхода детонирующего шнура. При большом количестве зарядов, особенно если они расположены группами, например, при взрыве прогонов и опор моста, целесообразно применять смешанную сеть из ДШ (рис. 11, в), которая получается путем параллельного соединения нескольких последовательных ветвей между собой.

Рис. 11. Сети детонирующего шнура:

а — последовательная; б — параллельная; в — смешанная; 1 — заряды ВВ; 2 — детонирующий шнур; 3 — капсюли-детонаторы; 4 — зажигательная трубка

При прокладывании сетей из ДШ необходимо следить за тем, чтобы шнуры не пересекались, не соприкасались и не образовывали петель, так как при этом может произойти перебивание шнура без передачи детонации.

 

3. ЭЛЕКТРИЧЕСКИЙ СПОСОБ ВЗРЫВАНИЯ

При электрическом способе заряд ВВ взрывают электродетонатором, через который пропускают электрический ток. Этот способ служит для одновременного взрыва нескольких зарядов и для взрыва зарядов в точно установленное время (в этом его преимущество перед огневым способом), однако электрический способ требует более сложной материальной части и больше времени на подготовку объекта к взрыву.

Для производства взрыва ВВ электрическим способом необходимо иметь электродетонаторы, электрические провода и источники тока, проверочные и измерительные электроприборы.

Электродетонатор

Электродетонатор (рис. 12) представляет собой капсюль-детонатор, смонтированный в одной гильзе с электровоспламенителем (электрозапалом). Основной частью электровоспламенителя является мостик, представляющий собой тонкую проволочку, припаянную к концам жил двух изолированных проводов. Мостик окружен воспламенительным составом в виде твердой капельки, покрытой водоизолирующим слоем, и помещен в гильзу, где закреплен мастикой.

При пропускании электрического тока мостик электровоспламенителя накаливается и воспламеняет капельку, вспышка которой вызывает взрыв капсюля-детонатора.

Военные электродетонаторы имеют платино-иридиевый мостик и металлическую гильзу, в гражданских образцах применяется мостик из константана (сплава меди с никелем), а гильзы бывают картонные. Кроме электродетонаторов мгновенного действия, существуют электродетонаторы, взрывающиеся с замедлением в несколько секунд с момента пропускания тока. В таких электродетонаторах между капелькой воспламенительного состава и инициирующим взрывчатым веществом капсюля-детонатора помещен маленький отрезок огнепроводного шнура.

Рис. 12. Электродетонатор:

1 — капсюль-детонатор № 8; 2 — мостик; 3 — воспламенительный состав; 4 — провода; 5 —мастика

Выпускаются электровоспламенители (рис. 13) и в виде самостоятельных изделий, без капсюлей-детонаторов, вместо гильзы они имеют трубку и притом несколько большего диаметра, чем гильза электродетонаторов. Это делается для того, чтобы в случае необходимости в трубку электровоспламенителя можно было вставить капсюль-детонатор для изготовления электродетонатора в полевых условиях. До употребления открытый конец трубки электровоспламенителя закрывается пробкой от попадания влаги.

Рис. 13. Электровоспламенитель:

1 — медная гильза; 2 — мостик; 3 — воспламенительный состав; 4 — провода; 5 — мастика

Электровоспламенители и электродетонаторы очень боятся сырости. Их хранят в картонных коробках по 20 шт., картонные коробки укладываются в цинковые.

Правила обращения с электродетонаторами такие же, как и с капсюлями-детонаторами. Электровоспламенители в обращении совершенно безопасны, но при их срабатывании дульце трубки следует направлять в сторону во избежание ожогов.

Электродетонаторы и электровоспламенители обладают определенными электрическими характеристиками, называемыми параметрами, знание которых необходимо для обеспечения безотказности взрыва. Важнейшими параметрами электродетонатора (электровоспламенителя) являются расчетная сила тока воспламенения и расчетное сопротивление.

Безопасный ток, допускаемый при проверке электродетонаторов, не должен превышать 0,5 а.

Расчетная сила постоянного тока, обеспечивающая надежный взрыв одиночного электродетонатора с платино-иридиевым мостиком, должна быть в пределах от 0,5 до 5 а. При меньшем токе температура нагрева мостика может оказаться недостаточной для загорания капельки воспламенительного состава. При большем токе мостик может перегореть раньше, чем капелька успеет воспламениться.

Сопротивление мостика электродетонатора, измеряемое омметром, в холодном состоянии бывает в пределах 1–2 ом. При пропускании тока мостик нагревается и сопротивление его увеличивается примерно в 1,5 раза и составляет около 2,5 ом. Это сопротивление и является расчетным.

Когда нужно произвести одновременный взрыв группы электродетонаторов, то делается их калибровка, т. е. подбор электродетонаторов с одинаковым сопротивлением. Разница в величинах сопротивлений электродетонаторов, включенных в одну группу, допускается не более 0,1 ом. Если разница окажется более допустимой, то может произойти взрыв электродетонатора с наибольшим сопротивлением и размыкание цепи, а остальные электродетонаторы не взорвутся.

Калибровка электродетонаторов производится большим омметром, проверка целости нити мостика — малым омметром. В целях безопасности электродетонаторы при проверке или калибровке зарываются на 10–15 см в землю, помещаются за щиток из досок, железа или в металлическую трубку во избежание поражения осколками гильзы, разлетающимися на расстояние до 30 м.

Провода

Провода служат для передачи электрической энергии от источника тока к электродетонаторам. Наиболее удобно пользоваться саперными проводами: одножильным СП-1 и двужильным СП-2.

Каждая жила состоит из семи медных луженых проволок общим сечением 0,75 мм 2 . Провод имеет резиновую изоляцию и оплетку. Сопротивление 1 км одной жилы — 25 ом, вес провода СП-1 — 30 кг, СП-2 — 45 кг. Саперный провод бывает свернутым в бухты или намотанным на металлические катушки.

Перед прокладыванием сети из проводов производят их проверку на целость жилы и исправность изоляции.

Для проверки целости жилы оба конца проверяемого провода присоединяются к зажимам малого омметра (рис. 14, а). Стрелка омметра должна отклониться в сторону нуля. Это говорит, что жила цела. Если стрелка не отклоняется, то жила порвана. Для отыскания места внутреннего разрыва жилы нужно внимательно просмотреть весь провод, ощупывая его руками и слегка натягивая. В месте разрыва жилы изоляция будет легко растягиваться.

Рис. 14. Проверка целости жилы провода:

а — жила провода цела-стрелка омметра отклонилась вправо; б —отыскание места повреждения жилы; 1, 2, 3 места проколов иглой; 4 — игла

Место разрыва жилы можно обнаружить также следующим образом. Зачищенный конец проверяемого провода присоединяют к одному зажиму омметра. К другому зажиму присоединяют кусок провода с иглой на конце (рис. 14, б). Проверяемый провод разматывают с катушки и в некоторых местах прокалывают иглой изоляцию до соприкосновения с жилой. Проколы повторяются до тех пор, пока стрелка омметра не отклонится к нулю. Повторными проколами место повреждения уточняется. После этого кусок провода, имеющий внутренний порыв, вырезается, концы исправного провода сращиваются и проводится проверка его целиком на случай наличия старого разрыва. Места проколов заливают резиновым клеем или обматывают изоляционной лентой.

Исправность изоляции проверяется в том случае, если провод будет прокладываться в воде или сыром грунте. Для этой цели в сосуд с подсоленной водой (1–2 стакана поваренной соли на ведро воды) опускают зачищенный до блеска металлический лист площадью не менее 1500 см2 и бухту проверяемого провода. К металлическому листу присоединяют кусок провода, конец которого подключают к зажиму омметра. Ко второму зажиму присоединяют конец проверяемого провода. Изоляция считается исправной, если по прошествии 20–30 мин. сопротивление ее будет не менее 3000 ом. Меньшее сопротивление свидетельствует о неисправности изоляции.

Для нахождения места поврежденной изоляции нужно медленно вытягивать из сосуда конец провода, обтирая его насухо тряпкой; резкое отклонение стрелки омметра в сторону увеличения сопротивления покажет, что часть провода с испорченной изоляцией вышла из воды. Эти места изолируются лентой, резиновым клеем или специальной пропиточной битумной массой — озокеритом. Бывает, что резкого отклонения стрелки омметра не произойдет, сопротивление будет увеличиваться постепенно, по мере вытаскивания проверяемого провода из воды. Это говорит о том, что провод старый или бывший в употреблении и вся изоляция его ненадежна. Изоляция такого провода подлежит полностью пропитке озокеритом.

С саперным проводом необходимо обращаться аккуратно, сильно не натягивать при прокладке линий, не перекручивать. Снятый с линии провод должен быть очищен от грязи, промыт и просушен.

Саперный провод не рекомендуется долго держать на солнце, вблизи отопительных приборов, под дождем или на морозе. Лучше всего его хранить в сухом проветриваемом, неотапливаемом помещении.

Изоляцию провода периодически проверяют и пропитывают озокеритом.

Вместо саперного провода можно применять и любой другой изолированный провод: телефонный, электроосветительный, различные кабели и т. д. При использовании таких проводов необходимо измерить их сопротивление.

Источники тока

В качестве источников тока при электрическом способе взрывания применяются подрывные машинки, сухие элементы и батареи, могут быть также использованы любые аккумуляторные батареи, военные электрические станции, осветительные и силовые сети местных станций.

Подрывная машинка ПМ-1 (рис. 15) представляет собой миниатюрную динамомашину постоянного тока, которая приводится в действие заводной пружиной с помощью ключа. Машинка весит 7 кг и развивает напряжение до 290 в.

Рис. 15. Внешний вид подрывной машинки ПМ-1 с открытой дверцей:

1 — гнездо для хранения ключа; 2 — гнездо для спуска пружины; 3 — гнездо для завода пружины; 4 — зажимы; 5 — изолирующая пластинка; 6 — ключ; 7 — кожух, 8 — дверца; 9 — резиновая прокладка; 10 — винт запора дверцы; 11 — гнездо винта запора дверцы; 12 — ручка для переноски; 13 — станина

При сопротивлении электровзрывной сети, равном 290 ом, машинка дает ток силой 1 а, достаточный для взрыва электродетонаторов, включенных в сеть последовательно. Практически машинкой ПМ-1 можно взорвать до 100 злектродетонаторов, соединенных последовательно одножильным саперным проводом общей длиной до 1,5 км.

На передней стенке корпуса машинки, прикрываемой дверцей, имеются: зажимы для присоединения проводов электровзрывной сети, гнездо с надписью «пружина» для завода пружины и гнездо с надписью «взрыв» для освобождения спуска пружины при производстве взрыва.

Взрывание зарядов подрывной машинкой ПМ-1 производится следующими приемами:

— вынуть ключ из гнезда для хранения и открыть им дверцу;

— вставить ключ в гнездо «взрыв» и повернуть его против часовой стрелки до отказа;

— вставить ключ в гнездо «пружина» и, вращая его по часовой стрелке до отказа (6–7 оборотов), завести пружину;

— зачищенные концы проводов присоединить к зажимам машинки, прижав их плотно гайками, и не допускать соприкосновения проводов между собой и с корпусом машинки:

— вставить ключ в гнездо «взрыв» и по команде или сигналу повернуть его по часовой стрелке до отказа.

После взрыва концы магистральных проводов отключают от зажимов, доверху закрывают и завинчивают, а ключ вставляют в гнездо для хранения.

Подрывная машинка ПМ-2 (рис. 16) также является малогабаритной динамомашиной постоянного тока, приводимой в действие ключом от руки. Машинка весит 2,5 кг и развивает напряжение до 120 в.