Путешествия в космос

Васильев Михаил Васильевич

ГЛАВА ЧЕТВЕРТАЯ 

ДВИГАТЕЛИ КОСМИЧЕСКИХ КОРАБЛЕЙ

 

 

БОРЬБА ЗА СКОРОСТЬ

Инженер-конструктор И. А. Меркулов, один из создателей первого прямоточного воздушно-реактивного двигателя, считает, что решение задачи космических сообщений явится логическим развитием сегодняшней скоростной авиации. Постепенный рост скоростей и высот, достигнутых человеком, приведет к созданию сначала сверхвысотных самолетов, способных летать в ионосфере, затем — искусственного спутника, а после этого и к созданию аппарата, который сможет совершить полет к Луне или даже к Марсу.

С этим утверждением можно согласиться только отчасти. Космический полет по самой своей сути принципиально отличается от полета в атмосфере Земли. Космическим полетом называется полет, при котором созданный человеком аппарат движется вне атмосферы под влиянием сил двоякого рода: во-первых, сил инерции, сообщенных аппарату работой реактивных двигателей, во-вторых, сил всемирного тяготения. Современные летательные аппараты всегда в большей или меньшей степени используют для полета атмосферу, как аэропланы, или испытывают сопротивление воздуха, как высотные ракеты. Поэтому все эти полеты принципиально отличаются от полета космического.

Поэтому и нельзя ожидать постепенного перерастания авиации атмосферной в авиацию космическую. Пути развития той и другой по временам сближались, перекрещивались, но уже сегодня разошлись, и чем дальше, тем больше будут расходиться. Генеалогическую линию самолета надо начинать с идей Леонардо да Винчи и модели вертолета М. В. Ломоносова, проводить через аэродинамические исследования Н. Е. Жуковского, через реальные конструкции турбомоторных и реактивных самолетов вплоть до сегодняшних сверхзвуковых машин.

Развитие же космического корабля начинается с пороховой ракеты — всем известной игрушки, изобретенной в Китае в незапамятные времена — проходит через работы К. Э. Циолковского и ведет через сегодняшние составные жидкостные ракеты, которые уже далеко перекрыли достижения авиации и по скорости и по высоте полета и которые нельзя считать логическим развитием авиации. Видимо, эти ракетные аппараты и явятся прямыми предками грядущих космических кораблей.

Вместе с тем было бы неправильно считать, что развитие авиации не способствовало развитию высотной ракетной техники, что авиация не осуществила своим опытом разведку полета вообще, что целым рядом интереснейших технических решений, найденных в авиации, не пользуются конструкторы высотных ракет и не воспользуются конструкторы космических кораблей. И в этом плане развитие авиации, ее современное состояние и главным образом современное состояние реактивного двигателя, принятого на вооружение современной авиацией, не может не представить огромного интереса для астронавтики.

Авиация и астронавтика — родственные области науки и техники. Было время, когда развитие первой подготовляло путь для второй; настанет время, когда вторая поделится своими достижениями с первой и поможет ее дальнейшему развитию.

Развитие авиации было стремительным, торжество ее — беспримерным в истории. Ни одна отрасль науки и техники никогда до этого не развивалась с такой быстротой и размахом.

За кратчайший исторический срок в авиации сменился целый ряд двигателей. Первые изобретатели пытались ставить на свои самолеты паровую машину. Ее скоро сменил двигатель внутреннего сгорания, достигший значительного совершенства. В последнее десятилетие он был вытеснен со скоростных самолетов реактивным двигателем. А в настоящее время в ряде стран ведутся работы по использованию в качестве самолетного двигателя атомного реактора.

Соответственно изменялась и предельная высота полета — так называемый «потолок» самолета.

Семейство реактивных двигателей (снизу вверх):  1  — пороховые ракеты и сегодня применяющиеся как дополнительные двигатели при взлете тяжело нагруженных воздушных кораблей.  2  — турбокомпрессорный реактивный двигатель — самый распространенный двигатель современной скоростной авиации. Встречный воздух сжимается компрессором а ; в него в камере сгорания б впрыскивается горючее; газы горения вращают турбину в и, вылетая через сопло г , создают реактивную силу.  3  — в прямоточном реактивном двигателе встречный воздух, пройдя решетку а , попадает в камеру сгорания б , и газы горения выбрасываются через сопло в. 4  — жидкостный реактивный двигатель — двигатель будущих космических кораблей. Горючее а и окислитель б подаются турбонасосами в в смесительную камеру г . Горючая смесь сгорает в камере д , и газы горения вырываются в сопло е . Для привода турбонасоса используется перекись водорода ж .

Первые самолеты летали очень низко над землей — высота их подъема едва достигала нескольких десятков метров. К 1920 году «потолок» самолета поднялся до 4000 метров. Сегодня он превзошел 18 тыс. метров, хотя серийные самолеты, как правило, и не поднимаются на такую высоту.

История авиации — это в значительной степени история борьбы за скорость и высоту полета.

Первые самолеты имели скорость 40–50 километров в час, и это казалось тогда стремительным полетом. Всего 45 лет назад она не превышала 80 километров в час, а сегодня зарегистрированным рекордом скорости самолета является 1215 километров в час! Эта скорость почти равна скорости звука. Нерегистрируемые скорости на пикировании в высотных слоях атмосферы значительно превосходят и эту официальную скорость. Скорости же в 1100, 1200 километров в час стали обычными скоростями серийных скоростных самолетов.

Исследователи истории авиации начертили по годам кривую роста скоростей самолета. И вот оказалось, что получилась не плавная линия, на которой год за годом происходил рост скоростей на определенную величину, а волнистая линия с участками крутого роста, сменяемыми участками почти горизонтальными — роста скорости не происходило.

Ученые сопоставили эти участки крутого подъема с появившимися в те годы конструкциями самолетов, и оказалось, что они совпадали с моментом, когда в конструкцию самолета вводилось какое-либо серьезное техническое новшество.

Так, в 20-х годах быстрый рост скоростей самолетов объясняется переходом от тонкого крыла к толстому, в котором можно было спрятать шасси с колесами, что в значительной степени уменьшало сопротивление самолету потока воздуха. Следующий скачкообразный рост скоростей в первой половине 30-х годов совпадает с введением наддува в цилиндры двигателя. До этого двигатель вынужден был «дышать» забортным воздухом, который чем выше, тем становился разреженнее. Двигатель «задыхался» в этом разреженном воздухе, терял мощность. И самолет не мог использовать из-за этого преимуществ, даваемых уменьшившимся сопротивлением воздуха.

Боевые пороховые ракеты — близкие родственники осветительных ракет — были могучим оружием советских летчиков в борьбе против фашистских оккупантов.

Введение наддува обеспечило двигателю самолета возможность и в разреженных слоях атмосферы «дышать» уплотненным воздухом. И скорость самолета повысилась на добрых 150–200 километров в час.

Но самый большой и резкий скачок кривой роста скоростей самолетов произошел где-то около 1945 года. Это в авиацию пришел реактивный двигатель. Скорость самолета поднялась на 250–300 километров в час. Замена поршневого двигателя на самолете реактивным двигателем была подлинной технической революцией. Вместе с тем это момент, когда линии развития авиации и астронавтики сблизились и пересеклись, взаимно обогащая друг друга.

Первое и основное преимущество реактивного двигателя перед поршневым состояло в чрезвычайно высокой мощности при небольшом весе. Борьба за снижение «удельного веса» авиационного двигателя — снижение веса двигателя на единицу развиваемой мощности — велась очень давно. Если в 1910 году «вес 1 лошадиной силы» составлял свыше 2,5 килограмма, то к 1950 году — за 40 лет — он упал до 0,4 килограмма.

Мощность реактивного двигателя имеет несколько иное выражение, чем у поршневых двигателей, поэтому сравнение «удельных весов» поршневых и реактивных двигателей несколько затруднительно. Однако все же некоторое сравнение возможно. Так, если взять обычный авиационный жидкостный реактивный двигатель весом в 150 килограммов, развивающий силу тяги до 3000 килограммов, то при скорости полета в 2000 километров в час полезную тяговую мощность такого двигателя следует считать равной примерно 22 тыс. лошадиных сил. Значит, каждая лошадиная сила этого двигателя «весит» всего 6 граммов — в несколько десятков раз меньше, чем у лучших поршневых двигателей.

О возможностях, которые открыл реактивный двигатель авиации, говорит такой факт. В настоящее время в авиации не редки реактивные скоростные самолеты с тяговым усилием двигателей в 4300 килограммов. Пересчет показывает, что при обычной для таких самолетов скорости в 1100 километров в час это тяговое усилие эквивалентно мощности поршневого двигателя в 35 тыс. лошадиных сил. Даже самые лучшие поршневые двигатели с «удельным весом» всего в 400 граммов на лошадиную силу, развивающие такую мощность, должны весить около 14 тонн. Между тем общий взлетный вес скоростного реактивного самолета с рассматриваемыми характеристиками может быть меньше 14 тонн, а вес самих реактивных двигателей едва ли превосходит 3 тонны.

Современные авиационные реактивные двигатели очень отличаются от тех двигателей, которые будут работать на космических кораблях. Однако многое из этих двигателей может быть освоено и использовано двигателями космических кораблей. Это относится и к жаропрочным материалам и к форме камер сгорания и сопел и т. д.

Посмотрим, как устроены и работают современные авиационные реактивные двигатели.

Двигатели этих скоростных реактивных самолетов — ближайшие родственники двигателей будущих космических кораблей.

 

ДВИГАТЕЛЬ СКОРОСТНОГО САМОЛЕТА

 

Предложенный К. Э. Циолковским ракетный двигатель, работающий на жидком топливе, содержал в своих баках все — и горючее и окислитель. Он был рассчитан для работы в безвоздушном пространстве; для этой цели предложенная Циолковским конструкция была единственно возможной и единственно правильной.

Но ведь самолет рассчитан для полета в воздухе, в котором вполне достаточно кислорода для горения любого практически применяемого топлива. Поэтому не следует возить с собой на самолете окислитель, который можно брать прямо из атмосферы.

В том, что реактивный двигатель самолета использует в качестве окислителя кислород воздуха, а ракетный двигатель космического корабля должен будет взять его с собой — основная разница между ними.

…С прозрачного синего неба, в котором, словно подчеркивая его синеву и прозрачность, лишь кое-где плавают легкие кучевые облачка, доносится гул самолета. Люди поднимают головы, смотрят в сторону этого гула, стараясь увидеть его источник. Но небо в той стороне чисто. И только совсем в стороне случайно некоторые замечают черную точку, несущуюся по небосклону. Вот она качнулась в воздухе, и в лучах солнца сверкнули серебристые крылья. Она изменила движение и пошла почти вертикально вверх. Вот она почти растаяла в голубом просторе. А звуки доносятся к нам из той части неба, в которой ее уже давно нет. Это летает реактивный самолет.

Еще несколько стремительных разворотов в воздухе, мертвых петель, вертикальных взлетов и падений — и, стремительно снизившись, краснозвездный самолет уже бежит по бетонной дорожке аэродрома. У него красивое тонкое тело, узкие, отброшенные назад, крылья, высоко поднятое хвостовое оперение. Он похож на метательный снаряд, на стрелу, выбрасываемую гигантской катапультой. И полет его — отнюдь не парение в воздухе прежних самолетов. Воздух больше мешает, чем помогает его полету…

В передней части корпуса самолета большое круглое отверстие. Когда самолет движется с большой скоростью, в это отверстие попадает встречная струя воздуха. Она сразу же поступает на лопасти компрессора, вращающиеся со скоростью 14–15 тыс. оборотов в минуту. Компрессор сжимает воздух, делает его более плотным. Этот сжатый воздух направляется в камеры сгорания, в которые вбрызгивается и жидкое топливо. Оно смешивается с воздухом и моментально сгорает. Температура в камере сгорания поднимается выше 1500°, и этот раскаленный поток сжатых газов устремляется в выхлопные сопла. Но на пути их встречается неожиданное препятствие — лопасти газовой турбины. Огненный вихрь ударяет в них и заставляет вращаться. Эта турбина и приводит в движение компрессор, который сжимает входящий в двигатель воздух. Пройдя турбину, поток раскаленного газа попадает в выхлопное сопло.

Сопло устроено расширяющимся к выходному отверстию. В таком расширяющемся сопле по мере продвижения газов от наиболее узкого места к широкому газы расширяются, снижаются их температура и давление, но непрерывно растет скорость движения. А мы уже знаем, что чем больше скорость выхлопных газов, тем больше будет тяга двигателя, тем он будет мощнее.

Современный реактивный авиационный двигатель — двигатель высоких параметров. Свыше 1500° температура в его камере сгорания, сотни и тысячи метров в секунду — скорость газовых потоков в реактивном сопле, 15 тыс. оборотов в секунду — скорость вращения дисков компрессора и турбины.

Вместе с тем реактивный двигатель очень прост по своему устройству. У него нет частей, совершающих возвратно-поступательное движение, как у поршневого двигателя, нет или почти нет зубчатых и других передач. Даже в тех случаях, когда на валу такого двигателя устанавливают впереди пропеллер, это не требует сложных устройств, вроде тех, что существуют у поршневых моторов для превращения возвратно-поступательного движения во вращательное.

Но, конечно, торжество реактивного двигателя в авиации еще отнюдь не означает окончательной смерти поршневого двигателя. Реактивный двигатель в настоящее время еще несколько менее экономичен, чем поршневой. Поэтому он применяется главным образом в тех случаях, когда необходимо развить высокую скорость полета. На малых же скоростях полета, километров до 750 в час, еще долго основным видом самолетного двигателя будет поршневой двигатель внутреннего сгорания.

Современная техника знает несколько видов реактивного двигателя. Мы здесь рассказали о так называемом турбореактивном двигателе (сокращенно — ТРД), наиболее широко распространенном в наше время. Такой двигатель наиболее удобен, экономичен для работы на скоростях свыше 750 километров в час и до 1500 километров в час.

При более высокой, чем последняя названная скорость целый ряд деталей реактивного двигателя становится ненужным, лишним. Двигатель еще упрощается.

В первую очередь отпадает необходимость в компрессоре. При скоростях свыше 1500 километров в час воздух специально сжимать уже не надо; он достаточно уплотняется стремительным движением самолета. Отпадает необходимость и в газовой турбине. Двигатель превращается по существу в трубу, в головное отверстие которой врывается сжатый движением воздух, в середине производится впрыскивание топлива и его сгорание, а задняя часть представляет собой расширяющееся сопло. Вообще никаких вращающихся и движущихся частей (если не учитывать насосов для подачи горючего) не содержит такой двигатель. Он называется прямоточным воздушно-реактивным двигателем (сокращенно — ПВРД).

ПВРД — двигатель будущего, двигатель сверхзвуковых самолетов.

Есть и другие системы реактивных двигателей: пульсирующий, с открывающимися и закрывающимися клапанами, турбовинтовые, снабженные в качестве движителя не только соплом, но и винтом, пороховые, работающие на твердом топливе, и т. д. Но они удобны при более низких скоростях, чем ТРД и ПВРД. В решении проблемы космических полетов они не сыграли и, по всей вероятности, не сыграют никакой роли.

 

САМАЯ ТРУДНАЯ ЧАСТЬ ПУТИ

 

А какое же значение могут иметь для решения проблемы космических полетов турбореактивный и прямоточный воздушнореактивный двигатели? Ведь они могут работать только в атмосфере, да и то не более чем до высоты в 40–50 километров. Дальше воздух становится столь разреженным, что его практически ни на какой скорости нельзя уже сжать до плотности, достаточной для горения топлива.

Но ведь этот первый участок пути — 40–50 километров сквозь атмосферу — и есть самый трудный участок. Большая часть горючего современной высотной ракеты тратится именно на преодоление этого участка пути.

Один из советских деятелей астронавтики, Н. А. Варваров, предложил применить для преодоления этого участка пути именно наиболее экономичные и удобные здесь турбореактивные и прямоточные воздушнореактивные двигатели.

Вот как представляет он себе взлет космического корабля.

Гигантский крылатый корабль с широкими крыльями, в которые вмонтированы прямоточные воздушнореактивные двигатели и под которыми в специальных кабинках подвешены турбореактивные двигатели, встанет у края наклоненной, устремленной ввысь эстакады, похожей на половину моста, ведущего в небо, но почему-то не достроенного его создателями.

Почти 5 километров будет длина этого моста — стартовой площадки для космического полета.

Крылатый корабль, очень похожий на сверхтяжелый самолет и не похожий на космическую ракету, какой мы ее себе сегодня представляем, не включая двигателей, помчится по эстакаде, увлекаемый специальной стартовой тележкой. Достигнув края эстакады, он, как камень, брошенный из пращи, полетит по воздуху. И вот тогда-то включаются турбореактивные двигатели, подвешенные под его крыльями. Они подхватят гигантский самолет и понесут его вперед и ввысь, все ускоряя скорость полета. До высоты около 20 километров и до скорости порядка 1500 километров в час поднимут и разгонят они корабль. А когда будут достигнуты эти величины, они отцепятся от широких крыльев самолета и спустятся на парашютах вниз.

На смену им включаются прямоточные воздушнореактивные двигатели, вмонтированные в крылья. Все выше и выше поднимают они самолет, все больше растет его скорость. Где-то на высоте около 50 километров, сообщив самолету скорость до 5000 километров в час, выключатся они и отвалятся вместе с большей частью широких крыльев корабля, уже не нужных ни в качестве «опоры» на воздух, ни в качестве баков для горючего.

И сразу корабль перестанет быть похожим на самолет и приобретет сходство с космической ракетой. Довершая сходство, включается его жидкостный ракетный двигатель еще разгоняя корабль и унося его ввысь. Может быть, не одна ступень, а две или три ступени жидкостных реактивных двигателей будет включаться последовательно. Но уже первая из этих ступеней включается не у Земли, а там, где почти нет атмосферы, и тогда, когда корабль набрал значительную часть космической скорости, когда он сделал первый шаг на пути к звездам.

Развивая свою идею, Варваров считает, что переход с одного типа двигателя на другой в дальнейшем можно будет осуществлять, не сбрасывая двигатели, а меняя корабли. Космический корабль для взлета с Земли превращается в целую серию аэропланов, предназначенных для полета на разных высотах и с разными скоростями. Сыграв свою роль, эти самолеты, ведомые собственными экипажами, опускаются на Землю.

Идея Н. А. Варварова — сменять на различных этапах взлета тип двигателя — бесспорно содержит рациональное зерно. В настоящее время имеются уже довольно детально разработанные проекты высотных ракет, в которых использована эта мысль. Так, в иностранной печати имеются сообщения о проекте составной ракеты для запуска искусственного спутника, первая ступень которого состоит из турбореактивных двигателей, подобных тем, что устанавливаются на современных реактивных самолетах. Это позволяет хотя бы на первом этапе пути использовать кислород не из баллонов, а из окружающего воздуха и тем самым несколько снизить взлетный вес составной ракеты.

Так представляют себе некоторые ученые старт космического корабля. Целый ряд двигателей сменит он на пути в небо. Первоначальную скорость ему придает, сбросив его с наклонной эстакады, электрическая платформа. Турбореактивные двигатели, подвешенные под крыльями, пронесут корабль со все возрастающей скоростью сквозь плотные слои атмосферы. Затем включаются прямоточные воздушно-реактивные двигатели, а сменит их жидкостный реактивный двигатель, и только вторая ступень жидкостной ракеты отправится в космический рейс. Отработавшие двигатели и части космического корабля будут сбрасываться.

 

ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ

 

Вот он, жидкостный реактивный двигатель современной высотной ракеты. Такие же двигатели унесут в космическое пространство и первый межпланетный корабль.

Но все же основным двигателем космического корабля ближайшего будущего станет жидкостный ракетный двигатель. Его идею выдвинул К. Э. Циолковский в 1903 году. Через 40 лет после этого жидкостный ракетный двигатель поднял ракету уже на высоту около 200 километров. Сегодня эта высота больше чем удвоена.

Устройство жидкостного ракетного двигателя просто. Никаких принципиальных изменений не смогли внести в него конструкторы и через 50 лет после рождения идеи.

И окислитель и горючее несет жидкостная ракета в своем корпусе. Они, конечно, разделены там, содержатся в разных баках. Наиболее часто в качестве горючего применяются спирты — метиловый и этиловый, реже бензин. В качестве окислителя обычно используют кислород.

Рассмотрим в качестве примера устройство жидкостной ракеты «Фау-2».

Два бака — со спиртом и с кислородом — заполняют основную часть корпуса ракеты.

Проект грузовой ракеты-парома для двусторонней связи Земли с искусственным спутником. Три ее ступени имеют ряд аналогичных частей и устройств. К их числу относятся жидкостные ракетные двигатели 1, турбонасосы для подачи топлива 2, баки с перекисью водорода 3 для работы этих насосов, баки для горючего 4 и окислителя 5. Первая и вторая ступень снабжены парашютами для спуска 6. Первая ступень имеет хвостовое оперение для управления в атмосфере 7, третья ступень — несущие плоскости с рулями управления 8 для посадки на Землю при возвращении. Рубка управления 9 находится рядом с пассажирскими каютами и помещениями для багажа 10. Полезный груз этой ракеты составляет 25 тонн.

Из этих баков трубопроводы ведут в камеру сгорания. В эти трубопроводы включены мощные насосы. Ведь свыше 125 килограммов топлива должны подать эти насосы в камеру сгорания за каждую секунду работы мотора. Приводятся они в движение от своего собственного двигателя — газовой турбины, работающей на перекиси водорода.

Перекись водорода для работы турбины насосов заключена в специальном баллоне. Из него перекись водорода поступает в небольшую собственную камеру сгорания, где под действием перманганата натрия она быстро разлагается на пар и газ. Эта паро-газовая смесь, имеющая сравнительно высокую температуру и давление, и вращает газовую турбину насосов. Жидкий кислород насосы подают сразу в камеру сгорания. Спирт сначала прокачивается сквозь специальные полости, окружающие сопло и камеру сгорания, и охлаждает их. Если бы не это охлаждающее действие горючего, стенки камеры сгорания и сопла расплавились бы. Ведь температура газов в камере сгорания поднимается почти до 3000°, а температура стенок при этом не превосходит 1000°.

Обеспечив охлаждение наиболее накаленных частей двигателя, спирт поступает в камеру сгорания через форсунки, находящиеся в ее задней части. Крохотные форсунки с топливом окружают большую форсунку, через которую поступает кислород.

Ежесекундно в камере сгорания вступают в реакцию свыше 125 килограммов топлива — спирта и кислорода. Раскаленные газы горения устремляются через расширяющееся сопло наружу. Скорость истечения газов горения у современных жидкостных ракетных двигателей превосходит 2000 метров в секунду. Такой двигатель развивает тягу в несколько десятков тысяч килограммов. Проработав несколько десятков секунд, двигатель поднимает ракету на высоту 150–200 километров.

В верхнем отделении обтекаемого с заостренным носом корпуса ракеты размещается полезный груз. В послевоенные годы им обычно бывают приборы для исследования верхних слоев атмосферы.

Как видим, жидкостный ракетный двигатель устроен почти так же просто, как и прямоточный воздушнореактивный двигатель. В нем также нет движущихся частей, если не считать насосов для подачи топлива и турбинки, приводящей их в движение.

Жидкостный ракетный двигатель в настоящее время является единственным двигателем, с помощью которого человек поднимает свои приборы в самые верхние слои атмосферы. Этот двигатель будет, вероятно, первым двигателем, который унесет сначала приборы, а затем и людей в первые космические полеты. Может быть, освоение Луны и первые разведочные полеты вокруг ближайших планет можно будет осуществить с помощью этого двигателя.

Над жидкостным реактивным двигателем еще много будут работать ученые и инженеры, совершенствуя его, стараясь выжать из него все его возможности. Это и понятно: на него возлагаются не малые надежды, и нет сомнения, что он их не обманет. Но более отдаленное будущее космических сообщений принадлежит не ему. Оно принадлежит атомной ракете.

Несколько цистерн с топливом — заряд современной крупной высотной ракеты.

 

АТОМНАЯ РАКЕТА

 

Всю жизнь искал К. Э. Циолковский наиболее энергоемкие топлива для космического корабля, которые бы, занимая мало места, содержали большое количество энергии. Лучшими из известных ему топлив были водород в качестве горючего и кислород в качестве окислителя. Именно на этом топливе и испытывались самые первые образцы жидкостных ракет.

Последователь К. Э. Циолковского Ю. В. Кондратюк предложил заменить обычный кислород трехатомным — так называемым озоном. По сравнению с кислородом озон может обеспечить большую энергоемкость. Кондратюк же предложил добавлять к жидким горючим твердые, сжигать в камере реактивного двигателя металлы. Но все эти горючие не обеспечивали окончательного решения задачи.

Теперь топливо, которое сможет обеспечить взлет ракеты с Земли, ее посадку на соседней планете и возвращение на Землю без заправок в пути и не особенно перегружая космический корабль, есть. Это — атомное горючее.

Однако атомное горючее обладает целым рядом специфических особенностей. Применять его для ракетного двигателя не так-то просто.

При расщеплении ядра атома урана во все стороны излучаются так называемые гамма-лучи, обладающие большой проникающей способностью, разрушительно действующие на организм человека. Мы еще не знаем никаких средств защиты от этих лучей, кроме как экранироваться от них толстым слоем бетона. Вес такого экрана составляет несколько тонн на квадратный метр его площади. Найти эффективные способы защиты от этих лучей — одна из важнейших нерешенных задач, без которых невозможно рождение атомной ракеты.

Настанет время, и в небо поднимутся сверхскоростные ракетные самолеты, работающие на атомном горючем. Вот одна из возможных схем работы такого двигателя. Воздух поступает в компрессор  1 , и в него вводится урановая пыль. Из компрессора эта смесь поступает в реактор  2 , состоящий из ряда графитовых сопел. В распыленном уране начинается ядерная реакция, температура смеси резко повышается, и она устремляется в циклон  3 , где выделяется направляемая для дальнейшего использования по трубе  4 урановая пыль. А сжатый, нагретый до высокой температуры, воздух проходит газовую турбину  6  и попадает в сопло  5 , создавая реактивную тягу.

При расщеплении ядра атома урана осколки его движутся в разные стороны со скоростями в несколько десятков тысяч километров в секунду. Кинетическая энергия этих осколков переходит в тепловую, и металл в реакторе — так называют устройства, в которых искусственно осуществляются реакции распада ядер — нагревается до высокой температуры. Реактор приходится постоянно интенсивно охлаждать. Тепло, уносимое с охлаждающим реактор веществом, и является в настоящее время единственным, которое мы научились полезно использовать. Ни лучистой энергии, выделяющейся при расщеплении атомного ядра, ни кинетической энергии осколков ядра мы непосредственно ни улавливать, ни превращать в другие виды энергии для полезного использования еще не умеем.

Проекты атомных реактивных двигателей, уже опубликованные в печати, исходят из возможности использовать только тепловую энергию распада ядра атома. При этом во всех этих проектах предусматривается необходимость иметь на борту корабля, кроме атомного горючего, большой запас теплоносителя — вещества, которое, будучи нагрето до высокой температуры в атомном реакторе, разгоняется потом в сопле и выбрасывается наружу, как газы горения в жидкостной ракете.

Согласно одному из таких проектов, атомный космический корабль будет иметь в головной части помещение для пассажиров, а вся средняя его часть будет заполнена рабочим веществом — теплоносителем. В качестве этого вещества предполагается использовать водород, обладающий большой теплопроводностью, в связи с чем его, видимо, можно будет легко и быстро нагреть до высокой температуры.

В задней части ракеты находится атомный реактор. Баки с теплоносителями являются заслонкой, защитой от излучаемых им вредоносных гамма-лучей.

Здесь же, рядом с атомным реактором, находится теплообменник, заменяющий камеру сгорания. В нем тепло, вырабатываемое в атомном реакторе, передается водороду, раскаленная струя которого, так же как и в обычном жидкостном реактивном двигателе, выбрасывается в расширяющееся сопло.

Теплообмен между атомным реактором и рабочим телом — водородом — один из наименее разработанных и наиболее сложных элементов этого проекта.

Ведь от реактора водороду надо передать огромные количества тепла, чтобы струю его разогреть за те краткие мгновения, что она проходит теплообменник, до 8000-10 000°. И при этом надо обеспечить интенсивное охлаждение всех элементов двигателя, которые, конечно, не смогут выдерживать такой температуры. А для того, чтобы нагреть до этой температуры водород, надо, повидимому, иметь еще более высокую температуру в самом реакторе. Задача эта, с точки зрения сегодняшней техники, почти неразрешима.

Представляет интерес такая схема теплообменника. Уран, нагретый в реакторе до температуры, при которой он переходит в газообразное состояние (однако, так как он занимает прежний объем, реакции ядерного расщепления в нем не прекращаются ни на минуту), тонкой струйкой впрыскивается в теплообменник, представляющий собой нечто вроде обычной камеры сгорания. В эту же камеру вбрызгивается жидкий водород. Парообразный уран, имеющий чрезвычайно высокую температуру, передает свое тепло водороду и конденсируется в крохотные капельки жидкого металла, которые подхватываются током водорода и уносятся в расширяющееся сопло двигателя.

При движении по соплу все увеличивается скорость водородной струи, которая при этом охлаждается. Но по мере ее охлаждения все больше тепла передает ей уран, который во время этого движения из жидкого превращается в твердый, металлический. Крохотные пылинки этого урана, несколько отставая от потока водорода, продолжают двигаться к выходу из сопла. Но уран слишком дорог, чтобы выбрасывать его в качестве рабочего вещества.

Водородно-урановой струе в сопле придают вихревое движение. Центробежная сила отбрасывает тяжелые пылинки урана к периферии, где их уже не представляет труда собрать и направить обратно в атомный реактор. А струя водорода устремляется дальше, к выходу из сопла…

Американский ученый Е. Штудингер сообщил о другом интересном проекте ракеты, использующей свойства элементарных частиц. В качестве рабочего вещества он предлагает применить цезий или рубидий. Пары этих металлов ионизируются при столкновении с раскаленной платиновой сеткой, разделяются на положительно заряженные ионы и несущие отрицательный заряд электроны. Эти частицы в мощном электромагнитном поле отделяются друг от друга и разгоняются в обычных ускорителях элементарных частиц до чрезвычайно высоких скоростей в десятки и сотни километров в секунду. Оба потока элементарных частиц, доведенных до столь высокой скорости, направляются параллельными путями в реактивное сопло и там они соединяются, образуя струю быстро летящих молекул газа, которая и создает реактивную силу…

Все это только самые первые, ориентировочные, зачастую технически очень трудно выполнимые идеи. По всей вероятности, многие из них будут отброшены в ходе развития техники, многие будут так переработаны, что их и узнать будет невозможно. Разве мог себе представить первобытный человек, впервые открывший способ добывания огня, как его открытие будет использовано в топке парового котла и в цилиндре двигателя внутреннего сгорания? Открыв энергию атома, мы еще и в самой малой мере не можем себе представить всех грядущих применений этой могучей силы, всех последствий, которые она принесет человечеству, и даже конкретно того, как будет работать атомный двигатель.

Может быть, научатся направлять в одну сторону — в сторону сопла все осколки урановых ядер, производя взрыв его ядер слой за слоем, как производим сжигание в ракете обычного пороха. Этот поток обломков атомных ядер, движущихся со скоростью в десятки тысяч километров в секунду, и будет двигать ракету.

Может быть, научатся получать из уранового реактора очень экономично, с большим коэффициентом полезного действия, непосредственно не тепловую, а электрическую энергию. Тогда выхлопное сопло космической ракеты превратится в соленоид гигантской силы, в своеобразную электропушку, «стреляющую» металлической пылью, которая, проходя внутри этого соленоида, его электромагнитным полем будет разгоняться до скорости 8-10 километров в секунду.

Но это все — догадки. Ясно одно: человек овладел сказочной силой расщепленного атома. И не далек день, когда он сумеет использовать эту силу и в двигателе космического корабля.

Мы были узники на шаре скромном,
В. Брюсов

И сколько раз, в бессчетной смене лет,

Упорный взор Земли в просторе темном

Следил с тоской движения планет.