Мир многих миров. Физики в поисках иных вселенных.

Виленкин Алекс

Часть II. Вечная инфляция

 

 

Глава 7

Антигравитационный камень

Теория инфляции стала основной темой моей работы вскоре после того семинара в Гарварде, где я впервые о ней услышал. Надо сказать, что если бы я был более склонен к мистике, то мог бы заметить предзнаменования этого еще до семинара Гута. Определенные указания на отталкивающую гравитацию были как раз в той работе, которой я занимался в университете Тафтса.

Кампус Тафтса, стоящий на пологом склоне холма и окруженный тенистыми вязами, наполнен атмосферой изящества и покоя. Поднимаясь по ступеням на холм, к ядру кампуса, и проходя мимо укрытой ивами часовни в романском стиле, можно заметить странный памятник. Большая гранитная плита поднимается вертикально из земли подобно старинному надгробию. Надпись на ней гласит:

"Данный монумент воздвигнут Роджером У. Бэбсоном, основателем Фонда исследований гравитации. Он призван напоминать студентам о прекрасном будущем, когда будут открыты полуизоляторы, способные обуздать гравитацию как свободную энергию и сократить число авиакатастроф".

Это пресловутый антигравитационный камень, знак моей судьбы.

Роджер Бэбсон, основатель Бэбсоновского колледжа, был живым свидетельством того, как проницательность в управлении бизнесом может мирно уживаться с самыми ненаучными идеями. Он утверждал, что, опираясь на законы механики Ньютона, предсказал биржевой крах 1929 года и последовавшую за ним Великую депрессию. С Ньютоновой помощью он сколотил огромное состояние и в благодарность сэру Исааку выкупил помещение, служившее последним местом проживания Ньютона в Лондоне, а также яблоню из потомства того знаменитого дерева, которое росло возле родного дома Ньютона в Линкольншире. Согласно легенде, именно с него упало яблоко, которое навело Ньютона на мысль о гравитации. И, как вы могли догадаться, именно гравитация занимала центральное место во вселенной Бэбсона.

Одержимость Бэбсона гравитацией восходит к временам его детства, когда его сестра утонула в реке. Он винил в ее смерти гравитацию и решил освободить человечество от ее фатального притяжения. В своей книге "Гравитация — наш враг номер один" Бэбсон описывает преимущества, которые принес бы изолятор, противодействующий гравитации. Он бы уменьшил вес самолетов и повысил их скорость; его применение в подошвах обуви снизило бы вес при ходьбе. Знаменитый изобретатель Томас Эдисон, с которым Бэбсон дружил всю жизнь, навел его на мысль, что в коже птиц может содержаться некое антигравитационное вещество, и Бэбсон немедленно приобрел коллекцию из пяти тысяч птичьих чучел. Неясно, что именно он с ними потом делал, но, очевидно, это направление исследований не принесло успеха.

К чести Бэбсона надо признать, что он действительно вкладывал деньги в то, о чем говорил. Он сделал пожертвования нескольким университетам, включая Тафтский, чтобы способствовать антигравитационным исследованиям. Единственным условием этого гранта была установка в кампусе данного монумента с надписью.

Странное сооружение смущало администрацию Тафтса и послужило поводом для многочисленных студенческих забав. Время от времени оно исчезает, а потом появляется там, где его менее всего ожидают найти. Однажды оно преградило вход попечительскому совету и президенту университета в день вручения дипломов. В другой раз казалось, что камень действительно пропал, но чудесным образом он объявился на своем месте спустя десять лет. Оказалось, что группа студентов зарыла его где-то на территории кампуса, а затем выкопала и вернула на место на юбилейной встрече выпускников. Одной только гравитации было явно не под силу удержать камень на постаменте, так что в конце концов его закрепили в земле при помощи цемента.

Поскольку мало кто из ученых станет утверждать, что ведет активные исследования по антигравитации, получить деньги Бэбсона оказалось весьма непросто. Не то чтобы никто этого не пробовал: президент университета Джин Мейер, диетолог по специальности, безуспешно пыталась доказать, что потеря веса — это антигравитация. После многих лет дискуссий и юридических доказательств деньги наконец пошли на учреждение Института космологии Тафтса.

Как у любой уважающей себя академической организации, у нашего института есть свой уникальный ритуал — церемония "инаугурации" получающих докторскую степень по космологии. После защиты диссертации на голову новоиспеченного доктора, стоящего на коленях перед антигравитационным камнем, роняют яблоко. Оно падает из руки научного руководителя работы и должно быть съедено новоиспеченным доктором.

Рис. 7.1. Доктор Виталий Ванчурин (Vitaly Vanchurin) после присуждения ему докторской степени в окружении сотрудников Института космологии. Слева направо Ларри Форд (Larry Ford), Кен Олам (Ken Olum) и автор.
фото: Делия Перлов (Delia Perlov).

К моменту учреждения Института космологии Бэбсон уже давно умер, а его Фонд гравитационных исследований превратился в респектабельное учреждение, выдающее гранты на исследования по гравитационной тематике. Никто, естественно, не ждал, что космологи Тафтса станут изучать антигравитацию, но, как это ни удивительно, они занялись именно этим. Большая часть исследований в институте связана с ложным вакуумом и отталкивающей гравитацией, которую естественно считать антигравитацией. Так что, я думаю, мистер Бэбсон не смог бы найти лучшего применения своим деньгам. Даже несмотря на то, что мы так и не преуспели в сокращении числа авиакатастроф.

 

Глава 8

Вечная инфляция

 

Вселенная за горизонтом

Что лежит за нашим сегодняшним горизонтом? Этот вопрос занимал меня с самых первых дней знакомства с инфляцией. Если нам видна лишь крошечная часть Вселенной, то какова же ее общая картина — вроде того вида нашей планеты, что открывается космическому путешественнику, когда его корабль удаляется от Земли?

Теория возмущений плотности давала об этом некоторое представление. В соответствии с нею рисунок распределения галактик в пространстве определяется квантовыми флуктуациями, которые испытывало скалярное поле во время инфляции. Этот процесс был случайным, и потому некоторые области такого же размера, как наша, содержат больше галактик, а другие — меньше. Причина, по которой галактика Млечный Путь находится именно здесь, состоит в том, что скалярное поле в этом месте едва заметно сдвинулось назад от состояния истинного вакуума и в результате скатилось с энергетического холма чуть позже, чем в местах по соседству. Это вызвало появление небольшого уплотнения, которое позднее развилось в нашу галактику. Подобные же небольшие сгущения на однородном фоне распределения плотности породили соседнюю с нами Туманность Андромеды и бесчисленное множество других галактик как внутри нашего горизонта, так и за его пределами. Это описание формирования структур предполагает, что самые далекие части Вселенной более или менее похожи на то, что окружает нас здесь. Однако у меня стало возникать подозрение, что в этой картине чего-то недостает.

Влияние квантовых флуктуации крайне невелико, поскольку они намного уступают силе, тянущей скалярное поле вниз по склону энергетического холма. Вот почему поле везде одновременно достигает нижней точки, и возникают лишь очень небольшие возмущения плотности. Однако я задался вопросом: что случится, если поле находится у вершины холма, где уклон очень маленький? Здесь оно будет отдано на милость квантовых флуктуации, толкающих его случайным образом то в одну, то в другую сторону. Вселенная, возникающая после инфляции, может в результате оказаться куда менее упорядоченной и более разнообразной, чем казалось на первый взгляд.

Для описания поведения скалярного поля у вершины холма мы используем неполиткорректную, но весьма уместную аналогию. Позвольте представить вам джентльмена, назовем его мистер Филд, который слишком много выпил и теперь пытается сохранить вертикальное положение. Он плохо контролирует свои ноги, не представляет, куда направляется, и поэтому шагает то влево, то вправо совершенно случайно. Мистер Филд начинает свою прогулку с вершины холма, как показано на рисунке 8.1. Поскольку в среднем он одинаково часто шагает и вправо, и влево, ему не удастся слишком быстро куда-то уйти. Но после большого числа шагов он рано или поздно отойдет от вершины. Наконец, приблизившись к более крутой части склона, он неизбежно поскользнется и закончит путь, скатываясь вниз на пятой точке.

Рис. 8.1.  Мистер Филд случайным образом блуждает по плоской части холма и соскальзывает вниз, оказавшись на крутом склоне.

Скалярное поле во время инфляции ведет себя очень похоже. Оно бесцельно блуждает вблизи вершины энергетического холма, пока не достигает крутого склона; тогда оно "скатывается" вниз, чем и заканчивается инфляция. На плоском участке вблизи вершины холма вариации поля вызываются квантовыми флуктуациями и совершенно случайны, в то же время скатывание по склону происходит упорядоченно и предсказуемо и лишь слегка возмущается флуктуациями. Интервалы времени между последовательными флуктуациями примерно равны инфляционному времени удвоения. Это означает, что мистер Филд за такой период успевает сделать лишь один шаг. Поскольку, блуждая по плоской вершине холма, он делает много шагов, это означает, что ложный вакуум, прежде чем распасться, успевает многократно удвоиться.

Конкретная последовательность шагов, приводящая мистера Филда с вершины холма к его подножию, представляет одну из возможных историй скалярного поля. Однако квантовые флуктуации, испытываемые полем, различаются от одной точки к другой, и поэтому истории скалярного поля тоже будут различными. Каждая флуктуация воздействует на небольшой участок пространства. Его размер примерно равен расстоянию, проходимому светом за один интервал инфляционного удвоения; мы будем называть этот размер "кикспэном". Можно представить себе целую группу джентльменов в таком же состоянии, как мистер Филд, каждый из которых представляет скалярное поле в некоторой точке пространства. Когда две точки находятся в пределах кикспэна друг от друга, они испытывают одинаковые квантовые флуктуации, так что соответствующие два джентльмена делают все шаги синхронно, как пара чечеточников. Но точки быстро удаляются друг от друга из-за инфляционного расширения Вселенной, и, когда расстояние между ними превысит кикспэн, компания из пары джентльменов распадется и они станут шагать независимо. Как только это случится, значения скалярного поля в двух точках начнут постепенно расходиться, а расстояние между ними продолжит стремительно расти за счет инфляции.

Малость флуктуации плотности в наблюдаемой нами области пространства говорит о том, что эта область лежала в пределах кикспэна, когда скалярное поле уже вовсю катилось вниз с холма. Вот почему эффект квантовых флуктуации был очень мал, а поле почти всюду достигло нижней точки почти одновременно. Но если бы мы могли перемещаться на очень большие расстояния, много больше горизонта, то увидели бы области, которые были в общей компании, когда поле еще блуждало у вершины холма. Истории скалярного поля в таких областях могут очень сильно отличаться от нашей, и я хотел узнать, как выглядит Вселенная на таких сверхгигантских масштабах.

Представьте себе огромную толпу пьяных людей, которые начинают расходиться с вершины холма. Каждый выпивоха представляет отдаленный регион Вселенной, так что все они движутся независимо. Если плоская часть холма имеет протяженность N шагов, то средний джентльмен пересечет ее, сделав N 2 шагов. Примерно половина сделает это быстрее, а другая половина — медленнее. Например, если дистанция составляет 10 шагов, то в среднем потребуется 100 случайных шагов, чтобы ее преодолеть. Так что после 100 шагов примерно половина толпы достигнет своей конечной точки у подножья холма, а половина все еще будет наслаждаться прогулкой. Еще через 100 шагов число гуляющих вновь уполовинится, и так далее, пока последний из друзей не сверзится наконец вниз.

Но теперь заметим, что между пьяницами и расширяющимися областями пространства, которые они символизируют, есть важнейшее различие. Пока наш джентльмен шатается у вершины холма, соответствующая область пространства подвергается экспоненциальному инфляционному расширению. Поэтому число независимо развивающихся областей быстро увеличивается, как если бы наши пьяные джентльмены быстро размножались. По мере того как я размышлял об этом, картина постепенно обретала форму.

 

Вечная инфляция

Инфляция в известном смысле похожа на размножение бактерий. Есть два конкурирующих процесса: воспроизведение бактерий в результате деления и их эпизодическое уничтожение антителами. Исход зависит от того, какой процесс окажется эффективнее. Если бактерии уничтожаются быстрее, чем размножаются, все они скоро умрут. Напротив, если размножение идет быстрее, бактерии быстро размножатся (рис. 8.2).

Рис. 8.2.  Число бактерий быстро растет, если они размножаются быстрей, чем уничтожаются.

В случае инфляции два конкурирующих процесса — это распад ложного вакуума и его "воспроизведение" в результате расширения инфлирующих областей. Эффективность распада можно охарактеризовать периодом полураспада — временем, в течение которого распадается половина ложного вакуума, если бы он не расширялся. (В нашей аналогии со случайным блужданием это время, за которое число гуляющих сокращается вдвое.) С другой стороны, эффективность воспроизведения задается временем удвоения, за которое объем расширяющегося ложного вакуума увеличивается в два раза. Объем ложного вакуума будет сокращаться, если период полураспада короче времени удвоения, и расти — в противном случае.

Однако из обсуждения в предыдущих главах ясно, что период полураспада велик по сравнению с временем удвоения. Причина этого в том, что в моделях инфляции энергетический холм весьма пологий, и нужно много шагов, чтобы его пересечь. Поскольку каждый шаг случайного блуждания соответствует одному периоду удвоения в ходе инфляции, период полураспада должен быть много больше времени удвоения. Отсюда вытекает, что области ложного вакуума размножаются намного быстрее, чем распадаются. А значит, во Вселенной в целом инфляция никогда не заканчивается и рост объема инфлирующих областей продолжается беспредельно!

В этот самый момент какие-то отдаленные части Вселенной заполнены ложным вакуумом и испытывают экспоненциальное инфляционное расширение. Но вместе с тем постоянно возникают области, подобные нашей, где инфляция закончилась. Они образуют "островные вселенные" в море инфляции.

Из-за инфляции пространство между этими островами быстро расширяется, создавая место для рождения все новых островных вселенных. Таким образом, инфляция — это процесс, идущий вразнос, который остановился в наших окрестностях, но продолжается в других частях Вселенной, заставляя ее расширяться в бешеном темпе, постоянно выметывая новые островные вселенные, подобные нашей.

Энергия распада ложного вакуума зажигает горячий огненный шар из элементарных частиц, запускает процесс образования гелия и все последующие события стандартной космологии Большого взрыва. Таким образом, момент окончания инфляции играет в этом сценарии роль Большого взрыва. Если их отождествить, то нам уже не надо считать Большой взрыв одномоментным событием в нашем прошлом. Множество таких взрывов отгремело до него в отдаленных частях Вселенной, и бессчетное число других еще произойдет повсюду в будущем.

Едва в голове у меня сложилась эта новая картина мира, я уже изнемогал от желания поделиться ею с другими космологами. И кто бы мог лучше подойти на роль моего первого конфидента, чем сам мистер Инфляция — Алан Гут, чей офис в МТИ (Массачусетский технологический институт) был всего в двадцати минутах езды от Тафтса? Так что я просто сел в машину и поехал в знаменитый институт на встречу с Аланом.

МТИ занимает громадный комплекс сооружений, где я не раз безнадежно терялся. Можно идти по коридору третьего этажа корпуса шесть и вдруг обнаружить, что уже находишься на четвертом этаже корпуса шестнадцать. Я решил не рисковать и выбрал простейший, хотя и самый длинный путь к цели — через главный вход (выделяющийся рядом коринфских колонн и увенчанный сверху зеленым куполом). Пройдя весь Бесконечный Коридор и поднявшись на несколько лестничных пролетов, я в итоге достиг офиса Гута.

Я рассказал Алану о случайном блуждании скалярного поля и о том, как описать его математически. И тут, в самой середине описания моей новой поразительной картины мира, я заметил, что Алан стал засыпать. Много лет спустя, узнав его получше, я понял, что он вообще очень сонлив. Мы организовали совместный семинар для космологов Бостона и окрестностей, и на каждом заседании Алан мирно засыпал спустя несколько минут после начала доклада. Удивительным образом, когда выступление заканчивалось, он просыпался и задавал самые глубокие вопросы. Алан отрицал наличие у него каких бы то ни было сверхъестественных способностей, но не все в это верили.

Оглядываясь назад, я понимаю, что должен был продолжать, но в то время, не зная о волшебной способности Алана, я быстро закруглился. Другие коллеги в своих отзывах тоже не проявляли энтузиазма. Физика — это наблюдательная наука, говорили они, так что мы должны воздерживаться от утверждений, которые не допускают проверки. Невозможно наблюдать ни другие большие взрывы, ни отдаленные области, где продолжается инфляция. Все они лежат за нашим горизонтом, и как нам убедиться в их реальном существовании? Я был сильно разочарован таким холодным приемом и решил включить эту работу в качестве раздела в статью по другой теме, посчитав, что она не заслуживает отдельной самостоятельной публикации.

Для объяснения идеи вечной инфляции в этой статье я использовал аналогию прогулки пьяницы у вершины холма. Пару месяцев спустя мне пришло письмо от редактора, в котором говорилось, что статья принята, за исключением того, что обсуждение пьяниц "неприемлемо для такого солидного журнала как The Physical Review", и я должен заменить его более подходящей аналогией. Я слышал, что подобный инцидент произошел ранее с Сиднеем Коулманом. В его статье была диаграмма, которая выглядела как кружок с волнистым хвостиком. Коулман называл ее "диаграммой-головастиком". Как вы уже поняли, редактор счел и этот термин неприемлемым. "О'кей, — ответил Коулман, — давайте назовем ее диаграммой-сперматозоидом". В итоге без дальнейших комментариев была принята исходная версия статьи. Я прикинул возможность применить тактику Коулмана, но в итоге отказался от нее — не хотелось ввязываться в драку.

Я не возвращался к теории вечной инфляции почти 10 лет. Если не считать одного эпизода…

 

Мгновение вечности

Я переключился на работу, связанную с другими моими научными интересами, и постепенно мне самому стало казаться странным, что я был так одержим ненаблюдаемыми мирами. Но, по правде сказать, соблазн бросить взгляд за горизонт Вселенной никуда не девался. В 1986 году, не в силах ему больше противиться, мы с моим аспирантом Мукундой Арьялом (Mukunda Aryal) разработали компьютерную модель вечной инфляционной Вселенной.

Мне трудно даются технологии, и я в жизни не написал ни единой строчки программного кода. Но я очень хорошо понимаю, как "думают" компьютеры, и руководил несколькими крупными вычислительными проектами моих аспирантов. Поскольку я не мог проверять их код (а даже если б мог, не думаю, что это доставляло бы мне хоть какое-то удовольствие), я всегда опасался скрытых ошибок и относился к получаемым результатам с большой осторожностью. Поэтому я заставил Мукунду выполнить множество проверок, запуская моделирование для тривиальных случаев, где мы знали ответ заранее. Наконец, убедившись, что все работает отлично, мы приступили к настоящей работе.

Моделирование началось с маленького участка ложного вакуума, представленного светлым прямоугольником на экране компьютера. Спустя некоторое время стали появляться первые темные островки истинного вакуума. По мере того как границы этих островных вселенных продвигались в море инфляции, они быстро росли в размерах. Однако инфлирующая область расширялась еще быстрее, так что интервалы, разделяющие островные вселенные, увеличивались, а во вновь образованном пространстве возникали новые островные вселенные.

На картине, открывшейся после некоторого времени моделирования, были видны крупные островные вселенные, окруженные меньшими, вокруг которых располагались еще меньшие, и так далее. Это напоминало вид архипелага с самолета — узор, который математики называют фрактальным. На рис. 8.3 показан результат похожего, но более сложного моделирования, выполненного позднее моими студентами Виталием Ванчуриным и Сергеем Виницким (Vitaly Vanchurin and Serge Winitzki).

Рис. 8.3.  Смоделированная на компьютере Вселенная с вечной инфляцией. Островные вселенные (темные) на фоне инфляционно раздувающегося ложного вакуума (светлого). Более крупные островные вселенные — самые старые: у них было больше времени для роста.

Мы с Мукундой опубликовали результаты моделирования в европейском журнале Physics Letters. Мое любопытство в отношении ненаблюдаемых вселенных теперь было удовлетворено и я переключился на другие работы. А данным вопросом тем временем вплотную занялся Андрей Линде.

 

Хаотическая инфляция Линде

Линде — настоящий герой инфляции, человек, который спас теорию посредством изобретения приплюснутого энергетического холма для скалярного поля. С 1983 года он работал над идеей о том, что Вселенная начинается из состояния первичного хаоса. Скалярное поле в этом состоянии беспорядочно меняется от точки к точке. В некоторых областях оно оказывается на вершине энергетического холма, и в таких местах происходит инфляция.

Линде понял, что полю не обязательно стартовать в верхней точке энергетического ландшафта. Оно может начинать скатываться вниз и с какой-то другой точки на склоне. Фактически энергетический холм может и не иметь верхней точки, вздымаясь ввepx без ограничений (рис. 8.4). У такого лишенного вершины — так сказать, топлес — холма есть дно — истинный вакуум, но нет определенного места для ложного вакуума. Его роль может играть любая точка на склоне, куда поле попало в исходном хаотическом состоянии, лишь бы это было достаточно высоко чтобы обеспечить необходимое для инфляции время скатывания. Линде описал эти идеи в статье, озаглавленной "Хаотическая инфляция".

Рис. 8.4.  Скалярное поле скатывается со склона "безверхого" энергетического холма.

Еще через несколько лет Линде изучил влияние квантовых флуктуаций на скалярное поле в данном сценарии. Неожиданно оказалось, что они тоже могут приводить к вечной инфляции, несмотря даже на то, что у энергетического холма нет плоской вершины.

Ключевое наблюдение Линде заключалось в том, что на больших высотах квантовые флуктуации становятся сильнее и могут толкать поле вверх против сил, тянущих его вниз по склону. Так что, если поле стартует высоко, оно не обращает большого внимания на склон и совершает случайные блуждания, как если бы находилось на вершине холма. Когда блуждания заносят его в низины энергетического ландшафта квантовые флуктуации слабее, поле начинает упорядоченно катиться вниз к состоянию истинного вакуума. Чтобы это случилось, требуется намного больше времени, чем на инфляционное удвоение, так что расширяющиеся области размножаются быстрее, чем распадаются, что опять же приводит к вечной инфляции.

Здесь я должен остановиться и прояснить терминологическое недоразумение, связанное с данной темой. Вечную инфляцию часто путают с хаотической, хотя это совсем разные вещи. Название "хаотическая" указывает на случайность начального состояния и не имеет никакого отношения к вечному характеру инфляции. Линде показал, что хаотическая инфляция также может быть вечной, но этим связь между теориями исчерпывается. Для ясности я в дальнейшем ограничусь обсуждением первоначальной модели инфляции с приплюснутым энергетическим холмом. Вечная инфляция на безверхом холме выглядит похожим образом.

Статья Линде о вечной инфляции вызвала не больше энтузиазма, чем моя, опубликованная тремя годами раньше. Однако его реакция была иной. Он не сдавал позиций, продолжал исследования по данному направлению и неоднократно выступал с докладами о своих результатах. Тем не менее физическое сообщество не поддавалось его нажиму. Понадобилось почти двадцать лет, чтобы удача повернулась лицом к вечной инфляции.

 

Глава 9

Говорящие небеса

 

Когда в 1980 году Алан Гут предложил теорию инфляции, это была не более чем спекулятивная гипотеза. Но к концу 1990-х она уже была близка к тому, чтобы стать краеугольным камнем современной космологии. Появившиеся новые наблюдения подтвердили предсказания теории, причем весьма неожиданным способом.

 

Возвращение космологической постоянной

Самое главное предсказание инфляции состоит в том, что наблюдаемая область Вселенной должна быть плоской, то есть иметь евклидову геометрию. Вселенная в целом вполне может быть сферической или иметь более сложную форму, но наш горизонт охватывает лишь крошечную ее часть, и поэтому мы не можем отличить ее геометрию от плоской. Как уже говорилось в главе 4, это утверждение эквивалентно тому, что средняя плотность Вселенной должна быть с очень высокой точностью равна критической.

В период появления теории инфляции астрономы относились к ее предсказаниям весьма скептически. Обычное вещество, состоящее из протонов, нейтронов и электронов, обеспечивает лишь несколько процентов от критической плотности. Существует также намного большее количество так называемой темной материи, состоящей из каких-то неизвестных частиц. В соответствии с ее названием темную материю нельзя наблюдать непосредственно, но ее присутствие проявляется гравитационным притяжением, действующим на видимые объекты. Наблюдения за движением звезд и галактик говорят о том, что масса темной материи примерно в десять раз больше массы обычной. И все-таки, даже если сложить оба этих вида массы, во Вселенной набирается лишь около 30 процентов критической плотности, до нужного значения не хватает еще 70 процентов.

Таковы были представления до 1998 года, когда две независимые исследовательские группы объявили о поразительном открытии. Они измерили яркость взрывов сверхновых в далеких галактиках и использовали эти данные для уточнения истории космологического расширения. К своему огромному удивлению, они обнаружили, что вместо замедления под действием гравитации скорость расширения в действительности возрастает. Это открытие говорило о том, что Вселенная заполнена некой гравитационно отталкивающей субстанцией. Простейшая возможность состоит в том, что истинный вакуум, в котором мы обитаем, имеет ненулевую плотность массы. Как мы знаем, вакуум является гравитационно отталкивающим, и если его плотность превышает половину плотности массы вещества, суммарным результатом будет отталкивание.

Плотность массы истинного вакуума — это то, что Эйнштейн называл космологической постоянной, идея, которую он сам объявил своей величайшей ошибкой. Она была похоронена почти на 70 лет, но сегодня, похоже, не выглядит такой уж неудачной. Как мы увидим далее, неожиданное возвращение космологической постоянной привело к глубокому кризису в физике элементарных частиц. Однако для теории инфляции это стало чрезвычайно благоприятным поворотом событий. Плотность массы вакуума, оцененная по величине космологического ускорения, составляет около 70 процентов критической плотности — в точности столько, сколько требуется, чтобы сделать Вселенную плоской!

Этот вывод был позднее подтвержден наблюдениями космического микроволнового излучения. Вместо того чтобы полагаться на фридмановскую связь между геометрией Вселенной и ее плотностью, микроволновые наблюдения позволяют напрямую определить геометрию пространства — по сути, путем измерения суммы углов огромного узкого треугольника одна вершина которого находится на Земле, а две другие — в точках испускания микроволн, приходящих к нам от двух близких точек на небе. (Длинные стороны этих треугольников имеют сегодня протяженность около 40 миллиардов световых лет.) В плоском пространстве, как известно еще со школьных уроков геометрии, сумма углов должна составлять 180 градусов. Большее значение суммы трех углов будет указывать на замкнутую Вселенную со сферической геометрией (рис. 9.1), а меньшее — на открытую с седлообразной. Микроволновые наблюдения показывают, что в действительности сумма углов очень близка к значению, которое соответствует плоскому пространству. Эти результаты можно выразить иначе, используя фридмановское соотношение между геометрией и плотностью. Самые последние измерения в таком случае указывают на то, что плотность Вселенной равна критической с точностью не хуже 2 процентов — впечатляющий успех инфляционной космологии.

#image023.jpg

Рис. 9.1.  В сферической вселенной сумма углов треугольника превышает 180 градусов. На этом рисунке треугольник имеет 3 прямых угла, что в сумме дает 270 градусов.

 

Образы пылающего прошлого

Другим триумфом инфляции было объяснение небольших возмущений плотности, едва заметной ряби, которая позднее превратилась в галактики. Теория инфляции дала четкое предсказание: величина возмущений должна быть примерно одинаковой на всех астрофизических масштабах длины — от характерных межзвездных расстояний (в несколько световых лет) и вплоть до размеров всей видимой Вселенной. К началу 1990-x наблюдатели были готовы проверить это предсказание.

Как уже говорилось в главе 4, первичная рябь оставляет отпечаток в фоновом космическом излучении. Это послесвечение Большого взрыва было испущено 13 миллиардов лет назад и сейчас приходит к нам со всех направлений на небе. С самого открытия этого излучения в середине 1960-х годов космологи догадывались, что в нем скрыт образ ранней Вселенной. Однако первичные неоднородности были столь малы — всего одна стотысячная от средней интенсивности, — что долгие годы оставались за пределами точности измерений, и наблюдался лишь идеально однородный фон. Прорыв случился в 1992 году, когда был запущен спутник СОВЕ (Cosmic Background Explorer, "исследователь космического фона"). Он построил полную карту неба, измерив излучение, приходящее со всех направлений, и впервые смог различить едва заметные вариации его интенсивности.

Карта СОВЕ напоминает расфокусированную фотографию: на ней видны только крупные особенности космического огненного шара, а более тонкие детали, меньше примерно 7 градусов на небе, совершенно размыты. (Для сравнения: Луна видна под углом полградуса.) За СОВЕ последовала серия других экспериментов все возрастающей точности. Последним из них стала другая спутниковая миссия WMAP. На изображении огненного шара, полученном WMAP (рис. 4.2), различимы детали размером в 1/5 градуса, то есть оно в 30 раз более резкое, чем первоначальная карта СОВЕ.

По мере сбора данных постепенно, шаг за шагом, проступала картина первичной ряби. И, что поразительно, она оказывалась в полном согласии с предсказаниями теории инфляции! Эти свидетельства ранней горячей эпохи оставались на небе миллиарды лет, дожидаясь, пока их откроют и расшифруют. И вот теперь небеса наконец заговорили.

В ближайшие годы инфляции предстоит пройти через серию новых наблюдательных проверок. Физическая теория может подтверждаться экспериментом, но никогда не может быть доказана. С другой стороны, одного твердо установленного факта достаточно, чтобы ее опровергнуть. Например, инфляция предсказывает, что плотность должна быть равна критической с точностью 1 к 100 000. Так что, если будущий эксперимент обнаружит более значительное отклонение, инфляция окажется в трудном положении.

Новое поколение миссий по исследованию микроволнового фона включает спутник "Планк", который еще более повысит разрешение изображения, а также наземную обсерваторию QUIET, которая будет с высокой точностью измерять ориентацию электрического поля (поляризацию) микроволн. Поляризационный узор чувствителен к наличию гравитационных волн — крошечных вибраций геометрии пространства-времени. Этот эффект может служить для проверки еще одного предсказания инфляционной теории: мы должны быть погружены в гравитационно-волновое море с очень широким спектром длин волн — от размеров меньше Солнечной системы и до самых больших наблюдаемых масштабов. Амплитуда этих волн определяется энергией ложного вакуума — движущей силы инфляции. Чем выше энергия, тем больше волны. Так что, если QUIET зарегистрирует гравитационные колебания, мы получим возможность определить энергию ложного вакуума, вызывающего инфляционное расширение. Это стало бы важным шагом к пониманию инфляции и ее связи с физикой микромира.

По мере поступления новых данных мои мысли все чаще обращались к заброшенной идее вечной инфляции. Главным аргументом против нее было то, что она рассматривает Вселенную за нашим горизонтом, которая недоступна для наблюдения. Но если теория инфляции поддерживается данными в наблюдаемой части Вселенной, не следует ли нам доверять и ее заключениям о регионах, которые мы не можем наблюдать?

Если я брошу камень в черную дыру, то, используя теорию относительности, смогу описать, как он падает к ее центру и как разрушается и испаряется под действием колоссальных гравитационных сил. Все это невозможно наблюдать снаружи, поскольку ни свет, ни какой-либо другой сигнал не может вырваться изнутри черной дыры. И все же лишь немногие поставят под вопрос точность моего описания. У нас есть все основания полагать, что теория относительности действует внутри черных дыр точно так же, как и снаружи. То же самое можно теперь сказать и про теорию инфляции. Надо попробовать извлечь из нее все, что она может рассказать о величественном устройстве Вселенной, ее происхождении и конечной судьбе.

 

Глава 10

Бесконечные острова

 

Будущее цивилизаций

Вопрос, заставивший меня думать о вечной инфляции, больше напоминает научную фантастику, чем физику. Он касался будущего разумной жизни во Вселенной. Отдаленные перспективы любой появившейся цивилизации выглядят довольно мрачными. Даже если она избежит природных катастроф и самоуничтожения, она в конце концов лишится энергии. Звезды рано или поздно умирают, и все остальные источники энергии тоже исчерпываются. Но теперь вечная инфляция, похоже, дает некоторую надежду.

Умрут звезды в наших космических окрестностях, но бесконечное число новых звезд появится в будущих больших взрывах бесконечной инфляции. Видимая нам область — это лишь крошечная часть одного острова Вселенной, затерянного в инфляционном море ложного вакуума (см. рис. 8.3). Посреди этого моря постоянно возникают новые островные вселенные с мириадами новых звезд.

На самом деле образование звезд будет продолжаться всегда, даже внутри нашей собственной островной вселенной. Ее границы все время наступают на инфляционное море. Их неумолимое продвижение вызвано распадом ложного вакуума в прилегающих инфляционных областях. Фактически эти границы — это области, где Большой взрыв происходит прямо сейчас. Вновь образовавшиеся вселенные микроскопически малы, но с возрастом они безгранично растут. Центральные части больших островов Вселенной очень стары. Они темны и пустынны: все звезды здесь давно умерли, а жизнь исчезла. Но области по краям островов совсем молодые и должны быть полны сияющих звезд.

Высокоразвитая цивилизация может захотеть отправить миссию для колонизации вновь образовавшихся звездных систем у границы своего острова. На худой конец, они могут хотя бы послать сообщение новым цивилизациям, развивающимся вблизи границы или в других островных вселенных. Те цивилизации могут, в свою очередь, послать сообщения следующим, и так далее. Если мы пойдем по этому пути, то можем стать ветвью вечно растущего "древа" цивилизаций, и наша аккумулированная мудрость не будет полностью потеряна.

Эти сценарии предложил Андрей Линде в статье "Жизнь после инфляции", и мне захотелось узнать, возможен ли хоть один из них в действительности, по крайней мере в принципе. Линде проанализировал различные аспекты этой проблемы, но не пришел к какому-то определенному выводу. Тот факт, что где-то во Вселенной звезды образовались позже, чем здесь, не означает, что мы можем попасть туда за доступное время. С другой стороны, благодаря Эйнштейну мы знаем, что понятия "раньше" и "позже" не абсолютны и могут зависеть наблюдателя. Чтобы продвинуться в решении данной задачи мне надо было понять структуру пространства-времени вечно инфлирующей Вселенной.

Как говорилось в главе 2, пространство и время в теории относительности объединены в четырехмерную сущность, называемую пространством-временем. Точка в нем — это событие имеющее определенное положение и время. Рассмотрим два события, которые могли бы привлечь ваше внимание, — например, встречу выпускников вашего класса здесь, на Земле, и межзвездный матч по суперболу, запланированный через 3 года на альфе Центавра, удаленной от нас примерно на 4 световых года. Вопрос: можете ли вы успеть на оба эти мероприятия?

Ответ можно найти, вычислив так называемый пространственно-временной интервал между двумя событиями. В пространстве-времени он играет роль, аналогичную расстоянию между точками в пространстве. Его математическое определение сейчас несущественно; зато важно, что интервалы могут быть двух типов: пространственно-подобные и времени-подобные. Интервал времени-подобен, если материальный объект может добраться от одного события до другого, не нарушая базового принципа теории относительности — невозможности двигаться быстрее скорости света. В этом случае все наблюдатели согласятся, какое из двух событий произошло раньше, а какое — позже. Напротив, если добраться от одного события до другого невозможно (то есть если это требует сверхсветовой скорости), — интервал пространственно-подобный. Ни одно из этих двух событий не может быть причиной другого. Эйнштейн показал, что временной порядок таких событий зависит от наблюдателя и всегда можно найти наблюдателя, для которого они происходят одновременно.

В нашем примере с альфой Центавра интервал оказывается пространственно-подобным, так что вам придется выбрать какому событию отдать предпочтение. Конечно, в данном случае нетрудно получить ответ, даже не вычисляя интервал. За три года свет проходит путь в три световых года, а чтобы преодолеть четыре — расстояние до альфы Центавра, — вам пришлось бы двигаться быстрее света. В искривленном пространстве-времени вселенной с бесконечной инфляцией анализ несколько усложняется, и вычислять интервал все-таки приходится.

Рис. 10.1.  Пространство-временная диаграмма островной вселенной (вид извне).

Пространство-время островной вселенной схематически изображено на рисунке 10.1. Вертикальное направление соответствует времени, а горизонтальное — одному из трех пространственных измерений; два других измерения опущены. Каждая горизонтальная линия — это мгновенный снимок вселенной в некоторый момент времени. Историю островной вселенной можно проследить, начиная с горизонтальной пунктирной линии, помеченной "до", в нижней части рисунка и постепенно двигаясь вверх. (Момент времени, соответствующий этой линии, относится к инфлирующей части пространства-времени, где островная вселенная еще не образовалась.) Толстая сплошная линия, помеченная словами "Большой взрыв", — это граница между островной вселенной и инфлирующей частью пространства-времени. Точка, отмеченная черной галактикой, — это "здесь и сейчас", а белыми галактиками обозначены области, где условия похожи на те, что сегодня мы наблюдаем вокруг себя. Горизонтальная пунктирная линия, помеченная сейчас", изображает настоящее время. Она соответствует островной вселенной с пустынным центральным регионом и областями звездообразования вблизи границ.

Несложный расчет показывает, что все Большие взрывы, расположенные вдоль сплошной линии на рисунке, разделены пространственно-подобными интервалами. Для меня это стало важнейшим наблюдением, которое позволило сформулировать мой собственный ответ на вопрос о будущем цивилизаций. Оно также полностью изменило мои представления об островных вселенных.

Пространственно-подобный тип интервалов говорит о невозможности попасть от одного события Большого взрыва к какому-либо другому. Иными словами, вы не можете держаться на краю островной вселенной, поскольку ее края раздвигаются быстрее света. Выходит, мы никогда не сможем достичь берегов инфляционного моря и погреться в лучах новых солнц, которые будут там рождены. И мы не можем послать никакого сообщения будущим цивилизациям, которые разовьются вокруг этих солнц, поскольку никакой сигнал не может распространяться быстрее света. Печально, но вечная инфляция, похоже, не благоприятствует долгосрочным перспективам человечества.

Возможно, вас удивляет сверхсветовое расширение островных вселенных, поскольку оно выглядит противоречащим энштейновскому запрету на движение быстрее света. Однако этот запрет весьма избирателен: он относится только к движению материальных объектов (включая излучение, такое как цветовые или гравитационные волны) друг относительно друга, тогда как границы островной вселенной — это геометрические сущности, которые не обладают какой-либо массой или энергией. Сверхсветовое расширение границ означает, что последовательные Большие взрывы не могут быть причинно связаны между собой. Они не похожи на домино, где падение одной костяшки вызывает падение следующей. Распространение распада вакуума предопределяется рисунком скалярного поля, порожденным во время инфляции. Поле меняется в пространстве очень плавно, и в результате вакуум в соседних областях распадается почти одновременно. Вот почему Большие взрывы следуют друг за другом в такой быстрой последовательности, а граница расширяется столь стремительно.

 

Время не имеет значения

Но что же мы все-таки имеем в виду, говоря о том, что Большой взрыв у границы островной вселенной случился позже, чем в ее центральной области? Раз все интервалы между всеми событиями Большого взрыва пространственно-подобны, значит, между наблюдателями будут разногласия по вопросу о том, какое из этих событий случилось раньше, а какое позже. Кому из них мы должны верить? Сейчас мы постараемся прояснить этот вопрос. Наш анализ может показаться довольно запутанным, но его стоит проделать, поскольку он приведет нас к некоторым далеко идущим выводам.

В качестве разминки рассмотрим сначала однородную вселенную, описываемую одной из моделей Фридмана. В любой момент времени материя в ней однородно распределена в пространстве. Может показаться, что это тривиально, но должны определить, что значит "момент времени".

Когда космологи говорят о "моменте времени", они представляют себе огромное число наблюдателей, снабженных часами и разбросанных по всей вселенной. Каждый наблюдатель видит лишь небольшую область непосредственно вокруг себя, так что для описания вселенной в целом необходимо все сообщество наблюдателей. Мы можем считать себя одним из его членов. Наши часы сейчас показывают 14 миллиардов лет ПБВ. "То же самое время" в другой части вселенной наступит, когда на часах находящегося там наблюдателя появятся те же показания. Мы должны решить теперь, как наблюдателям, находящимся за горизонтом друг друга, синхронизировать свои часы.

В случае фридмановской вселенной ответ очевиден: в ней Большой взрыв — это естественное начало времен, так что каждый наблюдатель должен отсчитывать время от него. При таком определении одновременности плотность материи, измеренная всеми наблюдателями в одно и то же время, окажется одинаковой, а значит, вселенная будет однородной.

В принципе допустимо рассматривать совокупность наблюдателей, чьи часы выставлены по-разному. Например, мы можем сместить начало отсчета времени на некоторую величину относительно Большого взрыва и сделать так, чтобы эта величина менялась от одной области пространства к другой. Тогда вселенная будет выглядеть очень сложной и неоднородной. Разумеется, никто в здравом уме не станет использовать такое описание. Оно значительно усложняет анализ и скрывает истинную природу фридмановской вселенной. Но не всегда все бывает так просто.

Возвращаясь к вселенной с бесконечной инфляцией, рассмотрим сначала крупную область, подобную той, что показана на рисунке 8.3, включающую как островные вселенные, так и зоны, охваченные инфляцией. В такой области нельзя естественным образом выбрать начало отсчета времени. Поэтому определение "момента времени" становится в значительной мере произвольным, единственное условие состоит в том, что все события "момента" должны быть разделены пространственно-подобными интервалами. Если выбрать начальный момент достаточно рано, когда вся область находится в состоянии ложного вакуума, в дальнейшем в ней, как мы уже обсуждали в предыдущей главе, появятся и станут расширяться островные вселенные. Однако порядок их появления, а также темп и формы, приобретаемые ими по мере расширения, могут весьма сильно меняться в зависимости от выбора начального момента.

Допустим теперь, что мы интересуемся одной конкретной островной вселенной и хотим описать ее с точки зрения ее обитателей. Тогда ситуация оказывается совершенно иной. Как и в случае фридмановской вселенной, существует естественный выбор для начала времени. Все населяющие островную вселенную наблюдатели могут отсчитывать его от Большого взрыва — каждый в своем месте. Другими словами, Большой взрыв можно выбрать в качестве начального "момента времени". Такой выбор ведет к новой, радикально отличающейся картине островной вселенной. Чтобы различать описания большой области и отдельного острова, договоримся называть их соответственно внешним (глобальным) видом и внутренним (локальным).

Рис. 10.2. Внутренний вид пространства-времени островной вселенной.

Внутренний вид островной вселенной представлен на рисунке 10.2. Как и раньше, момент Большого взрыва изображен сплошной кривой, помеченной "Большой взрыв". Плотность вещества во всех событиях на этой кривой практически одинакова и определяется плотностью распадающегося ложного вакуума. Таким образом, на локальном виде островная вселенная почти однородна. Настоящий момент времени здесь представлен пунктирной линией, помеченной "сейчас", которая совпадает с рядом галактик на рисунке. Все точки на этой линии характеризуются одинаковой средней плотностью вещества и одинаковой концентрацией звезд — такой же, как наблюдается вблизи нас. Но самое замечательное — с локальной точки зрения островная вселенная бесконечна!

На глобальном виде островная вселенная растет по мере распространения Большого взрыва по ее границам, и, если подождать достаточно долго, она станет сколь угодно большой, однако с локальной точки зрения Большой взрыв случился единомоментно, а островная вселенная была бесконечно велика с самого начала. На рисунке 10.2 этой бесконечности соответствует тот факт, что сплошная линия Большого взрыва нигде не заканчивается. Если продолжить эту кривую, то ее отданные точки будут соответствовать все более поздним событиям Большого взрыва с глобальной точки зрения и все более далеким областям в начальный момент — с локальной. Бесконечность времени в рамках одного взгляда трансформируется в бесконечность пространства в рамках другой.

 

Большая картина

Попробуем подвести краткие итоги. Если бы каким-то образом нам удалось извне наблюдать Вселенную бесконечной инфляции, подобно тому как наблюдают Землю из космоса, мы увидели бы множество вселенных, разбросанных по обширному инфляционному морю ложного вакуума. В случае замкнутости Вселенной открывшийся перед нами вид мог бы чем-то напоминать глобус с континентами и архипелагами, окруженными океаном. Этот глобус с ошеломительной скоростью расширяется, островные вселенные тоже чрезвычайно быстро увеличиваются, а между ними постоянно появляются крошечные новые острова и немедленно принимаются расти. Число островных вселенных быстро умножается и становится бесконечным в пределе бесконечного будущего.

Обитатели островных вселенных, подобно нам, видят совершенно иную картину. Их вселенная не воспринимается ими как конечного размера остров. Она представляется им самостоятельной бесконечной вселенной. Граница между их вселенной и инфляционной частью пространства-времени — это Большой взрыв, случившийся в определенный момент в прошлом. Мы не можем добраться до инфляционного моря просто потому, что невозможно переместиться в прошлое.

Весьма примечательно, что "большая" Вселенная, содержащая все бесконечные островные вселенные, может быть замкнутой и конечной. Кажущееся противоречие разрешается, если принять во внимание, что понятие внутреннего времени в островных вселенных отличается от "глобального" времени, которое надо использовать для описания пространства-времени в целом. В глобальном времени внешние части островных вселенных еще не образовались и завершат свое формирование лишь в бесконечно отдаленном будущем, тогда как во внутреннем времени островная вселенная возникает единомоментно. Структура пространства-времени замкнутой Вселенной бесконечной инфляции изображена на рисунке 10.3.

Рис. 10.3. Пространство-время одномерной замкнутой Вселенной с бесконечной инфляцией. Эта Вселенная заполнена ложным вакуумом в начальный момент времени (внизу рисунка) и содержит три островных вселенных к моменту, соответствующему верхнему краю диаграммы.

Неожиданная особенность островных вселенных, состоящая в том, что изнутри они выглядят бесконечными, оказалась весьма важной: в дальнейшем она привела меня к выводу, который, возможно, является самым поразительным следствием вечной инфляции.

 

Глава 11

Да здравствует король!

 

Кадакес

Первые проблески идеи появились у меня летом 2000 года. Как это часто бывает, мне захотелось немедленно ими поделиться. Можно заслужить больше чести и известности, если трудиться в одиночку, но работать в команде куда увлекательней! И если вам повезло с коллегами, это занятие может доставит настоящую радость. Так случилось, что наш городок посетил тогда мой старый друг Хауме Гаррига (Jaume Garriga). Стоило поделиться с ним, и он мгновенно ухватил мои мысли.

Хауме общается в мягкой и тихой манере. Он мало говорит, но всегда высказывает то, что думает. В этот раз он произнес: "Очень ликвидная идея". Не то чтобы это было одобрением. Он имел в виду, что данная идея выглядит более привлекательной для прессы, чем для физиков. Но я понял, что она зацепила Хауме. Он уже готовился к отъезду в свою родную Каталонию, мы договорились продолжить дискуссию в ходе моего визита Барселонский университет, где он работал.

Рис. 11.1. Хауме Гаррига.
фото: Такахиро Танака

Спустя два месяца Хауме встречал нас с женой в барселонском аэропорту. Мы прибыли на выходных, так что оставалось два дня до начала моего "официального" визита. Я сгорал от нетерпения продолжить наши физические дискуссии, но оказалось, что наша программа уже расписана. Вырулив на шоссе, Хауме сказал, что мы едем на ферму его отца: "Они ждут нас к ужину". Мы преодолели горный массив Монтсеррат, который неожиданно поднялся посреди плоского красноватого ландшафта, и продолжили двигаться на север по зеленой холмистой сельской местности. Где-то через час мы добрались до семейной фермы Гаррига.

Поразительно, что одна и та же семья обрабатывала эту землю более 750 лет. Сельский дом оказался впечатляющим каталонским "масиа", похожим на небольшую крепость, увенчанную башней. Я совершенно расслабился и напрочь забыл о физике.

Стол к ужину был накрыт в просторном зале, где собралась вся семья Гаррига. Как почетного гостя меня усадили рядом с отцом, который развлекал нас замечательными историями из истории своей земли и следил, чтобы не пустовал мой бокал с вином. Ближе к концу ужина он извинился и вышел из зала. "Он пошел звать коров домой", — объяснил Хауме. Коровы не нуждались в пастухе; им нужно было просто дружеское напоминание.

После ужина старший брат Хауме повел нас по винтовой лестнице на вершину башни. В неспокойные времена она была сторожевой. Если в поле зрения появлялся враг, караульный мог факелом просигналить другим таким башням на соседних фермах — и так вплоть до герцогского гарнизона в замке Кардона в пяти милях отсюда. Мы смотрели в маленькие квадратные окошки башни — не видно ли какого-нибудь злодея. Солнце опускалось за холмы. Вдали были только коровы, которые сами шли с пастбища домой.

Рис. 11.2. Хауме в детстве на родительской ферме.
фото: Энтони Праст

Утром мы покинули ферму и отправились к горам. Нашей целью была приморская деревушка Кадакес, родина Сальвадора Дали. Моя жена восхищается его творчеством и захотела посмотреть дом и деревню, где он провел большую часть своей жизни. Каждый раз, когда мы бывали в Барселоне, она стремилась туда выбраться, но, попав в университет, я неизменно погружался в физические дискуссии и другие не менее важные дела, так что в итоге на поездку не оставалось времени. Но на этот раз она настояла на своем: мы поедем в Кадакес прежде, чем в Барселону.

Узкая дорога серпантином поднималась в горы, цепляясь за опасные склоны, а затем, петляя, уходила вниз к утесам и уединенным бухтам Коста-Брава. Мы въехали в деревню вскоре после полудня, когда солнце палило во всю свою средиземноморскую силу. Белые домики Кадакеса скучились на склоне холма, поступая к самой воде. Выше по склону расположилась церковь, сложенная из грубо отесанного камня, аскетичная и красивая.

Наше посещение Дома Дали пошло не так, как планировалось. Джулия, жена Хауме, которая в последнюю минуту решила нам присоединиться, взяла с собой дочь Клару. Как только мы вошли в музей, Клара начала громко протестовать, так что дамы пошли в музей, а мы с Хауме остались сидеть с ребенком. Вскоре мы уже глубоко погрузились в обсуждение физических проблем. Когда наши жены вернулись, музей уже закрывался. Так я и не посмотрел "Каса Дали" — Дом Дали, о котором столько говорят.

Рис. 11.3. "Порт-Альгеро" (Кадакес) Сальвадора Дали.

Остаток дня мы провели, гуляя по узким, мощенным булыжником деревенским улочкам Кадакеса. Мы с Хауме продолжали разговор, и новая картина Вселенной постепенно обретала очертания. Она была странной и волнующей.

 

Ограниченный набор возможностей

Наша беседа вертелась вокруг далеких областей Вселенной и того, насколько сильно они могут отличаться от нашего местного космического окружения. Поскольку каждая островная вселенная бесконечна с точки зрения ее обитателей, она может быть разделена на бесконечное число областей такого же размера, как наблюдаемая нами часть Вселенной. Для краткости мы назвали их "О-регионами".

Представьте себе бесконечное пространство, набитое гигантскими сферами диаметром по 80 миллиардов световых лет. Каждая сфера — это О-регион. Сферы расширяются вместе с вселенной, поэтому в прошлом они были меньшего размера. В момент Большого взрыва, то есть в конце инфляции, все эти О-регионы выглядели чрезвычайно похоже. Но в деталях они различались. Небольшие возмущения плотности, порожденные случайными квантовыми флуктуациями в ходе инфляции, отличаются от региона к региону. Поскольку эти возмущения усиливаются гравитацией, макроскопические свойства О-регионов начинают расходиться. Ко времени образования галактик О-регионы уже заметно различаются особенностями распределения галактик, хотя статистически они все еще очень похожи друг на друга. Позднее развитие жизни и разума, зависящее от случайных обстоятельств, вело к дальнейшему расхождению свойств. Так что можно ожидать, что истории О-регионов будут весьма сильно различаться.

Ключевым моментом является то, что количество различных конфигураций материи в любом О-регионе — или, точнее говоря, в любой конечной системе — ограничено. Может казаться, что произвольные малые изменения, которые можно внести в систему, порождают бесконечное число возможности. Но это не так. Если я подвину свой стул на 1 сантиметр, я изменю состояние всего О-региона. Я мог бы подвинуть его на 0,9, 0,99, 0,999 и т. д. сантиметров — это бесконечная последовательность возможных смещений, все ближе и ближе подходящая к 1 сантиметру. Проблема, однако, в том, что смещения слишком близкие по величине, невозможно различить даже теоретически из-за квантово-механической неопределенности.

В классической ньютоновской механике состояние физической системы можно описать, указав положения и скорости всех составляющих ее частиц. Мы теперь знаем, что такое описание можно использовать только для макроскопических, массивных объектов, и даже тогда оно остается лишь приближенным. В квантовом мире частицы в самой своей основе расплывчаты и не могут быть точно локализованы.

Ядром квантовой физики является принцип неопределенности, открытый в 1927 году Вернером Гейзенбергом. Он гласит, что нельзя одновременно точно измерить положение и скорость частицы. Чем точнее мы измеряем положение, тем больше оказывается неопределенность скорости. Если положение измерено точно, скорость оказывается совершенно неопределенной, и наоборот — если мы точно измерим скорость, то не будем иметь никакого представления, где находится частица.

Гейзенберг предложил следующее интуитивно понятное объяснение неопределенности. Простейший способ выяснить положение частицы — посветить на нее. Световые волны будут рассеиваться частицей во всех направлениях. Некоторые из них будут замечены нашими глазами или измерительной аппаратурой, и мы увидим, где находится частица. Ее изображение, полученное таким способом, не будет идеально четким: детали размером меньше длины волны непременно окажутся размытыми, так что положение нельзя будет измерить точнее, чем до длины волны. Чтобы справиться с этим затруднением, нам придется использовать все более и более коротковолновый свет, но здесь вступает в игру квантовая природа света. Он состоит из фотонов, энергия которых обратно пропорциональна длине волны. Когда частица освещается очень коротковолновым светом, она оказывается под обстрелом очень энергичных фотонов. Под воздействием их ударов она испытывает отдачу, отчего ее скорость изменяется. Эта отдача — источник неопределенности: чем большей точности мы хотим достичь при измерении положения, тем более коротковолновый свет мы должны использовать и тем сильнее будет его воздействие на наблюдаемую частицу.

Даже если мы не интересуемся скоростью частицы, рассуждения Гейзенберга указывают, что для наращивания точности локализации частицы нам потребуется все больше и больше энергии. В любой реальной физической системе с ограниченной энергией точность определения положения тоже ограничена. Так что мы не можем идеально точно указать положение частиц, а вынуждены использовать крупнозернистое описание. Предположим, что объем нашего О-региона разделен на кубические ячейки размером, скажем, 1 сантиметр каждая. Крупнозернистое описание состояния заключается в указании клеток, занимаемых каждой частицей в регионе. Более точное описание получится, если мы уменьшим размер клеток. Однако для такого уточнения есть предел, поскольку энергетическая цена локализации частиц в маленьких ячейках в конце концов превзойдет всю доступную энергию О-региона.

Очевидно, что число способов, которыми можно распределить конечное число частиц по конечному числу клеток, тоже конечно. Выходит, материя, наполняющая наш О-регион, может находиться лишь в конечном числе различных состояний. Очень грубо это число можно оценить как 10 в степени 1090, то есть единица, за которой следует 10 90 нулей — много больше, чем поместилось бы на страницах этой книги. Это фантастически огромное число, но нам важно, что оно все же конечное.

Пока все идет неплохо. Есть, правда, одно затруднение: далекие регионы могут содержать больше материи и энергии чем наш. Редкие крупные квантовые флуктуации во время инфляции иногда порождают сильно переуплотненные регионы полные высокоэнергичных частиц. С ростом их энергии число возможных состояний тоже возрастает. Но лишь до некоторого предела. Если вкачивать в регион все больше и больше энергии, его гравитация станет усиливаться, и в конечном счете он целиком превратится в черную дыру. Таким образом, гравитация ставит абсолютный верхний предел числу возможных состояний региона данного размера независимо от его наполнения.

Точное значение этого предела еще предстоит установить. Впервые о нем заговорил Якоб Бекенштейн (Jacob Bekenstein) в 1980-х годах, а потом он появился в работах по суперструнам Герард'та Хофта (Gerard't Hooft), Леонарда Сасскинда (Leonard Susskind) и других. В работе Бекенштейна предполагалось, что максимальное число состояний в регионе зависит только от его границ. Для О-региона получалось значение 10 в степени 10 123 (1 с более чем гуголом нулей!).

 

Подсчет историй

Но конечным является не только число различных состояний О-региона — то же самое можно сказать и о числе его возможных историй.

История описывается цепочкой состояний в последовательные моменты времени. Такие понятия, как история, по-видимому, очень сильно различаются в квантовой и классической физике. В квантовом мире будущее не определяется однозначно прошлым. Одни и те же начальные условия могут вести множеству разных исходов, и мы можем подсчитывать лишь их вероятности. В результате диапазон возможностей значительно расширяется. Но квантовая неопределенность вновь не позволяет нам различить истории, которые слишком похожи одна на другую.

Квантовая частица, как правило, не имеет однозначно определенной истории. Это неудивительно, поскольку, как мы знаем, у нее нет и четко определенного положения. Но неопределенность не означает, что мы просто не знаем, по какому пути движется частица от своего источника к детектору. Ситуация куда удивительнее: похоже, что частица следует одновременно по множеству различных путей и все они вносят свой вклад в исход процесса.

Это шизофреническое поведение лучше всего иллюстрируется знаменитым двухщелевым экспериментом (рис. 11.4). Установка состоит из источника света и фотопластинки, которая закрыта непрозрачным экраном с двумя узкими щелями. Свет проникает через щели и создает изображение на пластинке. Эксперимент впервые поставил в начале XIX века английский физик Томас Юнг. Он обнаружил, что изображение складывается из чередующихся светлых и темных полосок. Свет от обеих щелей падает на все точки фотопластинки. Но в одни места световые волны приходят в фазе (гребни и впадины двух волн совпадают), усиливая друг друга, тогда как в других местах они оказываются в противофазе (гребни одной волны приходятся на впадины другой) и взаимно гасятся. Так узор из полосок объясняется волноподобной природой света.

Рис. 11.4. Двухщелевой эксперимент.

Удивительные вещи начинаются, когда мы уменьшаем интенсивность источника света до такого уровня, что фотоны испускаются им поштучно — один за другим. Каждый фотон оставляет пятнышко на фотопластинке. Сначала они располагаются беспорядочно, но поразительно, что спустя некоторое время они складываются в узор, в точности совпадающий с полосками, которые получались раньше. Фотоны попадают на экран по отдельности, поэтому те, что прошли через одну щель, не могут взаимодействовать с теми, что прошли через другую. Но как тогда им удается "усиливать" или "гасить" друг друга?

Чтобы глубже разобраться в вопросе, можно посмотреть, что случится, если вынудить фотоны проходить через одну или через другую щель. Допустим, мы выполняем эксперимент, открыв только одну щель, а затем на столько же времени открываем другую, не меняя фотопластинку. Поскольку фотоны проходят через установку по одному, это не должно внести изменений, и мы ожидаем получить тот же узор. Верно? Нет. В этой модифицированной версии эксперимента никаких полосок не наблюдается, а на снимке будут только очертания двух щелей.

Отсюда вытекает, что представление, будто фотон проходит через одну из щелей, не обращая внимания на то, открыта ли другая, неверно. Когда открыты обе щели, фотон каким-то образом "чувствует" две возможные истории, которым он может следовать. Они совместно определяют вероятность того, что фотон попадет в конкретное место на пластинке. Этот феномен называется квантовой интерференцией между историями.

Квантовая интерференция редко проявляется столь наглядно, как в двухщелевом эксперименте, но она влияет на поведение каждой частицы во Вселенной. Двигаясь из одного места в другое, частицы "разнюхивают" множество различных маршрутов, так что вместо четко определенного прошлого мы имеем запутанную сеть интерферирующих историй.

Как тогда можно быть уверенным, что некоторое событие действительно имело место? Как придать смысл понятию истории? Ответ вновь возвращает нас к крупнозернистому описанию.

Как и прежде, разделим пространство на маленькие ячейки и зададим крупнозернистое состояние системы (О-региона в нашем случае) путем указания "адресов" ячеек для всех частиц. Крупнозернистая история задается последовательностью таких состояний через равные интервалы времени, например, каждые две секунды. Подчеркнем важный момент: эффект интерференции обычно силен только для очень близких друг к другу историй. Если увеличивать размеры ячеек и интервалы времени, то разные крупнозернистые истории станут все сильнее и сильнее отличаться друг от друга, и в некоторый момент их интерференция окажется совершенно ничтожной. После этого можно говорить об альтернативных историях системы.

Формализм квантовой механики в терминах крупнозернистых историй был относительно недавно, в 1990-х годах, разработан Робертом Гриффитсом, Роланом Омнэ, Джеймсом Хартлом и Мюрреем Гелл-Манном (Robert Griffiths, Roland Omnes, James Hartle and Murray Gell-Mann). Они обнаружили, в частности, что минимальный размер ячеек, при котором еще можно говорить об определенности истории, как правило, является микроскопическим, а минимальный интервал времени — это крошечная доля секунды. Неудивительно, что в макроскопическом мире человеческого опыта история представляется хорошо определенной.

Крупнозернистая история протекает за конечное число шагов, и любая ограниченная во времени история должна состоять из конечного числа моментов. В каждый момент система может находиться лишь в конечном числе состояний, а значит, и число различных историй системы должно быть конечным.

Мы с Хауме, по-быстрому прикинув на обороте конверта, оценили число возможных историй О-региона от Большого взрыва до наших дней. Как и следовало ожидать, получилось еще одно "гуголплексное" число: 10 в степени 10 150 . Действительное количество квантовых состояний и историй О-региона не так важно, но конечность их числа имеет важные последствия для нашей дискуссии.

 

История повторяется

Давайте рассмотрим ситуацию внимательнее. Она возникла как следствие теории инфляции, согласно которой островные вселенные бесконечны внутри и каждая из них содержит бесконечное множество О-регионов. Она также опирается на квантовую механику, говорящую, что существует лишь конечное число историй, которые могут реализоваться в любом О-регионе. Объединяя эти два утверждения, мы с неизбежностью приходим к выводу, что каждая конкретная история должна повторяться бесконечное число раз. Согласно квантовой механике, все, что строго не запрещено законами сохранения, имеет ненулевую вероятность реализации, а значит, наверняка случилось в бесконечном числе О-регионов!

Среди этих бесконечно повторяемых сценариев должны быть весьма странные истории. Например, планета, похожая на нашу Землю, может вдруг сколлапсировать в черную дыру. Или она может испустить колоссальный импульс излучения и перейти на другую орбиту, значительно ближе к центральной звезде. Такие происшествия чрезвычайно маловероятны, но это лишь означает, что придется перебрать очень много О-регионов, прежде чем найдется такой, в котором это случилось.

Удивительным следствием этой новой картины мира является существование бесконечного числа миров, идентичных нашему. Да, дорогой читатель, десятки ваших дублей держат сейчас в руках эту книгу. Они живут на планетах, в точности таких же, как наша Земля со всеми ее горами, городами, деревьями и бабочками. Эти земли обращаются вокруг точных копий Солнца, и каждое солнце принадлежит огромной спиральной галактике — точной копии нашего Млечного Пути.

Как далеко находятся все эти земли, населенные нашими дублями? Мы знаем, что материя, содержащаяся в нашем О-регионе, может находиться в 10 в степени 10 90 различных состояний. Объем, содержащий, скажем, гуголплекс (10 в степени 10 100 ) О-регионов, должен исчерпать все возможности. Такой объем будет иметь поперечник порядка гуголплекса световых лет. На больших расстояниях О-регионы, включая наш, будут повторяться.

Должны также существовать регионы, где истории немного отличаются от нашей, со всеми возможными вариациями. Когда Юлий Цезарь со своими легионами стоял на берегу реки Рубикон, он знал, что должен принять важнейшее решение. Переход реки станет государственной изменой, и пути назад уже не будет. Со словами "Jacta alea est!" — "Жребий брошен!" — он приказал войскам идти вперед. И жребий действительно был брошен: на некоторых землях Цезарь стал римским диктатором, а на других он был разбит, подвергнут пыткам и казнен как враг государства. Конечно, на большинстве земель никогда не было человека по имени Цезарь, а в большинстве мест Вселенной нет ничего похожего на нашу Землю, поскольку существует гораздо больше других возможных вариантов развития помимо простого повторения.

Весьма символично, что эта сюрреалистичная картина мира появилась в городке, пропитанном духом Сальвадора Дали. Подобно живописи Дали, она смешивает странные, кошмарные детали с привычной реальностью. И тем не менее это прямое следствие инфляционной космологии. Мы с Хауме написали статью о новой картине мира и представили ее в ведущий физический журнал The Physical Review. Мы опасались, что статья будет отвергнута как "слишком философская", но ее приняли без возражений. В дискуссионном разделе ближе к концу мы писали:

"Существование О-регионов со всеми возможными историями, среди которых есть идентичные или почти идентичные нашей, имеет ряд тревожных следствий. Если только у вас появилась мысль о возможности какого-то страшного несчастья, можете быть уверены, что оно уже случилось в каком-то из О-регионов. Если вы с трудом избежали аварии, значит, в некоторых регионах с точно такой же предшествующей историей вам не повезло. С другой стороны, некоторые читатели будут рады узнать, что существует бесконечное число О-регионов, где Эл Гор стал президентом [67] и — да! — Элвис жив". [68]

Пресса отреагировала немедленно — как и предсказывал Хауме. На следующий месяц в британском журнале New Scientist вышел обзор нашей статьи под заголовком "Да здравствует король!"

 

Что еще нового?

Позднее мы выяснили, что у картины множества наших клонов, разбросанных по Вселенной, есть предыстория. Знаменитый российский физик Андрей Сахаров высказал подобную идею в своей Нобелевской лекции в 1975 году. Он говорил:

"В бесконечном пространстве должны существовать многие цивилизации, в том числе более разумные, более "удачные", чем наша. Я отстаиваю также космологическую гипотезу, согласно которой эволюция Вселенной повторяется в основных своих чертах бесконечное число раз". [69]

Кое-кто даже называл мысль, что в бесконечной Вселенной должно случиться абсолютно все, самоочевидной. Это утверждение, однако, ложно. Рассмотрим, например, последовательность нечетных чисел 1, 3, 5, 7…. Она бесконечна, но нельзя говорить, что она содержит все возможные числа. Ведь в ней отсутствуют все четные числа. Аналогично, бесконечность пространства сама по себе не гарантирует, что все возможности реализуются где-то во Вселенной. Например, по всему пространству могла бы бесконечно повторяться одна и та же галактика.

На этот момент указали южноафриканские физики Джордж Эллис (George Ellis) и Дж. Брандрит (G. Brundrit). Они доказали, исходя из предположения о бесконечности Вселенной, что в ней должно быть бесконечное число мест, очень похожих на нашу Землю. (В своем анализе они опирались на классическую физику и поэтому могли говорить только сходстве, но не об идентичности других земель и нашей.) Они предположили вдобавок, что начальное состояние Вселенной случайным образом меняется от одного О-региона к другому, так что в бесконечном объеме исчерпываются все возможные их варианты. Таким образом, существование наших клонов не самоочевидно, а опирается на предположения о пространственной бесконечности и "исчерпывающей случайности" Вселенной.

Напротив, в случае бесконечной инфляции эти свойства не нужно вводить как независимые предположения. Из самой теории вытекает, что островные вселенные бесконечны и что начальные условия в момент Большого взрыва задаются случайными квантовыми процессами во время инфляции. Существование клонов, таким образом, является неизбежным следствием теории.

 

Значение слова "быть"

Идея множества миров, или "параллельных" вселенных, обсуждалась также и в совершенно ином контексте. Возможно, вы слышали о многомировой интерпретации квантовой механики, которая утверждает, что Вселенная постоянно расщепляется на множество копий самой себя так, что в разных копиях реализуются все возможные исходы каждого квантового процесса. Несмотря на кажущееся сходство с бесконечной инфляцией, это на самом деле совсем разные теории. Чтобы не путать их, давайте совершим короткий экскурс в мир множества миров.

Квантовая механика — феноменально успешная теория. Она объясняет строение атомов, электрические и тепловые свойства твердых тел, ядерные реакции и сверхпроводимость. Физики безоговорочно доверяют ей, но при этом основания данной теории на удивление темны, и дебаты об их интерпретации продолжаются до сих пор.

Самым спорным является вопрос о природе квантово-механических вероятностей. Так называемая копенгагенская интерпретация, разработанная Нильсом Бором и его последователями, гласит, что квантовый мир принципиально непредсказуем. Согласно Бору, бессмысленно спрашивать, где находится квантовая частица, пока вы не произведете измерение, чтобы ее обнаружить. Вероятности всех возможных исходов измерения можно вычислить, используя правила квантовой механики. Частицы как будто никак не могут "решиться" и прыгают на определенное место в самый последний момент, когда выполняется измерение.

Альтернативная интерпретация предложена Хью Эвереттом III в его докторской диссертации, защищенной в 1950 году в Принстонском университете. Он утверждал, что на самом деле реализуются все возможные исходы каждого квантового события, но происходит это в разных, "параллельных" вселенных. При любом измерении положения частицы Вселенная разветвляется на мириады копий, в которых частица обнаруживается во всех возможных местах. Процесс ветвления полностью детерминирован, но мы не знаем, с какой из ветвей будет связан наш опыт. В результате исход нашего измерения по-прежнему остается вероятностным, причем Эверетт показал, что все вероятности оказываются в точности такими же, как и в копенгагенской интерпретации.

Поскольку выбор интерпретации не влияет ни на какие результаты или предсказания теории, большинство работающих физиков относятся к дискуссии об основаниях квантовой механики как агностики и не тратят время на подобные вопросы. По словам физика Исидора Раби (Isidor Rabi), занимающегося элементарными частицами, "квантовая механика — это просто алгоритм. Используйте его. Он работает, не беспокойтесь". Такой подход "заткнись и считай" прекрасно работает везде, кроме квантовой космологии, в которой квантовая механика применяется к целой Вселенной. "Ортодоксальную" копенгагенскую интерпретацию, требующую, чтобы внешний наблюдатель выполнял над системой процедуры измерения, в этом случае невозможно даже сформулировать: нет никакого внешнего по отношению к Вселенной наблюдателя. Космологи, таким образом, склонны предпочитать многомировую картину.

Эверетт и некоторые его последователи настаивают, что все параллельные миры в равной мере реальны, однако другие полагают, что это лишь возможные миры и среди них только один реален. Эта дискуссия может оказаться простым спором о терминах: когда говорят, что есть другая параллельная вселенная, независимая от нашей, что в точности означает это утверждение? Как сказал президент Клинтон по другому поводу, "все зависит от значения слова "есть". Параллельные вселенные подобны параллельным прямым: у них нет общих точек. Каждая из них развивается самостоятельно в отдельном пространстве и времени, которые нигде не могут проникнуть в нашу Вселенную. Но как тогда мы можем сказать, существуют они на самом деле или только как возможности?

Я должен подчеркнуть, что все это никак не влияет на картину вечной инфляции, описанную в начале этой главы. Если принимается многомировая интерпретация, то существует ансамбль "параллельных" вечно инфлирующих вселенных, каждая с бесконечным числом О-регионов. Новая картина мира приложима к каждой из вселенных этого ансамбля.

Более того, в отличие от идеи параллельных миров другие О-регионы безусловно реальны. Все они принадлежат общему пространству-времени, и, будь у нас в запасе достаточный срок, мы даже смогли бы добраться до них и сравнить их истории с нашей.

 

Обходные пути

Без сомнения, многие читатели удивятся: неужели нам действительно надо верить во всю эту чепуху с нашими клонами? Нет ли способа избежать столь причудливых выводов? Если вы совершенно не способны смириться с мыслью, что ваш двойник в далекой галактике является республиканцем (или, наоборот, демократом), и если вы готовы ухватиться за любую соломинку, чтобы этого избежать, позвольте подбросить вам пару соломинок.

Прежде всего, есть вероятность, что теория инфляции неверна. Идея инфляции очень убедительна и подтверждается наблюдениями, но, конечно, далеко не в той мере, как, например, теория относительности Эйнштейна.

Даже если наша Вселенная является продуктом инфляции, можно допустить, что инфляция не вечна. Правда, это потребует довольно серьезных натяжек в теории. Чтобы избежать вечной инфляции, энергетический ландшафт скалярного поля должен быть специальным образом подогнан под наши требования.

Ни одна из этих возможностей не выглядит привлекательно. Теория инфляции — это самое лучшее из имеющихся у нас объяснений Большого взрыва. Если мы примем эту теорию и не станем ее калечить, добавляя совершенно не обязательные и произвольные свойства, у нас не будет иного выбора, кроме как признать инфляцию бесконечной, со всеми вытекающими из этого последствиями, нравятся они нам или нет.

 

Прощание с уникальностью

В представлениях древних мы, люди, были центром Вселенной. Небо располагалось не слишком далеко, и судьбы людей и царств можно было прочесть по звездам и планетам на его бархатном своде. Наш уход с авансцены начался с трудов Коперника и длился вплоть до конца прошлого столетия. Не только Земля не является центром Солнечной системы, но и само Солнце — лишь рядовая звезда на окраине довольно типичной галактики. И все же нас грела мысль, что на Земле есть нечто совершенно особенное — что это единственная планета с данным конкретным набором жизненных форм и что человеческая цивилизация с ее искусством, культурой и историей уникальна во всей Вселенной. Можно было думать, что эта единственность — достаточное основание, чтобы охранять нашу маленькую планету, как драгоценное произведение искусства.

Теперь мы лишились и этой последней претензии на уникальность. В картине мира, возникающей из теории вечной инфляции, Земля и наша цивилизация никак не могут считаться уникальными. По бесконечным просторам космоса разбросано бесчисленное множество идентичных цивилизаций. С этим понижением статуса человечества до абсолютной космической ничтожности наш путь прочь от центра мировой сцены может считаться завершенным.