Биологически активные

Галактионов Станислав Геннадиевич

Глава 2. Почему они биологически активные

 

 

Раз уж не уйти, не избавиться нам от этих вездесущих и непременных биологически активных соединений, давайте попытаемся познакомиться с ними поближе. Естественным в таких случаях началом было бы привести точное определение, что же называется биологически активным соединением. Отлично, открываем Краткую химическую энциклопедию... Гм... Нету здесь такой позиции... Берем «Биологическую энциклопедию» Брокгауза – нету, Малую Советскую Энциклопедию – нету. Большую–тоже нету! Но вот учебное пособие «Химия природных биологически активных соединений» под редакцией А.А. Преображенского и Р.П. Евстигнеевой. Тщетно и здесь искать нужное нам определение, и в прекрасной книге М. Гудмэна и Ф. Морхауза «Органические молекулы в действии», посвященной как раз биологически активным соединениям.

Неспроста это. Трудно дать в этом случае четкую, чеканную формулировку вроде великолепных: «Дисциплина есть точное и строгое соблюдение порядков и правил, установленных законами и воинскими уставами», или: «Молоко есть продукт доения самок крупного рогатого скота чистыми руками в чистую посуду» (честное слово, заставлял некий профессор своих студентов зазубривать буквально такую формулировку). Немного по той же причине, что и в случае знаменитого определения понятия «толпа» (один человек – толпа? А два? А три? и т.д.), немного потому, что необходимы некоторые предварительные пояснения более общего плана, усвоив которые можно прийти к выводу, что не так уж плохо живется и безо всякого определения столь популярного в наши дни термина «биологически активное соединение».

 

Пауль Эрлих

Эта книга, как легко догадаться, далеко не единственный имеющийся ныне учебник по биологически активным веществам. Существует таких книг огромное количество – гораздо более массивные и совсем тоненькие, с большим уклоном в химию или в биологию, более или менее насыщенные химическими или математическими формулами, и все без исключения – более серьезные, чем эта. Но при всем разнообразии интересов, стилей и научных позиций их авторов есть два-три абзаца, казалось бы, кочующих из одной книги в другую без особых изменений. Это фрагменты, где вспоминается принцип Эрлиха. Вспоминается он, как правило, скороговоркой (в самом деле два-три абзаца), в порядке изложения, как принято говорить, «предыстории вопроса».

Не желая хотя бы в этой части походить на своих коллег, я рискну уделить несколько больше внимания и самому Паулю Эрлиху, и связанному с его именем принципу.

Как и многие другие естествоиспытатели большого формата, Пауль Эрлих не может быть причислен к какой-либо определенной отрасли знаний. Полистайте его труды (право, это очень интересное занятие!), и вы убедитесь, что он и врач, и химик, и биолог, и фармаколог сразу. И, добавим, фигура чрезвычайно колоритная не только в науке. Хотя можно ли быть попеременно сухим педантом в лаборатории и темпераментным, экстравагантным нонконформистом «в быту»?

Еще в молодости Эрлих (он родился в 1854 году) имел репутацию юноши чудаковатого; например, на экзамене на аттестат зрелости ему досталась тема сочинения: «Жизнь – это сон». Молодой Пауль написал тогда, что поскольку жизнь есть, в принципе, процесс окисления, то и сон является определенной совокупностью химических процессов. Лично он, Пауль Эрлих, считает, что это некая фосфоресценция мозга...

Читателю, конечно, не составит труда угадать, какую именно оценку заработал юный Эрлих на этом экзамене.

В конце прошлого – начале нашего столетия Эрлих был одним из знаменитейших ученых Европы, членом многих академий, научных обществ и частым их гостем, выступавшим перед ними с лекциями, всегда яркими, привлекающими оригинальностью суждений. В 1908 году он совместно с И.И. Мечниковым получил Нобелевскую премию за работы в области иммунологии. Словом, как бы сказали в наши дни – колоссальное паблисити.

И на этом фоне – рассказы людей, встречавшихся с Эрлихом, о его экстравагантных манерах, о вспыльчивости, о невероятной забывчивости (господи, да сколько уж мы слышали анекдотов о забывчивых профессорах!). Когда читаешь все это, создается впечатление, что временами, по крайней мере, сам Эрлих подыгрывал будущим рассказчикам историй о нем; поэтому и характер анекдота «про Эрлиха» во многом зависит от состояния чувства юмора рассказчика.

Например, по одной версии, Эрлих был чудовищным невеждой в вопросах, не касавшихся непосредственно сферы его исследований. В подтверждение рассказывается такой случай. Едет-де Эрлих на какой-то научный конгресс в Лондон вместе с другим профессором-медиком. Проезжают они через Бельгию, через город Брюгге, где, как известно каждому образованному человеку, в местной больнице (бог знает, почему именно там) выставлены картины немецкого художника XV века Мемлинга.

– Я, пожалуй, задержусь в Брюгге, – говорит спутник Эрлиха. – Хочу зайти в больницу, взглянуть на Мемлинга.

– Отлично, передавайте ему привет от меня, – отвечает Эрлих.

Дадим теперь слово другому очевидцу, вспоминающему Эрлиха как большого любителя розыгрышей, мастера прикинуться наивным простачком.

Факты? Да ради бога!

Вот, например, пришел в гости к Эрлиху некий господин, недавно побывавший в Веймаре, городе, связанном в представлении всякого интеллигента прежде всего с именами Гёте и Шиллера, с посвященным им памятником. Гость полон впечатлений, начинает рассказывать, вдруг Эрлих его перебивает:

– Я и сам очень люблю Веймар, это прекрасный город, особенно впечатляет памятник Шекспиру. Гость ошеломленно молчит, а Эрлих продолжает:

– И это очень правильно, что этот прекрасный памятник поставили именно в Веймаре, на родине Шекспира.

Сначала гости делали какие-то намеки Эрлиху, пытались его прервать, но тут один из присутствующих вдруг стал ему подыгрывать, и они согласно начали излагать подробности жизни Шекспира в Веймаре.

Как видим, разница между этими двумя историями только в трактовке: в одном случае все приписывается неосведомленности Эрлиха, в другом – специфическому чувству юмора. Первая гипотеза мне кажется обоснованной гораздо слабее, тем более что историю с Мемлингом очень часто и с удовольствием рассказывал сам Эрлих, сопровождая ее замечаниями о своем мнимом невежестве, вроде того, что он так до сих пор и не уяснил, что там вокруг чего вертится: Земля вокруг Солнца или наоборот?

Несколько подозрительны также и россказни о его небывалой рассеянности – все эти письма-напоминания, посылаемые самому себе по почте, этот вечный узелок на цепочке часов – неизвестно, о чем напоминающий, эти папки с вклейкой: «Просим немедленно вернуть за вознаграждение в 10 марок по адресу...» И, наконец, все, что писалось о его полемическом задоре, о темпераментных дискуссиях, переходящих в шумную ссору...

Действительно, многие печатные работы Эрлиха выдержаны в откровенно дискуссионном тоне. Это придает им убедительности, вскоре я приведу и примеры.

Пока же несколько слов по поводу того, что принято называть «принципом Эрлиха». Иногда его для солидности приводят в латинском варианте – «Corpora nоn actunt, nisi fixata», то есть «вещества не действуют, не будучи связанными». Для того чтобы оказать какое-то действие на организм, молекула должна быть связана каким-то его элементом.

Вот, собственно, и весь принцип. До Эрлиха он был сформулирован менее лаконично и гораздо менее эффектно английским физиологом Джоном Ньюпортом Лэнгли для частного, интересовавшего его случая совместного действия атропина и пилокарпина на некоторые препараты тканей. Он написал еще в 1878 году:

«...Я считаю, без особого риска можно предположить, что в нервных окончаниях или в клетках желез существует вещество или вещества, с которыми и атропин, и пилокарпин способны образовывать соединения. Согласно такому предположению эти соединения атропина и пилокарпина образуются по некоторому закону, основными факторами которого является их относительная масса и химическое сродство к упомянутому веществу».

Замечу, впрочем, что Эрлих абсолютно не оспаривал приоритета Лэнгли, да и вообще не пытался убедить кого-либо в том, что он открыл «принцип Эрлиха». Он просто очень настойчиво и последовательно пропагандировал, внедрял в умы современных ему исследователей. эти немудреные в общем представления.

«Что то или иное вещество может влиять на данный орган (например, на мозг) или на данного паразита только в том случае, если оно этим органом или этим паразитом связывается и скопляется, это представление столь простое и почти само собой понятное, что может быть прослежено вплоть до самых отдаленных времен истории медицины. Еще в середине века один ученый-медик прямо утверждал, что лекарства должны иметь особые spiculae (спицы, крючки), с помощью которых они крепятся к органам. Но практической роли эта аксиома в современной фармакологии не играла.

Мои противники упрекают меня в том, что отстаиваемое мною воззрение есть нечто само собой разумеющееся и что нет надобности тратить на это много слов. Однако, милостивые государи, в науке важны не слова, а дела. Если король Генрих IV желал каждому гражданину своей страны иметь по воскресеньям в горшке курицу, то это несомненно свидетельствует о прекрасном и благородном облике этого владыки, но было бы еще лучше, если бы он и на деле предпринимал какие-нибудь меры, чтобы осуществить это пожелание. Всякая аксиома вообще имеет значение лишь тогда, когда труд превращает ее в полезную ценность, а не тогда, когда ее держат под спудом. Но именно последнее имело место в фармакологии, которая лишь в самое последнее время, подчиняясь необходимости, решилась признать принцип связывания, уже много лет играющий крупную роль в учении об иммунитете, и тем внесла в свою работу свежую струю современности». (Отмечу, кстати, что встречалось мне разъяснение одного «ученого историка» по поводу знаменитого пожелания Анри Четвертого насчет курицы. На самом как будто деле эта фраза родилась при следующих обстоятельствах. Анри в сопровождении еще нескольких человек целый день охотился, страшно устал, дико проголодался, к тому же они заблудились. Когда вдалеке наконец показалась крестьянская хижина, направляясь к ней, они принялись гадать, какую пищу смогут там получить. Вот тут-то и была произнесена столь известная фраза.)

Далее у Эрлиха читаем:

«...Для определенных лекарств должны существовать химические группировки протоплазмы, служащие для связывания соответствующих веществ. В этом я вполне схожусь с Лэнгли, отстаивавшим тот же взгляд. Я называю такие группировки «хеморецепторами».

Мне кажется, что эта образная, несколько агрессивная речь лучше приведенных выше анекдотов «про Эрлиха» характеризует его темперамент и полемические качества. Тем более что приведенные цитаты заимствованы не из какой-либо бурной дискуссии, а из рядового доклада, читанного П. Эрлихом в спокойной атмосфере Х съезда Немецкого общества дерматологов во Франкфурте-на-Майне в 1908 году.

«...Всякое действие, – говорил Эрлих в другой лекции, на этот раз в Лондонском Королевском институте здравоохранения, – предполагает наличность двух групп, обладающих максимальным химическим сродством; реакцией этих групп и обусловливается связывание. Эта аксиома связывания составляет основу моей теории боковых цепей».

Эрлиховская теория боковых цепей – применение представлений о связывании к более частному случаю реакций аппарата иммунитета, сыграла определенную роль в развитии иммунологической науки того времени и была как раз частым предметом дискуссий.

Эрлих предавался таким спорам с упоением, благо недостатка в противниках не было. Рассказывают, что отправляясь однажды на очередной конгресс, где ему предстояло отстаивать теорию боковых цепей, он оказался в одном купе со знакомым депутатом рейхстага. Все мысли Эрлиха – о будущих дебатах, и вот приходит ему в голову блестящая идея: сосед-то – профессиональный полемист, поднаторел в парламентских прениях. Не попытаться ли применить его опыт в борьбе за теорию боковых цепей?

– У вас такой большой опыт парламентских дискуссий, – обращается он к соседу-депутату. – Может быть, вы мне подскажете какие-нибудь действенные приемы, с помощью которых я мог бы расправиться со своими оппонентами?

– Но, господин профессор, я ведь совершенно не имею понятия о сути предстоящей вам дискуссии. Как же я могу что-либо советовать?

– Не беда, – возражает Эрлих, достает карандаш и, забросив ногу на ногу, прямо на подошве своей туфли начинает писать формулы, объясняя суть теории боковых цепей.

Увы, даже прослушав столь оригинально иллюстрируемую лекцию, депутат ничего не понял и не сумел подготовить Эрлиха к предстоящей полемике, как всегда, очень бурной.

Точно так же и по завершении таких схваток Эрлих долго не мог успокоиться. Его биограф описывает случай, когда почтенный профессор, возвращаясь с очередного конгресса, долго не мог прийти в себя после особенно эмоциональной стычки с напористым молодым оппонентом.

– Нахальный молокосос! – выкрикивал он время от времени в крайнем негодовании, не давая уснуть соседям по купе. Те пожаловались в конце концов проводнику, и Эрлиху было сделано грозное предупреждение. На некоторое время воцарилась тишина, а затем опять:

– Нахальный молокосос!

На этот раз проводник предложил Эрлиху покинуть купе; поняв, что шутки плохи, профессор наконец замолчал.

 

Будучи связанными

Итак, вещества не действуют, не будучи связанными. Как и всякая лаконичная и эффектная формула, принцип Эрлиха нуждается в довольно пространном комментарии. Ибо таково уж свойство классических максим: они дают ответ на один вопрос, но порождают несколько новых. В нашем случае прежде всего необходимо внести ясность в понятие связывания. В самом деле, чтобы вызвать какую-то реакцию протоплазмы, клетки, органа, целого организма, нужно, чтобы молекулы использованного вещества как-то провзаимодействовали с чем-то внутри этого организма или клетки, ведь на расстоянии не повоздействуешь...

Постойте, возразит образованный читатель, как это не повоздействуешь? А радиоактивные вещества? Они-то уж могут оказывать влияние на организмы даже на значительном удалении. Ну что же, еще один недостаток всяких лаконичных «принципов» и «законов»: размышляя над ними, легко впасть в буквоедские умствования, отдающие схоластикой и, как правило, уводящие в сторону от основных закономерностей, для выражения которых и были сформулированы злополучные принципы или законы. И стандартное поползновение всякого, кто начинает осмысливать такую вот формулировку, найти противоречащий ей пример (одно время в отечественной научной литературе для определения такого примера бытовало хорошее слово «гегенбайшпиль»). Именно по этому пути мы и двинулись, вспомнив о радиоактивных веществах, которые могут действовать на живые объекты на расстоянии.

Нет, пожалуй, все же это не совсем удачный гегенбайшпиль. Ведь в самом деле, на организм действуют не сами радиоактивные вещества, а испускаемые ими излучения. Совершенно неважно, вследствие распада каких радиоактивных элементов (или иных физических процессов) возникли эти излучения, важны лишь их вид, интенсивность, другие характеристики. Если это α-лучи (поток ядер гелия) или β-лучи (поток электронов), то следует говорить о «связывании» или «взаимодействии» именно этих веществ с органической материей – а такое взаимодействие налицо. Что же касается γ-лучей (жесткое рентгеновское излучение), здесь возникает вопрос о том, можно ли считать γ-кванты веществом. Физические авторитеты утверждают, что да; следовательно, для тех, кто с ними согласен, принцип Эрлиха оправдан и в этом случае, если кто-то придерживается отличного мнения, тем более что ведь Эрлих говорил именно о веществах, а не об излучениях.

Словом, не состоялся наш гегенбайшпиль, да и бог с ним, очень уж он увел нас в сторону от сути дела. Вернемся к исходному вопросу: что понимать под «связыванием»?

Для начала рассмотрим, за счет каких сил молекулы нашего вещества могут связываться с какими-либо компонентами протоплазмы да и, впрочем, не только протоплазмы.

Это может быть ковалентная связь, которая при написании структурных формул обозначается обычно черточкой. Она образуется за счет возникновения общей для связываемой пары атомов системы из двух электронов. Это весьма прочная связь, для ее разрыва, например, в молекуле органического соединения нужно затратить около сотни килокалорий на один моль. Если эта связь двойная, раза в полтора больше: в ее образовании принимают участие две пары электронов.

Некоторые функциональные группы, содержащие водород, такие, как –OH, –NH – и другие, способны к образованию так называемой водородной связи. Их частым партнером по такой связи оказывается карбонильная группа > C = O. Если кислород этой группы окажется вблизи, скажем, того же гидроксила, протон гидроксила, обладая сродством к обоим атомам кислорода, обусловит влечение этих групп друг к другу. При этом четыре атома: углерод, кислород, водород и опять кислород – будут стремиться расположиться в одну линию. При записи водородная связь обозначается обычно пунктиром: > C = O...H–O–. Водородная связь намного слабее ковалентной; для ее разрыва нужно одна-три, редко больше килокалорий на моль.

Некоторые атомы или функциональные группы несут электрический заряд; очевидно, такие противоположно заряженные центры также могут благодаря чисто электростатическим взаимодействиям связываться друг с другом. Сила такого взаимодействия зависит от окружения; например, в водной среде – случай, особенно нас интересующий, – оно очень ослабляется.

Существуют также весьма слабые и короткодействующие силы притяжения между атомами и функциональными группами, электрически нейтральными и не склонными к образованию водородной связи. Их энергия убывает обратно пропорционально шестой степени расстояния между центрами; в случае, например, максимально сближенных молекул метана она составит всего несколько десятых килокалории на моль.

Наконец, часто говорят о так называемых гидрофобных взаимодействиях. Можно иметь претензии к использованию здесь именно термина «взаимодействие», поскольку... Впрочем, лучше рассказать все по порядку.

Из повседневного опыта мы знаем, что существуют вещества, легко смачиваемые водой, и вещества, не смачиваемые вовсе. Если, например, нанести каплю воды на пленку из целлофана, она немедленно растечется по ее поверхности, если же это будет пленка из полиэтилена, соберется шариком.

В первом веществе в изобилии содержатся хорошо взаимодействующие с водой полярные группы, в частности, гидроксильные, способные образовывать водородные связи с молекулами воды. Появление таких связей сопровождается выделением энергии, поэтому и возникает тенденция к максимальному увеличению поверхности контакта пленки и воды.

В случае полиэтилена, состоящего сплошь из неполярных метиленовых групп –СН2–, подобные взаимодействия отсутствуют, но капля, казалось бы, все же должна растечься по поверхности пленки просто под действием силы тяжести. Этого, однако, не происходит, капля лишь чуть сплющилась. Вода не только не испытывает никакого сродства к полиэтилену, но и стремится всячески избегать контакта с ним.

Как известно, при замерзании воды выделяется энергия – около 0,15 килокалории на моль. Это цена упорядочения структуры; для нас пока неважно, из каких составляющих она слагается. На поверхности контакта воды с любым неполярным веществом, тем же полиэтиленом, возникает пленка льдоподобной структуры; контакт с инертным полиэтиленом оказывает упорядочивающее действие. Таким образом, стремление воды не приходить в соприкосновение с полиэтиленом или парафином есть стремление избегать льдообразования при комнатной температуре, на что, как мы говорили, пришлось бы затратить энергию.

Пусть две неполярные молекулы, скажем, того же метана, оказались в воде. Наиболее низкоэнергетической, а следовательно, наиболее стабильной ситуацией окажется такая, при которой они сошлись вплотную друг с другом – суммарная площадь контакта воды с поверхностью метана минимальна. Точно по той же причине две капли жира на поверхности супа охотно сливаются в одну, чтобы поверхность контакта с водой была поменьше.

Наблюдая за слипанием двух молекул метана в воде, можно объявить его результатом их взаимодействия. И в самом деле, для определения эффектов подобного рода введен термин «гидрофобные взаимодействия». Гидрофобия, или водобоязнь, – старое название бешенства, так что читателям, знакомым с таким значением этого слова, использование его в новой роли покажется, возможно, странным. Гидрофобными называют и вещества, и функциональные группы, и поверхности, не смачиваемые водой; недавно даже появилась в продаже гидрофобная смазка для ухода за обувью.

Здесь, мне кажется, скрывается определенная неточность. Вряд ли можно говорить о «водобоязни» того же парафина или полиэтилена. Не они воды боятся, или избегают, или не приемлют, а как раз наоборот, вода «избегает» контакта с ними, собираясь в капельку. Также и «взаимодействие» двух молекул метана в воде проявляется не в том, что они сами притягиваются друг к другу: их подталкивает, выталкивает в этом направлении вода.

Впрочем, термин «гидрофобные взаимодействия» уже настолько прочно устоялся в специальной литературе, что вряд ли удастся искоренить его рассуждениями подобного рода, да это совершенно и не входит в мои намерения; я хотел лишь подчеркнуть особенный характер этой группы взаимодействий, играющих к тому же важную роль в механизмах проявления биологической активности многих соединений как раз на этапе их связывания структурами клетки. Без чего, как мы уже знаем...

 

Ужасающий конец несчастного Стэнли

Еще раз не поленимся вспомнить принцип Эрлиха: «Вещества не действуют, не будучи связаны». За счет каких физических сил они могут связываться, – мы уже рассмотрели, теперь вопрос: а с чем?

Сам Эрлих, если вспомнить приведенные цитаты, говорил довольно туманно о каких-то веществах протоплазмы, о рецепторах. Что это, кстати, такое? И почему, связавшись, неважно пока, с чем, вещества эти оказывают какое-то действие?

Для иллюстраций существенных из начальных понятий обратимся к истории применения гербицидов: «химической прополки», как говаривали раньше. Одним из первых эффективных средств, помогавших избавиться от сорняков в посевах злаковых культур, были вещества, совершенно немудреные: серная кислота и медный купорос. Серная кислота – средство, конечно, радикальное. Нет такой живой ткани, нет такого организма, который мог бы противостоять контакту с ней. Но почему же сорняк звездчатка опрыскивания 20-процентной серной кислотой не переносит, а пшенице как с гуся вода?

А вот именно, именно, как с гуся вода. Плотные, лощеные листья пшеницы, покрытые тончайшим (гидрофобным!) восковым налетом, не позволяют задерживаться капелькам серной кислоты, они скатываются прочь, в почву. У звездчатки же поверхность листьев морщинистая, негладкая, к тому же хорошо смачиваемая. Несколько капель всесокрушающей H2SO4 на растение – и достаточно.

Вот уж действительно: не действуют вещества, не будучи связанными! А с другой стороны, на этом примере мы можем ввести в обиход нашего правдивого (по преимуществу) повествования важное понятие избирательности действия. В рассмотренном случае она проявляется на организменном уровне. Если бы серная кислота все же как-то задержалась и на листьях пшеницы, той бы тоже, конечно, несдобровать. Но пшеница увернулась. Невольно вспоминается полузабытая ныне пословица: «Что русскому здорово, то немцу...» Я, впрочем, наблюдал и обратное: почтенного, симпатичного русского профессора, у которого разыгрался неприятнейший гастрит после двухнедельного знакомства с немецкой кухней; так что пусть редактор не пытается вычеркнуть этот абзац, приписывая мне великорусский шовинизм.

Еще одна особенность действия серной кислоты на злополучную звездчатку: кислота уничтожает все клеточные структуры без разбору, разрушает все живое вещество клетки целиком. Гораздо больший интерес представляют соединения, действующие избирательно не только на уровне организма, но и внутри него, связываясь лишь с некоторыми, вполне определенными его элементами.

«...Стэнли, крайне польщенный этим визитом, суетился возле бара. Вскоре на столе появился поднос с двумя стаканами.

– Что предпочтете?

– Немного виски, – свободно ответила Айрис. И, выждав, пока Стэнли нальет, добавила: – Если можно, дайте льда.

Стэнли услужливо метнулся на кухню. Едва он скрылся за дверью, в руках Айрис появилась миниатюрная стеклянная капсула. Ее содержимое, всего несколько беловатых крупинок, она быстрым движением всыпала в стакан – тот, что стоял подальше от нее.

...Инспектор Мак-Гроу низко наклонился над лицом покойника. Так и есть–характерный запах горького миндаля».

Ну а раз горького миндаля, всякий знаток детективных историй тут же и сообразит, что те несколько беловатых крупинок, которые всыпала в стакан Стэнли коварная и аморальная Айрис, были не чем иным, как цианистым калием. Ладно, не подлежит сомнению, что инспектор Мак-Гроу дело свое знает, и не миновать в конце концов мерзавке газовой камеры или электростула. Лучше поинтересуемся: с чем же именно связался в организме злополучного растяпы Стэнли этот самый цианистый калий?

Ну, прежде всего не так уж обязательно именно калий. Дело в том, что все цианиды щелочных металлов в растворе диссоциируют на ион металла и анион CN– эти растворы имеют основную реакцию (то же KOH–очень сильная щелочь) поэтому часть анионов CN–, отнимая протон у молекулы воды, превращается в синильную кислоту – соединение довольно летучее. Именно запах синильной кислоты и почувствовал инспектор Мак-Гроу, а был ли в роковой капсуле цианид калия или, скажем, натрия, этого, пожалуй, уже не установить.

При попадании в организм животных синильной кислоты или ее солей образующийся ион CN– связывается с гемоглобином – красным веществом крови, обеспечивающим перенос кислорода из легких к остальным органам. Кислород обратимо связывается атомом железа, встроенным в так называемое порфириновое ядро – молекулу довольно сложной структуры, присоединенную к белковой части гемоглобина. Ион CN– образует с тем же атомом железа более прочное соединение, возникший в результате циангемоглобин уже не способен переносить кислород. Ясно, что последствия этого оказываются самыми печальными: удушье вследствие кислородного голодания.

Случай с цианистым калием демонстрирует нам первый пример как бы мимикрии на молекулярном уровне: явления, весьма важного для понимания механизмов химического воздействия на биологические объекты. В данном случае ион CN– как бы прикинулся кислородом, занял его место. Таким именно образом действуют многие вещества: имея сходство в химическом и структурном отношении с соединениями, участвующими в нормальном обмене веществ организма, они вовлекаются вместо них в соответствующие реакции.

Результаты могут быть разными, но это уже отдельный вопрос.

Далее, а как обстоит дело с избирательностью действия цианистого калия на организменном уровне? Ведь гемоглобин содержится только в крови позвоночных. Означает ли это, что, скажем, для насекомых, растений, микроорганизмов он безвреден? Нет, не означает.

Во-первых, в организме беспозвоночных функцию, присущую гемоглобину, – транспорт кислорода, – выполняют другие, весьма сходные с ним дыхательные белки – эритрокруорины. Они содержат ту же порфириновую группу с атомом железа, совершенно аналогично функционируют и так же, как гемоглобин, необратимо связывают ион CN–.

Во-вторых, такую же группу содержат и многие другие белки, не имеющие отношения к функции переноса кислорода, но очень важные для нормального течения различных обменных процессов в организме: цитохромы, каталазы и т.п. Представители белков этой группы присутствуют практически во всех организмах, кроме разве что вирусов; таким образом, цианистый калий – яд довольно универсальный, истребляющий, как и серная кислота, все (ну, почти все) живое.

Почти – потому, что есть организмы, безразличные к поразительно высоким концентрациям цианидов... Эпиграфом к заключительной главе одной весьма специальной книги, посвященной ядам животных, взято высказывание американского физиолога К. Шмидт-Нильсена:

«Один из способов быть. несъеденным – это стать несъедобным». Очень многими способами реализуется этот полезный совет представителями и растительного и животного царства. Чертополох угрожающе растопыривает свои колючки, полынь имеет омерзительно горький вкус, горькой же слизью покрыто тело жаб, а у некоторых она еще к тому же ядовита.

Именно ядовитость, пожалуй, самая распространенная причина несъедобности. Километрами бредет иной грибник по лесу, не находя решительно ничего, что можно было положить в корзину, и с раздражением поглядывает на огромные скопления ложного опенка, попадающиеся буквально на каждом шагу, на самодовольных красавцев мухоморов. Все другие, съедобные, не уцелели. Впрочем, некоторые знатоки утверждают, что по-настоящему несъедобных грибов очень немного, а большинство тех, мимо которых грибники проходят равнодушно или даже с омерзением, после соответствующей обработки можно есть за милую душу.

Есть и обратные примеры. В Японии большим деликатесом считается рыба фугу, хотя совершенно доподлинно известно, что в ее коже и некоторых внутренностях содержится страшный яд – тетродотоксин. Ежегодно десятки людей гибнут от отравления фугу, есть у японцев и назидательная пословица о лакомках, погибших из-за своего порока, отравившись фугу. А это может случиться в результате маленькой небрежности при разделке, а иногда и вообще неизвестно почему: просто попался особо ядовитый экземпляр, или время было неподходящее (фугу особенно ядовита в первой половине лета). Трудно понять такое легкомыслие со стороны рассудительных, по нашим представлениям, японцев. А, впрочем, много ли наших курильщиков принимает близко к сердцу отпугивающие статистические данные о горестной судьбе приверженцев никотина?

Вернемся, однако, к нашим цианидам. Некоторые ядовитые растения ядовиты именно благодаря тому, что в их тканях образуются и накапливаются цианиды. Это их способ защиты от поедания травоядными животными, насекомыми и поражения микроорганизмами. Но если в отношении насекомых такая защита оказывается стопроцентно эффективной, то среди микроорганизмов нашлись обладатели особых ферментных систем, быстро разрушающих цианиды, благодаря чему и могут беспрепятственно развиваться на субстрате, ядовитом для всех прочих растений.

Любопытно, что пути обезвреживания цианида бывают самими разнообразными. Грибки рода фузариум, паразитирующие на культурных растениях семейства пасленовых (картофель, помидоры и др.), превращают зловещий HCN в безвредные аммиак и углекислоту; другие грибки, вызывающие заболевания тех же культур, окисляют его до альдегидов. Чаще всего цианиды обезвреживаются, вовлекаясь в реакцию с аминокислотами.

Обычно цианиды образуются в растениях в результате деградации некоторых гликозидов или алкалоидов (их так и называют – цианогенными). Содержание накапливающейся таким образом синильной кислоты в некоторых растениях очень велико. Так, новозеландские ученые исследовали с этой точки зрения разные разновидности белого клевера. Оказалось, что у отдельных форм в килограмме свежей травы содержится более ста миллиграммов HCN. Смертельной дозой для овцы являлись всего 320 граммов такой травы или 60 граммов полученного из нее сена!

Еще большее содержание синильной кислоты было обнаружено в некоторых сортах сорго – до полуграмма в килограмме зеленой массы; очень богаты цианидами и клубни тропического культурного растения кассавы. Содержащийся в клубнях растений кассавы цианогенный алкалоид линамарин подвергается распаду с образованием HCN; любопытно, что в устойчивом к синильной кислоте грибке ризопус, поражающем клубни кассавы, содержится фермент, катализирующий этот процесс. Другой фермент разлагает выделяющийся цианид.

Индийские ученые, изучавшие этот грибок, пришли к выводу, что препарат второго фермента можно использовать для детоксикации кормовых и пищевых продуктов из кассавы, а кроме того, для очистки стоков, содержащих остатки солей синильной кислоты. Аналогичную идею выдвинула группа английских микробиологов, исследовавших другую группу цианотолерантных микроорганизмов. Такие стоки в больших объемах имеются, например, на гальванических производствах, и их обезвреживание, естественно, доставляет массу хлопот: требуется очень высокая степень очистки.

 

О белках

Механизм, по которому действует цианистый калий – блокирование деятельности белка благодаря связыванию с ним, характерен для обширного класса соединений. Примеры, подчас весьма поучительные, привести нетрудно; для этого, однако, необходимо сделать небольшое отступление. Настало время поговорить о белках вообще.

Читателю, по-видимому, известно, что белки – это цепные молекулы, образованные звеньями двадцати различных типов – аминокислотными остатками. Молекула белка содержит обычно от нескольких десятков до нескольких сотен таких остатков. Их чередование у каждой молекулы данного сорта белка строго одинаково. Часто белковую молекулу сравнивают с несколькосотбуквенным словом, записанным на двадцатибуквенном алфавите.

Сразу же напрашиваются два вопроса: какой смысл таится в этом слове и как такие молекулы образуются?

Приступая к ответу, я испытываю некоторую неловкость. Дело в том, что вместе с моим коллегой Г.В. Никифоровичем я уже писал об этом именно на страницах книги серии «Эврика». Она называлась «Беседы о жизни» и вышла в 1977 году. Нехорошо, конечно, повторяться, но я попытаюсь сделать изложение этого материала предельно лаконичным (упомянутая же книга была им посвящена полностью).

Сначала о смысле, заложенном в определенном чередовании аминокислотных остатков в белковой молекуле. Каждая такая молекула обладает одним замечательным свойством – она самопроизвольно сворачивается во вполне определенную пространственную структуру. Это происходит под влиянием сил взаимодействия различных ее частей друг с другом и с растворителем; они совершенно аналогичны рассмотренным выше. Особую роль играет именно растворитель, обычно водный.

Каждый аминокислотный остаток содержит элемент, общий для всех, – это повторяющиеся фрагменты остова цепи. К ним присоединены так называемые боковые радикалы, или боковые цепи (не путать с боковыми цепями Эрлиха, совпадение терминов совершенно случайное). Всего существует, как упоминалось, двадцать типов боковых цепей; часть из них имеет полярную природу и хорошо смачивается водой. Прежде всего те, которые способны к ионизации: потере или захвату протона с образованием электрически заряженного иона. Например, таков боковой радикал остатка аспарагиновой кислоты; он близок по строению уксусной кислоте, которая, как известно, прекрасно растворяется в воде.

Существуют, однако, и остатки с совершенно противоположным отношением к воде – сильно гидрофобные. Скажем, боковые радикалы остатков валина, лейцина, изолейцина – соединения парафиноподобные: боковая цепь фенилаланина представляет собой молекулу толуола (правда, лишенную одного атома – водорода). Цепной остов молекулы белка – довольно гибкий, подвижный; боковые цепи также могут вращаться около него и изменять свою форму. В водной среде неполярные радикалы будут стремиться избежать контакта с водой, слипаясь друг с другом, полярные, наоборот, «предпочтут» оказаться экспонированными в воду. В результате молекула сворачивается в плотную, компактную структуру, в которой все неполярные боковые радикалы (так называемое гидрофобное ядро), собраны внутри, а поверхность образована хорошо смачиваемыми группами. Ясно, что такая укладка в принципе возможна, если выполнялись некоторые условия как в отношении состава аминокислотных остатков, образующих молекулу белка (не свернешь такую структуру, если, скажем, в молекуле одни только полярные остатки!), так и в отношении их чередования в цепи. Последовательности аминокислотных остатков в реальных белковых молекулах всегда таковы, что они обеспечивают выполнение этих условий, позволяя молекуле свернуться плотно и, что очень важно, единственным возможным образом. Так что главная информация, содержащаяся в аминокислотной последовательности белков, – это, в конечном счете, информация о пространственном строении их молекул.

Белки выполняют в организме множество ответственных функций, и каждая из них тем или иным образом обусловлена определенной структурой соответствующих белковых молекул. Мы остановимся подробней на их роли как катализаторов химических реакций, протекающих в организме; эту роль выполняет обширная группа белков, называемых ферментами.

 

Эмиль Фишер

Все, что написано о химической структуре белковой молекулы – линейной цепочки, образованной чередующимися определенным образом аминокислотными остатками, стало известно главным образом благодаря работам блестящего немецкого химика Эмиля Фишера. Он же установил многие другие особенности строения белковых молекул и синтезировал короткие белковоподобные фрагменты – пептиды, самый большой из которых содержал восемнадцать аминокислотных остатков.

Совершенно неоценим вклад Фишера в развитие органической химии и химии природных соединений. Лучше всего его можно охарактеризовать словами самого Фишера, который под конец жизни говаривал, что в молодости он мечтал о том, чтобы суметь полностью синтетическим путем приготовить себе завтрак, и почти осуществил свою мечту. Действительно, помимо вклада в белковую химию, о котором только что шла речь, нужно упомянуть его блестящие работы по установлению структуры и синтезу сахаров, им же расшифрованы структуры молекул кофеина и теобромина – наиболее существенных компонентов кофе и чая. Так что до приготовления синтетического завтрака ему и впрямь было недалеко.

А ведь, помимо этого, Фишер установил структуру многих циклических соединений, синтезировал их и в 1903 году совместно с И. Мерингом получил популярное до недавнего времени снотворное – веронал.

Знает ли кто-нибудь из читателей, кто такой Герман Зудерман? Пожалуй, разве что специалисты по немецкой литературе конца прошлого – начала нашего века. Был этот самый Зудерман в то время изрядно плодовит и популярен – и как прозаик, и особенно как драматург.

На каком-то курорте Фишер и Зудерман встретились, и писатель почувствовал почему-то антипатию к Фишеру.

– Вы не представляете себе, до чего я счастлив, – язвительно сказал Зудерман, – что могу лично поблагодарить вас за прекрасное снотворное, каким оказался ваш веронал. Мне даже не нужно его глотать, достаточно, если он лежит на моей ночной тумбочке.

– Странный случай. Я тоже, когда не могу заснуть, беру какую-нибудь вашу книгу. Действует безотказно, для меня тоже достаточно просто увидеть ее на моей ночной тумбочке.

Как-то в букинистическом магазине попалась мне в руки книжечка этого Зудермана; вспомнив приведенную историю, исключительно с целью проверки снотворного эффекта сочинения я купил ее и прочел. Мне показалось, что Фишер все же не прав: графомания это, конечно, вещь совершенно справедливо забытая, но все же не нудная.

Веронал же положил начало широкому проникновению в повседневную нашу жизнь барбитуратов, ныне представленных огромным количеством снотворных, успокоительных и обезболивающих средств; назовем хотя бы еще люминал, нембутал, перноктон, диал, кви-этал. По мнению специалистов, распространяющееся злоупотребление барбитуратами (еще бы, в наш-то век стрессов и эмоций) представляет собой огромную медицинскую и социальную проблему. Но Фишер здесь, конечно, ни при чем.

Очень важный след оставил Фишер и в науке о ферментах. К концу XIX века исследователям уже были известны многие примеры их исключительной избирательности, специфичности, говоря профессиональным языком.

Скажем, некий фермент катализирует реакцию с участием определенной молекулы (она называется в этом случае субстратом); катализирует очень эффективно, ускоряя в миллионы раз или даже более. И вот стоит хоть чуть-чуть изменить что-то в структуре этой молекулы, заменить одну группу атомов другой, или слегка нарушить строение той ее части, которая в реакции не участвует вовсе, или расположить иным образом заместители у какого-нибудь атома углерода – фермент перестает действовать как катализатор.

Благодаря высокой специфичности ферментов в организме не воцаряется хаос: каждый фермент выполняет строго отведенные ему функции, не влияя на течение многих десятков и сотен других реакций, осуществляющихся в его окружении.

Всякий каталитический эффект наступает в результате того, что молекула катализатора связывается неким образом с одной или несколькими молекулами – участницами реакции. В составе такого комплекса реакционная способность связанных молекул повышается, они реагируют друг с другом или с какими-то еще молекулами окружения. Продукт реакции обычно обладает меньшим сродством к катализатору, комплекс распадается, и молекула катализатора готова для следующей операции.

Удивительную специфичность действия ферментов Эмиль Фишер объяснил точным взаимным пространственным соответствием молекул субстрата и связывающего ее участка фермента (он называется активным центром фермента). Эта гипотеза получила название «гипотезы ключа и замка» или гипотезы «руки и перчатки».

В самом деле» не наденешь левую перчатку на правую руку, а если и натянешь, то с трудом. И если активный центр фермента представляет собой как бы слепок молекулы субстрата, ориентированной определенным образом, то ясно, что даже незначительная модификация структуры субстрата не дает ему возможности образовать плотный (а следовательно и прочный) комплекс с ферментом.

Гипотеза Фишера (с небольшими последующими модификациями) получила прямое экспериментальное подтверждение лишь много десятилетий спустя, однако была повсеместно взята на вооружение биохимиками сразу.

Более того, эти представления были перенесены и на другие взаимодействия белков с различными веществами. Например, при появлении в организме некоторых чужеродных соединений вырабатываются антитела – белки, прочно связывающие эти соединения и предотвращающие тем самым их возможное токсическое влияние. Пауль Эрлих, стоявший у истоков возникновения этих представлений, говорил в Нобелевской лекции, читанной в 1908 году.

«А так как отношения между токсином и его антитоксином (антителом. – С.Г.) носят строго специфический характер – например, столбнячный антитоксин нейтрализует исключительно яд столбняка, дифтерийная сыворотка – только яд дифтерии, противозмеиная сыворотка – только яд змеи и т.д., – то необходимо допустить, что между каждой такой парой антиподов происходит химическое связывание; последнее же ввиду строгой специфичности процесса легче всего объяснялось бы существованием двух групп с определенной конфигурацией, а именно двух групп, которые, по меткому сравнению Э. Фишера, так же хорошо подходят друг к другу, как ключ к замку».

С идеей взаимного пространственного соответствия двух взаимодействующих биологических молекул нам придется иметь дело еще не раз, на самых различных примерах; на этой идее, можно сказать без преувеличения, стоит вся современная физико-химическая биология. А обязана она ей Эмилию Фишеру, так же как, впрочем, и еще многими, многими идеями и фактами.

Заслуги Фишера были высоко оценены еще при его жизни; он был директором знаменитого Института кайзера Вильгельма, членом многих академий и научных обществ (в том числе с 1899 года членом-корреспондентом Петербургской Академии наук).

В 1902 году ему была присуждена Нобелевская премия. Все это, разумеется, неважно; мало ли было полностью ныне забытых нобелевских лауреатов, не говоря уже об академиках? Более всего о масштабах научных свершений Фишера свидетельствует то, что его идеи, его результаты и по сей день присутствуют во всех учебниках биохимии, органической химии, молекулярной биологии.

Согласно преданию семьи Фишеров отец Эмиля – богатый, солидный купец – хотел, чтобы сын продолжил его дело. Юноша был определен на практику к шурину своего отца, тоже купцу. То ли торговое ремесло было скучным занятием для него, то ли молодой Эмиль сознательно манкировал обязанностями купеческого практиканта, только некоторое время спустя учитель вернул его отцу с кратким и категорическим заключением:

– Ничего из него не получится.

– Что же поделать, – разочарованно сказал Фишер-старший. – Раз для купца он слишком глуп, придется отправить его в университет.

Жаль, что история, по-видимому, не сохранила для нас имени этого самого шурина, которому, как оказывается, столь многим обязана современная наука.

 

Белки, разрушающие белки

Вернемся, однако, к разговору о белках.

Структура остова белковой молекулы довольно проста. Боковые радикалы присоединены к атомам углерода, которые соединяются друг с другом посредством пептидной связи –CO–NH–.

До сих пор не последовало ответа на поставленный где-то выше вопрос о том, каким образом возникают белковые молекулы. Повременим и еще, рассмотрев противоположный процесс распада белков в организме. Он идет с помощью белков же – протеолитических ферментов, которые расщепляют пептидную связь с образованием на концах цепей в месте разрыва карбоксигруппы –COOH и аминогруппы –NH2; при этом происходит гидролиз одной молекулы воды.

Как и большинство других ферментов протеолитические ферменты обладают специфичностью, подчас довольно высокой, и расщепляют далеко не каждую связь. То есть на каждый случай какой-нибудь фермент да найдется, но данный конкретный фермент обычно специфичен в отношении лишь небольшой части связей в молекуле белка.

Чаще всего такая специфичность определяется типом остатка, принимающего участие в образовании атакуемой связи и его ближайших соседей, однако существуют и чемпионы специфичности, которые привередливы гораздо более. Так, протеолитический фермент ренин атакует только пептидную связь, следующую за фрагментом совершенно определенной аминокислотной последовательности из восьми остатков!

Рассмотрим, однако, случай попроще: пищеварительный фермент химотрипсин, выделяемый поджелудочной железой. Он расщепляет пептидные связи, в образовании которых принимают участие неполярные, гидрофобные остатки, причем делает это тем охотнее, чем больше объем такого остатка. Методами рентгеноструктурного анализа удалось установить пространственное строение молекулы химотрипсина. Механизм его каталитического действия благодаря этому известен ныне во всех основных деталях.

Здесь я называю этот белок несколько панибратски просто химотрипсином; на самом деле речь идет об α-химотрипсине, ибо есть еще и другие химотрипсины. Поскольку в дальнейшем они нам не понадобятся, будем и впредь писать просто химотрипсин.

На поверхности молекулы есть углубление, устланное неполярными, гидрофобными группами. Форма и размер этого углубления в точности соответствуют наиболее крупному гидрофобному боковому радикалу – аминокислотного остатка триптофана. Благодаря упоминавшемуся стремлению гидрофобных поверхностей в водном растворе сомкнуться так, чтобы контакт с водой был минимальным, боковой радикал триптофана входит в углубление на поверхности фермента. При этом остов цепи ориентируется таким образом, что пептидная группа, следующая за остатком триптофана, оказывается в непосредственной близости от оксигруппы бокового радикала серина, также входящего в активный центр химотрипсина.

В обычных условиях такая оксигруппа не реагирует с группами > CO или > NH, однако в активном центре она находится в окружении еще и двух имидазольных групп – боковых радикалов гистидина. В этих условиях она становится агрессивной («приобретает нуклеофильные свойства», если кто-то предпочтет более точное определение) и вступает в реакцию с карбонильной группой > CO пептидной связи. Последняя разрывается, и освободившаяся часть атакуемой белковой молекулы, следующая за остатком триптофана, уходит. Вновь образовавшаяся эфирная связь –O–CO– в окружении упоминавшихся остатков гистидина также оказывается непрочной, и вскоре от молекулы фермента отделяется и другая часть белковой молекулы.

Вот так современной молекулярной биологии удалось наполнить конкретными подробностями фишеровскую гипотезу «ключа и замка». Отметим, что, помимо пространственного соответствия (комплементарности, как предпочел бы сказать любой профессионал) и взаимного сродства гидрофобного «кармана» химотрипсина и бокового радикала остатка триптофана, существенную роль играет и рельеф поверхности молекулы, обеспечивающий расположение атакуемой связи в тесной близости с остатком серина.

Рассмотренный только что механизм реакции гидролиза с участием этого остатка встречается и у других ферментов, необязательно протеолитических; среди последних же он присущ обширной группе ферментов, которые так и называются – сериновые протеиназы. Другой пищеварительный фермент, принадлежащий этой группе, трипсин, атакует связи, образованные основными остатками: лизином и аргинином. Их длинные боковые радикалы несут на конце положительно заряженную группу; соответственно, «карман» активного центра трипсина – вытянутый, а на дне его расположен заряженный отрицательно боковой радикал остатка аспарагиновой кислоты. В остальном различий в механизме действия двух ферментов нет.

 

Снова о молекулярной мимикрии

Явление мимикрии нередко встречается в живой природе. Совершенно неядовитые и безобидные змеи формой тела и окраской подражают своим грозным ядовитым сородичам – коралловой змее, аспиду и другим, причем часто сходство так велико, что определить, кто есть кто, может лишь зоолог-специалист. Безоружные насекомые часто почти неотличимы от ос. Таким образом им удается обмануть многих своих врагов.

Этот термин – мимикрия – уже упоминался ранее применительно к механизму токсического действия цианида; сейчас будет рассмотрен другой важный класс проявлений такой вот мимикрии на молекулярном уровне.

Действуя в нормальных условиях, всякий фермент, как и в рассмотренных примерах, на некоторое время связывается с молекулой субстрата; по окончании реакции этот комплекс распадается. Существует, однако, немало способов обмануть фермент: подсунуть ему молекулу, по структуре чрезвычайно близкую соединению, в отношении которого этот фермент специфичен, однако в силу какого-то отличия в структуре образующую с ферментом столь прочный комплекс, что молекула фермента выводится из строя очень надолго, часто практически навсегда.

Соединения такого рода называют ингибиторами ферментов; сюда относятся многие наиболее биологически активные и практически важные соединения: лекарства, пестициды, дезинфицирующие средства и т.п.

Например, наш знакомый химотрипсин необратимо ингибируется эфирами некоторых ароматических кислот. Циклическая связь этих соединений, два сочлененных кольца, напоминает боковой радикал триптофана и – очень удобно размещается в гидрофобном «кармане» активного центра. Карбонильная группа точно так же реагирует с сериновым гидроксилом, однако образовавшаяся связь оказывается весьма прочной, в отличие от связи, образуемой «нормальными» субстратами химотрипсина.

Известны многие ингибиторы и другого из рассмотренных выше ферментов, трипсина. Простейший из них – эпсилон-аминокапроновая кислота – представляет собой углеводородную цепочку из пяти групп –CH2–, несущую на одном конце карбоксил, а на другом – аминогруппу. Она имеет большое сходство с остатком лизина – одним из двух, в отношении которых трипсин специфичен. Эпсилон-аминокапроновая кислота не связывается валентно с ферментом, она размещается в почти полностью вытянутом виде внутри «кармана», причем ее положительно заряженная аминогруппа взаимодействует с находящимся в глубине отрицательно заряженным остатком аспарагиновой кислоты. Таким образом, комплекс этого соединения и ферментом оказывается менее прочным, чем в предыдущем случае.

Существует большое количество различных трипсиноподобных ферментов, имеющих общий с ним механизм действия. Один из них – содержащийся в крови плазмин, ответственный, в частности, за разрушение тромба. При многих заболеваниях его активность резко увеличивается, что приводит к разнообразным неприятным побочным последствиям, у нас еще будет случай о них поговорить. Чтобы от них избавиться, необходимо снизить активность плазмина, что достигается часто с помощью эпсилон-аминокапроновой кислоты или ее производных. Некоторые изменения структуры этой молекулы позволили получить соединения, обладающие более сильным ингибирующим эффектом, причем оказалось, что для его сохранения всегда необходимо, чтобы группы –NH2 и –COOH были разделены именно пятью другими атомами; укорочение или удлинение промежуточной углеводородной цепочки хотя бы на одну метиловую группу –CH3 приводит к снижению сродства к ферменту.

Обратим внимание на это обстоятельство и перейдем к рассмотрению других типов молекулярной мимикрии.

 

Подобно унтер-офицерской вдове

В случае встречи с ингибитором молекула фермента «страдает» непосредственно сама, оказавшись инактивированной. Есть, однако, соединения, также обладающие сходством с субстратом некоторого фермента и так же легко с ним взаимодействующие, однако безо всяких немедленных неприятностей для фермента: протекает нормальная реакция, как и с тем субстратом, который для этого и предназначен в организме – только вот продукт этой реакции чуть-чуть другой. Иногда последствия этого «чуть-чуть» оказываются весьма далеко идущими.

Как будто в старину существовал такой способ охоты на медведя: к стволу дерева, на котором находился улей, подвешивалась на веревке увесистая чурка. Подвешивалась довольно высоко, однако пониже улья. В землю под деревом втыкали заостренные колья острым концом вверх. Взбирается себе косолапый по стволу, в надежде хорошенько полакомиться, натыкается на препятствие, эту самую чурку. Отталкивает ее лапой в сторону и получает удар по голове. Серчает, отталкивает посильнее, чурка пребольно ударяет по лапе. Чем больше сатанеет мишка от злости, тем ощутимее становятся удары; сваливается он в конце концов вниз и насаживается на колья.

Был ли на самом деле таким вот способом убит хотя бы один медведь, сказать не берусь, в конце концов, всякий охотничий рассказ воспринимается нами с некоторым скепсисом. Но это и неважно, вся эта история вспоминалась здесь совершенно по другому поводу: обратите внимание, всю работу, необходимую для того, чтобы убить медведя, проделывает сам медведь. Сам колотит себя по голове, сам нанизывает себя на кол...

Так вот, очень часто некоторое соединение само по себе практически нетоксично. В организме, однако, оно подвергается различным превращениям, в результате которых образуется уже сильно токсичный агент. Организм сам приготовил себе яд из как будто безобидного вещества!

Растет, например, в Южной Африке несколько видов растений рода дихапетолум. Один из них называют гифблаар – ядовитый лист. Действительно, коза или кролик, съевшие несколько листьев этого растения, вскоре гибнут. Из семян другого вида дихапетолум, растертых в порошок, приготавливают крысиный яд.

В период колонизации Южной Африки туземцы использовали такие семена для отравления колодцев и других источников воды, изготовляли из них яд для стрел. Естественно, эти растения привлекли внимание биохимиков и токсикологов; удалось выделить ядовитое начало, содержащееся в них. Это оказалась омега-фторпальмитиновая кислота, соединение, представляющее собой довольно длинную углеводородную цепочку типа полиэтилена, несущую на одном конце карбоксильную группу, на другом – фтор:

F–CH2–CH2–...CH2–COOH.

Метиленовая группа –CH2– повторяется в этой формуле 15 раз.

Токсиколог Саундерс стал исследовать и другие соединения этого ряда – укорачивая или удлиняя углеводородную цепочку, благо синтез их не очень сложен. Его изыскания, в общем немудреные, даже в определенном смысле стандартные (первая и наиболее естественная мысль, которая приходит в голову специалисту: поварьировать длину углеводородной цепочки и посмотреть, каков будет эффект), дали странный и совершенно неожиданный результат.

Обычно оказывается, что существует некоторая – оптимальная, что ли, – длина цепочки, обеспечивающая наибольшую активность соединения; вспомним хотя бы недавний пример с эпсилон-аминокапроновой кислотой. В ряду же соединений вида F–(CH2)n–COOH токсичность совершенно не зависела от длины цепочки, а лишь от того, было ли количество метиленовых групп –CH2– в ней четным или нечетным. Ибо токсичными, причем в одинаковой степени, были лишь те соединения, у которых n – нечетное.

Объяснение можно найти, рассмотрев протекающие в организме пути окисления жирных кислот – соединений, очень сходных с рассматриваемыми, но не содержащих, конечно, в своем составе никакого атома фтора. Их распад (разумеется, под действием особых ферментов) осуществляется по такой схеме: в результате реакции, протекающей в несколько этапов, карбоксильная группа вместе со следующей за ней метиленовой группой отделяется от остальной части молекулы с образованием уксусной кислоты; следующая же в цепи метиленовая группа оказывается окисленной до карбоксила.

Таким образом, получается соединение того же вида, но содержащее в углеводородной цепочке на две метиленовые группы меньше. Оно, в свою очередь, подвергается окислению по тому же механизму и т.д.

Та же судьба постигает в организме и омега-фторорганические кислоты. Атом фтора на противоположном от карбоксила конце молекулы, видно, не мешает ферментам, осуществляющим описанный процесс. В результате, когда произойдет последнее отщепление молекулы уксусной кислоты, остаток будет представлять собой либо сравнительно безвредную фторпропионовую кислоту – если число групп – CH2– было четным, либо – крайне токсичную фторуксусную – при нечетном n. Одураченные ферментные системы трудолюбиво готовили для организма страшный яд.

Ибо фторуксусная кислота – соединение действительно очень ядовитое. Нескольких ее капель достаточно, чтобы умертвить лошадь. Более того, участник такого эксперимента сообщил, что собака, поевшая мяса этой лошади, сама тоже погибла.

Один из наиболее распространенных путей превращения уксусной кислоты в организме связан с процессом дыхания и выглядит следующим образом. Молекула уксусной кислоты конденсируется с молекулой щавелеуксусной кислоты, HOOC–CO–CH2–COOH. В результате образуется лимонная кислота (цитрат): HOOC–CH2–(OH)C(COOH)–CH2–COOH, которая под действием фермента аконитазы превращается в цис-аконитовую кислоту HOOC–CH = C(COOH)–CH2–COOH. Описанная последовательность реакций – это фрагмент важнейшего и универсального процесса дыхания – цикла карбоновых кислот (цикла Кребса). Очевидно, каждая его стадия контролируется специальным ферментом. Так вот, фермент, «работающий» на первой, «не замечает» того факта, что вместо одного из атомов водорода в молекуле фторуксусной кислоты имеется атом фтора. Зато следующий фермент, превращающий цитрат в аконитовую кислоту, – аконитаза именно из-за наличия атома фтора вместо водорода образует с синтезированным фторцитратом необратимый комплекс и инактивируется.

Здесь обманутые ферменты действуют в роли саботажников. Можно, однако, используя все тот же эффект молекулярной мимикрии, заставить их выступить в роли бракоделов.

Рассмотрим этот случай на примере механизмов действия сульфаниламидов: группы соединений, хорошо всем нам известных, увы, не только по книжкам. Стрептоцид, сульгин, уросульфан, норсульфазол, сульфадимизин, фталазол – мало у кого эти названия ассоциируются с какими-то приятными воспоминаниями.

Все это – препараты противобактериального действия. Структура простейшего из этих соединений, стрептоцида, довольно легко может быть описана словесно (постараюсь все же избежать появления в тексте структурных формул). Итак, представьте себе молекулу анилина: бензольное кольцо, к одному из углеродных атомов которого присоединена аминогруппа –NH2. К атому, расположенному в точности напротив, присоединен амид сульфогруппы, то есть –SO2NH2. Вот и весь стрептоцид как есть.

Попав в организм бактерии, стрептоцид начинает работать под парааминобензойную кислоту. Они и впрямь довольно похожи, молекула парааминобензойной кислоты отличается от стрептоцида лишь тем, что вместо амида сульфогруппы у нее находится карбоксил –COOH.

Парааминобензойная кислота необходима для синтеза фолиевой кислоты и ее производных – непременных участников многих ферментативных процессов, в частности, связанных с переносом метальных групп. Организм человека не может синтезировать фолиевую кислоту, а бактерии – могут. Их ферменты, работающие на этом участке, не умеют отличать парааминобензойную кислоту от стрептоцида, в результате получается соединение, удивительно напоминающее фолиевую кислоту, и только в одном месте вместо пептидной связи –CO–NH– связь иного рода –SO2NH–. Однако этого различия уже достаточно, чтобы второе соединение не могло выполнять функцию фолиевой кислоты в соответствующих процессах. Словом, повторяется история ильф-и-петровского гусара-одиночки Полесова, соорудившего, как известно, «стационарный двигатель, который был очень похож на настоящий, только не работал».

Человеку же стрептоцид безвреден, поскольку, как говорилось, в его организме синтез фолиевой кислоты не происходит, он должен получать ее в готовом виде. Вот вам, пожалуйста, польза иждивенчества...