Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии

Гомес Жуан

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

 

Предисловие

Во всей истории науки нет ничего более революционного, чем развитие неевклидовых геометрий, которое до основания потрясло веру в то, что теория Евклида является вечной истиной.

Эдвард Каснер и Джеймс Ньюмен («Математика и воображение», 1941)

Все мы знаем множество геометрических понятий, потому что постоянно используем этот раздел математики в нашей повседневной жизни. Но эти понятия относятся к так называемой «классической», или «евклидовой», геометрии. Однако существуют другие геометрии, которые устроены совсем не так, как нас учили в школе. Эта книга не сделает вас специалистом в нетрадиционных геометриях, зато покажет, что реальность гораздо богаче, чем кажется на первый взгляд.

В этой книге описаны другие способы мышления и отношения к геометрии, способы, отличающиеся от тех, которые прочно укоренились в нашей повседневной жизни, и которые определяют наши действия в соответствии с евклидовой геометрией. Можно подумать, что новые геометрии понятны лишь великим ученым, но мы постараемся в последующих главах в наиболее ясной и понятной форме изложить их основы.

Возможно, самым простым способом открытия новых миров является попытка увидеть их проявления в более понятных и очевидных сферах нашей повседневной жизни. Таким образом, наше изложение начнется с короткого путешествия в «геометрию такси», которая основана на так называемом «расстоянии Минковского», отличающемся от расстояния в обычном понимании. Как бы мы ни хотели улететь в дальние экзотические страны, для начала мы должны не терять землю под ногами. Нам придется обратиться к Евклиду, чтобы понять, как основные элементы геометрии используются в повседневной жизни. Лишь тогда мы сможем перейти к обсуждению таких понятий, как «пятый постулат» и «проблема параллелей», из которых рождаются интересующие нас новые геометрии.

Лишь владея лучшими инструментами математической теории, мы можем вступить в мир новых геометрий. Сначала проведем разведку, чтобы узнать, как обстоят дела. Мы рассмотрим различные попытки доказательства пятого постулата. Ведь только в XVIII в. непоколебимое на протяжении столетий учение Евклида было наконец поставлено под сомнение самыми выдающимися математиками того времени.

Неудачные попытки доказать пятый постулат поставили под сомнение, казалось бы, неоспоримые основы традиционной геометрии. В это время и проявили себя одни из самых замечательных ученых в области математики. История альтернативных интерпретаций пятого постулата является в равной мере историей неудач и гениальных открытий. С ней связаны самые известные в истории математики имена: Лобачевский, Бойяи, Гаусс, Риман… Мы более подробно рассмотрим удивительные результаты первой из новых геометрий — гиперболической геометрии Лобачевского и Бойяи. Мы увидим, как она кардинально изменила наше понимание физической реальности и как она повлияла на исследования Альберта Эйнштейна и открытие им теории относительности.

Эллиптическая геометрия Римана перенесет нас в удивительный мир сфер, где у треугольников сумма внутренних углов больше 180°. Мы воспользуемся сферической геометрией, чтобы ответить на многие вопросы. Что является кратчайшим расстоянием между двумя городами на поверхности Земли? Можно ли измерить внутренние углы треугольника, вершинами которого являются Париж, Лондон и Мадрид? Решения этих геометрических задач оказываются весьма полезными в нашем глобализованном мире, где GPS позволяет определить координаты любой точки нашей планеты.

Словно река, прорвавшая древнюю плотину, новые идеи смели традиционные научные понятия и породили сотни новых. Мы коснемся также геометрии XXI в. — интегральной и вычислительной геометрии, являющейся основой новых технологий.

Читатели, желающие поглубже изучить эти вопросы, найдут в конце книги список литературы. Алфавитный указатель позволит легко ориентироваться в тексте книги.

 

Глава 1

Поездка на такси

Нам часто приходится в повседневной жизни измерять предметы. Математическую дисциплину, изучающую такие задачи, древние греки называли геометрией. Это слово происходит от греческого geometrein, где geo означает «земля», a metrein — «измерять». Когда мы говорим о геометрии, мы всегда используем единственное число.

Казалось бы, множественное число — геометрии — подразумевает существование целого ряда возможных дисциплин на выбор. Такой подход звучит слишком заумно, эта идея находится за пределами понимания обычных людей. Тем не менее, так оно и есть: другие геометрии существуют.

Разве ученые абсолютно точно знают, что такое на самом деле точка в пространстве или прямая линия, проходящая через нее? Может ли круг иметь форму прямоугольника? Знаем ли мы, что означает «параллельность»?

Ответы на эти вопросы не являются вечными истинами, а меняются на протяжении времени. Евклид с полной убежденностью утверждал, что «через точку вне прямой можно провести только одну прямую, параллельную данной», но Лобачевский показал, что можно провести много параллельных прямых, практически бесконечное число. Риман был не согласен с обоими и считал, что параллельные прямые не существуют. Кто же из этих великих математиков прав? Может, все они правы?

Или они все ошибаются?

В данной главе мы как раз и разрешим все эти неопределенности, но, пожалуй, нам лучше начать с простого примера, который наглядно демонстрирует, почему возникает путаница относительно самой природы физической реальности.

Отправляясь из дома на работу или в другое место, мы вычисляем время, которое потребуется на дорогу, исходя из расстояния. Но часто оказывается, что расчеты не соответствуют реальному времени. Пробки, светофоры, дорожные работы — список таких задержек можно продолжать бесконечно. Все это, казалось бы, идет наперекор нашим тщательным планам.

Проблема заключается в том, что мысленно мы моделируем наше путешествие геометрически идеальным образом, представляя наш путь в виде почти прямой линии. Однако реальность вовсе не является геометрически идеальной. Наши расчеты нарушают не только неисправные светофоры или разгружающие товары грузовики. Дело еще и в том, что блоки городских зданий не образуют идеальных квадратов, а улицы не пересекаются под идеально прямыми углами… Означает ли это, что невозможно найти оптимальную дорогу, чтобы утром добраться до работы?

* * *

ИЛЬДЕФОНСО СЕРДА (1815–1876)

Известный главным образом как инженер и архитектор, Ильдефонсо Серда обладал многими талантами, занимаясь также экономикой, правом и политикой. Его реформа городского планирования в Барселоне в XIX в., получившая название «План Серда», изменила лицо города, в результате чего появился один из самых впечатляющих районов — Эшампле. По-каталонски ( I’Eixample ) или по-испански ( el Ensanche ) это означает «расширение». Улицы Эшампле образуют прямоугольные кварталы, пересекаясь на равных расстояниях друг от друга.

Вид с воздуха на район Эшампле в Барселоне.

* * *

Заколдованные улицы

Как и следовало ожидать, реальность никогда не бывает геометрически идеальной, иначе бы мир был очень скучным, представляя из себя утомительные повторения упорядоченных форм. Однако рациональность и упорядоченность являются важными критериями, которые необходимо учитывать на практике, например, в городском планировании. По вполне разумным причинам улицы многих современных городов образуют квадратные блоки. Одним из первых примеров такого городского планирования был район Эшампле в испанском городе Барселоне, детище архитектора Ильдефонсо Серда. Этот район послужит идеальным вводным примером к нашей теме.

Представьте, что вы находитесь в районе Эшампле и хотите попасть из точки А в точку В. Если каждый городской квартал считать за единицу пути, то каким будет в этих единицах расстояние между точками А и В?

Глядя на этот рисунок, можно представить треугольник с гипотенузой (прямая линия между точками А и В) и двумя другими сторонами (вдоль улиц от одной точки к другой). Тогда длина одной стороны составит 4 единицы, а другой — 2.

Применяя теорему Пифагора (а2  = Ь2 + с2), мы можем найти длину гипотенузы: √(42 + 22) = √20 = 4,47 единиц. Если нам нужно рассчитать время в пути, то очевидно, что это расстояние обманчиво, потому что мы не можем передвигаться из одной точки в другую по прямой линии. Реальное расстояние будет суммой двух других сторон треугольника, то есть 6 единиц.

Мы могли бы попробовать различные другие маршруты, чтобы найти наименьшее расстояние. Вариантов множество. Мы можем двигаться по вертикали и по горизонтали, поворачивая на первую улицу, а затем на вторую, или сделать поворот через две улицы и так далее. Однако общее расстояние всегда будет 6 единиц.

На следующем рисунке изображены различные маршруты между точками А и В. Всего имеется 15 возможностей.

Выходит, что фактический маршрут вовсе не является прямой линией. Здесь появляется другое понятие расстояния, которое называется расстоянием такси. Это понятие нелинейного расстояния лежит в основе геометрии такси.

* * *

ВОЗМОЖНЫЕ МАРШРУТЫ

Формула, выражающая количество всех возможных маршрутов для n вертикальных и m горизонтальных движений, выглядит следующим образом:

Здесь n! означает факториал числа n, который равен n  ·( n -1)·( n -2)·…·2·1. Например, 5! = 5–4 — 3–2 — 1 = 120. В нашем примере формула записывается так:

возможных маршрутов.

* * *

Расстояние такси

Расстояние, которое изучается в школе, является евклидовым расстоянием. Оно находится по теореме Пифагора, поэтому расстояние между двумя точками Р и Q с координатами Р = (x 1 , y 1 ) и Q = (x 2 , у 2 ) выражается следующей формулой:

В отличие от евклидова расстояния, минимальное расстояние в городе с прямоугольной сеткой улиц считается как d T (P, Q) = |x 2 — x 1 | + |y 2 — y 1 |

* * *

АБСОЛЮТНОЕ ЗНАЧЕНИЕ

Выражение | А | означает «абсолютное значение числа А», которое получается путем игнорирования знака числа. Если число А положительно, то | А | = А , а если число А отрицательно, то | А | = — А , например, |-5| = 5.

* * *

Это альтернативное расстояние называется манхэттенским расстоянием, или расстоянием Минковского, в честь немецкого математика Германа Минковского.

На более популярном языке это расстояние называют также расстоянием такси. На рисунке ниже пунктирная линия отмечает евклидово расстояние, а сумма длин вертикальных и горизонтальных отрезков соответствует расстоянию такси.

Если точка С является началом координат, то точка А имеет координаты (2, 1), а точка В — координаты (0, 5). Таким образом, евклидово расстояние составляет 4,47 единиц, а расстояние такси — 6 единиц. Обратите внимание, что положение начала координат не влияет на результат при расчете расстояний.

В математике метрикой или расстоянием между двумя точками А и В называется такое соотношение, которое удовлетворяет условиям положительности, симметрии и неравенства треугольника. А именно,

1) δ(A, В) >= 0, и из δ(A, В) = 0 следует, что А = В;

2) δ(A, В) = δ(В, A);

3) δ(А, В) =< δ(А, С) + δ(С, В).

Евклидово расстояние d(A, В) и расстояние такси d t (A, В) — два примера расстояний, которые удовлетворяют указанным выше условиям. В общем случае d(A, В) =< d T (A, В).

* * *

ГЕРМАН МИНКОВСКИЙ (1864–1909)

Немецкий математик Герман Минковский разработал геометрическую теорию чисел — геометрический метод решения задач из теории чисел. В 1907 г. он понял, что специальная теория относительности Эйнштейна может быть лучше выражена в терминах неевклидовой геометрии четырехмерного пространства. Это пространство с тех пор называется пространством Минковского. В нем время и пространство являются взаимосвязанными измерениями и образуют четырехмерное пространство, так называемое пространство-время. Именно таким подходом позже воспользовался Эйнштейн при работе над общей теорией относительности.

* * *

Пример с треугольниками

В евклидовой геометрии имеется признак равенства треугольников по двум сторонам и углу между ними, который работает следующим образом.

Пусть у нас имеются два треугольника АВС и А 1 В 1 С 1 со сторонами соответственно АВ, АС, ВС и А 1 В 1 , A 1 C 1 , B 1 C 1 . Тогда, если АВ = A 1 B 1 , АС = А 1 С 1 и угол ВАС равен углу В 1 A 1 С 1 , то сторона ВС равна стороне B 1 C 1 , то есть треугольники равны.

Другими словами, если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то третьи стороны в треугольниках также будут равны. Такие треугольники равны. Однако этот очевидный результат оказывается ложным в геометрии такси.

Рассмотрим треугольники с вершинами А = (3,1), В = (1, 3), С = (5, 3) и А 1 = (4, 4), В 1 = (8, 4), С 1 = (4, 0), как изображено на рисунке:

Можно показать, что

d T (A, B) = 4 = d T (A 1 , B 1 ),

а также

d T (A, C) = 4 = d T (A 1 , C 1 ),

Таким образом, по формуле расстояния такси b = b 1   и с = с 1 . Обратите внимание, что угол ВАС также равен углу В 1 А 1 С 1 (в данном примере они равны 90°). Несмотря на выполнение условий признака равенства, стороны а и а; наших треугольников имеют разную длину. Это совершенно разные треугольники, так что для них признак равенства треугольников из евклидовой геометрии не работает.

Круги

Круги встречаются повсеместно, как в естественных, так и в искусственных мирах, и, следовательно, это, пожалуй, простейшая из геометрических фигур, и ее легче всего описать. Подумав о круге, мы сразу вспоминаем множество круглых объектов, так что нам совсем нетрудно представить себе эту форму. Например, если взять колесо велосипеда, очевидно, что все спицы имеют одинаковую длину, иначе было бы невозможно на нем ездить. Все спицы одинаковой длины, потому что все точки на ободе находятся на одном и том же расстоянии от центра. Теперь сформулируем точное определение окружности на плоскости.

Геометрическое место точек плоскости, равноудаленных от заданной точки на заданное расстояние, называется окружностью.

Данная фиксированная точка называется центром окружности, а заданное расстояние — радиусом окружности.

Таким образом, если мы выберем точку Р на окружности (с центром в точке А и радиусом r), то d(P, А) = r. Например, если центр находится в точке (2, -1), а радиус равен 3, то все точки Р, удовлетворяющие нашему соотношению для А и r, образуют окружность.

На приведенном выше рисунке для изображения точек окружности использовалась формула евклидова расстояния, но если применять формулу расстояния такси, то получится совсем другой, очень странный результат, как можно видеть на следующем рисунке.

Мы можем проверить, что точки Р на этой «окружности» такси действительно удовлетворяют соотношению d T = (Р, А) = r при А = (2, -1) и r = 3. В геометрии такси возможно то, что всегда казалось абсурдным: мы можем круг превратить в квадрат!

Если вычислить длину окружности нашего такси-круга по классической формуле l = 2·π·r, то мы получим l = 2 ·π· 3 = 18,849. Однако по формуле расстояний такси длина окружности составит 6 + 6 + 6 + 6 = 24 единицы, и, кроме того, результат совсем не будет содержать π.

Эллипсы

Многие другие формы, известные из геометрии Евклида, выглядят странно в геометрии такси. Например, эллипс представляет собой множество точек, расположенных вокруг двух фиксированных точек, называемых фокусами. Сумма расстояний от любой точки эллипса до фокусов постоянна. Круг является частным случаем эллипса, когда оба фокуса находятся в одной точке.

В следующем примере фокусами являются точки А = (—3, 0) и В = (3, 0), а большая ось эллипса (наибольший диаметр) составляет 10 единиц. Следовательно, эллипс состоит из всех точек Р, удовлетворяющих условию d(P, А) + d(P, В) = 10:

Если евклидово расстояние заменить расстоянием такси, то множество точек Р, удовлетворяющих условию d(P, А) + d(P, В) = 10, будет выглядеть весьма странно:

Эти примеры показывают, что формы геометрических фигур не являются универсальными, вечными и неизменными. Любая форма относительна, каким бы странным этот факт ни казался. Формы зависят от метрики — так называется тип используемого «расстояния». Другими словами, они зависят от подхода к данной задаче.

Тем не менее, расстояние такси вовсе не является курьезом. Оно имеет множество применений в городском планировании. Например, оно играет важную роль при планировании эффективной дорожной сети и удобного расположения государственных учреждений (больниц, школ, туристических достопримечательностей и т. д.).

Соединяющие улицы

Давайте представим, что в некотором городе приняли решение соединить между собой два городских округа. Эти районы называются А и В, а улицы в них образуют прямоугольные кварталы, как в реальном Эшампле в Барселоне. Для соединения двух округов было решено построить дорогу таким образом, чтобы выполнялось одно сложное условие: в любой точке этой дороги автомобиль должен находиться на одинаковом расстоянии от точек А и В. Как можно спроектировать такую дорогу?

В математических терминах этот вопрос можно сформулировать следующим образом: какие точки на плоскости равноудалены от точек А и В?

Как всегда, в евклидовой геометрии имеется простое решение. Если на плоскости XY точка А имеет координаты (0, 0), а точка В — (4, 2), то можно провести линию, перпендикулярную отрезку АВ и проходящую через его середину. Эта линия и будет состоять из точек Р, удовлетворяющих условию:

d(P, A) = d(P, B).

Но этот подход не работает в геометрии такси. Обратите внимание, что евклидово решение потребует снести большое количество зданий, чтобы построить такой идеальный маршрут.

Решение должно быть найдено в терминах геометрии такси. Нужно найти линию, все точки Р которой удовлетворяют условию d T (P, А) = d T (P, В). Тогда расстояние от любой точки этой линии до точки А будет равно расстоянию до точки В. Кроме того, это решение позволяет свести к минимуму количество сносимых зданий.

 

Глава 2

Евклидова геометрия

Геометрия первоначально была наукой об измерениях. Греческие геометры умели измерять отрезки линий (как прямых, так и кривых), площадь поверхности, ограниченной линиями, и объемы фигур, ограниченных поверхностями. Однако глагол «измерять» вскоре принял более широкий смысл: «устанавливать отношения между геометрическими объектами». Появились геометрические формулировки, которые используются и сегодня: «прямая линия r параллельна прямой q», «отрезок АС в три раза длиннее отрезка АВ», «отношение периметра окружности к ее диаметру

есть число, которое не может быть выражено в виде дроби».

Для установления истинности таких отношений геометры древности разработали и довели до совершенства особую систему доказательств, которая стала основным методом математики. Система греческих геометров состояла в выводе важнейших результатов (теорем) из набора основополагающих аксиом с помощью «длинных цепочек рассуждений», как называл доказательства Декарт в своем трактате «Рассуждение о методе». Этот практически творческий подход является характерной чертой евклидовой геометрии.

«Начала» Евклида и пятый постулат

Как и в случае со многими другими выдающимися деятелями далекого прошлого, сведения о Евклиде крайне скудны. Ни дата, ни город его рождения точно не известны. Все имеющиеся сведения содержатся в толкованиях древних документов, упоминающих геометрию. Оттуда известно, что он жил до Архимеда, ок. 325–265 гг. до н. э., и был почти современником Птолемея (367–283 гг. до н. э.) . Стиль его рассуждений указывает на то, что он учился в Афинах с другими учениками Платона. Достоверно известно, что Евклид жил в Александрии, где преподавал математику на протяжении более чем 20 лет. Именно там он основал знаменитую школу, с которой и связан расцвет его научной деятельности.

Около 300 г. до н. э. Евклид написал свой магнум опус, великий труд «Начала», содержащий практически все известные в то время математические сведения. Эта книга является, по-видимому, наиболее читаемой после Библии. В самом деле, она использовалась в качестве учебного пособия в течение почти 2000 лет и считалась нерушимой основой не только геометрии, но даже здравого смысла. Первая печатная версия «Начал» появилась в Венеции в 1482 г. Это был перевод с арабского языка на латинский. Первая версия прямого перевода с греческого на латынь была опубликована в 1303 г.

Страница из первой книги «Начал»  Евклида . Издание Леонардо де Базилея и Гчльермо де Павия , 1491 г.

«Начала геометрии» (или «Начала») состоят из 13 книг, содержащих 463 утверждений, 372 теоремы и 93 задачи. Они не содержат обычного набора рутинных расчетов, которыми нагружают учеников в школе, а представляют собой логичный и структурированный свод современных знаний в стиле Платона. В соответствии со своими научными идеалами Платон говорил, что геометрия — это наука, которой занимаются ради познания. В седьмой книге диалога «Государство» он так объясняет свои представления об этой науке:

«Как если бы они были заняты практическим делом, геометры употребляют выражения «построим» четырехугольник, «проведем» линию, «произведем наложение» и так далее. А между тем, все это наука, которой занимаются ради познания».

В «Началах» все предложения доказываются шаг за шагом. Первые четыре книги называют пифагорейскими, так как они содержат главным образом материал, который изучали Пифагор и его последователи. Эти книги посвящены геометрии на плоскости: теореме Пифагора, свойствам треугольников, параллелограммов, кругов, многоугольников и так далее.

Следующие две книги излагают понятия пропорциональности и подобия многоугольников и содержат первое упоминание о золотой пропорции (в терминах «крайнего и среднего отношения»).

Книги с седьмой по девятую посвящены арифметике и рассматривают задачи, связанные с теорией чисел: делимость, простые числа, совершенные числа и так далее. Здесь определяется евклидово понятие числа. Евклид рассматривал все числа как геометрические отрезки, что соответствует современному понятию измеряемых величин.

Десятая книга дает классификацию чисел, называемых иррациональными, то есть таких чисел, которые не могут быть выражены в виде дроби. Последние три книги посвящены стереометрии (многогранникам, сферам и так далее). Здесь также рассматриваются пять правильных многогранников, так называемых «Платоновых тел», все грани которых равны и при этом являются правильными многоугольниками.

Евклид начинает изложение с простых, очевидных утверждений, которые могут быть легко и интуитивно поняты и не подлежат сомнению. Он называет их определениями, постулатами и аксиомами, и из них он выводит свои предложения, которые доказываются с помощью цепочек рассуждений. Основы учения Евклида сформулированы в первой книге «Начал», которая содержит 23 определения, 5 постулатов и 48 предложений.

* * *

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ

Существует только пять правильных выпуклых многогранников. Возможно, именно поэтому греки уделяли им особое значение, соотнося их с четырьмя стихиями: тетраэдр (огонь), куб (земля), октаэдр (воздух), икосаэдр (вода); а додекаэдр олицетворял Вселенную. Правильные многогранники также известны как пять «Платоновых тел».

ТЕРМИНОЛОГИЯ ЕВКЛИДА

Предложение — истинное утверждение, которое уже доказано или должно быть доказано.

Теорема  — предложение, которое может быть логически выведено из аксиом или из других ранее доказанных теорем с помощью принятых правил доказательства.

Постулат — предложение, истинность которого принимается без доказательства и лежит в основе дальнейших рассуждений; другими словами, допущение, лежащее в основе доказательства.

Аксиома   — предложение, настолько ясное и очевидное, что оно не требует доказательств. Аксиомы более очевидны, чем постулаты.

* * *

Первоначальные определения из первой книги даются для точки, прямой линии, прямого угла и параллельных линий и лежат в основе евклидовой геометрии и других геометрий.

Определение 1. Точка есть то, что не имеет частей.

Определение 2. Линия — это длина без ширины.

[…]

Определение 4. Прямая линия есть та, которая равно расположена по отношению к точкам на ней.

[…]

Определение 10. Когда же прямая, восставленная на другой прямой, образует смежные углы, равные между собой, то каждый из углов есть прямой, а восставленная прямая называется перпендикуляром к той, на которой она восставлена.

[…]

Определение 23. Параллельные — суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются.

Затем формулируются следующие аксиомы.

1. Равные одному и тому же равны и между собой.

2. Если к равным прибавляются равные, то и целые будут равны.

3. Если от равных отнимаются равные, то остатки будут равны.

4. Совмещающиеся друг с другом равны между собой.

3. Целое больше части.

В отношении фигур Евклид не говорит об их равенстве, а старается использовать слово «конгруэнтность». В общем случае под конгруэнтностью геометрических фигур понимается тот факт, что при наложении друг на друга они совпадают.

Далее Евклид формулирует пять знаменитых постулатов.

I. От всякой точки до всякой точки можно провести прямую линию.

II. Любой отрезок можно непрерывно продолжать по прямой линии.

III. Имея любой отрезок, можно описать круг с радиусом, равным длине этого отрезка, и с центром в одном из концов этого отрезка.

IV. Все прямые углы равны между собой.

V. Если две прямые пересекаются третьей, так что с одной стороны сумма внутренних углов меньше двух прямых углов, то эти две прямые неизбежно пересекаются друг с другом по эту сторону, будучи продленными достаточно далеко.

В соответствии с пятым постулатом, если сумма углов меньше двух прямых углов, то прямые линии будут сходиться (пересекутся). Значит, верно и обратное: если сумма углов больше двух прямых углов, то прямые линии никогда не пересекутся (они будут расходиться). Что произойдет, если сумма углов равна двум прямым углам? Тогда прямые линии и не сходятся, и не расходятся, то есть они будут параллельными и никогда не пересекутся. Однако пятый постулат вскоре стал вызывать сомнения. Во-первых, его формулировка является более сложной, чем у других постулатов, и не кажется интуитивно ясной. Даже Евклид долго не использует пятый постулат, пока не формулирует предложение 32:

«Сумма углов треугольника равна двум прямым углам (180°)».

Как потом доказал сам Евклид, это утверждение эквивалентно пятому постулату. Все треугольники образованы пересечением двух непараллельных прямых, которые затем пересекаются третьей. Параллельные линии в пятом постулате представляют собой особый случай, когда третья прямая перпендикулярна двум другим, и тогда два угла в сумме равны 180°, не оставляя ничего третьему углу треугольника.

Следовательно, по Евклиду нельзя построить треугольник с двумя прямыми углами.

Знаменитая теорема Пифагора также является еще одним частным случаем пятого постулата, когда только один из углов равен 90°:

«В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов двух других сторон».

Таким образом, оказывается, что, по сути, существует несколько утверждений, эквивалентных пятому постулату, о которых сам Евклид, возможно, не догадывался.

Утверждения, эквивалентные пятому постулату

Пятый постулат, по сути, вызвал сумятицу. Понятие параллельных прямых, которые можно неограниченно продолжать, фактически вводило понятие бесконечности.

Кроме того, по формулировке Евклида пятый постулат больше похож на теорему, чем на универсальную истину. Таким образом, на протяжении веков многие математики были убеждены, что это на самом деле свойство прямых, которое может быть доказано, и поэтому пытались найти доказательство. В результате появилось большое количество эквивалентных формулировок пятого постулата. Наиболее важные из них (именно с точки зрения новых геометрий) приведены ниже.

Греческий философ Прокл (410–485 ) был самым известным представителем афинской школы математики. Его постулат о равноудаленности формулируется следующим образом:

«Прямая, параллельная данной прямой, сохраняет постоянное расстояние от нее».

* * *

ГЕОМЕТРИЯ В ИСКУССТВЕ

Художники в своих работах используют точки, прямые линии и другие геометрические объекты. Их работы очень помогают при ответе на вопросы «что такое точка?», «что такое прямая линия?», «что мы имеем в виду под параллельностью?» Василий Кандинский (1866–1944)  был русским художником, поэтом, драматургом и педагогом. Научные исследования в области права и экономики он сочетал с занятиями графикой и живописью. Его преподавательский опыт отражен в трактате «Точка и линия на плоскости» (1925), где Кандинский определил прямую линию как «след перемещающейся точки».

* * *

Великий французский математик Адриен Мари Лежандр (1752–1833) пытался доказать пятый постулат в книге «Начала геометрии», которая многократно переиздавалась и переводилась на многие языки. Более 40 лет он искал доказательство пятого постулата, которое было бы математически строгим, но в то же время понятным читателям и студентам. К сожалению, он умер, так и не увидев развития неевклидовых геометрий. Однако именно он сформулировал постулат для углов треугольника:

«Существует треугольник, сумма углов которого равна двум прямым».

Тут мы должны упомянуть Яноша Бойяи, о котором мы позже расскажем более подробно. Отец Бойяи, который также был математиком, безуспешно пытался доказать пятый постулат и поэтому не хотел, чтобы его сын зря тратил время на решение этой задачи. Однако Яношу было суждено сделать гораздо большее. Все началось с постулата о трех точках:

«Через любые три точки, не лежащие на прямой линии, всегда можно провести окружность».

Мы также более подробно рассмотрим результаты «принца математики» Карла Фридриха Гаусса, который начал работать над пятым постулатом в 1792 г. в возрасте 15 лет и к 1817 г. убедился, что этот постулат совершенно независим от других четырех. Гаусс сформулировал постулат о площади треугольника:

«Существует треугольник сколь угодно большой площади».

Особенно важным был результат шотландского математика и геолога Джона Плейфера (1748–1819). Именно его «аксиома параллельности», в отличие от сложной формулировки Евклида, в настоящее время преподается в школах и наиболее часто встречается в учебниках. И действительно, ее часто принимают за оригинальную формулировку пятого постулата Евклида. Ее ценность заключается в простоте — аксиому Плейфера гораздо легче понять, чем формулировку Евклида:

«В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной».

Эту аксиому также можно сформулировать следующим образом: через точку, не лежащую на данной прямой, можно провести только одну прямую, которая не пересекает данную прямую (см. рис. V' на стр. 31).

Как бы то ни было, даже такое ясное и очевидное утверждение, как аксиома Плейфера не смогло убедить многих геометров. Откуда же эта одержимость идеей бросить вызов бессмертному Евклиду?

* * *

ТЕОРЕМА О БОЛЬШОЙ ТОЧКЕ

Эта теорема представляет собой довольно необычный результат, который можно сформулировать следующим образом:

«Число прямых, параллельных данной прямой, которые можно провести через точку вне этой прямой, зависит от того, насколько большой является эта точка».

Через большую точку вне прямой можно провести более одной прямой, параллельной данной.

Из этого также следует, что «через большую точку вне прямой можно провести сколь угодно много параллельных (и перпендикулярных) прямых к данной прямой».

Конечно, это всего лишь математическая шутка, но тем не менее эта формулировка наводит на интересные мысли. Откуда мы знаем, сколько линий (в евклидовом смысле) содержится в кончике грифеля карандаша? Чтобы проверить параллельность этих линий, нам придется продолжить их в бесконечность, а на это не хватит никакой бумаги в мире. Поэтому пятый постулат Евклида не может быть доказан экспериментально.

* * *

Геометрия в картинах эпохи Ренессанса

Эта одержимость объединяла Леонардо да Винчи (1452–1519) и Альбрехта Дюрера (1471–1528) , превратив их в выдающихся художников эпохи Возрождения и в величайших теоретиков за всю историю искусства. В своем трактате Institutiones Geometricae (латинский перевод с немецкого Underweysung der Messung, «Об измерениях»), опубликованном в Германии в 1525 г., Дюрер писал:

«Немецкие художники не имеют себе равных в использовании цвета, но их работы имеют некоторые недостатки в отношении пропорции, перспективы и так далее. Без правильных пропорций картина не может быть совершенной, как бы тщательно она ни была написана. Таким образом, те, кто желает овладеть искусством живописи, должны прежде всего изучать пропорции и понимать, как рисовать объекты в проекции и в перспективе».

И Леонардо да Винчи, и Дюрер искали способы изображения трехмерных объектов в двух измерениях. Как картине придать ощущение глубины? Этот вопрос привел их к понятиям перспективы, проекции и сечения, которые изучает специальный раздел геометрии, называемый проективной геометрией.

* * *

РАЗМЕРНОСТИ

На самом деле идеи Евклида представляют собой абстракцию, а не реальность: точка, не имеющая размеров; линия, не имеющая ширины, а только длину… Это дает понятие размерности, где длина и ширина определяют каждое измерение.

Так как точка не имеет размеров, она не имеет размерности. Так как прямая линия имеет только длину, ее размерность равна единице. Поверхность не имеет толщины и является двумерной. И, наконец, пространственные тела (например, куб) имеют три измерения. Фактически в евклидовой геометрии возможны только размерности, имеющие целые значения: 0, 1, 2 и 3.

* * *

Проективная геометрия является математической теорией, разработанной в произведениях искусства эпохи Возрождения. Поверхность картины считалась стеклом окна, через которое художник видит объект. Точки объекта соединяются с глазом наблюдателя прямыми линиями. Эти линии, проходя через стекло, образуют на нем изображение, которое является проекцией объекта на поверхность стекла. Этот процесс показан на гравюре Дюрера «Рисующий лютню», где художник демонстрирует, как на картине изобразить проекцию в соответствии с методом из трактата «Об измерениях». Помощник художника (слева) держит лист стекла, на котором объект на столе изображен в перспективе.

Чтобы получить такое изображение, стекло помещается в рамку, которую держит художник справа. Лучи света (прямые линии) от изображаемого объекта, попадая в глаз художника, проходят через стекло и образуют на нем так называемую проекцию. Таким образом, для художника ключевыми понятиями являются перспектива и проекция.

Эта гравюра включена в трактат «Об измерениях» (1525) и известна под названием «Рисующий лютню». На ней Дюрер показывает, как получить изображение в перспективе с помощью проекции.

Обратите внимание, что в проективной геометрии параллельные линии сходятся в точке, называемой точкой схода, или точкой бесконечности. Понятие параллельных линий превращается в понятие прямых, которые пересекаются в точке, расположенной на бесконечном расстоянии. Однако эта бесконечно удаленная точка все еще находится в поле зрения наблюдателя.

Хорошим примером точки схода на плоскости является точка, где сходятся железнодорожные рельсы. Другим примером являются чертежи архитектора с плоскостными проекциями для изображения более реалистичного варианта дизайна.

Точка схода в реальности при взгляде на рельсы (сверху). Точка схода на художественной проекции. Иллюстрация из опубликованного в 1565 г. «Трактата о перспективе» фламандского художника  Вредемана де Вриса (снизу).

Методы проективной геометрии приводят к искажению изображений: длины отрезков, величины углов и размеры фигур евклидовой геометрии не обязательно сохраняются. В сущности, проективная геометрия является геометрией художников. Поэтому параллельные линии изображались художниками эпохи Возрождения совсем не так, как у Евклида. Изменилось само понятие параллельности.

Теория Евклида под сомнением

Вплоть до конца XVIII в. роль математики заключалась в обосновании физической реальности мира, в котором мы живем. В следующем же веке эта роль изменилась с появлением неевклидовых геометрий. Время «Начал» Евклида, являвшихся непререкаемой истиной на протяжении 23 веков, подошло к концу, и вместе с этим пошатнулось само понятие реальности в том абстрактном смысле, который в него вкладывали до сих пор.

Иммануил Кант утверждал, что пространство является системой отсчета, существующей в человеческом сознании, и, следовательно, аксиомы и постулаты геометрии Евклида являются предопределенным знанием, понятиями, априори запечатленными в уме человека. Без этих аксиом и постулатов невозможно даже рассуждать о пространстве. Тем не менее он был первым, кто допускал возможность существования другого типа геометрии. В своей первой работе, опубликованной в 1746 г., Кант рассматривает пространство с более чем тремя измерениями и говорит:

«Если возможно существование пространств с другими измерениями, то, скорее всего, Бог создал бы их, ибо его творения заключают в себе все величие и разнообразие, на которое они способны».

Геометриями, которые предсказал Кант, являются известные в наше время многомерные неевклидовы геометрии.

В формальном смысле евклидова геометрия определена в первых шести книгах «Начал», а неевклидовы геометрии получаются путем отказа от пятого постулата.

В формулировке Плейфера этот отказ означает две возможности: либо отрицать уникальность параллельной прямой, либо отрицать ее существование. Это может быть выражено следующими альтернативными утверждениями.

1. В плоскости через точку Р, не лежащую на данной прямой l, проходит более одной прямой, параллельной данной.

2. В плоскости через точку Р, не лежащую на данной прямой l, не проходит ни одна прямая, параллельная данной.

* * *

ИММАНУИЛ КАНТ (1724–1804)

Знаменитый немецкий философ Иммануил Кант получил строгое образование, при котором латинскому языку и религии уделялось больше внимания, чем математике и естественным наукам. И только в университете он по-настоящему занялся физикой и математикой. Но когда умер его отец, Кант был вынужден оставить учебу и работать репетитором, чтобы прокормить себя. В 1755 г. благодаря помощи друга он продолжил образование и получил докторскую степень. Кант в конечном счете стал преподавателем, работая в университетах в течение 15 лет, читая лекции по истории, естественным наукам и математике, а также по философии. Кант считается одним из самых ярких мыслителей современной Европы. С самого начала его теории оказывали огромное влияние на интеллигенцию и до сих пор являются основой современной философии, которая постоянно ссылается на него. Идеи Канта нашли отражение во многих дисциплинах: в философии, праве, этике, логике… Вместе с Платоном, Аристотелем и Декартом Кант является одним из основоположников западной философской мысли, отцом современной философии.

* * *

Чтобы в полной мере понять эти формулировки, нам в первую очередь необходимо выйти за рамки нашего восприятия того, чем являются параллельные линии. Новая геометрия может быть построена таким способом: мы сохраним все постулаты Евклида, но только заменим пятый постулат его альтернативой. Такая геометрия позволяет получать логичные результаты и не имеет внутренних противоречий. Первая такая геометрия, так называемая гиперболическая геометрия, была предложена Николаем Лобачевским (1792–1856) и  Яношем Бойяи (1802–1860) . Другую геометрию, так называемую эллиптическую геометрию, сформулировал Бернхард Риман (1826–1866) .

Развитие неевклидовых геометрий проходило в два этапа: сначала были попытки доказать пятый постулат Евклида, а потом появились новые геометрии с альтернативным пятым постулатом, которые сосуществовали с евклидовой геометрией.

Такой подход предполагает существенные изменения в нашем восприятии реальности. Например, пятый постулат Евклида можно рассматривать в формулировке о сумме углов треугольника и сформулировать альтернативные постулаты. Сумма трех внутренних углов любого треугольника равна 180° — но только в мире Евклида, где параллельные линии можно продолжать до бесконечности и пространство не искривлено. А если бы Евклид побывал в бесконечности и увидел, что там произошло с параллельными линиями? А вдруг они бы пересеклись? Это бы значило, что пространство искривлено, а сумма углов треугольника больше 180°, как если бы треугольник был нарисован на поверхности апельсина. Аналогично в гиперболической геометрии, где параллельные линии неумолимо расходятся, сумма углов треугольника меньше 180°.

Евклидова геометрия содержит основные понятия любой геометрии, такие как точки, прямые и плоскости, но эти понятия в других геометриях необходимо пересмотреть. В новой геометрии прямой линией будет называться любая линия, которая является кратчайшим расстоянием между двумя точками, а плоскостью будет такая поверхность, которая обладает следующим свойством: если две точки на прямой принадлежат этой поверхности, то все другие точки на этой прямой также будут принадлежать этой поверхности.

Эти идеи действительны во всех геометриях и характеризуют новый подход к восприятию форм. Неевклидовы прямые линии могут оказаться искривленными, а в так называемой сферической геометрии сфера считается плоскостью и большие окружности на ее поверхности являются прямыми линиями. Обе геометрии имеют общую терминологию, потому что и там, и там прямая линия является самой простой линией, а плоскость — самой простой поверхностью.

Как же мы можем быть уверены в том, что две прямые параллельны? Нам нужно продолжить их в бесконечность и убедиться, что они никогда не пересекутся. Человеческий разум владеет абстрактным понятием прямой линии, имеющей только длину, но не ширину. Можно представить себе две линии, которые никогда не пересекаются и всегда находятся на одинаковом расстоянии друг от друга. Все это можно представить, но нельзя доказать экспериментально. В конце концов, евклидова геометрия является такой же абстрактной идеей, как и все остальные.

* * *

НАПОМИНАНИЕ

До сих пор никто не смог доказать ни одно из следующих утверждений.

1. Через точку вне прямой проходит только одна прямая, параллельная данной.

2. Через точку вне прямой проходит более одной прямой, параллельной данной.

3. Через точку вне прямой не проходит ни одна прямая, параллельная данной.

Все эти постулаты возможны и приводят к новым геометриям.

-

ЗЛОПОЛУЧНАЯ ФРАЗА

В конце 1950 гг. математики со всего мира встречались на семинарах и конгрессах в Европе и Америке, обсуждая необходимость преподавания так называемой «современной математики» в средней школе. Самый известный конгресс состоялся в Руайомоне (Франция) в ноябре 1959 г. Там французский математик Жан Дьёдонне (1906–1992) , заканчивая свой доклад, посвященный «Началам» Евклида, воскликнул: «Долой Евклида!» Эта фраза стала популярной в математическом сообществе и ассоциируется с наступлением эры современной математики.

К сожалению, эти слова были сказаны одним из самых влиятельных математиков XX в. Нет необходимости еще раз говорить о значении «Начал» и вкладе их автора: без Евклида мы были бы не в состоянии объяснить окружающую реальность или развивать другие геометрии. К счастью, специалисты в области образования во всем мире отстояли наследие Евклида, и его геометрию продолжают изучать в школе.

 

Глава 3

Конкуренты

Евклида

На протяжении веков пятый постулат вызывал обильные комментарии и критику в трудах самых известных геометров. Многие из них были убеждены, что этот постулат можно доказать с помощью других постулатов, и сосредоточили свои усилия на поиске доказательства, чтобы, наконец, объявить его теоремой.

После многих столетий развития математических теорий никто так и не смог доказать ни сам постулат, ни ложность тех геометрий, которые этот постулат отвергают.

Последний греческий мастер

Список математиков, которые пытались доказать пятый постулат Евклида, содержит много самых знаменитых имен в истории науки. Результаты этих ученых открыли дорогу новым геометриям, и мы не должны забывать их новаторских работ в этой области.

Тем не менее, несмотря на усилия лучших математиков, все попытки были тщетны. Каждый, кто брался за решение этой задачи, получал результаты, эквивалентные пятому постулату, но строгое доказательство так и не было найдено. Одна из первых попыток была сделана Проклом в V в.

Прокл оставил ряд своих комментариев, например:

«Это положение должно быть совершенно изъято из числа постулатов, потому что это — теорема, вызывающая много сомнений, которые Птолемей пытался разрешить в одной из своих книг, и его доказательство потребовало сложных определений и теорем. Кроме того, обратное утверждение было доказано самим Евклидом в качестве теоремы. Утверждение, что «две прямые неизбежно пересекаются, будучи продленными достаточно далеко», представляется правдоподобным, но не необходимым. Таким образом, совершенно ясно, что должно быть найдено доказательство настоящей теоремы, а такое требование природе постулатов совершенно чуждо».

* * *

ПРОКЛ АЛЕКСАНДРИЙСКИЙ (410–485)

Греческий математик Прокл родился в Константинополе и умер в Афинах. Он был последним крупным языческим ученым. Из-за своего язычества он был изгнан из Афин на целый год. Он был выдающимся комментатором Евклида и Птолемея, а потому является важной фигурой древнегреческой геометрии.

* * *

Фактически греческий математик хотел показать, что только одна параллельная прямая m проходит через точку Р вне прямой l.

Прокл предположил, что, по крайней мере одна прямая, параллельная l, проходит через точку Р, и он обозначил ее буквой m. Затем он хотел доказать, что любая другая прямая, проходящая через Р и отличная от m, пересекает прямую l.

Таким образом было бы показано, что если существует параллельная прямая, проходящая через Р, то она должна быть единственной. Итак, Прокл провел через точку Р прямую n, отличную от m, и опустил из точки Р перпендикуляр на прямую l, обозначив его основание буквой Q.

Далее, если прямая n проходит через точки Р и Q, то n пересекает прямую l в точке Q. Но что если n не проходит через точки Р и Q? В этом случае на прямой n можно отметить точку Y и опустить из нее перпендикуляр на прямую m, обозначив его основание точкой Z.

На рисунке выше мы видим, что отрезок РY ограничен прямой m и отрезком YZ, а точка Y может двигаться вправо по прямой n.

Далее Прокл отмечает, что длина отрезка YZ увеличивается по мере продвижения вправо (и может стать бесконечно большой). Поскольку расстояние между прямыми m и l постоянно, то n обязательно пересечет l в некоторой точке. Таким образом, как думал Прокл, пятый постулат был доказан.

Обратите внимание: рассуждения греческого ученого опираются на то, что расстояние между прямыми m и l постоянно. Таким образом, единственным аргументом является то, что прямые m и l не пересекаются.

Кроме того, длина отрезка может увеличиваться бесконечно, но не превышать некоторой фиксированной величины. Фактически Прокл свел доказательство пятого постулата к доказательству того, что параллельные прямые находятся на постоянном расстоянии друг от друга, что эквивалентно аксиоме параллельности Плейфера.

Средневековые хранители греческого наследия

Арабские математики также пытались доказать пятый постулат. Первым из них был Ибн ал-Хайсам (965—1039) , известный на Западе как Альхазен. Он исходил из предположения, что если четырехугольник имеет три прямых угла, то четвертый угол тоже должен быть прямым, откуда Альхазен заключил, что через точку вне прямой проходит только одна параллельная линия. Его заключение основывается на том, что геометрическое место точек, равноудаленных от данной прямой, является прямой линией. Обратите внимание, что его аргументы тоже основаны на понятии равноудаленности, хотя и не так явно. Таким образом, его предположение (если четырехугольник имеет три прямых угла, то четвертый угол тоже прямой) эквивалентно пятому постулату Евклида: Альхазен использует пятый постулат, чтобы доказать пятый постулат!

Персидский математик Омар Хайям (1050–1123) был известен как в арабском мире, так и на Западе благодаря своим работам по астрономии, алгебре и, в частности, благодаря вкладу в геометрию. Его знаменитая работа «Об истинном смысле параллельных и об известных сомнениях» содержит аргументированные рассуждения с использованием четырехугольников. Эта теория лишь через 600 лет была развита итальянским философом и математиком Джироламо Саккери.

Хайям рассматривал четырехугольник с вершинами А, В, С и D, такой, что стороны АВ и CD конгруэнтны (то есть одна из них может быть наложена на другую), а углы при вершинах А и D являются прямыми. Омар Хайям доказал, что углы при вершинах В и С также конгруэнтны, но он не утверждал, что они должны быть прямыми. Четырехугольник такого типа имеет следующий странный вид:

Современный период

В эпоху Возрождения дальнейшие исследования связаны с работой Христофора Клавия (1538–1612) , который в 1584 г. составил комментарии к «Началам». Он добавил также свои предложения, увеличив их количество до 1234.

Между 1603 и 1607 гг. он выпустил первое издание «Начал», предназначенное для Китая. Именно этот текст позднее использовали в своих исследованиях Саккери и Декарт.

Из-за своих дополнений к «Началам» Клавий прославился как «Евклид шестнадцатого века». Его работа была довольно радикальной, но он многое сделал в других областях. Он являлся активным сторонником григорианского календаря, и именно благодаря ему после четверга, 4 октября 1582 г. по юлианскому календарю, идет пятница, 15 октября 1582 г. по григорианскому календарю. Расчеты Клавия позволили перейти от одного календаря к другому, удалив 10 дней из истории человечества!

Клавий привел доказательство пятого постулата, снова использовав для этого сам пятый постулат: линия, равноудаленная от данной прямой линии, также является прямой. Несмотря на другие свои достижения, Клавий не достиг успеха в попытке исправить и дополнить великого мастера.

Преподаватель Оксфордского университета Джон Ва ллис (1616–1703) был одним из пионеров современной математики. Он ввел новую интерпретацию пятого постулата, отказавшись от идеи равноудаленности и использовав рассуждения с треугольниками. Валлис показал, что «для любого треугольника можно построить другой треугольник с теми же углами и пропорциональными сторонами». Однако и это утверждение также эквивалентно исходному постулату:

Все аргументы так или иначе сводились к утверждениям, эквивалентным пятому постулату, потому что сам подход был ошибочным: в доказательстве уже использовалось то, что они хотели доказать.

Четырехугольники Саккери

Казалось, ситуация зашла в тупик, но тут появился Джироламо Саккери. Итальянский математик воспользовался методом доказательства от противного, при котором сначала формулируют предположение, противоположное тому, что хотят доказать, а затем логически доказывают, что это предположение ведет к противоречию. Таким образом, Саккери подумал, что ему удалось доказать постулат, но потом он понял, что так и не получил убедительного противоречия.

Его работа неявно предполагает существование других геометрий, которые возникают именно из-за невозможности достижения противоречия, исходя из предположения о ложности пятого постулата. Сам не осознавая того, Саккери создал новую геометрию, в которой пятый постулат заменен противоположным ему утверждением.

Саккери начал с идеи Омара Хайяма и рассмотрел тот же четырехугольник ABCD, у которого стороны АВ и CD конгруэнтны, а углы при вершинах А и D прямые. Четырехугольники такого вида называются теперь четырехугольниками Саккери.

Чтобы доказать пятый постулат, Саккери показал, что углы при вершинах В и С прямые. В соответствии с пятым постулатом, угол В равен углу С. В этом случае существует три возможности.

1. Гипотеза о прямых углах: углы В и С являются прямыми.

* * *

ДЖИРОЛАМО САККЕРИ (1667–1733)

Саккери еще молодым человеком вступил в орден иезуитов и преподавал теологию в иезуитском колледже в Милане. Позднее он преподавал философию в Турине. Но его интересы этим не ограничивались. Работая преподавателем математики в университете Павии, он занимался пятым постулатом Евклида и представил результаты исследований в своем главном труде Euclides ab omni naevo vindicatus («Евклид, очищенный от всех пятен»).

* * *

2. Гипотеза о тупых углах: углы В и С являются тупыми, то есть их величина больше 90° и меньше 180°.

3. Гипотеза об острых углах: углы В и С являются острыми, то есть их величина больше 0° и меньше 90°.

Саккери показал, что пятый постулат эквивалентен гипотезе о прямых углах, а затем попытался доказать, что другие гипотезы приводят к противоречию. Если бы ему это удалось, то постулат был бы доказан. Рассматривая вторую гипотезу (случай тупых углов), он получил противоречие и отбросил эту возможность. Еще раньше он показал, что сумма четырех углов должна быть меньше или равна 360°. Но для гипотезы острых углов ему не удалось получить противоречия. Теперь-то мы точно знаем, что противоречия не существует, и гипотеза об острых углах является одной из основ неевклидовой геометрии. Спустя столетие Ламберт, о котором мы подробнее расскажем позже, также безуспешно попытался доказать постулат исходя из того, что углы А, В и D являются прямыми.

Исходя из гипотезы об острых углах, Саккери получил различные результаты неевклидовой геометрии. Например, он показал, что гипотезы о прямых, тупых и острых углах эквивалентны тому, что сумма внутренних углов треугольника равна, больше или меньше двух прямых углов соответственно. Он также доказал некоторые результаты, необычные для евклидовой геометрии. Вот один из них.

Пусть точка Р находится вне прямой линии l. Если мы рассмотрим все прямые, проходящие через Р, то увидим, что существуют две предельные прямые (в математических терминах они называются «асимптотическими»), обозначенные на рисунке буквами m и n. Они делят пучок всех прямых на две части, в одной из которых находятся все прямые линии, которые пересекают прямую l (например, пунктирная прямая s), а в другой — все прямые, которые l не пересекают (например, пунктирная прямая l).

Геометрия, построенная на гипотезе об острых углах и тем самым отрицающая пятый постулат, в наше время известна как гиперболическая.

На следующем рисунке показано, как в гиперболической геометрии выглядит предыдущий рисунок. Теперь прямые линии тип изображены в виде кривых не потому, что они действительно такие, а для того чтобы не возникло путаницы с евклидовой ситуацией. На таком рисунке хорошо видно, что представляют собой асимптотические прямые шип.

Представление прямых линий кривыми очень полезно для понимания и изучения гиперболической геометрии, каким бы нелогичным это ни казалось в евклидовом смысле.

Работа Саккери содержит первые результаты этой новой геометрии. Достижение итальянского математика поразительно, но, к сожалению, ему не хватило смелости. Осознавая странность своих выводов, он пишет в предложении XXXIII своего трактата: «Гипотеза об острых углах является абсолютно ложной, поскольку противоречит самому понятию прямой линии». Казалось, что задача о параллельных прямых останется нерешенной еще многие годы.

На пути к неевклидовой геометрии

В XVIII в., в эпоху Просвещения, была посмертно издана книга швейцарского математика Иоганна Генриха Ламберта (1728–1777) под названием «Теория параллельных». В ней Ламберт выразил сомнение, что пятый постулат может быть выведен из других, и предположил, что, возможно, необходимы некоторые дополнительные гипотезы.

Саккери и Ламберт так и не нашли неопровержимого доказательства того, что пятый постулат невозможно доказать. Последующие попытки доказательства всегда возвращались к исходной точке, лишь порождая новые запутанные понятия. Как мы уже говорили, проблема заключалась в том, что все доказательства неявно использовали результат, который нужно было доказать.

Математическое сообщество убедилось, что постулат о параллельных прямых является настоящим постулатом, а не теоремой, и поэтому не требует доказательства. С другой стороны, хотя все попытки доказательства потерпели неудачу, получаемые результаты не содержали противоречий. Попытки доказать пятый постулат Евклида приводили математиков к понятиям неевклидовой геометрии.

* * *

ЧЕТЫРЕХУГОЛЬНИК ЛАМБЕРТА

Ламберт составил список нескольких утверждений, которые должны быть доказаны, среди них — и пятый постулат. В последней главе своей книги он рассматривал четырехугольники с тремя прямыми углами ( А, В и D ).

Для четвертого угла снова было три возможности. Четырехугольником Ламберта называют такой четырехугольник ABCD , у которого углы А, В и D прямые, а угол С не равен 90°.

 

Глава 4

Становление неевклидовой геометрии

Самой первой неевклидовой геометрией была гиперболическая геометрия, которая возникла путем замены пятого постулата Евклида следующим утверждением:

«Через точку Р вне данной прямой проходит более одной прямой, параллельной данной».

Этим утверждением Лобачевский и Бойяи решили проблему постулата о параллельных прямых, и поэтому они являются основоположниками первой неевклидовой геометрии. Они оба считаются авторами гиперболической геометрии, хотя они даже не слышали друг о друге и совершили открытие независимо друг от друга.

Тому было несколько причин. Лобачевский писал только на русском языке, и его работы стали широко известны лишь через много лет после его смерти. Однако в настоящее время гиперболическая геометрия чаще всего ассоциируется именно с ним, а не с Бойяи, его коллегой из Венгрии.

Николай Лобачевский: русская душа гиперболической геометрии

23 февраля 1826 г. бывший учитель Николай Лобачевский поразил научное сообщество своей теорией о параллельных прямых на конференции, состоявшейся на физико-математическом факультете Казанского университета. Его первые результаты были опубликованы в 1829 г. в журнале Казанского университета. В 1835 г. он опубликовал работу целиком под названием «Новые начала геометрии», где утверждал:

«Всем известно, что в геометрии теория параллельных до сих пор оставалась несовершенной. Напрасное старание со времен Евклида заставило меня подозревать, что в самих понятиях еще не заключается той истины, которую хотели доказывать и которую проверить, подобно другим физическим законам, могут лишь опыты, каковы, например, астрономические наблюдения. В справедливости моей догадки будучи наконец убежден, и почитая затруднительный вопрос решенным вполне, писал об этом я рассуждение в 1826 г.»

Николай Лобачевский

История гиперболической геометрии является историей первопроходцев и полна несправедливостей, а слава и почести пришли к ним слишком поздно. Нечто похожее часто происходит в истории науки на протяжении веков: два гения, опередившие время, независимо друг от друга получают одни и те же результаты примерно в одно и то же время.

Лобачевский происходил из бедной семьи государственных служащих. Родившись в Нижнем Новгороде, он большую часть жизни провел в Казани, ведя аскетичный образ жизни и полностью посвятив себя математике. Молодой Николай смог получить образование благодаря государственной стипендии и оказался удачной инвестицией царской России.

В 1814 г. он получил место преподавателя в Казанском университете, а через два года стал экстраординарным профессором. Он также отвечал за библиотеку и астрономическую обсерваторию.

В 1827 г. Лобачевский был избран ректором Казанского университета. Он занимал этот пост в течение 19 лет, которые стали периодом процветания университета.

Лобачевский провел фундаментальные реформы и всячески поддерживал научные исследования. Парадоксально, но его блестящие результаты в работе над пятым постулатом привели к его увольнению. Согласно одной из мрачных легенд в истории математики, в 1846 г. Лобачевский был уволен ведущим математиком того времени Михаилом Остроградским, который не мог принять того, что Лобачевский бросил вызов самому Евклиду.

Здоровье Лобачевского начало быстро ухудшаться, и в конечном итоге он потерял зрение. Ему пришлось диктовать многие из своих работ, в том числе свой последний труд «Пангеометрия» (1855). Умирая в Казани 24 февраля 1856 г., он понятия не имел о том, насколько была важна его работа для дальнейшего развития математики. Его научное наследие включает такие работы, как «О началах геометрии» (1829), «Воображаемая геометрия» (1835), «Применение воображаемой геометрии к некоторым интегралам» (1836) и «Новые начала геометрии с полной теорией параллельных» (1834–1838). В 1840 г. Лобачевский опубликовал небольшую книгу в 60 страниц, озаглавленную «Геометрические исследования по теории параллельных линий». Эта короткая работа широко разошлась в научных кругах того времени, но, несмотря на это, математическое сообщество было не готово принять заключенные в ней идеи.

В «Геометрических исследованиях» Лобачевский с большой ясностью объясняет, как работает неевклидова геометрия:

«Все прямые линии, выходящие в некоторой плоскости из одной точки, могут быть по отношению к некоторой заданной прямой той же плоскости разделены на два класса, именно на пересекающие ее и непересекающие. Граничная линия одного и другого класса этих линий называется параллельной заданной линии».

Его знаменитую формулировку альтернативной версии пятого постулата Евклида мы уже упоминали:

«Существуют две линии, параллельные данной прямой линии, которые проходят через данную точку вне данной прямой».

Исходя из этих предпосылок, Лобачевский вывел множество тригонометрических тождеств, лежащих в основе так называемой гиперболической тригонометрии.

Янош Бойяи : математик и кавалерист

Для венгра Яноша Бойяи (1802–1860 ) математика была лишь хобби, так как по профессии он был кавалерийский офицер. С его интеллектуальными способностями эта профессия, возможно, казалась ему довольно скучной. Наряду с увлечением математикой Янош виртуозно играл на скрипке, выступал в Вене, был также талантливым лингвистом, говорил на девяти языках, включая китайский и тибетский.

Блестящий ум он унаследовал от отца, Фаркаша Бойяи, который тоже был математиком и обучил сына исчислению бесконечно малых и аналитической механике, когда тому было всего 13 лет.

* * *

ЗАПОЗДАЛОЕ ПРИЗНАНИЕ

Только в 1945 г. в знак признания вклада Бойяи в математику румынский университет имени Бабеша был переименован в университет Бабеша — Бойяи. В 2002 г. отмечалось 200-летие со дня рождения великого математика. В Будапеште прошли различные мероприятия, посвященные памяти Бойяи, наиболее значительным из которых была международная конференция по гиперболической геометрии. Также к 100-летию со дня смерти Яноша были выпущены почтовые марки (см. рис. справа) и юбилейные монеты достоинством в 3000 форинтов с изображением гиперболических диаграмм из «Аппендикса».

* * *

Военная карьера молодого Яноша началась с поступления в королевский военно-инженерный колледж в Вене, после чего он в течение 11 лет служил в армии в инженерных войсках. Это может показаться сюжетом из романа XIX века, но, по общему мнению, Янош был лучшим фехтовальщиком и танцором в императорской австрийской армии. В 1833 г. он заболел лихорадкой и был вынужден оставить военную службу.

Хотя Янош Бойяи за всю жизнь опубликовал лишь одну работу по математике, после его смерти было обнаружено более 20000 рукописных страниц, которые в настоящее время хранятся в библиотеке имени Телеки и Бойяи в городе Тыргу-Муреш.

Для Яноша задача о параллельных прямых стала навязчивой идеей. Он опубликовал свои результаты в приложении к одной из работ отца, Tentamen Juventutem Studiosam in Elementa Matheseos Purae Introducenti («Опыт введения учащегося юношества в начала чистой математики»). В настоящее время это приложение известно просто как «Аппендикс». Как и Лобачевскому, Бойяи потребовалось лишь несколько страниц (а именно 24), чтобы изложить свои геометрические идеи. Прочитав сочинение, Гаусс написал в письме к Фаркашу Бойяи: «Этот юный геометр Бойяи — гений высшего класса».

Вклад Гаусса

Карл Фридрих Гаусс (1777–1855) , математический авторитет не только прошлых времен, но и современности, оказал существенное влияние на работу Бойяи. Еще Кант неявно предсказывал возможность существования других геометрий, но Гаусс, возможно, был первым человеком, который воспринимал геометрию не так, как Евклид, оставив подтверждение своих идей на бумаге. В одной из записных книжек он пишет:

«Я убежден, что отказ от постулата о параллелях не приводит к противоречию, хотя это правда, что получаемые результаты кажутся парадоксальными».

Портрет  Карла Фридриха Гаусса работы художника Кристиана Альбрехта Йенсена .

В течение почти 40 лет Гаусс работал над постулатом о параллелях, никому не показывая своих результатов и держа их в строжайшем секрете. Наиболее важными документами, свидетельствующими о его исследованиях, является переписка с семьей Бойяи и комментарии в его записных книжках.

Нет ничего удивительного в дружбе Гаусса и семьи Бойяи. Гаусс был вундеркиндом, тоже ставшим образованным интеллектуалом. Он в очень раннем возрасте начал заниматься математикой, астрономией и физикой — именно в этих областях он достиг наивысших результатов. В возрасте семи лет он пошел в школу, где поражал учителей своими способностями выполнять сложные вычисления.

Учась в Коллегиуме Каролинум в Брауншвейге, Гаусс самостоятельно открыл астрономический закон, известный как правило Тициуса — Боде, а также несколько алгебраических теорем, таких как бином Ньютона. В 1795 г. он поступил в Гёттингенский университет, где изучал математику и получил докторскую степень в возрасте 22 лет.

* * *

ГАУСС , ЮНЫЙ ГЕНИЙ

Легендарные таланты Гаусса говорят о том, что он был типичным гением. Еще ребенком он делал открытия, которые с трудом могли понять взрослые. В возрасте десяти лет он открыл формулу для суммы арифметической прогрессии, быстро сложив первые сто натуральных чисел. Как ему это удалось? Он применил особый трюк, совершенно удивительный для ребенка его возраста.

Он понял, что сумма первого члена с последним, второго с предпоследним и так далее, является постоянной:

1, 2, 3, 4, …, 97, 98, 99, 100

1 + 100 = 2 + 99 = 3 + 98 = 4 + 97 = … = 101.

Сто чисел образуют 50 пар, так что для решения достаточно найти произведение 101 x 50 = 5050. Гаусс вывел формулу, выражающую сумму первых n членов арифметической прогрессии, S n , где а 1 обозначает первый член, а а n — последний:

* * *

Талант Гаусса проявился во многих областях математики: в статистике, теории чисел, геометрии… Он был также научным руководителем докторской диссертации Римана, о чем мы подробнее расскажем позже. В возрасте 30 лет, в 1807 г., он руководил обсерваторией Гёттингена, в которой шесть лет изучал магнетизм. Он внес также существенный вклад в физику. В конце его академической карьеры в 1849 г. он уже был известен как «принц математики».

Переписка между  Гауссом и Бойяи

Гаусс был близким другом Фаркаша Бойяи, отца Яноша, и в своей переписке они не раз обсуждали пятый постулат. Гаусс сам работал над этой проблемой, но очень осторожно, о чем говорит то, что он так и не опубликовал свои результаты. Фаркаш также пытался доказать пятый постулат, но безуспешно. На основании собственного опыта и переписки с Гауссом Фаркаш посоветовал сыну не тратить «ни одного часа на эту задачу». Янош так и поступил: он потратил на эту работу не один час, а целых два года! В 1832 г. Фаркаш Бойяи написал своему другу Гауссу и выразил озабоченность по поводу одержимости сына. В том же письме он попросил совета, как убедить Яноша оставить эти исследования. Гаусс ответил, что он сам получил аналогичные результаты, которые решил не разглашать. Он не мог оценить работу Яноша или убедить его остановиться, о чем ясно написал в одном из писем:

«Если я скажу, что не могу оценить эту работу, вы, несомненно, будете удивлены. Но дело обстоит вот как. Оценить эту работу — все равно что оценить себя. Потому что все содержание работы вашего сына и результаты, к которым он пришел, практически совпадают с моими собственными размышлениями на эту тему за последние 30–35 лет. Я действительно поражен…»

Когда Янош с головой погрузился в работу над пятым постулатом Евклида, Фаркаш написал сыну тревожное предупреждение:

«Молю тебя, не делай попыток одолеть теорию параллельных линий. Ты затратишь на это все свое время, а теоремы останутся недоказанными. В этом беспросветном мраке могут утонуть тысячи таких гигантов, как Ньютон. Этот вопрос никогда не прояснится на земле, и никогда несчастный род человеческий не достигнет ничего совершенного, даже в геометрии. Это большая и вечная рана в моей душе. Ради Бога, молю тебя, оставь эту материю. Страшись ее не меньше, нежели чувственных увлечений, потому что и она может лишить тебя всего твоего времени, здоровья, покоя, всего счастья твоей жизни…»

Несмотря на трагический тон этого письма, Янош так и не внял предупреждениям отца и вскоре убедился, что пятый постулат не только недоказуем, но и к тому же не зависит от других постулатов. Этот результат стал основой альтернативной, но непротиворечивой геометрической теории.

Совместные достижения Лобачевского и Бойяи

Лобачевский и Бойяи заложили основы неевклидовой геометрии и неевклидовой тригонометрии. Они показали, что сумма углов треугольника меньше 180°, а также что не все треугольники имеют одинаковую сумму углов. Чем больше площадь треугольника, тем меньше сумма его углов. Таким образом, не существует подобных треугольников, то есть не существует треугольников одинаковой формы, но разного размера. В этой геометрии если два треугольника имеют конгруэнтные углы (одинакового размера), то и сами треугольники конгруэнтны, то есть они совпадают при наложении друг на друга. Не существует там и прямоугольников в евклидовом смысле: если три угла четырехугольника прямые (90°), то четвертый угол должен быть меньше. Потому что когда прямоугольник делится на две части, сумма углов каждого треугольника должна быть меньше 180°.

Несмотря на похожие результаты, задачи Лобачевского и Бойяи были различными. Янош Бойяи особенно интересовался разделением различных теорем и результатов на те, которые зависят от пятого постулата Евклида, и на те, которые не зависят от него. Николай Лобачевский был более радикален и совсем отказался от пятого постулата, предложив вместо него другой: через точку вне прямой проходит более одной параллельной линии.

* * *

КАК ВЫГЛЯДИТ НЕЕВКЛИДОВ ТРЕУГОЛЬНИК

Рисунок справа дает представление о том, как в гиперболической геометрии выглядит неевклидов треугольник  АВС , полученный из прямоугольника. Мы видим, что сумма углов А, В и  С действительно меньше 180°.

* * *

Основные модели гиперболической геометрии

Моделью евклидовой геометрии является обычная плоскость с обычными понятиями точки и прямой линии. Модели, описанные ниже, помогут нам лучше представить и понять гиперболическую геометрию, а также эллиптическую геометрию, о которой мы расскажем позже.

Первая модель гиперболической геометрии строится на особой поверхности. Чтобы представить себе такую поверхность, мы должны представить человека, который катит магазинную тележку, или ребенка, который тянет игрушку на веревочке.

Когда ребенок движется по прямой линии и тянет за собой небольшую сумку на колесиках, траекторией ее движения является кривая линия, приближающаяся к траектории движения ребенка. Эта линия называется трактрисой.

Представьте себе человека, который тянет за собой какой-то предмет, и они оба движутся с одинаковой скоростью. В то время как траектория человека является прямой линией, траектория предмета представляет собой кривую линию, постепенно приближающуюся к траектории человека. Этот вид траектории иногда называют «собачьей кривой». В математических терминах это звучит более сложно: говорят, что кривая асимптотически приближается к прямой линии.

Эта кривая также называется трактрисой. Такую траекторию описывает объект, который находился на фиксированном расстоянии и двигался, приближаясь к прямой линии. Это показано на следующем графике:

Здесь точка А движется по прямой линии в направлении, указанном стрелкой, и тянет за собой точку Р. Траектория точки Р называется трактрисой.

Представим теперь, что эта кривая вращается вокруг прямой, образуя поверхность, называемую псевдосферой. Эта поверхность и является моделью гиперболической геометрии. Другими словами, фигуры, изображенные на псевдосфере (например, параллельные линии и треугольники) будут вести себя согласно законам неевклидовой геометрии, не приводя к каким-либо противоречиям.