Брайан Грин. Ткань космоса: Пространство, время и структура реальности

Грин Брайан

IV Первоисточники и объединение

 

 

12 Мир на струне

ТКАНЬ В СООТВЕТСТВИИ С ТЕОРИЕЙ СТРУН

Представьте вселенную, в которой чтобы понять что-либо, вам необходимо понять все. Вселенная, в которой чтобы сказать что-нибудь о том, почему планета вращается вокруг звезды, о том, почему бейсбольный мяч летит по определенной траектории, о том, как работает магнит или батарея, о том, как действует свет или гравитация, – вселенная, в которой, чтобы сказать что-нибудь о чем-нибудь, – вам было бы необходимо открыть самые фундаментальные законы и определить, как они действуют на тончайшие составляющие материи. К счастью, такая вселенная не является нашей вселенной.

Если бы это было, тяжело было бы представить, как наука вообще могла бы двигать любой прогресс. В течение столетий причина, по которой мы были в состоянии осуществлять движение вперед, была в том, что мы могли работать по частям; мы были в состоянии распутывать тайны шаг за шагом, с каждым новым открытием продвигаясь на йоту глубже, чем раньше. Ньютону не нужно было знать про атомы, чтобы сделать великий шаг в понимании движения и гравитации. Максвеллу не нужно было знать про электроны и другие заряженные частицы, чтобы разработать мощную теорию электромагнетизма. Эйнштейну не нужно было обращаться к изначальному воплощению пространства и времени, чтобы сформулировать теорию о том, как они искривляются с помощью гравитационных сил. Вместо этого, каждый из этих открывателей, точно так же, как многие другие, которые подвели основу под нашу современную концепцию космоса, действовали в рамках ограниченного контекста, который без смущения оставлял без ответа массу основополагающих вопросов. Каждое открытие было в состоянии внести свой собственный кусочек в головоломку, даже если никто не знал, – и мы все еще не знаем, – какая великая синтезированная картина заключает в себе все кусочки головоломки.

Тесно связанное с этим наблюдение заключается в том, что хотя сегодня наука резко отличается от науки даже пятьдесят лет назад, было бы неоправданным упрощением обобщать научный прогресс в терминах новых теорий, низвергнувших своих предшественниц. Более корректное описание заключается в том, что каждая новая теория усовершенствует свою предшественницу, обеспечивая более точную и более далеко простирающуюся схему. Ньютоновская теория гравитации была заменена ОТО Эйнштейна, но было бы наивным говорить, что ньютоновская теория не верна.

В области объектов, которые нигде не двигаются почти так же быстро, как свет, и нигде не производят гравитационных полей, почти таких же сильных, как у черных дыр, теория Ньютона фантастически точна. Это еще не говорит о том, что теория Эйнштейна является второстепенным вариантом ньютоновской; в ходе усовершенствования ньютоновского подхода к гравитации Эйнштейн выработал целую новую концептуальную схему, одну из тех, что радикально изменяет наши представления о пространстве и времени. Но сила ньютоновского открытия в рамках области, для которой оно предназначено (движение планет, типичные земные движения и так далее), неоспорима.

Мы представляем каждую новую теорию, как подводящую нас ближе к трудной цели достижения истины, но имеется ли конечная теория, – теория, которая не может быть дальше уточнена, поскольку она полностью раскрывает работу вселенной на самом глубоком возможном уровне, – на этот вопрос никто не может ответить. Даже при этих условиях картина, вырисовывающаяся в течение последних трехсот лет открытий, дает дразнящие свидетельства, что такая теория может быть разработана. Вообще говоря, каждый новый прорыв собирает широкий спектр физических явлений под несколькими теоретическими зонтиками. Открытия Ньютона показали, что силы, управляющие планетарным движением, являются теми же силами, которые управляют движением падающих объектов здесь на Земле. Открытия Максвелла показали, что электричество и магнетизм являются двумя сторонами одной монеты. Открытия Эйнштейна показали, что пространство и время так же неразделимы, как прикосновение и золото Мидаса. Открытия поколения физиков в начале двадцатого века установили, что мириады загадок микрофизики могут быть точно объяснены с использованием квантовой механики. Относительно недавние открытия Глэшоу, Салама и Вайнберга показали, что электромагнетизм и слабое ядерное взаимодействие являются двумя проявлениями единого взаимодействия – электрослабого взаимодействия, – и имеются даже пробные, косвенные доказательства, что сильное ядерное взаимодействие может быть присоединено к электрослабому в еще более великом синтезе. Собирая все это вместе, мы видим картину, которая движется от сложности к простоте, картину, которая движется от разделения к единству. Направления объяснений кажутся сходящимися в мощную схему, которую еще предстоит открыть и которая объединит все силы природы и всю материю в рамках одной теории, способной описать все физические явления.

Альберт Эйнштейн, который более трех десятилетий пытался объединить электромагнетизм и ОТО в одну теорию, справедливо ассоциируется с началом современных поисков единой теории. Долгий период в течение этих десятилетий он был единственным исследователем такой единой теории, и его страстный, хотя и одинокий поход отделил его от главного потока физического сообщества. Однако, в течение последних двадцати лет произошло драматическое возрождение похода к единой теории; одинокая мечта Эйнштейна стала движущей силой для целого поколения физиков. Но из-за открытий, произошедших со времен Эйнштейна, сместился фокус. Даже если мы еще не имеем успешной теории, объединяющей сильное ядерное и электрослабое возаимодействие, все эти три вида сил (электромагнитные, слабые, сильные) описываются на одном едином языке, основанном на квантовой механике. Но ОТО, наша наиболее совершенная теория четвертой силы, стоит в стороне от этой схемы. ОТО является классической теорией: она не включает никакие вероятностные концепции квантовой теории. Главная цель современной программы унификации заключается, следовательно, в объединении ОТО и квантовой механики и в описании всех четырех сил в рамках одной и той же квантовомеханической схемы. Это оказалось одной из самых трудных проблем, с которыми когда-либо сталкивалась теоретическая физика.

Давайте посмотрим, почему.

Квантовые дрожания и пустое пространство

Если мне надо выделить одно наиболее памятное свойство квантовой механики, я выбираю принцип неопределенности. Вероятности и волновые функции определенно обеспечивают радикально новую схему, но именно принцип неопределенности заключает в себе разрыв с классической физикой. Вспомним, что в семнадцатом и восемнадцатом веках ученые были уверены, что полное описание физической реальности заключается в спецификации положений и скоростей каждой составляющей материи, заполняющей космос. А с появлением концепции поля в девятнадцатом веке и ее последующим применением к электромагнитным и гравитационным силам этот взгляд был дополнен включением величины каждого поля – то есть, напряженности каждого поля, – и темпа изменения величины каждого поля в каждом месте пространства. Но к 1930м принцип неопределенности демонтировал эту концепцию реальности, показав, что вы никогда не можете знать сразу положение и скорость частицы; вы никогда не можете знать сразу величину поля в данном месте пространства и то, как быстро величина поля изменяется. Квантовая неопределенность запрещает это.

Как мы обсуждали в последней главе, эта квантовая неопределенность обеспечивает, что микромир является турбулентной и дрожащей областью. Ранее мы обращали внимание на индуцированные неопределенностью квантовые дрожания поля инфлатона, но квантовая неопределенность применима ко всем полям. Электромагнитное поле, поля сильного и слабого ядерных взаимодействий и гравитационное поле все подвергаются бешеным квантовым скачкам-дрожаниям на микроскопическом масштабе. Фактически, эти дрожания полей существуют даже в пространстве, которое вы обычно воспринимаете как пустое, в пространстве, которое кажется не содержащим ни материи, ни полей. Это идея критической важности, но если вы не сталкивались с ней ранее, она, естественно, будет загадочной. Если регион пространства ничего не содержит – если это вакуум – то не означает ли это, что там нечему дрожать? Ну, мы уже изучили, что концепция пустоты тонкая. Просто подумайте об океане Хиггса, который, как утверждает современная теория, пронизывает пустое пространство. Квантовые дрожания я теперь обозначаю как служащие только для того, чтобы сделать понятие "ничто" еще более тонким. Вот, что я имею в виду.

В предквантовой (и пред-Хиггсовой) физике мы объявляли регион пространства полностью пустым, если он не содержал частиц и величина каждого поля была однородно нулевой.*

(*) "Для простоты изложения мы будем рассматривать только поля, которые достигают своей наименьшей энергии, когда их величина равна нулю. Обсуждение других полей – полей Хиггса – идентично, за исключением того, что поля флуктуируют вокруг ненулевой величины поля с минимальной энергией. Если вы хотите сказать, что регион пространства пуст, только если там не присутствует материя и все поля отсутствуют, а не только имеют величину нуль, смотрите секцию комментариев. [2] "

Теперь подумаем об этом классическом определении пустоты в свете квантового принципа неопределенности. Если поле имело и сохраняло исчезающе малую величину, мы будем знать его величину – нуль – а также темп изменения его величины – тоже нуль. Но в соответствии с принципом неопределенности невозможно, чтобы оба эти свойства были определены. Вместо этого, если поле имеет определенную величину в некоторый момент, нуль в нашем случае, принцип неопределенности говорит нам, что темп его изменения полностью случаен. А случайный темп изменения означает, что в следующие моменты величина поля будет хаотически дергаться вверх и вниз, даже в месте, которое мы обычно полагаем полностью пустым пространством. Так что интуитивное понятие пустоты как места, в котором все поля имеют и сохраняют нулевую величину, несовместимо с квантовой механикой. Величина поля может скакать вокруг величины нуль, но она не может быть однородно равной нулю во всей области более чем на мгновение. На техническом языке физики говорят, что поля подвержены вакуумным флуктуациям.

Хаотичная природа флуктуаций вакуумного поля подразумевает, что во всех регионах, за исключением самых микроскопических, имеется так же много скачков "вверх", как и "вниз", а потому они усредняются к нулю, почти как мраморная поверхность выглядит совершенно гладкой для невооруженного глаза, даже если электронный микроскоп обнаруживает, что она зазубренная на микроскопических масштабах. Тем не менее, даже если мы не можем увидеть это непосредственно, более чем полстолетия назад реальность дрожаний квантового поля даже в пустом пространстве была окончательно установлена через простое, но глубокое открытие.

В 1948 датский физик Хендрик Казимир вычислил, как вакуумные флуктуации электромагнитного поля могут быть экспериментально обнаружены. Квантовая теория говорит, что дрожания электромагнитного поля в пустом пространстве будут иметь различную форму, как проиллюстрировано на Рис. 12.1а. Прозрение Казимира заключалось в осознании того, что, разместив две обычные металлические пластины в пустой в иных отношениях области, как на Рис. 12b, можно индуцировать тонкую модификацию этих вакуумных дрожаний поля. А именно, квантовые уравнения показывают, что в области между пластинами не будет нескольких флуктуаций (допустимы только те флуктуации электромагнитного поля, чьи величины исчезают в местоположении каждой пластины). Казимир проанализировал следствия такого ограничения в дрожаниях поля и нашел нечто экстраординарное.

(а) (b)

Рис 12.1 (а) Вакуумные флуктуации электромагнитного поля, (b) Вакуумные флуктуации между двумя металлическими пластинами и они же вне пластин.

 Почти как уменьшение количества воздуха в области создает дисбаланс давлений (например, на большой высоте вы можете почувствовать разрежение воздуха, оказывающее меньшее давление вне ваших ушных раковин), уменьшение квантовых дрожаний поля между пластинами также дает дисбаланс давления: квантовые дрожания поля между пластинами становятся чуть-чуть слабее, чем вне пластин, и этот дисбаланс двигает пластины друг к другу.

Подумайте о том, насколько это совершенно странно. Вы помещаете две пластины, обыкновенные, не заряженные металлические пластины в пустую область пространства, одну лицом к другой. Когда их масса мала, гравитационное притяжение между ними настолько мало, что может быть полностью проигнорировано. Поскольку нет ничего другого вокруг, вы действительно придете к заключению, что пластины останутся неподвижными. Но расчеты Казимира предсказали, что произойдет не это. Он пришел к заключению, что пластины будут мягко вынуждаться призрачной хваткой квантовых вакуумных флуктуаций к движению в направлении друг друга.

Когда Казимир впервые анонсировал этот теоретический результат, достаточно чувствительное оборудование для проверки его предсказания не существовало. Однако в течение около десяти лет другой датский физик Маркус Спаарней оказался в состоянии инициировать первые рудиментарные проверки сил Казимира, и с тех пор были проведены все более точные эксперименты. Например, в 1997 году Стив Ламоро, тогда работавший в Университете Вашингтона, подтвердил предсказания Казимира с точностью 5 процентов. (Для пластин, размером грубо с игральные карты и расположенных на расстоянии одной десятитысячной сантиметра друг от друга, сила между ними оказалась примерно равной весу отдельной капли росы; это показывает, как сложно измерение силы Казимира). Теперь мало кто сомневается, что интуитивное понятие пустого пространства как статической, спокойной, бедной событиями арены совершенно не имеет оснований. Из-за квантовой неопределенности пустое пространство переполнено квантовой активностью.

Это заставило ученых большую часть двадцатого века полностью разрабатывать математику для описания такой квантовой активности как электромагнитных, так и сильных и слабых ядерных сил. Усилия даром не пропали: расчеты с использованием этой математической схемы согласуются с экспериментальными изысканиями с беспримерной точностью (например, расчеты влияния вакуумных флуктуаций на магнитные свойства электронов согласуются с экспериментальными результатами до одной части на миллиард).

Однако, несмотря на все эти успехи, много десятилетий физики осознавали, что квантовые дрожания провоцируют внутри законов физики неудовлетворительность.

Дрожания и их неудовлетворительность

До настоящего времени мы обсуждали только квантовые дрожания полей, которые существуют внутри пространства. А как насчет квантовых дрожаний самого пространства? Хотя это может звучать загадочно, на самом деле это просто другой пример дрожаний квантовых полей – пример, однако, содержащий особую трудность. В ОТО Эйнштейн установил, что гравитационная сила может быть описана как деформация и искривление ткани пространства; он показал, что гравитационные поля проявляются через форму геометрии пространства (или, более общо, пространства-времени). Теперь, точно подобно любому другому полю, гравитационное поле подвергается квантовым дрожаниям: принцип неопределенности подразумевает, что на мельчайших масштабах расстояний гравитационное поле флуктуирует вверх и вниз. А поскольку гравитационное поле есть синоним формы пространства, такие квантовые дрожания означают, что форма пространства хаотично флуктуирует. Еще раз, как и со всеми примерами квантовой неопределенности, на масштабах наших повседневных расстояний дрожания слишком малы, чтобы ощущаться непосредственно, и окружающая среда выглядит гладкой, безмятежной и предсказуемой. Но чем меньше масштаб наблюдения, тем больше неопределенность и тем больше становится буйство квантовых флуктуаций.

Это проиллюстрировано на Рис.12.2, на котором мы последовательно увеличиваем ткань пространства, чтобы обнаружить его структуру при все более мелких расстояниях. Самый большой уровень внизу на рисунке показывает квантовые возмущения пространства на привычных масштабах и, как вы можете видеть, тут нечего смотреть, – неровности ненаблюдаемо малы, так что пространство выглядит невозмутимым и плоским. Но когда мы проникаем дальше, последовательно увеличивая область, мы видим, что неровности пространства становятся все более неистовыми. На высшем уровне на рисунке, который показывает ткань пространства на масштабах, меньших планковской длины – миллионной миллиардной миллардной миллиардной доли (10–33) сантиметра – пространство становится бурлящим, кипящим котлом бешеных флуктуаций. Как проясняет иллюстрация, обычные понятия лево/право, назад/вперед и вверх/вниз становится так перепутанными ультрамикроскопической суетой, что они теряют всякий смысл. Даже обычное понятие до/после, которое мы иллюстрировали последовательными сечениями пространственно-временного батона, делается бессмысленным квантовыми флуктуациями на временных масштабах короче планковского времени, около десяти миллионных триллионных триллионных триллионных доли (10–43) секунды (которое грубо равно времени, необходимому свету, чтобы пролететь планковскую длину). Подобно размытой фотографии, дикие колебания на Рис. 12.2 делают невозможным однозначно отделить один временной срез от другого, когда интервал времени между ними становится короче планковского времени. Итог такой, что на масштабах короче, чем планковские расстояние и продолжительность, квантовая неопределенность делает ткань космоса настолько перекрученной и искаженной, что обычные концепции пространства и времени больше не применимы.

Рис 12.2 Последовательное увеличение пространства обнаруживает, что ниже планковской длины пространство становится неузнаваемо бурным вследствие квантовых дрожаний. (Здесь представлены воображаемые увеличительные стекла, каждое из которых увеличивает между 10 и 100 миллионами раз).

Хотя и экзотический в деталях, приблизительный урок, проиллюстрированный Рис. 12.2, суть один из тех, с которым мы уже знакомы: концепции и заключения, существенные на одном масштабе, могут быть не применимыми на всех масштабах. Это ключевой принцип в физике, и один из тех, с которыми мы постоянно встречаемся, хотя и в куда более прозаическом контексте. Возьмем стакан воды. Описание воды как гладкой, однородной жидкости и полезно, и применимо на повседневных масштабах, но это является приближением, которое разрушается, если мы изучаем воду с субмикроскопической точностью. На мелком масштабе гладкий образ уступает место полностью другой системе далеко разделенных молекул и атомов. Аналогично, Рис. 12.2 показывает, что концепция Эйнштейна гладких, мягко искривленных геометрических пространства и времени, хотя и сильна и точна для описания вселенной на больших масштабах, рушится, если мы анализируем вселенную на экстремально коротких пространственных и временных масштабах. Физики уверены, что, как и с водой, гладкое изображение пространства и времени является приближением, которое уступает место другой, более фундаментальной схеме, когда они рассматриваются на ультрамикроскопических масштабах. Что это за схема, – что составляет "молекулы" и "атомы" пространства и времени, – этот вопрос рассматривается в настоящее время с большой энергией. Он еще должен быть разрешен.

Даже при этих условиях, что вполне ясно из Рис. 12.2, на мельчайших масштабах гладкий характер пространства и времени, представляемый ОТО, вступает в борьбу с неистовым, дрожащим характером квантовой механики. Основной принцип ОТО Эйнштейна, что пространство и время образуют мягко искривленную геометрическую форму, спотыкается об основной принцип квантовой механики, принцип неопределенности, который подразумевает дикую, буйную, турбулентную окружающую среду на мельчайших масштабах. Ужасный конфликт между центральными идеями ОТО и квантовой механики сделал объединение двух теорий одной из самых трудных проблем, с которыми физики сталкивались в течение последних восьмидесяти лет.

Это имеет значение?

На практике несовместимость между ОТО и квантовой механикой возникла весьма специфическим образом. Если вы используете объединенные уравнения ОТО и квантовой механики, они почти всегда приводят к одному ответу: бесконечности. И в этом проблема. Это бессмыслица. Экспериментаторы никогда не измеряют бесконечное количество чего-либо. Часы никогда не вращаются до бесконечности. Линейки никогда не протягиваются до бесконечности. Калькуляторы никогда не регистрируют бесконечность. Почти всегда бесконечный ответ является бессмысленным. Все это говорит нам, что уравнения ОТО и квантовой механики при их соединении становятся ненормальными.

Отметим, что это совершенно не похоже на напряженность между СТО и квантовой механикой, которая возникала в нашем обсуждении квантовой нелокальности в Главе 4. Там мы нашли, что согласование принципов СТО (в особенности, симметрии между всеми наблюдателями, движущимися с постоянной скоростью) с поведением запутанных частиц требует более полного понимания проблемы квантовых измерений, чем до сих пор было достигнуто (смотрите секцию "Запутанность и СТО: противоположный взгляд" в Главе 4, стр 117–120). Но эта не решенная полностью проблема не приводит к математической несостоятельности или к уравнениям, которые дают бессмысленные ответы. Наоборот, объединенные уравнения СТО и квантовой механики используются, чтобы делать наиболее точно подтвержденные в истории науки предсказания. Тихое напряжение между СТО и квантовой механикой указывает на область, где требуются дальнейшие теоретические изыскания, но оно едва ли влияет на их объединенную предсказательную силу. Не так с взрывоопасным союзом между ОТО и квантовой механикой, в котором вся предсказательная сила потеряна.

Тем не менее, вы все еще можете спросить, имеет ли реальное значение несовместимость между ОТО и квантовой механикой. Безусловно, объединенные уравнения могут приводить к нонсенсу, но когда вообще вам реально может понадобиться использовать их вместе? Годы астрономических наблюдений показали, что ОТО описывает макромир звезд, галактик и даже целого расширяющегося космоса с впечатляющей точностью; десятилетия экспериментов подтвердили, что квантовая механика делает то же самое для микромира молекул, атомов и субатомных частиц. Поскольку каждая теория чудесно работает в своей собственной области, зачем беспокоиться об их объединении? Почему не удерживать их разделенными? Почему не использовать ОТО для вещей, которые большие и массивные, квантовую механику для вещей, которые мелкие и легкие, и прославлять впечатляющие достижения человечества в успешном понимании такого широкого диапазона физических явлений?

На самом деле, это как раз то, что большинство физиков и делали с первых десятилетий двадцатого века, и никто не отрицает, что это, несомненно, был плодотворный подход. Прогресс науки, сделанный в этой несоединенной системе, впечатляет. Тем не менее, есть несколько причин, почему антагонизм между ОТО и квантовой механикой должен быть сглажен. Таких причин две.

Первое, по-хорошему, тяжело поверить, что глубочайшее понимание вселенной заключается в неясном союзе между двумя мощными теоретическими схемами, которые взаимно несовместимы. Это ничто иное, как если бы вселенная оборудовалась линией на песке, разделяющей вещи, которые правильно описываются квантовой механикой, от вещей, которые правильно описываются ОТО. Разделение вселенной на две обособленные реальности кажется как искусственным, так и грубым. Для многих очевидно, что должна существовать более глубокая, объединенная истина, которая перекрывает расщелину между ОТО и квантовой механикой и которая может быть применена ко всему. Мы имеем одну вселенную и, следовательно, многие полностью уверены, что мы должны иметь одну теорию.

Второе, хотя большинство вещей являются или большими и тяжелыми, или маленькими и легкими, и, следовательно, в практическом смысле могут быть описаны с использованием ОТО или квантовой механики, это не верно для всех вещей. Черные дыры обеспечивают хороший пример. В соответствии с ОТО вся материя, составляющая черную дыру, сдавлена вместе в отдельной мельчайшей точке в центре черной дыры. Это делает центр черной дыры как чудовищно массивным, так и немыслимо маленьким, а потому он попадает на обе стороны предлагаемого разделения: нам надо использовать ОТО, так как большая масса создает мощное гравитационное поле, и нам также надо использовать квантовую механику, так как вся масса стиснута в мельчайший размер. Но в комбинации уравнения разрушаются, так что никто не смог определить, что происходит прямо в центре черной дыры.

Это хороший пример, но если вы на самом деле скептик, вы можете еще поинтересоваться, является ли он чем-то, что должно заставлять кого угодно не спать ночью. Поскольку мы не можем заглянуть внутрь черной дыры, пока мы туда не прыгнем, и, более того, если мы туда прыгнем, мы не сможем сообщить о наших наблюдениях назад во внешний мир, наше неполное понимание внутренней области черной дыры может не произвести на вас впечатления, как не особенно беспокоящее. Для физиков, однако, существование области, в которой известные законы физики отказывают, – не важно, насколько эзотерической, скрытой эта область может казаться, – поднимает вверх красные флаги. Если известные законы физики разрушаются при некоторых обстоятельствах, это ясный сигнал, что мы не достигли глубочайшего возможного понимания. После всего сказанного, вселенная работает, поскольку мы можем сказать, что вселенная не разрушается. Корректная теория вселенной должна, уж по меньшей мере, удовлетворять такому же стандарту.

Итак, это, конечно, кажется обоснованным. Но без дополнительных усилий полная нетерпимость конфликта между ОТО и квантовой механикой обнаруживается только через другой пример. Посмотрим назад на Рис. 10.6. Как вы можете видеть, мы проделали великий прогресс в соединении в одно целое непротиворечивой и предсказательной истории космической эволюции, но картина осталась неполной из-за размытого пятна вблизи зарождения вселенной. А внутри мутного тумана тех ранних моментов лежит прорыв в самые соблазнительные тайны: причину и фундаментальную природу пространства и времени. Так что нам мешает проникнуть в туман? Упрек возлагается прямо на конфликт между ОТО и квантовой механикой. Антагонизм между законами большого и законами малого является причиной размытого пятна, остающегося неясным, и мы все еще не имеем взгляда на то, что происходило в самом начале вселенной.

Чтобы понять, почему, представьте, как в Главе 10, прокрутку пленки с расширяющимся космосом в обратном направлении, обратившись назад по направлению к Большому взрыву. При прокрутке в обратном направлении все, что сейчас уносится в стороны, будет сходиться вместе, и когда мы прокручиваем пленку еще дальше назад, вселенная становится все меньше, горячее и плотнее. Когда мы приблизимся к самому моменту времени нуль, вся наблюдаемая вселенная сожмется до размеров Солнца, затем спрессуется до размеров Земли, затем сдавится до размеров шара для боулинга, горошины, песчинки – вселенная сокращается до все меньшего и меньшего по мере того, как пленка перематывается по направлению к начальным кадрам. Тогда в этом обратном фильме наступит момент, когда вся известная вселенная будет иметь размер, близкий к планковской длине, – миллионной миллиардной миллиардной миллиардной сантиметра, – при которой ОТО и квантовая механика находятся в непримиримой оппозиции. В этот момент вся масса и энергия, соответствующая рождению наблюдаемой вселенной содержится в кусочке, который меньше чем в сто миллиардов миллиардов раз размера отдельного атома.

Таким образом, точно так же, как в случае центра черной дыры, ранняя вселенная попадает на обе стороны водораздела: гигантская плотность ранней вселенной требует использования ОТО. Мельчайшие размеры ранней вселенной требуют использования квантовой механики. Но еще раз, в такой комбинации законы отказываются работать. Проектор "зажевывает" космическую пленку, она воспламеняется и мы не можем получить доступ к ранним моментам вселенной. Вследствие конфликта между ОТО и квантовой механикой мы остаемся неосведомленными о том, что происходило в начале, и возвращаемся к изображению размытого пятна на Рис. 10.6.

Если мы когда-нибудь надеемся понять истоки вселенной – один из глубочайших вопросов во всей науке, – конфликт между ОТО и квантовой механикой должен быть разрешен. Мы должны урегулировать разницу между законами большого и законами малого и соединить их в отдельную гармоничную теорию.

Невероятная дорога к решению*

(*) "Остаток этой главы излагает открытие теории суперструн и обсуждает существенные идеи теории относительно унификации структуры пространства-времени. Читавшие Элегантную Вселенную (особенно Главы с 6 по 8) будут знакомы почти со всем материалом и могут чувствовать себя свободными пропустить эту главу и двигаться к следующей."

Как показали работы Ньютона и Эйнштейна, научные прорывы временами рождаются отдельными учеными, сомневающимися гениями, чисто и просто. Но это редкость. Намного более часто великие прорывы представляют коллективные усилия многих ученых, каждый из которых, основываясь на достижениях других, доводит их до завершения, чего ни один индивидуал не смог бы достичь в изоляции. Один ученый может внести идею, которая заставит коллег задуматься, что приведет к наблюдениям, что обнаружит неожиданную взаимосвязь, что инспирирует важное продвижение вперед, что запустит новый цикл открытия. Свободные знания, технические приспособления, гибкость мышления, открытость непредвиденных связей, погружение в свободный поток идей по всему миру, тяжелая работа и существенное везение являются критическими частями научного открытия. В последнее время вообще не было крупного прорыва, который бы лучше проиллюстрировал это, чем разработка теории суперструн.

Теория суперструн представляет собой подход, который, как уверены многие ученые, соединяет ОТО и квантовую механику. И, как мы увидим, есть основания надеяться даже на большее. Хотя все еще очень много работы предстоит, теория суперструн может успешно представлять собой полностью унифицированную теорию всех сил и всей материи, теорию, которая осуществляет мечту Эйнштейна, и даже больше – теорию, как верю я и многие другие, которая освещает начало пути, который однажды приведет нас к самым глубоким законам вселенной. Правда, однако, теория суперструн не замышлялась как оригинальный способ достичь этих благородных и долгосрочных целей. Напротив, история теории суперструн полна случайных открытий, фальш-стартов, упущенных возможностей и почти разрушенных карьер. Это также, в точном смысле, история открытия правильного решения для ошибочной проблемы.

В 1968 Габриэле Венециано, молодой стипендиат-исследователь после защиты, работая в ЦЕРНе, был одним из многих физиков, пытавшихся понять сильное ядерное взаимодействие через изучение результатов высокоэнергетических столкновений частиц, производимых в атомных ускорителях по всему миру. После меяцев анализа образцов и упорядочения данных Венециано осознал удивительную и неожиданную связь с малоизвестной областью математики. Он обнаружил, что формула, открытая две сотни лет назад знаменитым швейцарским математиком Леонардом Эйлером (бета-функция Эйлера), кажется, точно соответствует данным по сильным ядерным взаимодействиям. Хотя это не звучало уж очень необычно, – физики-теоретики все время имеют дело с загадочными формулами, – это был замечательный случай, когда многие мили телега прокатилась впереди лошади. Более часто, чем нет, физики сначала проявляют интуицию, строят воображаемую картину, ясно понимая физические принципы, лежащие в основе всего, что они изучают, и только затем ищут уравнения, необходимые, чтобы обосновать свою интуицию в строгой математике. Венециано, напротив, перепрыгнул прямо к уравнению; его великолепие заключалось в распознавании необычных картин в данных и установлении неожиданной связи с формулой, разработанной столетиями ранее из чисто математического интереса.

Но хотя Венециано имел формулу в руках, он не имел объяснения, почему она работает. Ему не хватало физической картины, почему бета-функция Эйлера может быть существенна для частиц, влияющих друг на друга через сильное ядерное взаимодействие. Через два года ситуация полностью изменилась. В 1970 статьи Леонарда Сасскайнда из Стэнфорда, Холгера Нильсена из Института Нильса Бора и Йоихиро Намбу из Университета Чикаго обнаружили физические обоснования открытия Венециано. Эти физики показали, что если сильное взаимодействие между двумя частицами происходит вследствие мельчайшей, экстремально тонкой, почти подобной резиновой ленте нити, которая соединяет частицы, тогда квантовые процессы, которые сосредоточенно обдумывали Венециано и другие, будут математически описываться с использованием формулы Эйлера. Маленькие эластичные нити были окрещены струнами и с этого момента, правильно поставив лошадь перед телегой, теория струн официально родилась.

Но придержите шампанское. Для вовлеченных в эти исследования было удовольствием понять физические первоистоки прозрения Венециано, поскольку они наводили на мысль, что физики находились на пути к разоблачению сильного ядерного взаимодействия. До тех пор открытие не приветствовалось всеобщим энтузиазмом; далеко не так. Очень далеко. Фактически, статья Сасскайнда была возвращена журналом, в который он ее послал, с комментарием, что работа почти не представляет интереса, эту оценку Сасскайнд вспоминал так: "Я был ошеломлен, я был выбит из моего кресла, я был погружен в депрессию, так что пошел домой и напился". В конечном счете его статья и все другие работы, которые объявляли струнную концепцию, были опубликованы, но это произошло незадолго до того, как теория претерпела две еще более опустошительные неудачи. Более внимательное изучение более уточненных данных по сильному ядерному взаимодействию, собранных в течение ранних 1970х, показало, что струнное приближение не годится для точного описания новых результатов. Более того, новое предложение, названное квантовой хромодинамикой, которое имело крепкие корни в традиционных составляющих вроде частиц и полей, – а совсем не струн, – оказалось в состоянии убедительно описать все данные. Итак, около 1974 теория струн получила один-два нокаутирующих удара. Или так это казалось.

Джон Шварц был одним из самых первых струнных энтузиастов. Однажды он сказал мне, что на старте он имел хорошие ощущения, что теория глубока и важна. Шварц потратил много лет, анализируя различные математические аспекты; среди других вещей это привело к открытию теории суперструн – как мы увидим, важному уточнению исходного струнного плана. Но с восхождением квантовой хромодинамики и крахом струнной схемы для описания сильного взаимодействия оправдания для продолжения работы по теории струн начали рассеиваться. Тем не менее, имелось одно особое рассогласование между теорией струн и сильным ядерным взаимодействием, которое не давало покоя Шварцу, и он счел, что он все равно должен двигаться вперед. Квантовомеханические уравнения теории струн предсказали, что особая, весьма необычная частица должна была в изобилии рождаться при высокоэнергетических столкновениях, имеющих место в атомных распадах. Частица должна была иметь нулевую массу, как фотон, но струнная теория предсказывала, что она должна была иметь спин 2, что, грубо говоря, означает, что она вращается в два раза быстрее фотона. Никто из экспериментаторов никогда не находил такую частицу, так что она оказалась среди ложных предсказаний, сделанных теорией струн.

Шварц и его соратник Джоэл Шерк были оздачены этой отсутствующей частицей, пока они не сделали величественный скачок к совершенно другой проблеме. Хотя никто не смог объединить ОТО и квантовую механику, физики определили некоторые свойства, которые должны возникать в любом таком успешном союзе. И, как отмечено в Главе 9, одно из свойств, которые они нашли, заключалось в том, что точно так же, как электромагнитные силы микроскопически переносятся фотонами, гравитационные силы должны микроскопически переноситься другим классом частиц, гравитонами (самым элементарным, квантовым пучком гравитации). Хотя гравитоны еще предстоит найти экспериментально, все согласны с теоретическим анализом, что гравитоны должны иметь два свойства: они должны быть безмассовыми и иметь спин 2. Для Шварца и Шерка это был громкий удар в колокол, – это были в точности те же свойства неконтролируемой частицы, предсказанной теорией струн, – и это заставило их предпринять смелый шаг, один из тех, которые привели отверженную теорию струн к яркому успеху.

Они предположили, что теория струн не должна мыслиться как квантовомеханическая теория сильных ядерных взаимодействий. Они доказывали, что даже если теория была открыта в попытке понять сильные взаимодействия, на самом деле она является решением другой проблемы. На самом деле она является первой квантовомеханической теорией гравитационного взаимодействия. Они заявили, что безмассовая частица со спином 2, предсказанная теорией струн, была гравитоном, и что уравнения теории струн с необходимостью включают квантовомеханическое описание гравитации.

Шварц и Шерк опубликовали свои предположения в 1974 и ожидали бурной реакции от физического сообщества. Вместо этого их труд был проигнорирован. Ретроспективно не трудно понять, почему. Некоторым казалось, что концепция струн стала теорией в поиске приложения.

После того, как попытки использовать теорию струн для объяснения сильных ядерных взаимодействий провалились, казалось, что ее сторонники не смогли признать поражения и, вместо этого, из кожи вон лезли, определяя поиски уместности теории где-то в другом месте. Топлива в этот огонь убеждений добавилось, когда стало ясно, что Шварцу и Шерку понадобилось радикально изменить размер струн в своей теории, чтобы силы, переносимые кандидатом в гравитоны, стали привычной, известной силой гравитации. Поскольку гравитация экстремально слабая сила* и поскольку оказалось, что чем длиннее струна, тем сильнее переносимое взаимодействие, Шварц и Шерк нашли, что струны должны быть экстремально малы, чтобы переносить настолько незначительную силу, как гравитация; они должны быть порядка планковской длины, в сотню миллиардов миллиардов миллиардов раз меньше, чем сначала представлялось. Настолько малы, как отмечали сомневающиеся, криво усмехаясь, что нет оборудования, которое могло бы увидеть их, что означает, что теория не может быть проверена экспериментально.

(*) "Вспомним, как отмечалось в Главе 9, даже слабый магнит может пересилить притяжение всей земной гравитации и притянуть вверх скрепку для бумаги. Численно это значит, что гравитационная сила составляет примерно 10 –42 от величины электромагнитных сил."

Напротив, 1970е стали очевидцами одного успеха за другим у более обычных, не основанных на струнах теорий, формулируемых с точки зрения частиц или полей. Теоретики и экспериментаторы одинаково полностью направляли свои головы и руки в конкретные идеи этих теорий для исследования и предсказаний для проверки. Зачем обращаться к спекулятивной теории струн, когда имется так много возбуждающей работы внутри хорошо зарекомендовавшей себя на практике схемы? Во многом из-за такого настроения, хотя физики и знали на периферии своих мыслей, что проблема соединения гравитации и квантовой механики остается нерешенной с использованием обычных методов, это не была проблема, которая овладела вниманием. Почти каждый допускал, что это важная проблема и однажды к ней надо обратиться, но с богатством работы, все еще остающейся с негравитационными силами, проблема квантования гравитации отодвигалась для обжига лишь на заднюю конфорку. И, наконец, в середине поздних 1970х теория струн была далека от того, чтобы полностью работать. Обладание кандидатом на гравитон было успехом, но все еще требовало внимания большое число концептуальных и технических проблем. Казалось вполне правдоподобным, что теория не сможет преодолеть одну или больше из этих проблем, так что работа в теории струн означала заметный риск. В течение нескольких лет теория могла умереть.

Шварц остался непоколебимым. Он был уверен, что открытие в теории струн первого правдоподобного подхода к описанию гравитации на языке квантовой механики является крупным прорывом. Если никто не хотел слушать, прекрасно. Он будет нажимать на разработку теории, так что когда люди будут готовы уделить внимание, теория струн будет продвинута намного дальше. Его решение оказалось пророческим.

В конце 1970х – начале 1980х Шварц, объединвшись с Майклом Грином, тогда работавшим в Лондонском Колледже Королевы Марии, предпринял работу над некоторыми техническим препятствиями, сопровождавшими теорию струн. Первой среди них была проблема аномалий. Детали не существенны, но, грубо говоря, аномалия является фатальным квантовым эффектом, который влечет за собой гибель теории через намеки на то, что она нарушает некоторые священные принципы, вроде сохранения энергии. Чтобы быть жизнеспособной, теория должна быть свободной от всех аномалий. Первоначальные исследования обнаружили, что теория струн страдает от нашествия аномалий, что было одной из главных технических причин, по которым перестал проявляться энтузиазм. Аномалии сигнализировали, что хотя теория струн кажется обеспечивающей квантовую теорию гравитации, поскольку она содержит гравитоны, более пристальную проверку теория не выдерживает из-за своей собственной тонкой математической противоречивости.

Шварц обнаружил, однако, что ситуация не является совсем тупиковой. Имелся шанс – и он был немалый – что полный расчет покажет, что различные квантовые вклады в аномалии, беспокоящие торию струн, если их объединиь корректно, уничтожают друг друга. Вместе с Грином Шварц предпринял тяжелую работу по расчету этих аномалий и к лету 1984 был вознагражден двумя удачами в куче мусора. Одной дождливой ночью, во время поздней работы в Физическом Центре Аспена в Колорадо, они завершили одно из наиболее важных полевых вычислений – расчет, показывающий, что все потенциальные аномалии, способом, который кажется едва ли не сверхъестественным, были уничтожены друг другом. Они обнаружили, что теория струн свободна от аномалий и потому не допускает математических несовместимостей. Теория струн, как они убедительно продемонстрировали, оказалась квантовомеханически жизнеспособной.

На этот раз физики прислушались. Это была середина 1980х и климат в физике ощутимо изменился. Многие из существенных свойств трех негравитационных сил были проработаны таоретически и подтверждены экспериментально. Хотя важные детали оставались неразрешенными, – а некоторые все еще не разрешены, – сообщество было готово энергично взяться за следующую большую проблему: соединение ОТО и квантовой механики. Тогда из малоизвестного угла физики Грин и Шварц неожиданно вырвались на сцену с определенным, математически последовательным и эстетически привлекательным предложением о том, что надо делать. Едва ли не в течение ночи число исследователей, работавших в теории струн возросло с двух человек до тысяч. Первая струнная революция была на полном ходу.

Первая революция

Я поступил в аспирантуру в Оксфордском университете в конце 1984 и в течение нескольких месяцев коридоры гудели от разговоров о революции в физике. Поскольку Интернету еще предстояло получить широкое распространение, доминирующим каналом быстрого обмена информацией были слухи, и каждый день приносил слова о новых прорывах. Исследователи повсюду высказывали свое мнение, так что атмосфера была заряжена, в известном смысле, новым со времен первых дней квантовой механики, и шли серьезные разговоры, что конец теоретической физики находится в пределах достижимого.

Теория струн была новой почти для каждого, так что в эти ранние дни ее детали не были общеизвестны. Нам особенно повезло в Оксфорде: Майкл Грин в то время посетил его с лекциями по теории струн, так что многие из нас получили близкое знакомство с основными идеями теории и существенными утверждениями. Это были впечатляющие утверждения. В двух словах, вот, что говорила теория:

Возьмите любой кусок материи – блок льда, каменную глыбу, железную плиту – и представьте его разделенным пополам, затем один из кусков еще пополам и так далее; представьте материал, постоянно делящийся на все более мелкие куски. Примерно 2 500 лет назад древние греки сформулировали проблему определения тончайшей, нерассекаемой, неделимой составляющей, которая являлась бы конечным продуктом такой процедуры. В наше время мы узнали, что рано или поздно вы придете к атомам, но атомы не являются ответом на вопрос греков, поскольку они могут быть рассечены на более тонкие составляющие. Атомы могут быть расщеплены. Мы узнали, что они состоят из электронов, которые роятся вокруг центральных ядер, которые составлены из еще более мелких частиц – протонов и нейтронов. А в конце 1960х эксперименты на Стэнфордском Линейном Ускорителе открыли, что даже сами нейтроны и протоны построены из более фундаментальных составляющих: каждый протон и каждый нейтрон состоит из трех частиц, известных как кварки, как было отмечено в Главе 9 и как проиллюстрировано на Рис. 12.3а.

Обычная теория, поддерживаемая современнейшими экспериментами, изображала электроны и кварки как точки без какой-либо пространственной протяженности; с этой точки зрения, следовательно, они отмечают конец линии – последнюю куклу природной матрешки, найденную в микроскопическом строении материи. Именно здесь появляется теория струн.

(а) (b)

Рис 12.3 (а) Обычная теория основана на электронах и кварках как базовых составляющих материи, (b) Теория струн предполагает, что каждая частица на самом деле является вибрирующей струной.

 Теория струн спорит с обычной картиной, предполагая, что электроны и кварки не являются частицами с нулевой протяженностью. Вместо этого, обычная модель частицы-как-точки в соответствии с теорией струн является приближением более утонченного изображения, в котором каждая частица на самом деле является мельчайшей вибрирующей нитью энергии, названной струной, как вы можете видеть на Рис. 12.3b. Эти нити вибрирующей энергии представляются не имеющими толщины, только длину, так что струны являются одномерными сущностями. Кроме того, поскольку струны столь малы, в несколько сотен миллиардов миллиардов раз меньше отдельного атомного ядра (10–33 сантиметра), они кажутся точками даже тогда, когда исследуются на наших самых совершенных атомных ускорителях.

Поскольку наше понимание теории струн далеко от полного, никто не знает с уверенностью, заканчивается ли здесь история, – полагая, что теория корректна, являются ли струны по-настоящему последней куклой в русской матрешке или они сами могут быть составлены из еще более тонких ингредиентов. Мы вернемся к этой проблеме, но пока мы следуем историческому развитию предмета и представим, что струны в самом деле показывают, где рулетка останавливается; мы представим, что струны являются наиболее элементарными кирпичиками во вселенной.

Теория струн и объединение

Такова теория струн вкратце, но чтобы передать мощь нового подхода, я должен описать немного более полно обычную физику частиц. За последние сто лет физики прокалывали, избивали и распыляли материю в поиске элементарных составляющих вселенной. На самом деле они нашли, что почти во всем, с чем кто-либо когда-либо сталкивался, фундаментальными ингредиентами являются электроны и кварки, напомним только, – более точно, как в Главе 9, электроны и два вида кварков, верхний (up) и нижний (down), которые отличаются массой и электрическим зарядом. Но эксперименты также обнаружили, что вселенная имеет другие, более экзотические семейства частиц, которые не появляются в обычной материи. В дополнение к up-кварку и down-кварку эксперименты идентифицировали четыре других семейства кварков (очарованные (charm) кварки, странные (strange) кварки, кварки дна (вottom) и кварки вершины (top)) и два других семейства частиц, которые очень сильно похожи на электроны, только тяжелее (мюоны и тау-частицы). Возможно, что эти частицы изобиловали сразу после Большого Взрыва, но сегодня они производятся только как недолговечные обломки от высокоэнергетических столкновений между более привычными семействами частиц. Наконец, экспериментаторы также открыли три семейства призрачных частиц, называемых нейтрино (электронное нейтрино, мюонное нейтрино и тау-нейтрино), которые могут проходить через триллионы миль свинца так же легко, как мы проходим через воздух. Эти частицы – электрон и два его более тяжелых родственника, шесть видов кварков и три вида нейтрино – составляют ответ сегодняшнего специалиста по физике частиц на вопрос древних греков о строении материи.

Длинный список для видов частиц может быть организован в три "семьи" или "поколения" частиц, как показано в Таблице 12.1. Каждое поколение имеет два кварка, одно из нейтрино и одну из электроноподобных частиц; разница между соответствующими частицами в каждом поколении заключается в том, что их массы возрастают в каждом последующем поколении. Разделение на поколения определенно наводит на мысль о лежащей в основании системе, но вал частиц может легко закружить вашу голову (или, хуже того, сделать ваши глаза стеклянными). Однако держитесь крепко, поскольку одно из самых прекрасных свойств теории струн заключается в том, что она обеспечивает способ для приручения этой кажущейся сложности.

В соответствии с теорией струн имеется только один фундаментальный ингредиент – струна – и богатство семейств частиц просто отражает различные способы (моды) колебаний, которые струна может выполнять. Это прямо похоже на то, что происходит с более привычными струнами вроде скрипичных или виолончельных. Виолончельная струна может колебаться множеством различных способов, и мы слышим каждый способ как различные звуки. Струны в теории струн ведут себя аналогично: они также могут колебаться различными способами. Но вместо получения различных музыкальных тонов, различные способы колебаний в теории струн соответствуют различным видам частиц. Ключевое понимание заключается в том, что детальные способы колебаний, выполняемые струной, производят специфическую массу, специфические электрический заряд, специфический спин и так далее – то есть, специфический список свойств, который различает один вид частицы от другого.

Частица Масса Частица Масса Частица Масса
Поколение 1 Электрон 0,00054 Мюон 0,11 Тау 1,9
Поколение 2 Электроннное нейтрино < 10 -9 Мюонное нейтрино < 10 -4 Тау-нейтрино < 10 -3
Поколение 3 Up-кварк 0,0047 Charm-кварк 1,6 Top-кварк 189 Down-кварк 0,0074 Strange-кварк 0,16 Bottom-кварк 5,2

    Таблица 12.1 Три поколения (семьи) фундаментальных частиц и их массы (в единицах масс протона). Известно, что величины масс нейтрино не равны нулю, но их точные величины пока ускользали от экспериментального определения.

Колебание струны одним особым способом может иметь свойства электрона, в то время как струна, колеблющаяся другим способом, может иметь свойства up-кварка, down-кварка или любого другого семейства частиц из Таблицы 12.1. Это не значит, что "электронная струна" составляет электрон, или up-кварковая струна составляет up-кварк, или down-кварковая струна составляет down-кварк. Вместо этого единственный вид струны может отвечать за великое множество частиц, поскольку струна может выполнять великое множество способов колебаний.

Как вы можете видеть, это представляет потенциально гигантский шаг в направлении унификации. Если теория струн верна, кружащий голову и делающий стеклянными глаза список частиц в Таблице 12.1 представляется колебательным репертуаром единственного базового ингредиента. Метафорически, различные ноты, которые могут быть сыграны на единственном виде струн могут отвечать за все различные частицы, которые были обнаружены. На ультрамикроскопическом уровне вселенная будет сродни симфонии струн, чьи вибрации дают существование материи.

Это восхитительно элегантная система для объяснения частиц в Таблице 12.1, но кроме того, предложенные теорией струн унификации идут еще дальше. В Главе 9 и в нашем обсуждении выше мы рассмотрели, как силы природы переносятся на квантовом уровне другими частицами, частицами-переносчиками, которые собраны в Таблице 12.2. Теория струн отвечает за частицы-переносчики точно так же, как она отвечает за частицы материи. А именно, каждая частица-переносчик является струной, которая проявляет специфический способ колебаний. Фотон является вибрацией струны одним особым способом, глюон есть колебание струны другим способом. И, что имеет первоочередную важность, что показали Шварц и Шерк в 1974, имеется особая колебательная мода, которая имеет все свойства гравитона, так что гравитационная сила включается в квантовомеханическую схему теории струн. Таким образом, не только частицы материи возникают из вибрирующих струн, но так же и частицы-переносчики – даже частица-переносчик гравитации.

Взаимодействие (сила) Частица-переносчик Масса
Сильное Глюон 0
Электромагнитное Фотон 0
Слабое W; Z 86; 97
Гравитационное Гравитон 0

    Таблица 12.2 Четыре силы (взаимодействия) природы вместе со связанными с ними частицами и их массами в единицах массы протона. (В действительности имеется две W-частицы – одна с зарядом +1 и одна с зарядом –1 – которые имеют одинаковую массу; для простоты мы пренебрегаем этими деталями и отмечаем каждую как W-частицу).

Итак, помимо обеспечения первого успешного подхода к соединению гравитации и квантовой механики, теория струн обнаруживает свою мощь, обеспечив единое описание для всей материи и всех взаимодействий. Это то утверждение, которое выбило тысячи физиков из их кресел в середине 1980х; со временем они поднялись и отряхнули с себя пыль, многие поменяли убеждения.

Почему теория струн работает?

Перед разработкой теории струн путь научного прогресса был усыпан неудачными попытками соединить гравитацию и квантовую механику. Так что такое с теорией струн, что позволило ей так сильно преуспеть? Мы описали, как Шварц и Шерк осознали, в значительной степени неожиданно для себя, что один особый способ колебаний струны имеет точно такие правильные свойства, чтобы быть гравитоном, и, как они затем заключили, что теория струн обеспечивает готовую схему для соединения двух теорий. Исторически в самом деле так и было, сила и перспективность теории струн были случайно осознаны, но как объяснение, почему струнный подход преуспевает там, где все другие попытки пасуют, оно оставляет желать лучшего. Рис. 12.2 суммирует конфликт между ОТО и квантовой механикой – на ультракоротких пространственных (и временных) масштабах буйство квантовой неопределенности становится настолько интенсивным, что гладкая геометрическая модель пространства-времени, лежащая в основе ОТО, разрушается – так что вопрос в следующем: Как теория струн решает проблему? Как теория струн нормализует бурные флуктуации пространства-времени на ультрамикроскопических расстояниях?

Главное новое свойство струнной теории в том, что ее основной ингредиент не точечная частица, – точка не имеет размера – а, вместо этого, объект, который имеет пространственную протяженность. Эта разница является ключевой для успеха теории струн в соединении гравитации и квантовой механики.

Дикое буйство, показанное на Рис. 12.2, возникает из применения принципа неопределенности к гравитационному полю; на все меньших и меньших масштабах принцип неопределенности подразумевает, что флуктуации в гравитационном поле будут все больше и больше. На таких экстремально малых масштабах расстояний, однако, мы должны описывать гравитационное поле в терминах его фундаментальных составляющих, гравитонов, почти как на молекулярных масштабах мы должны описывать воду в терминах молекул Н2О. На этом языке буйные неровности гравитационного поля должны мыслиться как большие количества гравитонов, дико прыгающих с места на место, как частицы грязи и пыли, пойманные свирепым торнадо. Теперь, если бы гравитоны были точечными частицами (как всегда представлялось ранее, приводя к краху попыток соединения ОТО и квантовой механики), Рис. 12.2 будет в точности отражать их коллективное поведение: чем короче масштаб расстояний, тем больше перемешивание. Но теория струн меняет это заключение.

В теории струн каждый гравитон есть вибрация струны – чего-то, что не является точкой, а, вместо этого, имеет грубо планковскую длину (10–33 сантиметра) в размере. А поскольку гравитоны являются мельчайшими, наиболее элементарными составляющими гравитационного поля, не имеет смысла говорить о поведении гравитационных полей на масштабах меньше планковской длины. Точно так же, как разрешение вашего телевизионного экрана ограничено размером индивидуальных пикселов или зерен, разрешение гравитационного поля в теории струн ограничено размером гравитонов. Таким образом, ненулевой размер гравитонов (и чего-угодно-другого) в теории струн устанавливает предел, грубо масштаба планковской длины, до которого точно гравитационное поле может быть разложено.

Это существенное осознание. Неконтролируемые квантовые флуктуации, проиллюстрированные на Рис. 12.2, возникают только тогда, когда мы рассматриваем квантовую неопределенность на достаточно коротких масштабах длин – масштабах короче планковской длины. В теории, основанной на точечных частицах нулевого размера, такое применение принципа неопределенности оправдано и, как мы видели на рисунке, это приводит нас к диким землям за пределами достижимости ОТО Эйнштейна. Теория, основанная на струнах, однако, включает встроенную защиту от отказов. В теории струн струны являются мельчайшим ингредиентом, так что наше путешествие в ультрамикроскопическую область приходит к концу, когда мы достигаем длины Планка – размера самой струны. На Рис. 12.2 планковский масштаб представлен вторым сверху уровнем; как вы можете видеть, на таких масштабах все спокойно; волнообразные движения в ткани пространства вследствие гравитационного поля все еще подчиняются квантовым дрожаниям. Но дрожания достаточно мягкие, чтобы избежать непоправимого конфликта с ОТО. Точная математическая основа ОТО должна быть модифицирована, чтобы включить эти квантовые волнообразные движения, но это может быть сделано и математика остается осмысленной.

Таким образом, введя ограничения, на сколь малые расстояния мы можем зайти, теория струн вводит ограничения, насколько сильны становятся дрожания гравитационного поля, – и предел оказывается достаточно разумным, чтобы избежать катастрофического конфликта между квантовой механикой и ОТО. Таким образом, теория струн подавляет антагонизм между двумя схемами и оказывается способной впервые соединить их.

Космическая ткань в области малого

Что это значит для ультрамикроскопической природы пространства и пространства-времени в более общем смысле? С одной стороны, это сильно бросает вызов обычному понятию, что ткань пространства и времени непрерывна, – что вы можете всегда разделить расстояние между здесь и там или продолжительность между теперь и тогда пополам и снова пополам, бесконечно деля пространство и время на все более малые доли. Вместо этого, когда вы подходите к планковской длине (длине струны) и планковскому времени (времени, которое требуется свету, чтобы пролететь длину струны) и пытаетесь разделить пространство и время более тонко, вы находите, что это невозможно. Концепция "уменьшения" перестает иметь смысл как только вы достигаете размера наименьшей составляющей космоса. Для точечных частиц нулевой длины это не приводит к ограничению, но поскольку струны имеют размер, для них приводит. Если теория струн верна, обычные концепции пространства и времени, система, в рамках которой имеет место весь наш повседневный опыт, просто неприменимы на масштабах меньше планковского масштаба – масштабах самих струн.

Что касается концепции, которая должна прийти на смену, по ней все еще нет консенсуса. Одна возможность, которая согласуется с изложенным выше объяснением о том, как теория струн запутывает квантовую механику и ОТО, заключается в том, что ткань пространства на планковском масштабе похожа на решетку или сетку, в которой "пространство" между линиями сетки находится вне границ физической реальности. Точно так же, как микроскопический муравей, гуляя по обычному кусочку ткани, будет перепрыгивать с нити на нить, возможно, что движение через пространство на ультрамикроскопических масштабах аналогично требует дискретных прыжков с одной "нити" пространства на другую. Время тоже может иметь зернистую структуру с индивидуальными моментами, тесно упакованными друг к другу, но не сливающимися в бесшовный континуум. При таком образе мыслей концепции все более маленьких пространственных и временных интервалов резко заканчиваются на планковском масштабе. Точно так же, как нет такой вещи, как американская монетка величиной меньше пенни, если ультрамикроскопическое пространство-время имеет сетчатую структуру, то нет такой вещи, как расстояние короче планковской длины или продолжительность короче планковского времени.

Другая возможность заключается в том, что пространство и время не теряют внезапно смысл на экстремально малых масштабах, а вместо этого постепенно модифицируются в иные, более фундаментальные концепции. Сокращение меньше чем до планковского масштаба будет запрещено не потому, что вы вторгаетесь в фундаментальную сетку, а потому, что концепции пространства и времени продолжаются в виде понятий, для которых "сокращение меньше" столь же бессмысленно, как вопрос, не является ли число девять счастливым. Это значит, что мы можем представить себе, что в то время, как привычное макроскопическое пространство и время постепенно трансформируется в их непривычные ультрамикроскопические двойники, многие из их обычных свойств – таких как длина и продолжительность – становятся неприменимыми или бессмысленными. Точно так же, как вы можете разумно изучать температуру и вязкость жидкой воды – концепции, которые применимы к макроскопическим свойствам жидкости, – но когда вы спускаетесь на уровень индивидуальных молекул Н2О, эти концепции теряют смысл, так же, возможно, хотя вы можете разделить область пространства и продолжительность времени пополам и еще раз пополам на повседневном масштабе, когда вы проходите планковский масштаб, происходит трансформация, которая переводит такое деление в бессмысленное.

Многие струнные теоретики, включая меня, сильно подозревают, что что-нибудь в духе указанных возможностей на самом деле происходит, но чтобы идти дальше, мы нуждаемся в описании более фундаментальных концепций, в которые трансформируются пространство и время.* На сегодняшний день этот вопрос остается без ответа, но передовые исследования (описываемые в последней главе) предлагают некоторые возможности с далеко идущими последствиями.

(*)"Я могу заметить, что последователи другого подхода по соединению ОТО и квантовой механики, петлевой квантовой гравитации, которая будет коротко обсуждена в Главе 16, принимают точку зрения, которая недалека от упомянутого выше предположения, – что пространство-время имеет дискретную структуру на мельчайших масштабах".

Деликатные вопросы

Из описаний, которые я давал до настоящего времени, может показаться загадочным, что некоторые физики сопротивляются очарованию теории струн. Наконец-то, есть теория, которая дает надежду на осуществление мечты Эйнштейна и даже больше; теория, которая может успокоить враждебность между квантовой механикой и ОТО; теория с возможностью объединения всей материи и всех сил через описание всего в терминах вибрирующих струн; теория, которая предлагает ультрамикроскопическую область, в которой привычное пространство и время могут быть так же старомодны и изящны, как телефон с дисковым набором; короче говоря, теория, которая обещает дать нам понимание вселенной на совершенно новом уровне. Но не стоит забывать, что никто никогда не видел струну и, исключая некоторые радикальные идеи, обсуждаемые в следующей главе, вероятно, что даже если теория струн верна, никто никогда и не увидит. Струны столь малы, что прямое наблюдение равносильно чтению текста на этой странице с расстояния 100 световых лет: это требует силы разрешения примерно в миллиард миллиардов раз точнее, чем позволяют наши текущие технологии. Некоторые ученые громогласно утверждают, что теория, настолько удаленная от прямой эмпирической проверки, лежит в области философии или теологии, но не физики.

Я нахожу это взгляд недальновидным или, уж по крайней мере, преждевременным. Хотя мы никогда не сможем получить технологию, способную увидеть струны непосредственно, история науки переполнена теориями, которые были проверены экспериментально косвенным образом. Теория струн не скромна. Ее цель и обещания велики. И это возбуждающе и весьма похвально, поскольку если теория претендует на то, чтобы быть теорией нашей вселенной, она должна быть равна реальному миру не только в приблизительном наброске, обсуждавшемся до настоящего времени, но так же и в мельчайших деталях. Как мы теперь будем обсуждать, там и лежат потенциальные проверочные тесты.

В течение 1960х и 1970х занимающиеся частицами физики сделали огромный шаг в понимании квантовой структуры материи и негравитационных сил, которые управляют ее поведением. Схема, к которой они в конце концов пришли через экспериментальные результаты и теоретическое осмысление, называется стандартной моделью физики частиц и основывается на квантовой механике, в которой частицы материи в Таблице 12.1 и частицы взаимодействий в Таблице 12.2 (исключая гравитон, поскольку стандартная модель не включает гравитацию, и включая частицу Хиггса, которая не обозначена в таблицах) все рассматриваются как точечные частицы. Стандартная модель способна объяснять, по существу, все данные, получаемые на атомных ускорителях всего мира, и в течение лет ее изобретатели заслуженно прославлялись с высшими почестями. Даже при этих условиях стандартная модель имеет существенные ограничения. Мы уже обсуждали, как она и все другие подходы, предшествовавшие теории струн, потерпели неудачу с объединением гравитации и квантовой механики. Но имеются также и другие недостатки.

Стандартная модель не может объяснить, почему взаимодействия переносятся точным списком частиц в Таблице 12.2 и почему материя составлена точным списком частиц в Таблице 12.1. Почему имеются три поколения частиц материи и почему каждое поколение содержит те частицы, которые содержит? Почему не два поколения или просто одно? Почему электрон имеет в три раза больший заряд, чем down-кварк? Почему мюон весит в 23,4 раза больше, чем up-кварк, и почему top-кварк весит в 350 000 раз больше электрона? Почему вселенная сконструирована этим рядом кажущихся хаотичными чисел? Стандартная модель принимает частицы из Таблиц 12.1 и 12.2 (еще раз, исключая гравитон) как входные данные, а затем делает впечатляюще точные предсказания о том, как частицы будут взаимодействовать и влиять друг на друга. Но стандартная модель не может объяснить входные данные – частицы и их свойства, – не больше, чем ваш калькулятор может объяснить числа, которые вы вводили в последний раз, когда пользовались им.

Загадочность свойств этих частиц не есть академический вопрос, почему та или иная скрытая деталь произошла тем или иным образом. На протяжении последнего столетия ученые осознали, что вселенная имеет привычные свойства повседневного опыта только потому, что частицы в Таблицах 12.1 и 12.2 имеют точно те свойства, которые имеют. Даже довольно малые изменения масс или электрических зарядов некоторых частиц могли бы, например, сделать их неспособными вовлекаться в ядерные процессы, которые питают звезды. А без звезд вселенная была бы совершенно иным местом. Таким образом, детальные свойства элементарных частиц вплетаются в то, что многие рассматривают как глубочайший вопрос всей науки: Почему элементарные частицы имеют точно правильные свойства, чтобы позволить происходить ядерным процессам, светить звездам, формироваться планетам вокруг звезд и, по меньшей мере, на одной такой планете существовать жизни?

Стандартная модель не может предложить никакого проникновения в этот вопрос, поскольку свойства частиц являются частью требуемых ей входных данных. Теория не сдвинется с пыхтением вперед и не начнет производить результаты, пока свойства частиц не будут определены. Но теория струн в этом отличается. В теории струн свойства частиц определяются способами колебаний струны, так что теория содержит перспективы объяснения.

Свойства частиц в теории струн

Чтобы понять новую объяснительную схему теории струн, нам нужно лучше почувствовать, как вибрации струн производят свойства частиц, так что рассмотрим простейшее свойство частицы, ее массу.

Из Е = mc2 мы знаем, что масса и энергия взаимозаменяемы; как доллар и евро, они являются конвертируемыми валютами (но в отличие от денежных валют, они имеют фиксированный курс обмена, заданный скоростью света, умноженной на себя, c2). Наше выживание зависит от уравнения Эйнштейна, поскольку поддерживающие жизнь солнечное тепло и свет генерируются путем "конвертации" 4,3 миллиона тонн материи в энергию каждую секунду; однажды ядерные реакторы на Земле могут превзойти Солнце, безопасно заставляя работать уравнение Эйнштейна, чтобы обеспечить человечество практически безлимитными поставками энергии.

В этом примере энергия производится из массы. Но уравнение Эйнштейна прекрасно работает и в обратном направлении – в направлении, в котором масса производится из энергии, – и это то направление, в котором теория струн использует уравнение Эйнштейна. Масса частицы в теории струн есть ничто иное, как энергия ее вибрирующей струны. Например, объяснение, которое теория струн предлагает для того, почему одна частица тяжелее, чем другая, таково, что струна, составляющая более тяжелую частицу, колеблется быстрее и более бурно, чем струна, составляющая более легкую частицу. Более быстрые и бурные колебания означают более высокую энергию, а более высокая энергия переводится через уравнение Эйнштейна в большую массу. И наоборот, чем более легкая частица, тем более слабым и менее неистовым является соответствующее колебание струны; безмассовая частица вроде фотона или гравитона соответствует струне, выполняющей наиболее тихий и мягкий способ колебаний, какой может быть.*

(*) "Связь с массой, возникающей из Хиггсова океана, будет обсуждена позже в этой главе".

Другие свойства частицы, такие как ее электрический заряд и ее спин, кодируются через более тонкие свойства колебаний струны. По сравнению с массой эти свойства труднее описать нематематически, но они следуют той же самой основной идее: способ колебаний является "отпечатком пальцев" частицы; все свойства, которые мы используем, чтобы различать одну частицу от другой, определяются способом колебаний соответствующей частице струны.

В ранние 1970е, когда физики анализировали способы колебаний, возникающие в первой инкарнации струнной теории – теории бозонных струн, – чтобы определить виды свойств частиц, предсказываемые теорией, они налетели на корягу. Каждый способ колебаний в теории бозонных струн имел целочисленное значение спина: спин-0, спин-1, спин-2 и так далее. Это была проблема, поскольку, хотя частицы-переносчики имеют значения спина такого сорта, частицы материи (вроде электронов и кварков) нет. Они имеют дробное значение спина, спин-1/2. В 1971 Пьер Рамон из Университета Флориды изложил средство от этого недостатка; тотчас же он нашел способ модифицировать уравнения теории бозонных струн, чтобы допустить также и способы колебаний с полуцелым спином.

Фактически, при ближайшем рассмотрении исследование Рамона вместе с результатами Шварца и его соратника Андре Невё и более поздними достижениями Фердинандо Глоцци, Джоэля Шерка и Дэвида Олива открыли совершенный баланс – новую симметрию – между способами колебаний с различными спинами в модифицированной теории струн. Эти исследователи нашли, что новые способы колебаний возникают парами, чья величина спина отличается на половину единицы. Для каждого способа колебаний со спином-1/2 имеется ассоциированный способ колебаний со спином-0. Для каждого способа колебаний со спином-1 имеется ассоциированный способ колебаний со спином-1/2 и так далее. Связь между целыми и полуцелыми величинами назвали суперсимметрией, и с этими результатами родилась теория суперсимметричных струн или теория суперструн. Около десяти лет позже, когда Шварц и Грин показали, что все потенциальные аномалии, которые угрожали теории струн, уничтожили друг друга, они на самом деле работали в системе теории суперструн, так что революцию, воспламененную их статьей, более правильно называть первой суперструнной революцией. (Для последующего мы часто будем ссылаться на струны и на теорию струн, но это только для краткости; мы всегда имеем в виду суперструны и теорию суперструн).

На этом основании мы теперь можем установить, что будет означать для теории струн выйти за пределы эскизных свойств и объяснить вселенную в деталях. Это сводится к следующему: среди способов колебаний, которые струны могут показывать, должны быть способы, чьи свойства согласуются с соответствующими свойствами известных частиц. Теория содержит моды колебаний с полуцелым спином, но она должна включать моды с полуцелым спином, которые точно подходят к известным частицам материи, как обобщено в Таблице 12.1. Теория содержит моды колебаний со спином-1, но она должна включать моды колебаний со спином-1, которые точно подходят к известным частицам-переносчикам, как обобщено в Таблице 12.2. Наконец, если эксперименты на самом деле откроют частицы со спином-0, такие, как предсказаны для Хиггсовых полей, теория струн должна обеспечить моды колебаний, которые точно подходят к свойствам и этих частиц тоже. Короче говоря, чтобы теория струн была жизнеспособной, ее моды колебаний должны давать и объяснять частицы стандартной модели.

Здесь большие возможности для теории струн. Если теория струн верна, то имеется объяснение для свойств частиц, которые экспериментаторы измерили, и оно находится в резонансном способе колебаний, который струна может исполнить. Если свойства этих способов колебаний подходят к свойствам частиц из Таблиц 12.1 и 12.2, я думаю, что в достоверности теории струн убедятся даже несгибаемые скептики, вне зависимости от того, видел ли кто-нибудь непосредственно протяженную структуру самих струн или нет. И помимо установления ее самой как долгожданной единой теории, с таким соответствием между теорией и экспериментальными данными теория струн обеспечит первое фундаментальное объяснение, почему вселенная такова, какова она есть.

Так как теория струн проходит этот решающий тест?

Слишком много колебаний

Ну, на первый взгляд, теория струн прогорает. Для начала, тут имеется бесконечное число различных способов (мод) колебаний струны с первыми несколькими из бесконечной серии, схематически изображенными на Рис. 12.4. Однако Таблицы 12.1 и 12.2 содержат только конечный список частиц, так что с самого начала мы, оказывается, имеем обширное несоответствие между теорией струн и реальным миром. Более того, когда мы анализируем математически возможные энергии – и, следовательно, массы – этих колебательных мод, мы приходим к другому существенному рассогласованию между теорией и наблюдениями. Массы допустимых мод колебаний струны не похожи на экспериментально измеренные массы частиц, выписанные в Таблицах 12.1 и 12.2. Нетрудно увидеть, почему.

С ранних дней теории струн исследователи осознали, что жесткость струны обратно пропорциональна ее длине (квадрату ее длины, более точно): в то время, как длинные струны легко согнуть, чем короче струна, тем более жесткой она становится. В 1974, когда Шварц и Шерк предложили уменьшить размер струн так, чтобы они стали включать гравитационную силу правильной величины, они, следовательно, предложили также увеличить натяжение струн, – по-всякому, это привело к натяжению около тысячи триллионов триллионов триллионов (1039) тонн, что примерно в 1041 раз больше натяжения средней фортепианной струны. Теперь, если вы представите изгиб мельчайшей, экстремально жесткой струны в одном из все более вычурных способов колебаний на Рис. 12.4, вы осознаете, что чем больше пиков и впадин имеется, тем больше энергии вы должны затратить.

Рис 12.4 Первые несколько примеров способов (мод) колебаний струны.

 И наоборот, раз уж струна вибрирует в такой причудливой моде, она содержит гигантское количество энергии. Таким образом, все способы колебаний струны, кроме простейших, являются высокоэнергетическими, а потому через Е = mc2 соответствуют частицам с гигантскими массами.

И, говоря гигантские, я действительно имею в виду гигантские. Расчеты показывают, что массы колебаний струны следуют сериями, аналогичными музыкальным гармоникам: они все являются кратными фундаментальной массе, массе Планка, почти как высшие тона все являются кратными повторениями фундаментальной частоты или тона. По стандартам физики частиц планковская масса колоссальна – около десяти миллиардов миллиардов (1019) масс протона, грубо порядка массы пылинки или бактерии. Так что возможные массы колебаний струны есть 0 масс Планка, 1 масса Планка, 2 массы Планка, 3 массы Планка и так далее, что показывает, что все массы, кроме 0-массы колебаний струны, чудовищно велики.

Как вы можете видеть, некоторые частицы в Таблицах 12.1 и 12.2 на самом деле являются безмассовыми, но большая часть нет. А ненулевые массы в таблицах находятся дальше от планковской массы, чем султан Брунея от нуждающегося в кредите. Таким образом, мы ясно видим, что массы известных частиц не соответствуют образцам, выработанным теорией струн. Значит ли это, что теория струн вычеркивается? Вы можете так подумать, но это не так. Наличие бесконечного списка мод колебаний, чьи массы становятся все более удаленными от масс известных частиц, является вызовом, который теория должна преодолеть. Годы исследований открыли подающие надежды стратегии, как это сделать.

Для начала заметим, что эксперименты с известными семействами частиц научили нас, что тяжелые частицы имеют тенденцию быть нестабильными; обычно тяжелые частицы быстро разваливаются на поток частиц малой массы, в конце концов генерируя легчайшие и наиболее привычные семейства в Таблицах 12.1 и 12.2.

(Например, top-кварк распадается примерно за 10–24 секунды). Мы ожидаем, что этот урок сохранит справедливость и для "сверхтяжелых" мод колебаний струны, и это объяснит, почему, даже если они массово производились в горячей ранней вселенной, почти никто не уцелел до сегодняшнего дня. Даже если теория струн верна, нашим единственным шансом увидеть сверхтяжелый способ колебаний будет произвести его самим через высокоэнергетические столкновения в ускорителях частиц. Однако, так как сегодняшние ускорители могут достигнуть только энергий, эквивалентных грубо 1000 масс протона, они слишком маломощные, чтобы возбудить любой из самых спокойных способов колебаний теории струн. Таким образом, предсказание теории струн о башне частиц с массами, начинающимися от величины, в несколько миллионов миллиардов раз большей, чем достижимо для сегодняшней технологии, не находится в конфликте с наблюдениями.

Это объяснение также делает ясным, что контакт между теорией струн и физикой частиц будет касаться только самых низкоэнергетических – безмассовых – колебаний струны, поскольку другие находятся далеко за пределами того, что мы можем достигнуть с сегодняшней технологией. Но как быть с фактом, что большинство частиц в Таблицах 12.1 и 12.2 не являются безмассовыми? Это важная проблема, но менее неприятная, чем сначала она может выглядеть. Поскольку планковская масса гигантская, даже наиболее известные массивные частицы, top-кварки, весят всего только 10–17 от планковской массы. Так для электрона его вес составляет около 10–23 от планковской массы. Так что в первом приближении, – применимом с точностью лучше, чем одна часть на 1017, – все частицы в Таблицах 12.1 и 12.2 имеют массы равные нулю планковских масс (почти как самый богатый землянин, в первом приближении, равен нулю в единицах султана Брунея), точно как "предсказано" теорией струн. Нашей целью является улучшить это приближение и показать, что теория струн объясняет мелкие отклонения от нуля планковских масс, характеризующие частицы в Таблицах 12.1 и 12.2. Просто безмассовые способы колебаний не так сильно отклоняются от данных опыта, как вы могли сначала подумать.

Это ободряет, но детальное исследование обнаруживает дальнейшие проблемы. Используя уравнения теории суперструн, физики составили список каждого безмассового способа колебаний струны. Одна из записей является гравитоном со спином-2, и это большой успех, который дал ход целой теме; это обеспечивает, что гравитация является частью квантовой теории струн. Но расчеты также показывают, что имеется много больше безмассовых способов колебаний со спином-1, чем имеется частиц в Таблице 12.2, и имеется много больше безмассовых способов колебаний с полуцелым спином, чем имеется частиц в Таблице 12.1. Более того, список способов колебаний с полуцелым спином не показывает признаков повторяющегося группирования, подобного структуре поколений Таблицы 12.1. Значит, при менее поверхностной проверке кажется все более трудным увидеть, как колебания струн будут вставать в один ряд с известными семействами частиц.

Таким образом, к середине 1980х, в то время как существовали основания пребывать в возбуждении по поводу теории суперструн, также существовали и причины для скепсиса. Несомненно, теория суперструн представила солидный шаг к унификации. Обеспечив первый последовательный подход к соединению гравитации и квантовой механики, она сделала для физики то же, что сделал Роджер Баннистер в 1954 для бега на милю, "выбежав" из четырех минут: он показал, что кажущееся невозможным возможно. Теория суперструн определенно установила, что мы можем прорваться через кажущийся непроходимым барьер, разделяющий два столпа физики двадцатого столетия.

Однако, в попытках идти дальше и показать, что теория суперструн может объяснить детальные свойства материи и сил природы, физики столкнулись с трудностями. Это привело скептиков к заявлению, что теория суперструн, несмотря на весь ее потенциал для унификации, была просто математической структурой без прямого отношения к физической вселенной.

Даже с только что обсужденными проблемами во главе списка недостатков теории суперструн, составленного скептиками, была особенность, которую мне пора ввести. Теория суперструн на самом деле обеспечивает успешное соединение гравитации и квантовой механики, единственное, которое свободно от математической непоследовательности, которая была бедствием всех предыдущих попыток. Однако, хотя это может звучать странно, в первые годы после ее открытия физики нашли, что уравнения теории суперструн не имеют этих завидных свойств, если вселенная имеет три пространственных измерения. Вместо этого, уравнения теории струн математически состоятельны, только если вселенная имеет девять пространственных измерений, или, включая временное измерение, они работают только во вселенной с десятью пространственно-временными измерениями!

В сравнении с этим странно звучащим утверждением сложности в установлении детального соответствия между способами колебаний струн и известными семействами частиц кажутся второстепенной проблемой. Теория суперструн требует существования шести измерений пространства, которых никто никогда не видел. Это не деликатный вопрос - это проблема.

Или они есть?

Теоретические открытия, сделанные в течение первых десятилетий двадцатого века, задолго до выхода теории струн на сцену, намекали, что дополнительные измерения совсем не обязаны быть проблемой. И с доработками конца двадцатого века физики показали, что эти дополнительные измерения способны перекинуть мост через пропасть между способами колебаний струнной теории и элементарными частицами, открытыми экспериментаторами.

Это одна из самых впечатляющих теоретических разработок; посмотрим, как она работает.

Объединение в высших измерениях

В 1919 Эйнштейн получил статью, которую легко можно было выбросить как бред больного. Она была написана малоизвестным немецким математиком по имени Теодор Калуца и в нескольких коротких страницах закладывала подход к объединению двух сил, известных в то время, гравитации и электромагнетизма. Чтобы достигнуть этой цели, Калуца предложил радикально отступить кое от чего настолько основополагающего, настолько полностью считающегося доказанным, что это казалось вне вопросов. Он предположил, что вселенная не имеет три пространственных измерения. Вместо этого, Калуца попросил Эйнштейна и остальное физическое сообщество принять во внимание возможность, что вселенная имеет четыре пространственных измерения, так что вместе со временем она имеет пять пространственно-временных измерений.

Первое, что это вообще означает? Ну, когда мы говорим, что имеется три пространственных измерения, мы имеем в виду, что имеется три независимых направления или оси, вдоль которых вы можете двигаться. Из вашего текущего положения вы можете описать их как влево/вправо, назад/вперед и вверх/вниз; во вселенной с тремя пространственными измерениями любое движение, которое вы предпринимаете, является некоторой комбинацией движений в этих трех направлениях. Эквивалентно, во вселенной с тремя пространственными измерениями вам нужно три блока информации, чтобы определить положение. В городе, например, вам нужна улица, где стоит здание, пересекающая ее улица и номер этажа, чтобы определить, где у вас вечеринка. А если вы хотите показать людям, до какого момента еда еще горячая, вам также надо определить четвертый блок данных: время. Это то, что мы имеем в виду, полагая пространство-время четырехмерным.

Калуца предположил, что в дополнение к осям влево/вправо, назад/вперед и вверх/вниз вселенная на самом деле имеет еще одно пространственное измерение, которое по некоторым причинам никто никогда не видел. Если точно, это означает, что имеется другое независимое направление, в котором вещи могут двигаться, а следовательно, что нам нужно задать четыре блока информации, чтобы определить точное положение в пространстве, и всего пять блоков информации, если мы также определяем время.

Ладно; это то, что предлагала полученная Эйнштейном в апреле 1919 статья.

Вопрос, почему Эйнштейн ее не выбросил? Мы не видим другое пространственное измерение – мы никогда не находили себя бесцельно плутающими, поскольку улица, пересекающая ее улица и номер этажа почему-то недостаточны, чтобы определить адрес, – так почему стоит рассматривать такую ненормальную идею? Ну, вот почему. Калуца обнаружил, что уравнения ОТО Эйнштейна могут быть легко и красиво математически расширены на вселенную, которая имеет на одно пространственное измерение больше. Калуца предпринял это расширение и нашел достаточно естественно, что версия ОТО с большим числом измерений не только включает оригинальные уравнения гравитации Эйнштейна, но вследствие лишнего пространственного измерения также и дополнительные уравнения. Когда Калуца изучил эти дополнительные уравнения, он открыл нечто экстраординарное: дополнительные уравнения были ничем иным, как уравнениями, которые Максвелл открыл в девятнадцатом веке для описания электромагнитного поля! Представив вселенную с одним новым пространственным измерением, Калуца предложил решение того, что Эйнштейн рассматривал как одну из самых важных проблем всей физики. Калуца нашел схему, которая объединила оригинальные уравнения ОТО Эйнштейна с оригинальными уравнениями электромагнетизма Максвелла. Именно поэтому Эйнштейн не выбросил прочь статью Калуцы.

Интуитивно вы можете думать о предложении Калуцы следующим образом. В ОТО Эйнштейн пробудил пространство и время. Поскольку они гнутся и растягиваются, Эйнштейн осознал, что он нашел геометрическое воплощение гравитационной силы. Статья Калуцы наводила на мысль, что геометрическое богатство пространства и времени еще больше. В то время, как Эйнштейн обнаружил, что гравитационные поля могут быть описаны как деформации и рябь в обычных трех пространственных и одном временном измерении, Калуца обнаружил, что во вселенной с дополнительным пространственным измерением будут дополнительные деформации и рябь. И эти деформации и рябь, как показал его анализ, будут в точности годиться для описания электромагнитных полей. В руках Калуцы собственный геометрический подход Эйнштейна ко вселенной продемонстрировал достаточную силу, чтобы объединить гравитацию и электромагнетизм.

Конечно, там все еще была проблема. Хотя математически все разработано, не было – и все еще нет – подтверждения пространственного измерения вне трех, о которых мы все знаем. Так что же, открытие Калуцы было всего лишь курьезом или оно как-то значимо для нашей вселенной? Калуца сильно верил в теорию – он, например, учился плавать путем изучения учебника по плаванию, а затем лишь путем ныряния в море, – но идея о невидимом пространственном измерении, неважно, насколько неотразима теория, все же звучит скандально. Затем в 1926 шведский физик Оскар Кляйн ввел в идею Калуцы новый поворот, который намекает, где дополнительные измерения могут быть скрыты.

Скрытые измерения

Чтобы понять идею Кляйна, представим муравья Филиппа Пети, гуляющего по длинному покрытому резиной туго натянутому канату, растянутому между горами Эверест и Лхоцзе. Разглядываемый с расстояния многих миль, как на Рис. 12.5, канат выглядит как одномерный объект вроде линии – объект, который имеет протяженность только вдоль своей длины. Если мы различили, что маленький червяк ползет вдоль каната навстречу Филиппу, мы дико кричим ему, поскольку он должен будет остановиться впереди за шаг от Филиппа, чтобы избежать беды. Конечно, после мгновенного размышления мы все осознаем, что имеется больше поверхности каната, чем измерение влево/вправо, которое мы можем непосредственно воспринимать. Хотя ее трудно различить невооруженным глазом с большого расстояния, поверхность каната имеет второе измерение: измерение по и против часовой стрелки, измерение, которое "завернуто" вокруг каната. С помощью скромного телескопа это циклическое измерение становится видимым, и мы видим, что червяк может двигаться не только по длинному, развернутому измерению влево/вправо, но также и по короткому, "скрученному" направлению по/против часовой стрелки. Так что в каждой точке каната червяк имеет два независимых направления, по которым он может двигаться (это то, что мы имеем в виду, когда мы говорим, что поверхность каната двумерна*), так что он может безопасно отстраниться от пути Филиппа, или отползая от него вперед, как мы первоначально представляли, или отползая вокруг маленького циклического измерения и пропуская Филиппа мимо.

(*) "Если вы посчитаете все направления влево, вправо, по часовой стрелке и против часовой стрелки отдельно, вы придете к заключению, что червяк может двигаться в четырех измерениях. Но когда мы говорим о "независимых" измерениях, мы всегда группируем те из них, которые лежат вдоль одинаковых геометрических осей – вроде влево и вправо, а также по часовой стрелке и против часовой стрелки".

Канат иллюстрирует, что измерения – независимые направления, в которых что-либо может двигаться, – выступают в двух качественно различающихся вариантах. Они могут быть большими и легко видимыми, как размерность поверхности каната влево/вправо, или они могут быть маленькими и более трудно различимыми, как размерность по/против часовой стрелки, которая закручена вокруг поверхности каната. В этом примере не является большой проблемой увидеть малый циклический пояс на поверхности каната. Все, что нам нужно было, это подходящий увеличительный инструмент. Но, как вы можете представить, чем меньше скрученное измерение, тем более трудно его будет обнаружить. На расстоянии нескольких миль сложность для обнаружения циклического измерения поверхности каната одна; она будет в некоторой степени другая для обнаружения циклического измерения чего-либо столь же тонкого, как зубная нить или узкое нервное волокно.

Рис 12.5 На удалении туго натянутый канат или провод выглядит одномерным, хотя в достаточно сильный телескоп его второе, скрученное измерение становится видимым.

Вклад Кляйна заключался в указании, что то, что справедливо для объекта внутри вселенной, может быть справедливо и для ткани самой вселенной. А именно, точно так, как поверхность каната имеет как большое, так и маленькое измерение, так же может быть и у ткани пространства. Может быть, что три известных всем нам измерения – влево/вправо, назад/вперед, вверх/вниз – подобны горизонтальному протяжению каната, большим измерениям, легко видимой их разновидности. Но точно так же, как поверхность каната имеет дополнительное, маленькое, скрученное, циклическое измерение, может быть, что ткань пространства также имеет маленькое, скрученное, циклическое измерение, настолько малое, что никто не имеет достаточно мощного увеличительного оборудования, чтобы обнаружить его существование. Вследствие его ничтожного размера, утверждал Кляйн, это измерение будет скрытым.

Насколько мало малое? Ну, включив определенные свойства квантовой механики в оригинальное предположение Калуцы, математический анализ Кляйна открыл, что радиус дополнительного циклического пространственного измерения, вероятно, будет порядка планковской длины, что определенно слишком мало для экспериментальной доступности (самое совершенное современное оборудование не может разрешить что-либо меньшее, чем тысячная часть размера атомных ядер, не достигая планковской длины более чем на фактор в миллион миллиардов). Однако, для воображаемого червяка планковского размера это мельчайшее скрученное циклическое измерение обеспечит новое направление, в котором он может странствовать точно так же свободно, как обычный червяк преодолевает циклическое измерение каната на Рис. 12.5. Конечно, точно так же, как обычный червяк находит, что там не так много места для исследований в направлении по часовой стрелке, прежде чем он окажется в своей стартовой точке, червяк планковской длины, ползущий вдоль скрученного измерения пространства, также будет постоянно возвращаться назад в свою стартовую точку. Но, оставив в стороне длину предпринятого им путешествия, скрученное измерение будет обеспечивать направление, в котором маленький червяк может двигаться так же легко, как он это делает в трех привычных развернутых измерениях.

Чтобы почувствовать интуитивный смысл того, на что это похоже, отметим, что то, на что мы ссылались как на скрученное измерение каната, – направление по/против часовой стрелки, – существует в каждой точке вдоль его протяженного измерения. Земной червяк может ползти вдоль циклического обода каната в любой точке вдоль его протяженной длины, так что поверхность каната может быть описана как имеющая одно длинное измерение с маленьким, циклическим измерением, прикрепленным к каждой точке, как на Рис. 12.6. Этот образ полезно иметь в уме, поскольку он также применим к предложению Кляйна для скрытого дополнительного пространственного измерения Калуцы.

Чтобы увидеть это, изучим еще раз ткань пространства путем последовательного показа его структуры на все меньших масштабах длины, как на Рис. 12.7. При первых нескольких уровнях увеличения ничего нового не обнаруживается: ткань пространства все еще выглядит трехмерной (что, как обычно, мы схематически представляем на печатной странице в виде двумерной сетки). Однако, когда мы опустимся до планковского масштаба, высшего уровня увеличения на рисунке, Кляйн внушает, что становится видимым новое скрученное измерение.

Рис 12.6 Поверхность натянутого каната имеет одно длинное измерение с циклическим измерением, присоединенным в каждой точке.

Рис 12.7 Предложение Калуцы-Кляйна заключается в том, что на очень малых масштабах пространство имеет дополнительное циклическое измерение, присоединенное к каждой привычной точке. Точно так же, как циклическое измерение каната существует в каждой точке вдоль его большого, протяженного измерения, циклическое измерение в этом предложении существует в каждой точке в привычных трех протяженных измерениях повседневной жизни.

На Рис. 12.7 мы проиллюстрировали это, дорисовав дополнительное циклическое измерение только в некоторых точках вдоль протяженных измерений (поскольку рисование кругов в каждой точке затемнит рисунок), и вы можете немедленно увидеть сходство с канатом на Рис. 12.6. В предложении Кляйна, следовательно, пространство должно представляться как имеющее три развернутых измерения (из которых мы показали на рисунке только два) с добавленным циклическим измерением, присоединенным к каждой точке. Отметим, что дополнительное измерение не есть выпуклость или петля внутри обычных трех пространственных измерений, как изобразительные ограничения рисунка могут заставить вас подумать. Вместо этого, дополнительное измерение есть новое измерение, полностью отличное от трех, нам известных, которое существует в каждой точке в нашем ординарном трехмерном пространстве, но столь мало, что ускользает от обнаружения даже самыми изощренными нашими инструментами.

С этой модификацией оригинальной идеи Калуцы Кляйн обеспечил ответ на то, как вселенная может иметь более, чем три пространственных измерения повседневного опыта, что дополнительное измерение остается скрытым; схема с тех пор стала известна как теория Калуцы-Кляйна. А поскольку дополнительное измерение пространства было все, что Калуце требовалось, чтобы соединить ОТО и электромагнетизм, теория Калуцы-Кляйна может показаться именно тем, что искал Эйнштейн. В самом деле, Эйнштейн и многие другие стали совершенно одержимы унификацией через новое, скрытое пространственное измерение и был предприняты решительные усилия, чтобы увидеть, будет ли этот подход работать в полных деталях. Но незадолго до этого теория Калуцы-Кляйна столкнулась со своими собственными проблемами. Вероятно, самая яркая из всех заключалась в том, что попытки включить электрон в картину с дополнительным измерением продемонстрировали свою неприменимость. Эйнштейн продолжил барахтаться в схеме Калуцы-Кляйна, по меньшей мере, до начала 1940х, но начальные перспективы подхода так и не материализовались, и интерес постепенно вымер.

Однако, через несколько десятилетий теория Калуцы-Кляйна совершила впечатляющее возвращение.

Теория струн и скрытые размерности

В добавление к трудностям, с которыми теория Калуцы-Кляйна столкнулась при попытке описать микромир, была и другая причина для ученых сомневаться в этом подходе. Многие находили как произвольным, так и экстравагантным постулировать скрытую пространственную размерность. Это не то, как если бы Калуца пришел к идее нового пространственного измерения на основании жесткой цепочки дедуктивных рассуждений. Вместо этого он высосал идею из пальца, а после анализа ее последствий открылись неожиданные связи между ОТО и электромагнетизмом. Таким образом, хотя это было само по себе великое открытие, оно страдало недостатком ощущения неизбежности. Если бы вы спросили Калуцу и Кляйна, почему вселенная имеет пять пространственно-временных измерений, а не четыре, или шесть, или семь, или 7 000, коли на то пошло, они не смогли бы дать ответ, более убедительный, чем "Почему нет?"

Более чем через три десятилетия ситуация изменилась радикально. Теория струн является первым подходом для соединения ОТО и квантовой механики; более того, она имеет потенциал к объединению нашего понимания всех сил и всей материи. Но квантовомеханические уравнения теории струн не работают в четырех пространственно-временных измерениях, ни в пяти, шести, семи или 7 000. Вместо этого по причинам, обсуждающимся ниже в секции "Физика струн и дополнительные измерения", уравнения теории струн работают только в десяти пространственно-временных измерениях – девяти пространственных плюс время. Теория струн требует больше измерений.

Это фундаментально новый вид результата, с которым никогда раньше не сталкивались в истории физики. До струн ни одна теория совсем ничего не говорила о числе пространственных измерений во вселенной. Каждая теория от Ньютона к Максвеллу и к Эйнштейну полагала, что вселенная имеет три пространственных измерения, почти как мы все полагаем, что Солнце взойдет завтра. Калуца и Кляйн предложили поставить это под вопрос, подбросив мысль, что имеется четыре пространственных измерения, но это означало только другое допущение – отличающееся допущение, однако все равно допущение. Теперь же впервые теория струн обеспечила уравнения, которые предсказали число пространственных измерений. Вычисление – не допущение, не гипотеза, не внушенная догадка – определило число пространственных измерений в соответствии с теорией струн, и удивительной вещью оказалось, что вычисленное число равно не трем, а девяти. Теория струн неотвратимо привела нас ко вселенной с шестью дополнительным пространственными измерениями и потому обеспечила убедительную, готовую среду для оплаты счетов по идеям Калуцы и Кляйна.

Оригинальное предложение Калуцы и Кляйна предполагает только одно скрытое измерение, но оно легко обобщается на два, три или даже шесть дополнительных измерений, требуемых теорией струн. Например, на Рис. 12.8а мы заменили дополнительное циклическое измерение одномерной формы из Рис. 12.7 на поверхность сферы, двумерную форму (повторим из обсуждения в Главе 8, что поверхность сферы является двумерной, поскольку вам нужны два блока информации – вроде широты и долготы на земной поверхности, – чтобы определить положение).

(а) (b)

Рис 12.8 Смыкание вселенной с тремя обычными измерениями, представленными сеткой, и (а) двух скрученных измерений в форме пустых сфер, и (b) трех скрученных измерений в форме твердых шаров.

Как и с кругом, вы должны представлять сферу прикрепленной к каждой точке обычных измерений, даже если на Рис. 12.8а, чтобы оставить рисунок ясным, мы нарисовали только те сферы, которые лежат на пересечениях линий сетки. Во вселенной такого сорта вам всего понадобится пять блоков информации, чтобы определить положение в пространстве: три блока, чтобы определить ваше положение в больших измерениях (улица, пересекающая улица, номер этажа) и два блока, чтобы определить ваше положение на сфере (широта, долгота), прикрепленной к этой точке. Безусловно, если радиус сферы мал – в миллиарды раз меньше, чем атом, – последние два блока информации почти не будут иметь значения для относительно больших объектов вроде нас самих. Тем не менее, дополнительная размерность является интегральной частью ультрамикроскопического строения пространственной ткани. Ультрамикроскопическому червяку понадобятся все пять блоков информации и, если мы включим время, ему потребуется шесть блоков информации, чтобы указать, где будет вечеринка и в какое время.

Продвинемся еще на одно измерение дальше. На Рис. 12.8а мы рассмотреди только поверхность сфер. Представьте теперь, что, как на Рис.12.8b, ткань пространства включает также и внутренность сфер, – наш маленький планковского размера червяк может закопаться в сферу, как обычный червяк делает с яблоком, и свободно двигаться через ее внутренности. Чтобы определить положение червяка, теперь требуется шесть блоков информации: три, чтобы определить его положение в обычных протяженных пространственных измерениях, и еще три, чтобы определить его положение в шаре, прикрепленном к данной точке (широта, долгота, глубина проникновения). Вместе со временем, следовательно, это есть пример вселенной с семью пространственно-временными измерениями.

Теперь перепрыгнем дальше. Хотя это невозможно нарисовать, представьте, что в каждой точке в трех протяженных измерениях повседневной жизни вселенная имеет не одно дополнительное измерение как на Рис. 12.7, не два дополнительных измерения, как на Рис.12.8а, не три дополнительных измерения, как на Рис.12.8b, но шесть дополнительных пространственных измерений. Я, конечно, не могу визуализировать это, и я никогда не встречал никого, кто бы смог. Но его смысл ясен. Чтобы определить пространственное положение червяка планковского размера в такой вселенной, требуется девять блоков информации: три, чтобы определить его положение в обычных протяженных измерениях, и еще шесть, чтобы определить его положение в скрученных измерениях, прикрепленных к этой точке. Когда время также принимается во внимание, это оказывается вселенной с десятимерным пространством-временем, как требуется уравнениями теории струн. Если дополнительные шесть измерений скручены в достаточно малые образования, они легко ускользнут от обнаружения.

Форма скрытых размерностей

Уравнения теории струн на самом деле определяют больше, чем просто число пространственных размерностей. Они также определяют виды форм, которые дополнительные размерности могут принимать. На предыдущих рисунках мы сосредоточились на простейших формах – круги, полые сферы, твердые шары, – но уравнения теории струн выбирают существенно более широкий класс шестимерных форм, известных как формы или многообразия или пространства Калаби-Яу. Эти пространства названы в честь двух математиков, Эугенио Калаби и Шинь-Тунь Яу, которые математически открыли их задолго до того, как стала очевидной их применимость к теории струн; грубая иллюстрация одного примера дана на Рис. 12.9а. Надо иметь в виду, что на этом рисунке двумерное изображение иллюстрирует шестимерный объект, и это приводит к большому числу существенных искажений. Даже при этих условиях рисунок дает грубое представление о том, на что похожи указанные формы. Если особая форма Калаби-Яу из Рис. 12.9а составляет дополнительные шесть измерений теории струн, пространство на ультрамикроскомическом масштабе будет иметь вид, иллюстрируемый на Рис.12.9b. Поскольку форма Калаби-Яу будет прилагаться к каждой точке в обычных трех измерениях, вы, и я и кто угодно другой прямо сейчас будет окружен и наполнен этими маленькими формами. Без преувеличения, если вы переходите из одного места в другое, ваше тело будет двигаться через все девять измерений, быстро и одно за другим проходя через целые формы, в среднем делая кажущимся, как будто вы не двигаетесь через дополнительные шесть измерений совсем.

(а) (b)

Рис 12.9 (а), Один из примеров форм или пространств Калаби-Яу, (b) Сильно увеличенный участок пространства с дополнительными измерениями в форме мельчайших пространств Калаби-Яу.

Если эти идеи верны, ультрамикроскопическая ткань космоса украшена богатейшей текстурой.

Физика струн и дополнительные измерения

Красота ОТО в том, что физика гравитации контролируется геометрией пространства. С дополнительными пространственными измерениями, предлагаемыми теорией струн, вы, очевидно, догадались, что мощь геометрии для определения физики должна значительно возрасти. И это происходит. Увидим это сначала, рассмотрев вопрос, который я до сих пор обходил стороной. Почему теория струн требует десяти пространственно-временных измерений? Это вопрос, на который трудно ответить нематематически, но я все-таки могу объяснить достаточно, чтобы проиллюстрировать, как он сводится к взаимодействию геометрии и физики.

Представьте струну, которая может колебаться только на двумерной поверхности плоского стола. Струна будет в состоянии осуществлять разнообразные способы колебаний, но только такие, которые включают движения в направлениях вправо/влево и вперед/назад на поверхности стола. Если теперь струне позволить колебаться в третьем направлении, двигаясь в направлении вверх/вниз, покидая поверхность стола, становятся достижимыми дополнительные способы колебаний. Теперь, хотя это тяжело нарисовать более чем в трех измерениях, это заключение – большее количество измерений означает большее количество способов (мод) колебаний – является общим. Если струна может колебаться в четвертом пространственном измерении, она может выполнить больше видов колебаний, чем она могла только в трех измерениях; если струна может колебаться в пятом пространственном измерении, она может проявить больше способов колебаний, чем это было только в четырех измерениях; и так далее. Это важный вывод, поскольку в теории струн имеется уравнение, которое требует, чтобы число независимых способов колебаний удовлетворяло очень точному ограничению. Если ограничение нарушается, математика теории струн разваливается и ее уравнения становятся бессмысленными. Во вселенной с тремя пространственными измерениями число способов колебаний слишком мало и ограничение не выполняется; с четырьмя пространственными измерениями число способов колебаний все еще слишком мало; для пяти, шести, семи или восьми измерение оно все еще слишком мало; но для девяти пространственных измерений ограничение на число способов колебаний выполняется в точности. Именно так теория струн определяет число пространственных измерений.*

(*)"Позвольте мне подготовить вас к одному существенному результату, с которым мы столкнемся в следующей главе. Струнные теоретики десятки лет знали, что уравнения, которые они обычно используют для математического анализа теории струн являются приблизительными (точные уравнения оказывается на практике тяжело идентифицировать и понять). Однако, большинство думает, что приблизительные уравнения были достаточно точны для определения требуемого числа дополнительных измерений. Совсем недавно (и к шоку большинства физиков, работающих в этой области) некоторые струнные теоретики показали, что приближенные уравнения теряют одно измерение; сейчас признано, что теория требует семь дополнительных измерений. Как мы увидим, это не компроментирует материал, обсужденный в этой главе, но показывает, что он годится для более широкой, фактически более унифицированной схемы. [20] "

Хотя это хорошо иллюстрирует взаимодействие геометрии и физики, их объединение в рамках теории струн идет еще дальше и, фактически, обеспечивает способ обращения с критической проблемой, с которой мы сталкивались ранее. Повторим, что в попытках установить детальную связь между модами колебаний струны и известными семействами частиц физики потерпели крах. Они нашли, что имеется слишком много безмассовых способов колебаний струны и, более того, детальные свойства способов колебаний не соотносятся со свойствами известных частиц материи и сил. Но, о чем я не упоминал ранее, поскольку мы еще не обсуждали идею дополнительных измерений, хотя такие вычисления принимали в расчет число дополнительных измерений (отчасти объясняя, почему было найдено так много способов колебаний струн), они не принимали в расчет малого размера и сложной формы дополнительных измерений, – они предполагали, что все пространственные измерения плоские и полностью развернутые, – а это приводит к существенным отличиям.

Струны столь малы, что даже когда дополнительные шесть измерений свернуты в пространство Калаби-Яу, струны все еще колеблются в этих направлениях. По двум причинам это экстремально важно. Первое, это обеспечивает, что струны всегда колеблются во всех девяти пространственных измерениях, и потому ограничение на число способов колебаний продолжает выполняться, даже когда дополнительные измерения тесно скручены. Второе, точно так же, как способы колебаний потока воздуха, продуваемого через трубу, подвергаются воздействию искривлений и поворотов музыкального инструмента, способы колебаний струн подвергаются воздействию искривлений и поворотов в геометрии дополнительных шести измерений. Если вы изменили форму трубы, сделав путь прохождения воздуха более узким или сделав раструб длиннее, способы колебаний воздуха, а следовательно, звук инструмента изменится. Аналогично, если форма и размер дополнительных измерений модифицировались, это также существенно повлияет на точные свойства каждого возможного способа колебаний струны. А поскольку способ колебаний струн определяет ее массу и заряд, это значит, что дополнительные измерения играют стержневую роль в определении свойств частиц.

Это ключевое заключение. Точный размер и форма дополнительных измерений оказывают чрезвычайное воздействие на способы (моды) колебаний струн, а значит на свойства частиц. Поскольку базовая структура вселенной – от формирования галактик и звезд до существования жизни, как мы ее знаем, – чувствительно зависит от свойств частиц, код космоса может быть хорошо записан в геометрии пространства Калаби-Яу.

Мы видели один пример пространства Калаби-Яу на Рис. 12.9, но имеются, по меньшей мере, сотни тысяч других возможностей. Тогда вопрос заключается в том, какую форму Калаби-Яу, если это имеет место, образует часть пространственно-временной ткани, связанная с дополнительными измерениями. Это один из наиболее важных вопросов, стоящих перед теорией струн, поскольку только с определенным выбором формы Калаби-Яу детально определяются свойства колебательных мод струны. На сегодняшний день вопрос остается без ответа. Причина в том, что текущее понимание уравнений теории струн не обеспечивает проникновение в задачу, как выбрать одну форму из многих; с точки зрения известных уравнений каждое пространство Калаби-Яу так же пригодно, как и любое другое. Уравнения даже не определяют размера дополнительных измерений. Поскольку мы не видим дополнительных измерений, они должны быть малы, но вопрос о том, насколько точно малы, остается открытым.

Это фатальный порок теории? Возможно. Но я так не думаю. Как мы будем обсуждать более полно в следующей главе, точные уравнения теории струн ускользали от теоретиков в течение многих лет, так что многие труды использовали приблизительные уравнения. Это позволило взглянуть на огромное число свойств теории струн, но в определенных вопросах, – включая точный размер и форму дополнительных измерений, – приблизительные уравнения терпят нудачу. Поскольку мы продолжаем обострять наш математический анализ и усовершенствовать эти приблизительные уравнения, определение формы дополнительных измерений является первой – и, на мой взгляд, достижимой – целью. До сих пор эта цель остается за пределами достигнутого.

Тем не менее, мы все еще можем спросить, будет ли какой-нибудь выбор формы Калаби-Яу давать моды колебаний струны, которые полностью аппроксимируют известные частицы. И здесь ответ вполне радующий.

Хотя мы далеки от полного исследования каждой возможности, были найдены примеры форм Калаби-Яу, которые приводят к способам колебаний струн в грубом согласии с Таблицами 12.1 и 12.2. Например, в середине 1980х Филип Канделас, Гарри Горовиц, Эндрю Строминджер и Эдвард Виттен (ко физиков, которые осознали применимость пространств Калаби-Яу к теории струн) открыли, что каждая дырка, – термин, используемый в точно определенном математическом смысле, – содержащаяся в пространстве Калаби-Яу, приводит к семейству низкоэнергетических колебательных мод струны. Пространство Калаби-Яу с тремя дырками, следовательно, будет обеспечивать объяснение для повторяющейся структуры семейств элементарных частиц в Таблице 12.1. На самом деле, число таких "трехдырочных" пространств Калаби-Яу было найдено. Более того, среди этих приоритетных пространств Калаби-Яу есть такие, которые также дают точно правильное число частиц-переносчиков, а так же точно правильные электрические заряды и свойства ядерных сил большинства частиц в Таблицах 12.1 и 12.2.

Это чрезвычайно воодушевляющий результат; он никоим образом не подразумевался. В соединении ОТО и квантовой механики могущество теории струн достигло одной цели только чтобы найти, что к ней никак невозможно подойти отдельно от не менее важной цели объяснения свойств известных частиц материи и сил. Исследователи не сдаются, добиваясь блестящих результатов в теории, возможности которой казались неутешительными. Идти дальше и рассчитать точные массы частиц является значительно более манящим. Как мы обсуждали, частицы в Таблицах 12.1 и 12.2 имеют массы, которые отличаются от колебаний струны низшей энергии – нуля планковских масс – менее чем на одну часть на миллион миллиардов. Расчеты таких бесконечно малых отклонений требуют уровня точности, лежащего за пределами того, что мы можем предъявить с нашим сегодняшним пониманием уравнений теории струн.

В действительности, я подозреваю, как делают многие другие струнные теоретики, что малые массы в Таблицах 12.1 и 12.2 возникают в теории струн почти так же, как и в стандартной модели. Повторим из Главы 9, что в стандартной модели Хиггсово поле имеет ненулевую величину во всем пространстве и масса частицы зависит от того, насколько большую тормозящую силу она испытывает, когда она пробирается сквозь океан Хиггса. Аналогичный сценарий, вероятно, разворачивается и в струнной теории. Если гигантское собрание струн колеблется точно правильно скоординированным способом во всем пространстве, они могут обеспечивать однородный фон , который во всех смыслах и итогах будет неотличим от Хиггсова океана. Колебания струн, которые сначала давали нулевую массу, будут тогда обзаводиться малой ненулевой массой через тормозящую силу, которую они испытывают, когда они двигаются и колеблются сквозь струнную версию Хиггсова океана. Отметим, однако, что в стандартной модели тормозящая сила, испытываемая данной частицей, – а потому снабжающая ее массой, – определяется экспериментальными измерениями и является внешним параметром теории. В версии теории струн тормозящая сила – а потому массы способов колебаний – будет происходить из взаимодействий между струнами (поскольку Хиггсов океан будет сделан струнами) и должна быть вычислима. Теория струн, по крайней мере, в принципе, позволяет определить все свойства частиц из самой теории.

Никто этого не завершил, но, как подчеркивалось, теория струн все еще требует очень много работы. Со временем исследователи надеются полностью реализовать громадный потенциал этого подхода к объединению. Мотивация велика, поскольку велика потенциальная награда. При тяжелой работе и существенной удаче теория струн может однажды объяснить фундаментальные свойства частиц и затем объяснить, почему вселенная такова, какова она есть.

Ткань космоса в соответствии с теорией струн

Даже если многое в теории струн все еще лежит вне границ нашего понимания, она уже проявила впечатляющие новые перспективы. Самое поразительное, в преодолении разлома между ОТО и квантовой механикой теория струн обнаружила, что ткань космоса может иметь намного больше измерений, чем мы непосредственно ощущаем, – измерений, которые могут быть ключом к разрешению некоторых самых глубоких тайн вселенной. Более того, теория подразумевает, что привычные понятия пространства и времени, как мы их до сих пор понимали, могут быть не более чем приближениями к более фундаментальным концепциям, которые все еще дожидаются нашего открытия.

В начальные моменты вселенной эти свойства пространственно-временной ткани, которые сегодня доступны только математически, должны были проявляться. Очень рано, когда три привычных пространственных измерения также были малы, вероятно, различие между тем, что мы теперь называем большими измерениями и скрученными измерениями теории струн, было мало или совсем отсутствовало. Их текущее различие в размерах будет следствием космологической эволюции, которая способом, который мы еще не понимаем, могла бы выделить три пространственных измерения как специальные и представить только их для 14 миллиардов лет расширения, обсуждавшегося в предыдущих главах. Заглянув назад во времени еще дальше, увидим, что вся наблюдаемая вселенная будет сокращена к субпланковской области, так что то, что мы характеризовали как размытое пятно (на Рис. 10.6), теперь мы можем идентифицировать как область, где привычное пространство и время еще появляются из более фундаментальных сущностей, – какие бы они ни были, – что текущие исследования и стараются постичь.

Дальнейший прогресс в понимании изначальной вселенной, а потому в определении истоков пространства, времени и стрелы времени, требует существенного усовершенствования теоретического инструментария, который мы используем для понимания теории струн, – цель, которая не слишком давно казалась еще очень удаленной. Как мы теперь увидим, с разработкой М-теории прогресс превзошел многие даже самые оптимистические предсказания.

 

13 Вселенная на бране

РАЗМЫШЛЕНИЯ О ПРОСТРАНСТВЕ И ВРЕМЕНИ В М-ТЕОРИИ

Теория струн имеет одну из самых извилистых историй среди всех научных прорывов. Даже сегодня, более чем через три десятилетия после ее первоначального озвучивания большинство струнных профессионалов верит, что мы все еще не имеем полного ответа на элементарный вопрос: Что есть теория струн? Мы знаем много о струнной теории. Мы знаем ее основные особенности, мы знаем ее ключевые достижения, мы знаем перспективы, которые она содержит, и мы знаем сложности, стоящие перед ней; мы также можем использовать уравнения теории струн, чтобы проделать детальные вычисления того, как струны должны вести себя и взаимодействовать в широком диапазоне условий. Но большинство исследователей чувствует, что наша сегодняшняя формулировка теории струн все еще нуждается в некой разновидности центральных принципов, которые мы нашли в основании других главных достижений. СТО имеет постоянство скорости света. ОТО имеет принцип эквивалентности. Квантовая механика имеет принцип неопределенности. Струнные теоретики продолжают нащупывать аналогичный принцип, который мог бы ухватить суть теории в целом.

По большей части этот дефицит существует, поскольку теория струн разрабатывается по кускам вместо того, чтобы появляться из основного всеобъемлющего видения. Цель теории струн – унификация всех сил и всей материи в квантовомеханических рамках – величественнее не бывает, но эволюция теории была, очевидно, фрагментирована. После ее открытия, связанного со счастливым случаем более чем три десятилетия назад, теория струн была на скорую руку собрана воедино, когда одна группа теоретиков открывала ключевые свойства из изучения уравнений теории, в то время как другая группа обнаруживала критические следствия из исследования этих уравнений.

Струнные теоретики могли быть уподоблены примитивным дикарям, раскапывающим скрытый под почвой космический корабль, о который они споткнулись. Через починку на скорую руку и верчение деталей в руках дикарь может отчасти установить аспекты действия космического корабля, и это будет вызывать чувство, что все клавиши и переключатели работают вместе скоординированным и унифицированным образом. Аналогичные чувства преобладают среди струнных теоретиков. Результаты, найденные на протяжении многих лет исследований, подгонялись и сходились. Это насаждало среди исследователей растущую уверенность, что струнная теория замыкается в одну мощную, согласованную схему, – которую еще предстоит раскопать полностью, но которая, в конечном счете, проявит внутренню работу природы с непревзойденной ясностью и полнотой.

С недавних пор ничто не проиллюстрирует это лучше, чем открытие, вызвавшее вторую суперструнную революцию – революцию, которая, помимо других вещей, выявляет другое скрытое измерение, вплетенное в пространственную ткань, открывает новые возможности для экспериментальных проверок теории струн, утверждает, что наша вселенная может быть отделена от других, обнаруживает, что черные дыры могут быть созданы следующим поколением высокоэнергетических ускорителей, и приводит к новой космологической теории, в которой время и его стрела могут крутиться снова и снова подобно элегантной дуге колец Сатурна.

Вторая суперструнная революция

Имеется неудобная деталь относительно теории струн, которую мне пора раскрыть, но которую читатели моей предыдущей книги, Элегантной вселенной, могут вспомнить. В течение последних трех десятилетий были разработаны не одна, а целых пять отдельных версий теории струн. Поскольку их названия несущественны, назовем их теориями типа I, типа IIА, типа IIВ, О-гетеротической и Е-гетеротической. Все они разделяют существенные особенности, введенные в последней главе, – все основные составляющие переплетены с энергией колебаний струн – и, как показали расчеты в 1970е и 1980е годы, каждая теория требует шести дополнительных измерений; но, когда они анализируются детально, появляются существенные отличия. Например, теория типа I включает колеблющиеся струнные петли, обсуждавшиеся в последней главе, так называемые замкнутые струны, но, в отличие от других теорий струн, она также содержит открытые струны, колеблющиеся обрывки струн, которые имеют два свободных конца. Более того, расчеты показывают, что список мод колебаний струн и способ, которым каждая колебательная мода взаимодействует и влияет на другие, отличаются от одной формулировки к другой.

Самые оптимистичные из струнных теоретиков воображали, что эти отличия должны будут служить для удаления четырех из пяти версий, когда однажды детальное сравнение с экспериментальными данными будет проведено. Но, откровенно говоря, простое существование пяти теорий струн было источником внутреннего дискомфорта. Мечта об унификации является одной из тех, которые приводят ученых к единой теории вселенной. Если исследование установит, что только одна теоретическая система может охватить как квантовую механику, так и ОТО, теоретики достигнут унификационной нирваны. Они будут иметь полную уверенность в применимости данной системы даже в отсутствие прямого экспериментального подтверждения. Как-никак изобилие экспериментальной поддержки как квантовой механики, так и ОТО уже существует, и кажется ясным как день, что законы, управляющие вселенной, должны быть взаимно совместимыми. Если отдельная теория является уникальной, математически непротиворечивой аркой, стягивающей два экспериментально подтвержденных столпа физики двадцатого столетия, это будет обеспечивать убедительное, хотя и не прямое подтверждение неизбежности этой теории.

Но тот факт, что имеются пять версий теории струн, внешне сходных, хотя отличающихся в деталях, должно, по-видимому, означать, что теория струн провалила тест на уникальность. Даже если оптимисты однажды оправдаются и только одна из пяти струнных теорий будет подтверждена экспериментально, мы все еще будем раздосадованы ноющим вопросом, почему имеются другие четыре непротиворечивые формулировки. Должны ли четыре другие теории быть просто математическими курьезами? Будут ли они иметь какое-либо значение для физического мира? Может быть, их существование является вершиной теоретического айсберга, на котором хитрые ученые смогут впоследствии показать, что на самом деле имеется пять других версий, или шесть, или семь, или вообще бесконечное количество отдельных математических вариаций на тему струн?

В течение поздних 1980х и начала 1990х для многих физиков, горячо добивавшихся понимания той или иной теории струн, загадка пяти версий не была повседневной проблемой. Напротив, это был один из тех спокойных вопросов, к которому каждый предполагал обратиться в удаленном будущем, когда понимание каждой индивидуальной теории струн станет существенно более утонченным.

Но весной 1995 почти без предупреждения эти скромные надежды были значительно превышены. На основе работ многих струнных теоретиков (включая Криса Халла, Пола Таунсенда, Эшока Сена, Майкла Даффа, Джона Шварца и мноих других) Эдвард Виттен, – который в течение двух десятилетий был самым известным струнным теоретиком мира, – открыл скрытое единство, которое связывало все пять теорий струн вместе. Виттен показал, что вместо того, чтобы быть обособленными, пять теорий на самом деле являются просто пятью различными способами математического анализа одной теории. Почти как переводы книги на пять различных языков могут показаться для моноязычного читателя пятью отдельными текстами, пять струнных формулировок оказывались различными только потому, что Виттен еще не написал словаря для перевода между ними. Но, раз обнаружившись, словарь обеспечил убедительную демонстрацию, что – подобно одному главному тексту, из которого были сделаны пять переводов, – единая главная теория объединяет все пять струнных формулировок. Унифицирующая главная теория была пробно названа М-теория, М является дразнящим обозначением, значение которого – Главная (Master)? Величественная (Majestic)? Материнская? Магическая? Мистическая? Исходная (Matrix)? – ожидает результата энергичного общемирового исследовательского усилия, которое сейчас предпринимается, чтобы завершить новое видение, высвеченное мощным прозрением Виттена.

Это революционное открытие было радующим скачком вперед. Теория струн, как продемонстрировал Виттен в одной из самых удачных статей на эту тему (и в важной последующей работе с Петром Хоравой), является единой теорией. Струнным теоретикам больше не надо было при квалификации их кандидата на единую теорию Эйнштейна подыскивать слова, чтобы добавить с легким оттенком смущения, что предлагаемая унифицирующая схема не имеет единственности, поскольку она выступает в пяти различных версиях. Напротив, как оказалось, самые далеко идущие предложения для объединенной теории сами являются субъектом унификации более высокого уровня. Через работу Виттена единственность, воплощенная каждой индивидуальной теорией струн, была распространена на всю струнную схему.

Рис. 13.1 в общих чертах описывает статус пяти струнных теорий перед и после открытия Виттена и представляет хороший обобщенный образ, чтобы держать его в памяти. Он иллюстрирует, что М-теория сама по себе не является новым приближением, но что, разгоняя облака, она обещает более уточненную и полную формулировку физических законов, чем любая из индивидуальных теорий струн в состоянии обеспечить. М-теория связывает вместе и включает в себя в равной степени все пять теорий струн, показывая, что каждая из них является частью более великого теоретического обобщения.

Сила перевода

Хотя Рис. 13.1 схематически передает существенное содержание открытия Виттена, оно, выраженное таким образом, может поразить вас не более, чем бейсбольная расстановка. До прорыва Виттена исследователи думали, что имеются пять отдельных версий теории струн; после его прорыва они так не думают. Но если вы никогда не знали, что имелось пять предположительно различных теорий струн, почему вы должны интересоваться, что самый хитроумный из всех струнных теоретиков показал, что они в конце концов не различаются? Иными словами, почему открытие Виттена революционно в противоположность более скромному достижению, корректирующему предыдущие ошибочные концепции?

(а) (b)

Рис 13.1 (а) Схематическое изображение пяти струнных теорий перед 1995 годом, (b) Схематическое изображение мета-унификации, показанной М-теорией.

Вот почему. В течение последних нескольких десятилетий струнным теоретикам то и дело препятствовали математические проблемы. Поскольку точные уравнения, описывающие любую одну из пяти струнных теорий оказывались столь сложными для их выделения и анализа, теоретики больше основывались в своих исследованиях на приближенных уравнениях, с которыми намного легче работать. Хотя имеются хорошие основания быть уверенным, что приближенные уравнения должны во многих обстоятельствах давать ответы, близкие к ответам, которые были бы даны точными уравнениями, приближения – вроде переводов с языка на язык – всегда что-то упускают. По этой причине определенные ключевые проблемы оказались вне пределов математической досягаемости приближенных уравнений, существенно мешая прогрессу.

При неточностях, неотъемлемых от текстуальных переводов, читатели имеют пару немедленных средств исправления. Лучший способ, если лингвистические уровни читателей превышают требуемый, проконсультироваться с оригинальным манускриптом. В данный момент аналог этого способа неприменим для струнных теоретиков. Благодаря логичности словаря, разработанного Виттеном и другими, мы имеем сильное подтверждение, что все пять струнных теорий являются различными описаниями одной главной теории, М-теории, но исследователям еще предстоит разработать полное понимание этой теоретической связи. Мы узнали многое об М-теории в последние несколько лет, но нам все еще далеко идти, прежде чем кто-нибудь сможет обоснованно заявить, что имеется совершенное или полное понимание. В теории струн это подобно тому, как если бы мы имели пять переводов с главного текста, который-еще-предстоит-открыть.

Другое средство, способное помочь, хорошо известное читателям переводов, которые или не имеют оригинала (как в теории струн) или, в более общем случае, не понимают языка, на котором он написан, заключается в обращении к нескольким переводам главного текста на языки, с которыми они знакомы. Отрывки, для которых переводы согласуются, дают уверенность; отрывки, для которых они отличаются, свидетельствуют о возможных неточностях или высвечивают различные интерпретации. Именно этот подход Виттен сделал применимым своим открытием, что пять теорий струн являются различными переводами одной и той же лежащей в основании теории. Фактически, его открытие обеспечило экстремально мощную версию этой линии атаки, которая может быть лучше понята через хрупкую аналогию с переводами.

Представим себе главный манускрипт, начиненный таким гигантским диапазоном каламбуров, рифм и поразительных, чувствительных к культуре шуток, что полный текст не может быть изящно выражен ни на одном из пяти данных языков, на которые он переведен. Некоторые отрывки могут быть переведены на суахили с легкостью, тогда как другие части могут оказаться совершенно непостижимыми на этом языке. Большее проникновение в некоторые из этих последних частей может появиться из перевода на эскимосский язык; в некоторых других разделах этот перевод может быть полностью темным для понимания. Санскрит может ухватить сущность некоторых из этих мудреных отрывков, но для других, особенно трудных разделов все пять переводов могут оставить вас ошеломленными, и только главный текст будет вразумительным. Это более близко к ситуации с пятью теориями струн. Теоретики нашли, что для определенных вопросов одна из пяти теорий может дать прозрачное описание физических следствий, тогда как описания, данные остальными четырьмя, будут слишком сложны математически, чтобы быть пригодными. И в этом заключается сила открытия Виттена. Перед его прорывом исследователи струнной теории, которые сталкивались с неподатливо сложными уравнениями, вязли. Но труд Виттена показал, что каждое такое уравнение допускает еще четыре математических перевода – четыре математических формулировки – и иногда на один из переформулированных вопросов оказывается намного проще дать ответ. Итак, словарь переводов между пятью теориями может иногда обеспечить возможность перевода невозможно сложных уравнений в относительно простые.

Это не "защита от дурака". Точно так же, как все пять переводов определенного отрывка в главный текст могут быть одинаково неполными, иногда математические описания, даваемые всеми пятью теориями струн, являются одинаково непонятными. В таких случаях, точно так же, как нам бывает нужно проконсультироваться с самим оригинальным текстом, нам, чтобы продвинуться, может понадобиться полное осмысление неуловимой М-теории. Даже при этих условиях в большом количестве обстоятельств открытие Виттена обеспечивает мощный новый инструментарий для анализа теории струн.

Поэтому, точно так же, как каждый перевод сложного текста служит важной конечной цели, каждая струнная формулировка делает то же. Объединяя взгляды, возникающие с точки зрения каждой, мы оказываемся в состоянии ответить на вопросы и обнаружить свойства, которые находятся полностью за пределами достижимого для каждой отдельной струнной формулировки. Открытие Виттена, таким образом, дало теоретикам в пять раз большую огневую мощь для продвижения линии фронта теории струн. Поэтому, в значительной части, оно пробудило революцию.

Одиннадцать измерений

Итак, с нашей вновь обретенной силой для анализа теории струн, какие достижения появились? Их было много. Я сосредоточусь на тех, которые имеют самое большое влияние на историю пространства и времени.

В качестве первостепенной важности, работа Виттена обнаружила, что приблизительные уравнения теории струн, использовавшиеся в 1970е и 1980е годы для заключения, что вселенная должна иметь девять пространственных измерений, ошиблись в правильном их числе. Анализ показал, что точный ответ заключается в том, что в соответствии с М-теорией вселенная имеет десять пространственных измерений, что означает одиннадцать пространственно-временных измерений. Почти как Калуца нашел, что вселенная с пятью пространственно-временными измерениями обеспечивает схему для унификации электромагнетизма и гравитации, и почти как струнные теоретики нашли, что вселенная с десятью пространственно-временными измерениями обеспечивает схему для унификации квантовой механики и ОТО, Виттен нашел, что вселенная с одиннадцатью пространственно-временными измерениями обеспечивает схему для унификации всех струнных теорий. Подобно пяти деревням, которые выглядят при взгляде с уровня земли полностью разделенными, но, когда мы смотрим с вершины горы, – задействовав дополнительное вертикальное измерение, – они выглядят связанными сетью путей и дорог; дополнительное пространственное измерение, появляющееся из анализа Виттена, было решающим для нахождения им связей между всеми пятью теориями струн.

Хотя открытие Виттена, несомненно, является историческим примером достижения объединения через большее количество измерений, когда он анонсировал результат на ежегодной международной конференции по струнной теории в 1995, он потряс основы всего научного направления. Исследователи, включая меня, долго и тяжело думали о применимости приближенных уравнений, и каждый был уверен, что анализ сказал последнее слово относительно числа измерений. Но Виттен обнаружил нечто потрясающее.

Он показал, что все предыдущие попытки анализа делали математическое упрощение, эквивалентное предположению, что до того времени нераспознанное десятое пространственное измерение будет экстремально мало, намного меньше, чем все остальные. Настолько мало, что, фактически, приближенные уравнения теории струн, которые использовали все исследователи, теряют разрешающую силу для обнаружения даже математических намеков на существование этого измерения. Что и привело каждого к заключению, что теория струн имеет только девять пространственных измерений. Но с новым открытием унифицирующей схемы М-теории Виттен оказался в состоянии выйти за пределы приближенных уравнений, исследовать проблему более точно и продемонстрировать, что одно пространственное измерение всегда не замечалось. Таким образом, Виттен показал, что пять десятимерных схем, которые разрабатывались струнными теоретиками более чем десять лет, на самом деле были пятью приблизительными описаниями единственной лежащей в основе одиннадцатимерной теории.

Вы можете поинтересоваться, не сводит ли на нет это неожиданное осознание предыдущие работы в струнной теории. В общем и целом нет. Вновь найденное десятое пространственное измерение добавляет непредвиденные особенности в теорию, но если теория струн/М-теория верна и десятое пространственное измерение оказывается много меньшим, чем все остальные, – как в течение долгого времени неосознанно предполагалось, – предыдущие работы останутся правомерными. Однако, поскольку известные уравнения все еще не в состоянии точно выразить размеры или формы дополнительных измерений, струнные теоретики потратили много усилий, исследуя в течение последних нескольких лет новые возможности не-столь-уж-малого десятого пространственного измерения. Среди других вещей широкомасштабные результаты этих исследований ставят схематическую иллюстрацию унифицирующей силы М-теории, Рис. 13.1, на твердое математическое основание.

Я подозреваю, что дополнение с десяти до одиннадцати измерений – безотносительно к его огромной важности в математической структуре теории струн/М-теории – существенно не изменит картины теории, сложившейся перед вашим умственным взором. Для всех, включая знатоков, попытка представить семь скрученных измерений является упражнением, которое в значительной степени такое же, как попытаться представить шесть.

Второе и тесно связанное открытие из второй суперструнной революции изменяет базовую интуитивную картину струнной теории. Коллективное прозрение большого числа исследователей – Виттена, Даффа, Халла, Таунсенда и многих других – установило, что струнная теория является не только теорией струн.

Браны

Естественный вопрос, который мог появиться у вас в последней главе, таков: Почему струны? Почему одномерные составляющие столь особые? В примирении квантовой механики и ОТО мы нашли, что решающим является то, что струны не есть точки, что они имеют ненулевой размер. Но это требование может быть удовлетворено и двумерными составляющими в форме, подобной миниатюрным дискам или летающим тарелкам, или трехмерными каплеобразными составляющими в форме, подобной бейсбольному мячу или куску глины. Или, поскольку теория имеет такое изобилие пространственных измерений, мы можем даже представить капли с еще большим количеством размерностей. Почему эти составляющие не играют никакой роли в наших фундаментальных теориях?

В 1980х и ранних 1990х большинство струнных теоретиков имели то, что казалось убедительным ответом. Они утверждали, что имелись попытки сформулировать фундаментальную теорию материи, основанную на каплеобразных составляющих, причем среди других этим занимались такие иконы физики двадцатого столетия, как Вернер Гейзенберг и Поль Дирак. Но их труд, точно так же, как многие последующие исследования, показал, что экстремально трудно разработать теорию, основываясь на мельчайших каплях, которые удовлетворяют наиболее базовым физическим требованиям, – например, обеспечению того, что все квантовомеханические вероятности лежат между 0 и 1 (не могут иметь смысла отрицательные вероятности или вероятности больше единицы), и запрету обмена информацией быстрее света. Для точечных частиц полвека исследований, начатых в 1920е, показали, что эти условия могут быть удовлетворены (пока гравитация игнорировалась). А к 1980м более чем десятилетнее исследование Шварца, Шерка, Грина и других установило, к удивлению большинства исследователей, что условия могут также удовлетворяться для одномерных составляющих, струн (с необходимо включенной гравитацией). Но казалось невозможным перейти к фундаментальным составляющим с двумя или более пространственными измерениями. Причина, коротко говоря, в том, что число симметрий, соблюдаемых уравнениями, достигает сильного максимума для одномерных объектов (струн) и круто падает дальше. Симметрии здесь более абстрактны, чем те, что обсуждались в Главе 8 (они связаны с тем, как уравнения изменяются, если мы во время изучения движения струны или составляющей более высокой размерности будем увеличивать или уменьшать масштаб, неожиданно и произвольно меняя разрешение наших наблюдений). Эти трансформации оказываются критическими для формулирования физически осмысленного набора уравнений, и вне струн кажется, что требуемое богатство симметрий отсутствует.

Таким образом, это был второй шок для большинства струнных теоретиков, когда статья Виттена и лавина последующих результатов привели к осознанию, что теория струн и схема М-теории, частью которой она сегодня является, содержат иные ингредиенты, кроме струн. Анализ показал, что имеются двумерные объекты, названные достаточно естественно мембранами (другое возможное значение буквы "М" в М-теории) или – в соответствии с систематическим наименованием их более высокоразмерных родственниц – 2-бранами. Имеются объекты с тремя пространственными измерениями, названные 3-бранами. И, хотя все более трудно визуализировать это, анализ показывает, что имеются также объекты с р пространственными измерениями, где р может быть целым числом, меньшим 10, известные – без ограничения обозначений – как р-браны. Таким образом струны являются только одним из ингредиентов в струнной теории, а не единственной составляющей.

Эти другие ингредиенты избегали ранее теоретического исследования почти по тем же причинам, как и десятое пространственное измерение: приближенные струнные уравнения оказывались слишком грубыми, чтобы обнаружить их. В теоретическом контексте, который струнные теоретики исследовали математически, оказалось, что все р-браны существенно тяжелее, чем струны. А чем более массивным что-либо является, тем больше энергии требуется, чтобы произвести его. Но ограничения приближенных струнных уравнений – ограничения, встроенные в уравнения и хорошо известные всем струнным теоретикам, – таковы, что они становятся менее и менее точными, когда описываемые сущности и процессы включают в себя все больше и больше энергии. При экстремальных энергиях, существенных для р-бран, приближенные уравнения теряют точность, чтобы выявить браны, скрывающиеся в тени, и именно поэтому десятилетия все проходили мимо их существования в математических понятиях. Но с различными переформулировками и новыми подходами, обеспечиваемыми унифицированной схемой М-теории, исследователи смогли обойти стороной некоторые из предыдущих технических преград, и тогда в полном математическом рассмотрении они нашли целое богатство высокоразмерных составляющих.

Открытие того, что в струнной теории имеются другие составляющие, помимо струн, не делает недействительным или ненужным более ранние труды, как и открытие десятого пространственного измерения. Исследование показало, что если высокоразмерные браны являются намного более массивными, чем струны, – как бессознательно предполагалось в предыдущих исследованиях, – они имеют минимальное влияние на широкий диапазон теоретических вычислений. Но точно так же, как десятое пространственное измерение может не быть много меньше всех остальных, высокоразмерные браны могут не быть намного более тяжелыми. Имеется большое число обстоятельств, еще гипотетических, в которых масса высокоразмерной браны может быть на одном уровне с самой низкой массой колебательной моды струны, и в этом случае брана будет оказывать существенное влияние на итоговую физику. Например, моя собственная работа с Эндрю Строминджером и Дэвидом Моррисоном показала, что брана может оборачиваться вокруг сферической части формы Калаби-Яу, весьма похоже на то, как пластик вакуумной упаковки оборачивается вокруг грейпфрута; если эта часть пространства должна сжиматься, обернутая брана также будет сжиматься, вызывая снижение ее массы. Это снижение массы, как мы смогли показать, позволяет части пространства полностью сколлапсировать и открыть дыру – само пространство может рваться на части – в то время как обернутая брана обеспечивает, что при этом не будет катастрофических физических последствий. Я обсуждал эту разработку детально в Элегантной Вселенной и коротко вернусь к ней, когда мы будем обсуждать путешествия во времени в Главе 15, так что я не хочу заниматься дальнейшими деталями здесь. Но этот фрагмент проясняет, как высокоразмерные браны могут оказывать существенное влияние на физику теории струн.

Для нашей текущей области сосредоточения, однако, имеется другой глубокий способ, которым браны влияют на вид вселенной в соответствии с теорией струн/М-теорией. Огромное протяжение космоса – полнота пространства-времени, о котором мы осведомлены, – само может быть ничем иным, как гигантской браной. Наш мир может быть миром на бране.

Миры на бране

Проверка теории струн является проблематичной, поскольку струны ультрамалы. Но вспомним физику, которая определяет размер струны. Частица-переносчик гравитации – гравитон – находится среди колебательных мод струны с низшей энергией, и величина гравитационной силы, ей соответствующая, пропорциональна длине струны. Поскольку гравитация настолько слабая сила, длина струны должна быть мельчайшей; расчеты показывают, что она должна быть в пределах ста длин Планка или около того, чтобы гравитонная мода колебаний струны соответствовала гравитационной силе наблюдаемой величины.

Давая это объяснение, мы видим, что струны с высокой энергией не ограничиваются требованием малости, поскольку больше нет прямой связи с гравитоном (гравитон является модой колебаний низшей энергии, нулевой массы). Фактически, чем больше и больше энергии закачивается в струну, на первых порах она будет колебаться более и более неистово. Но после определенной точки добавочная энергия будет иметь иной эффект: она будет заставлять длину струны увеличиваться, и нет предела, до какой длины она может вырасти. Закачав в струну достаточно энергии, вы могли бы даже вырастить ее до макроскопического размера. С сегодняшней технологией мы никак не можем приблизиться к достижению этого, но возможно, что в обжигающе горячем, экстремально энергичном состоянии после Большого взрыва длинные струны производились. Если некоторые умудрились уцелеть до наших дней, они могли бы очень хорошо растянуться и быть явно видимыми через небо. Хотя вероятность этого невелика, возможно даже, что такие длинные струны могли бы остаться мельчайшими, но оставить детектируемый отпечаток на данных, которые мы получаем из пространства, возможно позволив теории струн однажды подтвердиться путем астрономических наблюдений.

Высокоразмерные р-браны также не обязаны быть мельчайшими, а поскольку они имеют больше измерений, чем струны, открываются качественно новые возможности. Когда мы рисуем длинную – возможно, бесконечно длинную – струну, мы воображаем длинный одномерный объект, который существует внутри трех больших пространственных измерений нашей повседневной жизни. Силовая линия растягивается так далеко, как глаза могут увидеть, обеспечивая обоснованный образ. Аналогично, если мы рисуем большую – возможно, бесконечно большую – 2-брану, мы воображаем большую двумерную поверхность, которая существует внутри трех больших пространственных измерений повседневного опыта. Я не знаю реалистичной аналогии, но нелепо гигантский движущийся киноэкран, экстремально тонкий, но высокий и широкий настолько, насколько глаза могут увидеть, предлагает визуальный образ, чтобы понять это. Когда мы подходим к большой 3-бране, однако, мы обнаруживаем себя в качественно новой ситуации. 3-брана имеет три измерения, так что, если она велика – возможно, бесконечно велика, – она заполнит все три большие пространственные измерения. Тогда как 1-брана и 2-брана, подобные силовой линии и киноэкрану, являются объектами, которые существуют внутри трех больших пространственных измерений, большая 3-брана будет занимать все пространство, о котором мы осведомлены.

Это поднимает интригующую возможность. Может быть, мы прямо сейчас живем внутри 3-браны? Подобно Белоснежке, чей мир существует внутри двумерного киноэкрана – 2-браны, – который сам находится внутри высокоразмерной вселенной (три пространственных измерения кинотеатра), может быть все, что мы знаем, существует внутри трехмерного экрана – 3-браны, – который сам располагается внутри высокоразмерной вселенной теории струн/М-теории? Может ли быть, что то, что Ньютон, Лейбниц, Мах и Эйнштейн называли трехмерным пространством, на самом деле является особой трехмерной сущностью в теории струн/М-теории? Или, на более релятивистском языке, может ли быть, что четырехмерное пространство-время, разработанное Минковским и Эйнштейном, на самом деле является следом 3-браны, когда она эволюционирует через время? Короче говоря, может ли вселенная, которую мы знаем, быть браной?

Возможность, что мы живем внутри 3-браны – так называемый сценарий мира на бране – является самым последним поворотом в истории теории струн/М-теории. Как мы увидим, он обеспечивает качественно новый путь размышлений о теории струн/М-теории, с многочисленнымии далеко идущими разветвлениями. Существенной физикой является, что браны скорее подобны космическим застежками-липучками: в особых случаях, которые мы сейчас обсудим, они являются очень клейкими.

Клейкие браны и вибрирующие струны

Одной из мотиваций для введения термина "М-теория" является то, что мы теперь осознали, что "струнная теория" освещает только одну из многих составляющих теории. Теоретические исследования одномерных струн, обнаруженных за десятки лет до более точного анализа, открыли высокоразмерные браны, так что "теория струн" есть в некотором смысле исторический артефакт. Но даже если М-теория проявляет демократию, в которой представлены протяженные объекты различных размерностей, струны все еще играют центральную роль в нашей сегодняшней формулировке теории. С одной стороны, это совершенно ясно. Когда все высокоразмерные р-браны намного тяжелее струн, они могут быть игнорированы, как исследователи неосознанно делали с 1970х. Но имеется другая, более общая сторона, с которой струны являются первыми среди равных.

В 1995, вскоре после того, как Виттен анонсировал свой прорыв, Джо Полчински из Университета Калифорнии в Санта-Барбаре задумался. Годами раньше в статье, которую он написал с Робертом Лаем и Джин Дай, Полчински открыл интересную, хотя в некоторой степени неясную особенность теории струн. Мотивировка и обоснования Полчински были до некоторой степени техническими, и детали несущественны для нашего обсуждения, но его результат существенен. Он нашел, что в определенных ситуациях конечные точки открытых струн – вспомним, что это сегменты струн с двумя свободными концами, – не могут двигаться полностью свободно. Вместо этого, точно так же, как бусина на проволоке свободна двигаться, но должна следовать контуру проволоки, и точно так же, как пинбольный шарик свободен двигаться, но должен следовать контуру поверхности пинбольного стола, конечные точки открытой струны будут свободны в своем движении, но будут ограничены особыми формами или контурами в пространстве. В то время, как струна все еще будет свободна для колебаний, Полчински и его соратники показали, что ее конечные точки будут "прилипшими" или "пойманными" внутри определенных областей.

В некоторых ситуациях область может быть одномерной, в этом случае концы струны будут подобны двум бусинам, скользящим по проволоке, а сама струна будет подобна шнуру, соединяющему их. В других ситуациях область может быть двумерной, в этом случае концы струны будут очень похожи на два пинбольных шарика, связанных шнуром, катающихся вдоль пинбольного стола. Еще в других ситуациях область может иметь три, четыре или любое другое количество пространственных измерений, меньшее десяти. Эти результаты, как было показано Полчински, а также Петром Хофавой и Майклом Грином, помогли разрешить давно стоящую загадку в сравнении открытых и замкнутых струн, но в течение лет работа привлекала ограниченное внимание. В октябре 1995, когда Полчински завершил обдумывать эти более ранние достижения в свете новых открытий Виттена, все изменилось.

Вопрос, который статья Полчински оставила без полного ответа, мог возникнуть у вас во время чтения последнего параграфа. Если концы открытых струн приклеены внутри особых регионов пространства, что именно их там удерживает приклеенными? Проволоки и пинбольные столы имеют реальное существование, независимое от бусин или шариков, движение которых вдоль себя они ограничивают. А что можно сказать о регионах пространства, которыми ограничены концы открытых струн? Они заполнены некоторыми независимыми и фундаментальными ингредиентами струнной теории, такими, что бдительно зажимают концы открытых струн? Перед 1995, когда струнная теория мыслилась только как теория струн, не просматривалось ни одного кандидата на эту работу. Но после прорыва Виттена и инспирированного им стремительного потока результатов ответ стал для Полчински очевиден: если концы открытых струн ограничены в движении внутри некоторого р-мерного региона пространства, тогда этот регион пространства должен быть занят р-браной.*

(*) "Более точное наименование для этих клейких сущностей есть р-браны Дирихле или, для краткости, D-р-браны. Мы будем придерживаться более короткого названия р-брана".

Его расчеты показали, что вновь открытые р-браны имеют в точности правильные свойства, чтобы быть объектами, которые оказывают неразрушимый захват концов открытой струны, ограничивая их в движении внутри р-мерного региона пространства, который р-браны заполняют.

Чтобы лучше понять, что это означает, посмотрите на Рис. 13.2. На (а) мы видим пару 2-бран с множеством открытых струн, движущихся вокруг и вибрирующих, все концы которых ограничены в движении вдоль их соответствующей браны. Хотя это все более тяжело нарисовать, ситуация с более высокоразмерными бранами идентична. Концы открытых струн могут двигаться свободно по и внутри р-браны, но они не могут покинуть саму брану. Когда мы подходим к возможности движения вне браны, браны являются самыми липкими вещами, какие можно вообразить. Возможно также для одного конца открытой струны быть прилепленным к одной р-бране, а для ее другого конца быть приклеенным к другой р-бране, которая может иметь ту же размерность, что и первая (Рис. 13.2b), или не иметь (Рис. 13.2c).

Вместе с открытием связи между различными теориями струн Виттеном статья Полчински обеспечила дополнительный манифест для второй суперструнной революции. В то время, как некоторые из величайших умов теоретической физики двадцатого века пытались сформулировать теорию, содержащую фундаментальные ингредиенты с большим количеством измерений, чем точки (нуль измерений) или струны (одно измерение), и потерпели в этом неудачу, результаты Виттена и Полчински вместе с важными достижениями многих ведущих сегодняшних исследователей, открыли путь к прогрессу. Эти физики не только установили, что теория струн/М-теория содержит высокоразмерные ингредиенты, но результат Полчински, в особенности, обеспечил методику для теоретического анализа их детальных физических свойств (если они окажутся существующими). Свойства браны, обосновывал Полчински, в широких пределах фиксируются свойствами вибрирующих открытых струн, чьи концы она содержит. Точно так же, как вы можете многое узнать о ковре, проводя рукой по его поверхности – обрывкам волокон, чьи концы прикреплены к обратной стороне ковра, – многие качества браны могут быть определены через изучение струн, чьи концы она захватывает.

(а) (b) (c)

Рис 13.2 (а) Открытые струны с концами, прикрепленными к двумерной бране или 2-бране, (b) Струны, протянутые от одной 2-браны к другой, (с) Струны, протянутые от 2-браны к 1-бране.

Это был первостепенный результат. Он показал, что десятилетия исследований, которые произвели острые математические методы для исследования одномерных объектов – струн, – могут быть использованы для изучения высокоразмерных объектов, р-бран. Удивительно при этом, что Полчински обнаружил, что анализ многомерных объектов был сведен в высокой степени к совершенно привычному, хотя все еще гипотетическому анализу струн. В этом смысле струны и являются особыми среди равных. Если вы поняли поведение струн, вы далеко продвинулись в направлении понимания поведения р-бран.

С этими результатами теперь вернемся к сценарию мира на бране – возможности, что мы все проживаем наши жизни внутри 3-браны.

Наша вселенная как брана

Если мы живем внутри 3-браны, – если наше четырехмерное пространство-время является ничем иным, как историческим развитием 3-браны через время, – тогда на древний вопрос о том, является ли пространство-время чем-то, будет брошен новый сверкающий свет. Привычное четырехмерное пространство-время будет появляться из реальной физической сущности в теории струн/М-теории, 3-браны, а не из некоторой смутной или абстрактной идеи. В этом подходе реальность нашего четырехмерного пространства-времени будет на одном уровне с реальностью электрона или кварка. (Конечно, вы можете все еще спросить, является ли само большее пространство-время, внутри которого существуют струны и браны – одиннадцать измерений теории струн/М-теории – сущностью; однако реальность пространственно-временной арены, которую мы непосредственно ощущаем, будет, очевидно, выполнена). Но если вселенная, которую мы знаем как реальную, является 3-браной, не будет ли даже взгляд мельком показывать, что мы погружены в нечто – во внутреннюю часть 3-браны?

Ну, мы уже изучали вещи, внутрь которых, как полагает современная физика, мы можем быть погружены, – Хиггсов океан; пространство, заполненое темной энергией; мириады квантовополевых флуктуаций, – никакие из которых сами явно не доступны без посторонней помощи человеческому восприятию. Так что не должно быть шоком узнать, что теория струн/М-теория добавляет другого кандидата в список невидимых вещей, которые могут заполнять "пустое" пространство. Но не будем опрометчивыми. Для каждой из предыдущих возможностей мы понимали ее влияние на физику и, как мы могли установить, что это в самом деле существует. Конечно, для двух из трех – темной энергии и квантовых флуктуаций – мы видели, что строгое доказательство в пользу их существования уже получено; доказательство для Хиггсова поля разыскивается на сегодняшних и будущих ускорителях. А какова соответствующая ситуация для жизни внутри 3-браны? Если сценарий мира на бране корректен, почему мы не видим 3-браны и как мы можем установить, что она существует?

Ответ проясняет, что физические следствия теории струн/М-теории в контексте мира на бране радикально отличаются от более ранних, свободных от бран (или, как временами их с любовью называют, безбранных) сценариев. Рассмотрим в качестве важного примера движение света – движение фотонов. В теории струн фотон, как вы теперь знаете, является особым способом колебаний струны. Но математические исследования показали, что в сценарии мира на бране только колебания открытых струн, а не замкнутых, производят фотоны, и это приводит к большим отличиям. Концы открытой струны ограничены в своем движении внутри 3-браны, но во всем остальном полностью свободны. Это приводит к тому, что фотоны (открытые струны, выполняющие фотонную моду (способ) колебаний) будут путешествовать без каких-либо ограничений или помех сквозь 3-брану. И что это будет делать брану полностью прозрачной – полностью невидимой, – таким образом не давая нам увидеть, что мы погружены в нее.

Столь же важным является то, что поскольку концы открытой струны не могут покинуть брану, они не в состоянии двигаться во внешних измерениях. Точно так же, как проволока ограничивает ее бусины и пинбольный стол ограничивает его шарики, наша липкая 3-брана будет разрешать фотонам двигаться только внутри наших трех пространственных измерений. Поскольку фотоны являются частицами-переносчиками электромагнетизма, это проявляется в том, что электромагнитное взаимодействие – свет – будет удерживаться внутри наших трех измерений, как проиллюстрировано (в двух измерениях, как мы можем нарисовать это) на Рис. 13.3.

Это сильное утверждение с важными последствиями. Ранее мы требовали, чтобы дополнительные измерения теории струн/М-теории были туго скручены. Основанием для этого, очевидно, было то, что мы не можем видеть дополнительные измерения, так что они должны быть как-то скрыты. И один из способов скрыть их заключается в том, чтобы сделать их меньше, чем мы или наше оборудование можем обнаружить. Но теперь пересмотрим эту проблему в сценарии мира на бране. Как мы обнаруживаем вещи? Ну, когда мы используем наши глаза, мы используем электромагнитное взаимодействие; когда мы используем мощные инструменты вроде электронного микроскопа, мы также используем электромагнитные силы; когда мы используем атомные столкновения, одними из сил, которые мы используем, чтобы изучить ультрамалое, опять являются электромагнитные силы. Но если электромагнитные силы удерживаются на нашей 3-бране, в наших трех пространственных измерениях, невозможно как-то проверить дополнительные измерения безотносительно к их размеру. Фотоны не могут покинуть наши измерения, войти в дополнительные измерения, а затем пропутешествовать назад к нашим глазам или оборудованию, позволяя нам обнаружить дополнительные измерения, даже если они столь же велики, как привычные пространственные измерения.

Рис 13.3 (а) В сценарии мира на бране фотоны являются открытыми струнами с концами, удерживающимися внутри браны, так что они – свет – не могут покинуть саму брану, (b) Наш мир на бране, может быть, плавает в огромном просторе дополнительных измерений, которые остаются невидимыми для нас, поскольку свет, который мы видим, не может покинуть нашу брану. Возможно, существуют и иные миры на бранах, плавающие поблизости.

Итак, если мы живем на 3-бране, имеется альтернативное объяснение, почему мы не воспринимаем дополнительные измерения. Нет необходимости, чтобы дополнительные измерения были экстремально малыми. Они могут быть большими. Мы не можем видеть их вследствие способа, которым мы видим. Мы видим с использованием электромагнитных сил, которые не в состоянии достичь любого измерения вне трех, о которых мы знаем. Подобно муравью, гуляющему вдоль листа водяной лилии, полностью ничего не знающему о глубокой воде, лежащей прямо под видимой поверхностью, мы можем плавать в великом, обширном, многомерном пространстве, как на Рис. 13.3b, но электромагнитные силы – вечно удерживаемые внутри наших измерений – будут не в состоянии обнаружить это.

Хорошо, вы можете сказать, но электромагнитные силы являются только одними из природных четырех сил. Что относительно трех других? Могут они зондировать дополнительные измерения, таким образом позволяя нам обнаружить их существование? Для сильных и слабых ядерных сил ответ, опять, нет. В сценарии мира на бране расчеты показывают, что частицы-переносчики этих сил – глюоны и W- и Z-частицы – также возникают из колебательных мод открытых струн, так что они точно так же захвачены браной, как и фотоны, и процессы, содежащие сильное и слабое ядерные взаимодействия, точно так же слепы к внешним измерениям. То же самое имеет место для частиц материи. Электроны, кварки и все другие виды частиц также возникают из колебаний открытых струн с захваченными на бране концами. Таким образом, в сценарии мира на бране вы, и я и кто угодно всегда видим все постоянно заключенным внутри нашей 3-браны. Учитывая время, все удерживается внутри нашего четырехмерного среза пространства-времени.

Ну, почти все. Для сил гравитации ситуация отличается. Математический анализ сценария мира на бране показал, что гравитоны возникают из колебательных мод замкнутых струн, почти как они это делали в обсуждавшихся ранее безбранных сценариях. А замкнутые струны – струны без конечных точек – не захватываются бранами. Они свободны как покинуть брану, так и странствовать по ней или сквозь нее. Так что, если мы живем на бране, мы не отрезаны полностью от дополнительных измерений. Через гравитационное взаимодействие мы могли бы влиять и подвергаться влиянию дополнительных измерений. Гравитация в таком сценарии будет обеспечивать единственный способ для взаимодействия за пределами наших трех пространственных измерений. Как велики могут быть дополнительные измерения перед тем, как мы станем осведомлены о них через гравитационное взаимодействие? Это интересный и критический вопрос, так что попробуем рассмотреть его.

Гравитация и большие внешние измерения

В далеком 1687, когда Ньютон предложил свой универсальный закон гравитации, он, естественно, сделал строгое утверждение о количестве пространственных измерений. Ньютон не говорил просто, что сила притяжения между двумя объектами становится слабее, когда расстояние между ними становится больше. Он предложил формулу, закон обратного квадрата, которая точно описывает, как будет уменьшаться гравитационное притяжение, когда два объекта разделяются. В соответствии с этой формулой, если вы удваиваете дистанцию между двумя объектами, их гравитационное притяжение упадет в четыре раза (то есть в 22 раз); если вы утроите расстояние, оно упадет в девять раз (то есть в 32 раз); если вы увеличите расстояние в четыре раза, оно упадет в 16 раз (то есть в 42 раз); и в общем случае гравитационная сила падает пропорционально квадрату расстояния между объектами. Как стало достаточно очевидно за последние несколько сотен лет, эта формула работает.

Но почему сила зависит от квадрата расстояния? Почему сила не падает пропорционально кубу расстояния (так что, если бы вы удвоили дистанцию, сила бы уменьшилась на фактор 8) или четвертой степени (так что, если бы вы удвоили дистанцию, сила бы уменьшилась на фактор 16), или вообще, даже более просто, почему гравитационная сила между двумя объектами не падает прямо пропорционально расстоянию (так что, если бы вы удвоили дистанцию, сила бы уменьшилась на фактор 2)? Ответ прямо связан с числом измерений пространства.

Один из способов увидеть это таков: подумать о том, какое количество гравитонов эмитируется и поглощается двумя объектами в зависимости от расстояния, или подумать о том, как кривизна пространства времени, которую ощущает каждый объект, уменьшается с ростом расстояния между ними. Но поступим проще, с использованием более старого подхода, который быстро и интуитивно понятно приведет нас к правильному ответу. Нарисуем Рис. 13.4а, который схематически иллюстрирует гравитационное поле, производимое массивным объектом, – скажем, Солнцем, – почти как на Рис. 3.1 схематически иллюстрировалось магнитное поле, производимое бруском магнита. Тогда как линии магнитного поля изгибались вокруг магнита от его северного полюса к его южному полюсу, отметим, что линии гравитационного поля испускаются радиально наружу во всех направлениях и просто уходят. Сила гравитационного притяжения, которое будет ощущать другой объект, – представим его орбитальным спутником, – на данном расстоянии пропорциональна плотности линий поля в данной точке. Чем больше линий поля пройдет сквозь спутник, как на Рис. 13.4b, тем большему гравитационному притяжению он подвергнется.

Теперь мы можем объяснить оригинальный закон обратного квадрата Ньютона. Воображаемая сфера с центром в Солнце и проходящая через местоположение спутника, как на Рис. 13.4с, имеет площадь поверхности, которая – подобно площади поверхности любой сферы в трехмерном пространстве – пропорциональна квадрату ее радиуса, что в этом случае есть квадрат расстояния между Солнцем и спутником. Это значит, что плотность линий поля, проходящих через сферу, – полное число линий поля, деленное на площадь сферы, – уменьшается как квадрат расстояния между Солнцем и спутником.

(а) (b) (c)

Рис 13.4 (а) Гравитационная сила, оказываемая Солнцем на объект, такой как спутник, обратно пропорциональна квадрату расстояния между ними. Причина в том, что линии гравитационного поля Солнца распространяются одинаково во всех направлениях, как в (b), и потому имеют плотность на расстоянии d, которая обратно пропорциональна площади воображаемой сферы радиуса d, – схематично изображенной на (с), – площади, которая на основании геометрии оказывается пропорциональной d 2 .

Если вы удвоите расстояние, то же самое число линий поля теперь будет однородно распределено по сфере со в четыре раза большей площадью, а потому гравитационное притяжение на этом расстоянии будет меньше в четыре раза. Закон обратного квадрата Ньютона для гравитации является, таким образом, отражением геометрического свойства сферы в трехмерном пространстве.

В отличие от этого, если вселенная имела бы два или даже просто одно пространственное измерение, как бы изменилась формула Ньютона? Ну, на Рис 13.5а показана двумерная версия Солнца и его орбитального спутника. Как вы можете видеть, при любом данном расстоянии линии гравитационного поля Солнца однородно распределены по окружности, аналогу сферы с измерениями на одно меньше. Поскольку длина окружности пропорциональна ее радиусу (а не квадрату ее радиуса), если вы удвоите расстояние между солнцем и спутником, плотность линий поля уменьшится на фактор 2 (а не 4) , так что сила гравитационного притяжения спутника солнцем упадет только в 2 раза (а не в 4). Если вселенная имеет только два пространственных измерения, тогда гравитационное притяжение будет обратно пропорционально расстоянию, а не квадрату расстояния.

Если вселенная имеет только одно измерение, как на Рис. 13.5b, закон притяжения будет еще проще. Линии гравитационного поляне не имеют пространства, чтобы рассеиваться, так что сила гравитации не будет уменьшаться с расстоянием. Если вы удвоите расстояние между Солнцем и спутником (предполагая, что аналоги таких объектов могут существовать в такой вселенной), одно и то же число линий поля будет пересекать спутник, а потому сила гравитационного воздействия между ними не будет изменяться совсем.

Рис 13.5 (а) Во вселенной только с двумя пространственными измерениями гравитационная сила падает пропорционально расстоянию, поскольку линии гравитационного поля распределяются по окружности, чья длина пропорциональна ее радиусу, (b) Во вселенной с одним пространственным измерением линии гравитационного поля не имеют пространства, чтобы распределяться, так что гравитационная сила постоянна независимо от расстояния.

Хотя это невозможно нарисовать, примеры, проиллюстрированные на Рис. 13.4 и 13.5, непосредственно распространяются на вселенную с четырьмя, или пятью, или шестью или любым числом пространственных измерений. Чем больше пространственных измерений имеется, тем больше пространства имеют гравитационные силовые линии, чтобы рассеяться. А чем больше они рассеиваются, тем более чувствительно сила притяжения падает с увеличением расстояния. В четырех пространственных измерениях закон Ньютона будет законом обратного куба (удвоение расстояния приводит к падению силы в 8 раз); в пяти пространственных измерениях это будет закон обратной четвертой степени (удвоение расстояния приводит к падению силы в 16 раз); в шести измерениях это будет закон обратной пятой степени (удвоение расстояния приводит к падению силы в 32 раза); и так далее для все более многомерных вселенных.

Вы можете подумать, что успех закона обратного квадрата Ньютона в объяснении огромного количества данных – от движения планет до траекторий комет – подтверждает, что мы живем во вселенной с точно тремя пространственными измерениями. Но это заключение будет поспешным. Мы знаем, что закон обратного квадрата работает на астрономических масштабах, и мы знаем, что он работает на земных масштабах, и что это хорошо стыкуется с фактом, что на таких масштабах мы видим три пространственных измерения. Но знаем ли мы, что он работает на малых расстояниях? Как далеко в микрокосмосе проверен гравитационный закон обратного квадрата? Как оказывается, экспериментаторы подтвердили его только примерно до одной десятой миллиметра; если два объекта разделены расстоянием в одну десятую миллиметра, данные подтверждают, что сила их гравитационного притяжения следует предсказанию закона обратных квадратов. Но пока оказалось большой технической проблемой протестировать закон обратного квадрата на более мелких масштабах (квантовые эффекты и слабость гравитации усложняют эксперименты). Это критическая проблема, поскольку отклонение от закона обратного квадрата будет убедительным сигналом о дополнительных размерностях.

Чтобы увидеть это явно, поработаем с низкоразмерным игрушечным примером, который мы легко можем нарисовать и проанализировать. Представим, что мы живем во вселенной с одним пространственным измерением – или так мы думаем, поскольку только одно пространственное измерение является видимым и, более того, столетия экспериментов показали, что сила гравитации не меняется с расстоянием между объектами. Но также представим, что во все эти годы экспериментов мы были в состоянии протестировать закон гравитации только до расстояний около одной десятой миллиметра. Для более коротких дистанций, чем эта, никто не имеет никаких данных. Теперь представим далее никому не известное, но подозреваемое горсткой физиков-теоретиков, что вселенная на самом деле имеет второе скрученное пространственное измерение, делая ее форму подобной поверхности каната муравья Филиппа Пети, как на Рис. 12.5. Как это может повлиять на будущий, более утонченный гравитационный тест? Мы можем вывести ответ, рассмаривая Рис. 13.6. Когда два мельчайших объекта находятся достаточно близко друг к другу – более близко, чем длина скрученного измерения, – двумерный характер пространства немедленно становится явным, поскольку на таких масштабах линии гравитационного поля будут иметь место, чтобы рассеяться (рис. 13.6а). Вместо того, чтобы быть независимыми от расстояния, силы гравитации будут изменяться обратно пропорционально расстоянию между объектами, которые находятся достаточно близко друг от друга.

(а) (b)

Рис 13.6 (а) Когда объекты достаточно близки, гравитационное притяжение изменяется так, как это происходит в двух пространственных измерениях. (b) Когда объекты удалены, гравитационное притяжение ведет себя, как это и должно быть в одном пространственном измерении, – оно постоянно.

Таким образом, если бы вы были экспериментатором в этой вселенной и вы разработали бы изысканно точный метод измерения гравитационного притяжения, это было бы то, что вы нашли. Когда два объекта экстремально сближаются, ближе, чем размер скрученного измерения, их гравитационное притяжение уменьшается пропорционально расстоянию между ними, точно так же, как вы могли бы ожидать для вселенной с двумя пространственными измерениями. Но тогда, когда объекты удалены друг от друга на расстояние, много большее длины скрученной размерности, вещи изменятся. За пределами указанной дистанции линии гравитационного поля больше не смогут рассеиваться. Они будут расходиться точно так же, как они это могли делать во втором скрученном измерении, – они будут насыщать это измерение, – так что с этого расстояния и дальше гравитационные силы больше не будут уменьшаться, как показано на Рис. 13.6b. Вы можете сравнить это насыщение с прокладкой водопроводных труб в старом доме. Если кто-нибудь открывает кран на кухне, когда вы только что намылили шампунем свои волосы, давление воды падает, поскольку вода распределяется между двумя выходными отверстиями. Давление еще больше уменьшится, когда кто-нибудь откроет кран в прачечной, поскольку вода распределиться еще больше. Но как только все краны в доме открыты, давление останется постоянным. Хотя это может не обеспечить релаксацию и ощущение высокого давления воды, которое вы предвкушали, давление в душе не будет падать больше никогда, поскольку вода полностью распределена между всеми "внешними" выходными отверстиями. Аналогично, как только гравитационное поле полностью рассеется сквозь внешнее скрученное измерение, оно больше не будет уменьшаться при дальнейшем увеличении расстояния.

Из ваших данных вы можете вывести две вещи. Первое, из факта, что гравитационная сила уменьшается пропорционально расстоянию, когда объекты очень близки, вы обнаружите, что вселенная имеет два пространственных измерения, а не одно. Второе, из перехода к постоянной гравитационной силе – результату, известному из столетий предыдущих экспериментов, – вы сделаете заключение, что одно из этих измерений скручено с размером, примерно равным расстоянию, при котором имеет место смена закона поведения гравитации. И с этим результатом вы опрокинете столетия, если не тысячелетия веры во что-то настолько основополагающее, как размерность пространства, которое казалось почти вне обсуждения.

Хотя я изложил эту историю для низкоразмерной вселенной для простоты визуализации, наша ситуация будет почти такой же. Сотни лет эксперименты подтверждали, что гравитация меняется обратно квадрату расстояния, давая строгое доказательство, что мы имеем три пространственных измерения. Но до 1998 года ни один эксперимент еще не проверил силу гравитации на расстояниях, меньших миллиметра (сегодня, как отмечалось, это доведено до одной десятой миллиметра). Это привело Саваса Димопоулоса из Стэнфорда, Нима Аркани-Хамеда, в настоящее время работающего в Гарварде, и Гиа Двали из Нью-Йоркского Университета к предположению, что в сценарии мира на бране дополнительные размерности могли бы быть величиной порядка миллиметра и все еще не были бы обнаружены. Это радикальное предположение инсприровало большое число экспериментальных групп к началу исследования гравитации на субмиллиметровых расстояниях в надежде найти отклонения от закона обратного квадрата; до сегодняшнего дня ничего не было найдено, хотя точность повысилась до одной десятой миллиметра. Таким образом, даже при сегодняшних самых продвинутых экпериментах по гравитации, если мы живем внутри 3-браны, дополнительные измерения могут быть так же велики, как десятая доля миллиметра, и мы все еще не можем узнать о них.

Это одно из наиболее замечательных постижений последних десяти лет. Используя три негравитационные силы мы можем прозондировать расстояния до примерно миллиардной миллиардной (10–18) метра, и никто не нашел никакого подтверждения дополнительным размерностям. Но в сценарии мира на бране негравитационные силы и не могут ничем помочь в поиске дополнительных размерностей, поскольку они удерживаются на самой бране. Только гравитация может помочь проникнуть в природу дополнительных размерностей, и на сегодняшний день дополнительные измерения могут быть так же толсты, как человеческий волос, и все еще быть полностью невидимыми для наших самых изощренных инструментов. Прямо сейчас, прямо рядом с вами, прямо рядом со мной и прямо рядом с любым другим могут быть другие пространственные измерения – измерения за пределами влево/вправо, назад/вперед и вверх/вниз, измерения, которые скручены, но все еще достаточно велики, чтобы поглотить что-нибудь столь же толстое, как эта страница, – которые остаются вне нашей способности их воспринимать.*

(*) "Имеется даже предложение от Лизы Рэндалл из Гарварда и Рамана Судрума из Института Джона Гопкинса, в котором гравитация тоже может быть захвачена, но не клейкой браной, а дополнительными измерениями, которые искривляются точно нужным образом, смягчая ограничения на их размер еще больше."

Большие дополнительные размерности и большие струны

Через захват трех из четырех сил сценарий мира на бране существенно смягчает экспериментальные ограничения на то, как велики могут быть дополнительные размерности, но дополнительные размерности не являются единственными вещами, которые этот подход позволяет сделать больше. Продолжая открытия Виттена, Джо Ликкена, Константина Бахаса и других, Игнатиос Антониадис вместе с Аркани-Хамедом, Димопоулосом и Двали обнаружили, что в сценарии мира на бране даже невозбужденные, низкоэнергетические струны могут быть намного больше, чем раньше думалось. Фактически, два масштаба – размер дополнительных измерений и размер струн – тесно связаны.

Вспомним из предыдущей главы, что базовый размер струны определяется требованием, что ее гравитационная колебательная мода соответствует гравитационной силе наблюдаемой величины. Слабость гравитации переносится в то, что струна должна быть очень короткой, порядка длины Планка (10–33 сантиметра). Но это заключение сильно зависит от размера дополнительных измерений. Причина в том, что в теории струн/М-теории величина гравитационной силы, которую мы наблюдаем в наших трех протяженных измерениях представляет взаимодействие между двумя факторами. Один фактор является внутренней, фундаментальной величиной гравитационной силы. Второй фактор есть размер дополнительных измерений. Чем больше дополнительные измерения, тем больше гравитации может рассеиваться в них и тем слабее будет проявляться ее сила в привычных измерениях. Точно так же, как большие трубы дают более слабое давление воды, поскольку они предоставляют ей больше пространства, чтобы распределиться, так большие дополнительные размерности дают более слабую гравитацию, поскольку они дают гравитации больше пространства, чтобы рассеяться.

Оригинальные расчеты, которые определяли длину струны, предполагали, что внешние измерения столь малы, порядка планковской длины, что гравитация не может рассеиваться в них совсем. При этом предположении гравитация проявляется слабой, поскольку она слаба. Но теперь, если мы работаем в сценарии мира на бране и позволяем дополнительным измерениям быть намного больше, чем это рассматривалось раньше, наблюдаемое бессилие гравитации больше не означает, что она внутренне слаба. Напротив, гравитация может быть относительно мощной силой, которая становится слабой только вследствие относительно больших дополнительных измерений, подобных большим трубам, обескровливающим ее внутреннюю силу. Следуя этой линии аргументации, если гравитация намного сильнее, чем когда-то думали, струны тоже могут быть намного длиннее, чем когда-то думали.

Что касается сегодняшнего дня, вопрос о точной длине не имеет однозначного определенного ответа. С вновь найденной свободой вариаций как размера струн, так и размера внешних измерений в значительно более широком диапазоне, чем воображалось раньше, появляется большое число возможностей. Димопоулос и его соратники утверждали, что существующие экспериментальные результаты, как из физики частиц, так и из астрофизики, показывают, что невозбужденные струны не могут быть больше, чем примерно миллиардная миллиардной доли метра (10–18 метра). Будучи меньше повседневных стандартов, эта величина примерно в сто миллионов миллиардов (1017) раз больше длины Планка – примерно в сто миллионов миллиардов раз больше, чем думали раньше. Как мы сейчас увидим, это достаточно много, чтобы признаки струн могли быть обнаружены следующим поколением ускорителей частиц.

Теория струн стоит перед лицом эксперимента?

Возможность, что мы живем внутри большой 3-браны, конечно, является только этим: возможностью. И в рамках сценария мира на бране возможность, что дополнительные размерности могут быть намного больше, чем когда-то думалось, – и связанная с этим возможность, что струны могут также быть намного больше, чем когда-то думалось, – также являются только этим: возможностями. Но они являются крайне возбуждающими возможностями. Верно и то, что даже если сценарий мира на бране верен, дополнительные размерности и размер струн могут все равно быть планковскими. Но возможность в рамках теории струн/М-теории для струн и дополнительных размерностей быть много больше – просто быть за пределами достижимости сегодняшней технологии – фантастична. Она означает, что имеется, по меньшей мере, шанс, что в течение нескольких следующих лет теория струн/М-теория соприкоснется с наблюдаемой физикой и станет экспериментальной наукой.

Насколько велик этот шанс? Я не знаю и никто другой не знает. Моя интуиция говорит мне, что это маловероятно, но моя интуиция сформировалась полутора десятилетиями работы в рамках обычной схемы струн планковской длины и внешних измерений планковской длины. Возможно, мои инстинкты устарели. К счастью, вопрос будет решаться без малейшей связи с чьей-либо интуицией. Если струны велики или если некоторые из дополнительных размерностей велики, последствия для наступающих экспериментов будут впечатляющими.

В следующей главе мы рассмотрим различные эксперименты, которые проверят среди других вещей возможность сравнительно больших струн и больших дополнительных измерений, так что здесь я только возбуждаю ваш аппетит. Если струны так же велики, как милиардная миллиардной доли (10–18) метра, частицы, соответствующие высшим гармоническим колебаниям на Рис. 12.4, не будут иметь чрезмерные массы, превышающие массу Планка, как в стандартном сценарии. Напротив, их массы будут только от тысячи до нескольких тысяч масс протона, а это достаточно мало, чтобы быть достижимым на Большом Адронном Коллайдере (Large Hadron Collider – LHC), в настоящее время строящемся в ЦЕРНе. Если эти колебания струн могут быть возбуждены через высокоэнергетические столкновения, детекторы ускорителя будут сиять как хрустальный шар на елке в новогоднюю ночь. Будет произведена целая толпа никогда раньше не виданных частиц, и их массы будут относиться одна к другой почти как различные гармоники, связанные с виолончелью. Проявление струнной теории будет отпечатано в данных столь цветисто, что поразило бы Джона Хичкока*. Исследователи будут не в состоянии пропустить его даже без своих очков.

(*)"Британский проектировщик и инвестор, работающий в стиле hi-tech, совладелец всемирно известного брэнда YOO в области архитектурного дизайна. – (прим. перев.)"

Более того, в сценарии мира на бране высокоэнергетические столкновения могут даже произвести – осознайте это – миниатюрные черные дыры. Хотя мы обычно думаем о черных дырах как о чудовищных структурах далеко в глубоком пространстве, известно со времен первых дней ОТО, что если вы втисните достаточно материи в горсть вашей руки, вы создадите миниатюрную черную дыру. Этого не происходило потому, что ни одна хватка – и ни один механический прибор – даже отдаленно не имеет мощи, чтобы проявить достаточную силу сжатия. Напротив, единственный признанный механизм для производства черной дыры содержит гравитационное сжатие экстраординарно массивной звезды, преодолевшей направленное наружу давление, обычно оказываемое процессами звездной ядерной реакции, что заставляет звезду коллапсировать внутрь себя. Но если внутренняя сила гравитации на малых масштабах намного больше, чем мы думали раньше, мелкие черные дыры могут производится при существенно меньших силах сжатия, чем мы были уверены раньше. Расчеты показывают, что Большой Адронный Коллайдер (LHC) может иметь почти достаточно сдавливающей мощи, чтобы создать рог изобилия микроскопических черных дыр через высокоэнергетические столкновения между протонами. Подумайте о том, насколько это будет поразительно. LHC может оказаться фабрикой по производству черных дыр! Эти черные дыры должны быть столь малы и сохраняться столь короткое время, что они не смогут представлять для нас ни малейшей опасности (годами раньше Стивен Хокинг показал, что все черные дыры испаряются посредством квантовых процессов – большие очень медленно, малые очень быстро), но их производство обеспечит подтверждение некоторых наиболее экзотических идей из когда-либо рассмотренных.

Космология мира на бране

Первейшая цель сегодняшних исследований, одна из тех, что горячо преследуются учеными всего мира (включая меня), заключается в формулировании понимания космологии, которое включает новые открытия теории струн/М-теории. Причина ясна: космология не только связана с глобальными, захватывающими дух вопросами, и мы не только подошли к осознанию, что аспекты привычного опыта – такие как стрела времени – связаны с условиями при рождении вселенной, но космология также обеспечивает теоретиков тем же, чем Нью-Йорк обеспечил Синатру: испытанием настоящей цены мастерства. Если теория может сделать это в экстремальных условиях, характеризующих ранние моменты вселенной, она сможет сделать это везде.

Что касается сегодняшнего дня, космология в соответствии с теорией струн/М-теорией находится в стадии разработки исследователями, ориентированными в двух главных направлениях. Первый и более обычный подход представляет, что точно так же, как инфляция обеспечивает недолгую, но основательную начальную часть стандартной теории Большого взрыва, теория струн/М-теория обеспечивает еще более раннюю и, возможно, еще более основательную начальную часть для инфляции. Представляется, что теория струн/М-теория будет прояснять размытое пятно, которое мы использовали для обозначения нашего неведения относительно самых ранних моментов вселенной, а затем космологическая драма будет разворачиваться в соответствии с необыкновенно успешным сценарием инфляционной теории, который мы подробно излагали в предыдущих главах.

Хотя имелся прогресс в специфических деталях, требуемых таким подходом (таких как попытки понять, почему только три пространственных измерения вселенной подверглись расширению, точно так же, как разработка математических методов, которые могут обеспечить подходящий анализ области без пространства и без времени, которая могла предшествовать инфляции), момент для крика "Эврика!" еще не наступил. Интуитивно понятно, что в то время, как инфляционная космология представляет наблюдаемую вселенную становящейся все более маленькой в совсем ранние времена, – и потому становящейся все более горячей, плотной и энергичной, – теория струн/М-теория обуздывает это буйное (на физическим языке, "сингулярное") поведение путем введения минимального размера (как в нашей дискуссии на стр. 350–351), ниже которого становятся существенными новые и менее сингулярные физические величины. Это обоснование лежит в сердце успешного соединения ОТО и квантовой механики теорией струн/М-теорией, и у меня сильное ощущение, что мы скоро определим, как применить такое же обоснование в контексте космологии. Но, что касается сегодняшнего дня, размытое пятно все еще выглядит размытым, и можно только гадать, когда будет достигнута ясность.

Второй подход использует сценарий мира на бране и в его самом радикальном воплощении постулирует полностью новую космологическую схему. Далеко от ясности, выдержит ли этот подход детальную математическую проверку, но он обеспечивает хороший пример того, как прорывы в фундаментальной теории могут проложить новые рельсы через хорошо истоптанную территорию. Предложение называется циклическая модель.

Циклическая космология

С точки зрения времени обычный опыт ставит нас перед лицом двух типов явлений: тем, что имеет ясно очерченное начало, середину и конец (эта книга, бейсбольная игра, человеческая жизнь), и тем, что циклично, случаясь снова и снова (изменение времен года, восход и закат Солнца, бракосочетания Ларри Кинга*). Конечно, при ближайшей проверке мы узнаем, что циклические явления также имеют начало и конец, поскольку циклы, как правило, не продолжаются вечно. Солнце восходит и заходит – что означает, Земля вращается вокруг своей оси во время обращения по орбите вокруг Солнца, – каждый день примерно 5 миллиардов лет. Но перед этим Солнце и Солнечная система еще формировались. А однажды, примерно через 5 миллиардов лет от сегодняшнего дня, Солнце превратится в красного гиганта, поглотив внутренние планеты, включая Землю, и тогда больше не будет даже понятия восхода и заката Солнца, по меньшей мере, не здесь.

 (*)"Известный телеведущий американской компании CNN, специализирующийся на интервью. – (прим. перев.)"

Но это современные научные представления. Для древних циклические явления казались вечно циклическими. И для большинства циклические явления, движущиеся своим курсом и неизменно возвращающиеся снова к началу, являются основополагающими явлениями. Циклы дней и времен года задают ритм работы и жизни, так что не удивительно, что старейшие из записанных космологий воображают разворачивание мира как циклический процесс. Вместо того, чтобы постулировать начало, середину и конец, циклическая космология представляет, что мир изменяется сквозь время почти как Луна изменяется по фазам: после того, как она пройдет через полную последовательность, условия созревают для того, чтобы снова стартовать и начать очередной цикл.

С момента открытия ОТО было предложено много циклических космологических моделей; наиболее известная была разработана в 1930е Ричардом Толменом из Калифорнийского Технологического Института. Толмен предположил, что наблюдаемое расширение вселенной может замедлиться, однажды остановиться, и затем последует период сжатия, при котором вселенная будет все меньше. Но вместо достижения феерического финала, в котором она схлопнется и придет к концу, Толмен предположил, что вселенная может испытать отскок: пространство может сократиться до некоторого малого размера, а затем откатиться, начав новый цикл расширения, который опять сменится сжатием. Вселенная вечно повторяет этот цикл – расширение, сжатие, отскок, снова расширение, – что позволяет элегантно избежать нелегкой проблемы начала, – в таком сценарии сама проблема начала неприменима, поскольку вселенная всегда была и всегда будет.

Но Толмен обнаружил, вглядываясь назад во времени из сегодняшнего дня, что циклы могут повторяться в течение промежутка времени, но не безгранично. Причина в том, что в течение каждого цикла второй закон термодинамики диктует, что энтропия в среднем будет возрастать. А в соответствии с ОТО количество энтропии в начале каждого нового цикла определяет, как долго этот цикл будет длиться. Больше энтропии означает более длинный период расширения, прежде чем движение наружу будет подавлено до остановки и власть перейдет к движению внутрь. Каждый последующий цикл будет, следовательно, длиться намного дольше, чем его предшественник; эквивалентно, более ранние циклы будут короче и короче. Когда постоянное укорачивание циклов анализируем математически, это подразумевает, что они не могут простираться бесконечно далеко в прошлое. Даже в циклической схеме Толмена вселенная будет иметь начало.

Предложение Толмена включало сферическую вселенную, которая, как мы видели, противоречит наблюдениям. Но радикально новое воплощение циклической космологии, содержащее в себе плоскую вселенную, недавно было разработано в рамках теории струн/М-теории. Идея пришла от Пола Стейнхардта и его коллеги Нейла Турока из Кембриджского Университета (с сильным использованием результатов, полученных ими вместе с Бартом Оврутом, Натаном Зейбергом и Джастином Хоури) и предложила новый механизм движения космической эволюции. Излагая коротко, они предположили, что мы живем на 3-бране, которая яростно сталкивается каждые несколько триллионов лет с другой соседней параллельной 3-браной. И "взрыв" от столкновения инициирует каждый новый космологический цикл.

Рис 13.7 Две 3-браны, разделенные коротким интервалом.

Базовая схема предложения проиллюстрирована на Рис. 13.7 и была выдвинута несколько лет назад Хофавой и Виттеном в некосмологическом контексте. Хофава и Виттен пытались дополнить предложенное Виттеном объединение всех пяти струнных теорий и нашли, что если одно из семи дополнительных измерений в М-теории имеет очень простую форму – не круг, как на Рис. 12.7, а маленький сегмент прямой линии, как на Рис. 13.7, – и ограничивается так называемыми бранами конца мира, связанными подобно книжным обложкам, тогда может быть сделана прямая связь между Е-гетеротической струнной теорией и всеми остальными. Детали того, как они протянули эту связь, и не очевидны и не существенны (если вы интересуетесь, посмотрите, например, Элегантную Вселенную, Главу 12); что имеет значение, так это то, что это является стартовой точкой для естественного возникновения самой теории. Стейнхардт и Турок привлекли ее для своего космологического плана.

А именно, Стейнхардт и Турок представили, что каждая брана на Рис. 13.7 имеет три пространственных измерения, а разлинованный сегмент между ними обеспечивает четвертое пространственное измерение. Оставшиеся шесть пространственных измерений скручены в пространство Калаби-Яу (не показанное на рисунке), которое имеет правильную форму для струнных колебательных мод, чтобы получить известные семейства частиц. Вселенная, о которой мы непосредственно осведомлены, соответствует одной из этих 3-бран; если вы хотите, вы можете думать о второй 3-бране как о другой вселенной, чьи обитатели, если они имеют место, также будут осведомлены только о своих трех пространственных измерениях, если предположить, что их экспериментальная технология и экспертиза не сильно превосходят нашу. Тогда в этой схеме другая 3-брана – другая вселенная – находится прямо рядом. Она парит не более, чем на расстоянии доли миллиметра (расстояние вдоль четвертого пространственного измерения, как на Рис. 13.7), но поскольку наша 3-брана столь липкая, а гравитация, которую мы ощущаем, столь слабая, мы не имеем прямого подтверждения существования второй браны, так же, как ее гипотетические обитатели не имеют подтверждения нашего существования.

Но в соответствии с циклической космологической моделью Стейнхардта и Турока Рис. 13.7 не есть то, что всегда было или что всегда будет. Напротив, в их подходе две 3-браны притягиваются друг к другу, – почти как если бы они были соединены маленькими резиновыми лентами, – и это предполагает, что каждая управляет космологической эволюцией другой: браны вовлечены в бесконечный цикл столкновений, отскоков и снова столкновений, вечно восстанавливая их протяженные трехмерные миры. Чтобы увидеть, как это происходит, посмотрим на Рис. 13.8, который иллюстрирует один полный цикл шаг за шагом.

(0)

(5) (1)

(4) (2)

(3)

Рис 13.8 Различные этапы в циклической космологической модели мира на бране.

На Этапе 1 две 3-браны просто несутся по направлению друг к другу и врезаются друг в друга, а затем отскакивают. Жуткая энергия столкновения запасается в существенном количестве высокотемпературной радиации и материи в каждой из отскочивших 3-бран, и – в этом ключ – Стейнхардт и Турок утверждают, что детальные свойства этой материи и радиации имеют совокупность параметров, почти идентичную той, что генерируется в инфляционной модели. Хотя на этот счет еще имеются некоторые разногласия, Стейнхардт и Турок, следовательно, заявляют, что столкновение между двумя 3-бранами приводит к физическим условиям, экстремально близким к тем, которые они имели моментом позже взрыва инфляционного расширения в более обычном подходе, обсуждавшемся в Главе 10. Тогда не удивительно, что для гипотетического наблюдателя внутри нашей 3-браны следующие несколько этапов в циклической космологической модели, по существу, те же самые, как и в стандартном подходе, как показано на Рис. 9.2 (где этот рисунок теперь интерпретируется как эскиз эволюции одной из 3-бран). А именно, когда наша 3-брана отскакивает после столкновения, она расширяется и охлаждается, а космические структуры вроде звезд и галактик понемногу срастаются из первичной плазмы, как вы можете видеть на Этапе 2. Далее, вдохновленные недавними наблюдениями сверхновых, обсуждавшимися в Главе 10, Стейнхардт и Турок дополнили свою модель, так что примерно через 7 миллиардов лет в цикле – Этап 3 – энергия обычной материи и радиации стала существенно рассеянной за счет расширения браны, так что компонента темной энергии получила верховную власть и через свое отрицательное давление запустила эру ускоренного расширения. (Это требует произвольной тонкой настройки деталей, но позволяет модели соответствовать наблюдениям, а это, как утверждают поборники циклической модели, хорошо мотивировано). Примерно 7 миллиардами лет позже мы, люди, находим себя здесь на Земле, по меньшей мере в данном цикле, испытывая начальные этапы фазы ускорения. Затем, грубо в течение следующего триллиона лет ничего особенно нового не происходит, исключая то, что наша 3-брана продолжает ускоренное расширение. Это достаточно долго для нашего трехмерного пространства, чтобы растянуться на такой колоссальный фактор, что материя и радиация рассеиваются почти полностью, приводя мир на бране к состоянию, когда он выглядит почти полностью пустым и полностью однородным: Этап 4.

К этому моменту наша 3-брана завершила свой отскок от начального столкновения и начала снова приближаться ко второй 3-бране. Когда мы подходим все ближе и ближе к следующему столкновению, квантовые дрожания струн, закрепленных на нашей бране, заполняют ее однородный вакуум мельчайшей рябью, Этап 5. Пока мы продолжаем увеличивать скорость, рябь продолжает расти; затем в катаклизме столкновения мы вляпываемся во вторую 3-брану, отскакиваем, и цикл повторяется снова. Квантовая рябь накладывает малую неоднородность на радиацию и материю, произведенную во время столкновения, и, почти как в инфляционном сценарии, эти отклонения от совершенной однородности вырастают в комки, которые в конечном счете генерируют звезды и галактики.

Это главные этапы циклической модели (также известной у сочувствующих как Большой шлепок). Ее предпосылка – сталкивающиеся миры на бранах – очень отличается от успешной инфляционной теории, но, тем не менее, имеется существенная точка контакта между двумя подходами. То, что обе полагаются на квантовые возбуждения для генерирования начальной неоднородности, является одним из существенных сходств. Фактически Стейнхардт и Турок утверждают, что уравнения, управляющие квантовой рябью в циклической модели почти идентичны таким уравнениям в инфляционной картине, так что результирующая неоднородность, предсказанная двумя теориями, почти так же идентична. Более того, поскольку в циклической модели нет инфляционного взрыва, в ней есть триллионолетний период (начало Этапа 3) спокойного ускоренного расширения. Но это на самом деле только вопрос поспешности против терпения; что инфляционная модель достигает за миг, циклическая модель достигает за сравнительную вечность. Поскольку столкновение в циклической модели не является началом вселенной, имеется роскошь медленного решения космологических проблем (вроде проблем плоскостности и горизонта) за последний триллион лет каждого предыдущего цикла. Эоны спокойного, но постоянно ускоряющегося расширения в конце каждого цикла растягивают нашу 3-брану аккуратно и плоско и, исключая мелкие, но важные квантовые флуктуации, делают ее совершенно однородной. Итак, длинный финальный этап каждого цикла, сменяющийся шлепком в начале следующего цикла, дает окружение, очень похожее на то, что генерируется коротким всплеском расширения в инфляционном подходе.

Краткая оценка

При их существующих уровнях разработки как инфляционная, так и циклическая модели обеспечивают содержательные космологические схемы, но ни одна из них не предлагает завершенной теории. Незнание превалирующих условий во время самых ранних моментов вселенной заставляет поборников инфляционной космологии просто предполагать, без теоретического обоснования, что условия, требующиеся для инициации инфляции, возникли. Если это так, теория решает большое количество космологических головоломок и запускает стрелу времени. Но такие успехи, во-первых, зависят от того, происходит ли инфляция. Что еще больше, инфляционная космология не встраивается прямо в теорию струн, а раз так, она пока что не является частью непротиворечивого слияния квантовой механики и ОТО.

Циклическая модель имеет свою собственную долю дефектов. Как и в модели Толмена, рассмотрение возрастания энтропии (а также квантовой механики) гарантирует, что циклы циклической модели не могут происходить всегда. Напротив, циклы начинаются в некоторое определенное время в прошлом, так что, как и с инфляцией, мы нуждаемся в объяснении того, как стартовал первый цикл. Если это сделано, тогда теория, также подобно инфляционной, разрешает ключевые космологические проблемы и задает направление стреле времени из низкоэнтропийного шлепка в направлении через ряд последовательных этапов, как на Рис. 13.8. Но, как полагают в настоящее время, циклическая модель не предлагает объяснения, как или почему вселенная находится в необходимой конфигурации Рис. 13.8. Почему, например, шесть измерений свернулись в особую форму Калаби-Яу, тогда как одно из дополнительных измерений послушно приняло форму пространственного сегмента, разделяющего две 3-браны? Как так получилось, что две 3-браны конца мира выстроились настолько совершенно и притягиваются друг к другу с точно правильной силой, чтобы этапы на Рис. 13.8 происходили так, как мы описали? И критическую важность имеет вопрос, что на самом деле происходит, когда две 3-браны сталкиваются в циклической модели Взрыва?

С этим последним вопросом есть надежда, что шлепок циклической модели менее проблематичен, чем сингулярность, с которой мы сталкиваемся в момент времени нуль в инфляционной космологии. Вместо того, чтобы все пространство было бесконечно сжато, в циклическом подходе только одно измерение между бранами сдавливается; сами браны испытывают общее расширение во время каждого цикла, а не сжатие. А это, как утверждают Стейнхардт, Турок и их соратники, подразумевает конечные температуры и конечные плотности на самих бранах. Но это очень шаткое заключение, поскольку до сих пор никто не был в состоянии предложить лучшие уравнения и обрисовать, что должно будет происходить, когда браны схлопываются вместе. Фактически, до сих пор завершенный анализ, направленный к шлепку бран, имеет ту же проблему, которая беспокоит инфляционную теорию в момент нуль: математика терпит неудачу. Таким образом, космология все еще нуждается в строгом разрешении ее сингулярного старта – будь это на самом деле старт вселенной или старт нашего текущего цикла.

Самое убедительное свойство циклической модели заключается в способе, которым она присоединяет темную энергию и наблюдаемое ускоренное расширение. В 1998, когда было открыто, что вселенная повержена ускоренному расширению, это было совершенным сюрпризом для большинства физиков и астрономов. Хотя это могло быть инкорпорировано в инфляционную космологическую картину путем предположения, что вселенная содержит точно правильное количество темной энергии, ускоренное расширение казалось подобным нескладному дополнению. Напротив, в циклической модели роль темной энергии естественная и стержневая. Триллионолетний период постепенного, но постоянно ускоряющегося расширения является решающим для вытирания грифельной доски начисто, для растворения наблюдаемой вселенной почти до полной пустоты, и для восстановления условий для подготовки нового цикла. С этой точки зрения как инфляционная модель, так и циклическая модель зависят от ускоренного расширения – инфляционная модель вблизи ее начала, а циклическая модель в конце каждого своего цикла, – но только последняя имеет прямое наблюдательное подтверждение. (Вспомним, что циклический подход построен так, что мы просто ввели триллионолетнюю фазу ускоренного расширения, а такое расширение было недавно обнаружено). Это лишь мгновение в башне циклической модели, но это также означает, что если вдруг прекращение ускоренного расширения подтвердиться будущими наблюдениями, инфляционная модель сможет это пережить (хотя загадка исчезновения 70 процентов энергетического бюджета вселенной вновь всплывет), а циклическая модель не сможет.

Новые взгляды на пространство-время

Сценарий мира на бране и циклическая космологическая модель, им порожденная, оба в высшей степени умозрительны. Я обсуждал их здесь не столько потому, что я определенно чувствую, что они корректны, сколько потому, что я хотел проиллюстрировать поразительные новые пути для размышления о пространстве, в котором мы обитаем, и испытываемой им эволюции, которые были инспирированы теорией струн/М-теорией. Если мы живем внутри 3-браны, столетней давности вопрос относительно материальности трехмерного пространства получит самый определенный ответ: пространство будет браной, а потому определенно будет чем-то. Это может также не быть чем-то особенно специальным, так как могут быть многие другие браны, разных размерностей, плавающие внутри многомерных просторов теории струн/М-теории. И если космологическая эволюция на нашей 3-бране подвергается повторяющимся столкновениям с соседней браной, время, как мы его знаем, будет отмерять только один из многих циклов вселенной, с одним Большим взрывом, следующим за другим, а затем следующим.

Для меня это взгляд, как возбуждает, так и приводит к смирению. Может иметься намного больше пространства и времени, чем мы предчувствовали; если они есть, то, что мы рассматриваем как "все сущее", может быть только малой составляющей намного более богатой реальности.