Антарктида

Грушинский Николай Пантелеймонович

Дралкин Александр Гаврилович

Популярно и увлекательно рассказано о формировании Антарктиды, истории открытия и методах исследования ее, строении ледяного континента, условиях работы советских и зарубежных научных станций, об экспедициях в глубь континента, о животном мире Антарктиды и обитателях вод океана. Приведены примеры международного сотрудничества в Антарктиде по программе Международного геофизического года, Международного полярного года и др., а также взаимной помощи при экстремальных ситуациях.

Для широкого круга читателей разных возрастов и профессий.

 

ПРЕДИСЛОВИЕ

Об Антарктиде написано много книг – и научных монографий, и научно-популярных, однако на полках магазинов Вы их не найдете. Это свидетельствует о неизменном интересе читателя к проблемам шестого континента, результатам его исследований, необычности условий на нем.

Авторам посчастливилось работать в Антарктиде в самом начале широкой программы ее изучения. Н. П. Грушинский был начальником морского геофизического отряда во второй Антарктической экспедиции 1956–1957 гг., А. Г. Дралкин – начальником зимовки четвертой Антарктической экспедиции 1958–1959 гг. и седьмой – 1961–1962 гг. Во время первой зимовки он возглавлял поход на Южный полюс. Оба автора не потеряли интереса к Антарктиде до сих пор и активно работают, изучая и анализируя новые данные. Книга написана по материалам, полученным как в те давние, так и в последующие годы, с использованием многих публикаций, отдельные части – по дневниковым записям и воспоминаниям.

Начинается рассказ с небольшого раздела, в котором авторы попытались передать эмоциональную обстановку отплытия в далекую экспедицию. Раздел этот относится ко второй Антарктической экспедиции, которая отправлялась на дизель-электроходе «Обь» для смены зимовочного отряда первой экспедиции и для гидрологических и геофизических работ в Южном океане.

Большой интерес представляет вопрос о месте Антарктиды в семье других континентов. Уже на ранних этапах исследования Антарктиды там был обнаружен каменный уголь. В дальнейшем это подтвердилось. Более того, по оценкам некоторых геологов каменного угля в недрах Антарктиды содержится больше, чем на других континентах. Это значит, что было время, когда Антарктида имела теплый климат и была покрыта пышной растительностью. Возникает вопрос, как случилось, что она превратилась в континент, покрытый льдом мощностью до 4 км? Почему произошло такое изменение климата? Переместилась ли она к полюсу или произошло общее оледенение, сохранившееся в Антарктиде до наших дней? Ответы на эти вопросы таятся в истории развития материка Антарктида. Им авторы посвятили раздел, который называется «Рождение Антарктиды». В середине 50-х годов, когда начиналась подготовка ко второму Международному геофизическому году (МГГ) и активному исследованию Южной полярной области, было получено новое подтверждение идей о том, что континенты не занимают стабильные места, а перемещаются, и что было время, когда Антарктида составляла вместе с Африкой, Южной Америкой, Индией и Австралией единый праконтинент Гондвану. 300–350 млн. лет назад в каменноугольный период этот праматерик располагался так, что Антарктида лежала в умеренном, а частично в тропическом поясах. Кроме того, и климат Земли был много теплее. В последующем Гондвана раскололась на современные материки, которые разошлись так, что Антарктида переместилась к полюсу. Происходило охлаждение климата, случались оледенения. Из последнего оледенения Антарктида так и не вышла.

Авторы сочли необходимым рассказать о геологическом прошлом и эволюции Антарктиды, об истории ее открытия и исследований. В хронологической таблице приведены основные экспедиции с XV века до начала активных работ в наше время. Из книги читатель получит представление об условиях жизни в Антарктиде, опасностях, подстерегающих исследователя на каждом шагу, и взаимопомощи.

Антарктида – континент без границ. Континент дружбы. Работу и взаимоотношения исследователей регламентирует Договор об Антарктике, по которому все полученные результаты подлежат взаимному обмену, доступны ученым всех стран, ведущих там работы, а окружающая среда и животный мир тщательно охраняются и не допускается ядерное засорение среды. Задачей авторов было предоставить читателю возможно больше разнообразной информации об Антарктике, дать почувствовать своеобразие работы там. Заканчивается книга краткой характеристикой Южного океана и двумя эпизодами пленения кораблей льдами Антарктики, случившимися в середине 50-х годов и через 30 лет. Антарктида была и остается труднодоступным континентом.

 

ОТПЛЫТИЕ

Пробежали последние фонари перрона. Весело постукивая на стрелках, поезд набирал скорость. Промелькнули дома, пересечения дорог, очередь машин у шлагбаума… и вот вагон начал ровно перебирать стыки рельсов.

За окном – темнеющие в сумерках поля, леса, уже лишенные листвы, серое осеннее подмосковное небо.

Вспомнился Блок: «Тоска дорожная, железная, свистела, сердце надрывая».

Странное это чувство: и радостно, что впереди так много интересного, неведомого, и грустно. Кто раз покорился Музе дальних странствий – остается верен ей навсегда…

И вот мы на корабле. «Обь» стоит у Калининградского причала. Идет погрузка. Разборные щитовые дома для зимовщиков Мирного, вездеходы, части самолета ЛИ-2, бесчисленные бочки горючего и для полярной электростанции, и для самолетов, какие-то тюки – все это поглощают емкие трюмы «Оби». На высокой площадке, на юте, раскрепляют вертолет. Научные отряды оборудуют свои лаборатории, крепят и монтируют аппаратуру, раскладывают по полкам приборы, журналы, книги. Погрузкой руководит высокий, светловолосый, расторопный, корректный старший помощник капитана Николай Михайлович Свиридов.

Постоянно слышен зычный голос боцмана В. Сапронова. Порой появляется Иван Александрович Ман – наш капитан. Большой, спокойный, уверенный, немного медлительный – он вносит порядок одним своим видом. Изредка приходит начальник морской части экспедиции профессор Игорь Владиславович Максимов – очень интеллигентный, нервный, немного неуверенный в себе. Он большую часть времени работает в своей огромной командирской каюте на полубаке. Снует, пытается чем-то помочь и приносит всякие новости ученый секретарь Соломон Борисович Слевич. Он преподаватель политэкономии из мореходного училища им. С. О. Макарова в Ленинграде. Уже много позже мы стали хорошими друзьями.

За погрузкой для зимовки досматривает Алексей Федорович Трешников – начальник новой зимовки в Антарктиде, сменяющий Михаила Михайловича Сомова. Он, как и Ман, большой и спокойный.

Под лабораторию нам отвели помещение в пятом твиндеке – примерно посередине между средней частью корабля и кормой. Попытки получить помещение ближе к центру тяжести корабля, где располагается гиро-компасная, успехом не увенчались. Это был второй рейс. Предыдущий отряд смирился с этой лабораторией. Отвоевать что-либо новое теперь просто невозможно. Вход в лабораторию рядом с трапом на палубу. Дальше к корме за лабораторий размещается кубрик младшего научного состава. Там поселили почти весь наш отряд: В. А. Гладуна, И. А. Епишина, П. А. Строева, А. М. Дунаева.

Все эти помещения по первоначальному назначению, пока «Обь» не стала научным судном, были грузовыми трюмами без иллюминаторов и с плохой вентиляцией. Меня поместили с третьим механиком Вадимом Козловым в каюте на главной палубе по левому борту.

Монтаж основной аппаратуры: двух маятниковых приборов и кварцевых часов с пультом управления – закончился быстро, и когда прекратились гомон, толчки и вибрации, мы начали опорные гравиметрические наблюдения. От них в значительной мере зависел успех дальнейших работ. Впрочем, основные опорные наблюдения были сделаны еще в Москве, на нашем исходном пункте в гравиметрическом подвале обсерватории на Красной Пресне.

На 15 ч 6-го ноября назначен прощальный митинг. Проводы были торжественными. Шутка ли! Экспедиция отправляется в Антарктиду. Правда, это вторая экспедиция, первая работала в прошлом году. У той были преимущества первооткрывателей, а эта – более фундаментальная. Она открывала Международный геофизический год (1957–1958 гг.) и должна была построить главную советскую полярную станцию – Мирный, а также начать выполнение основной научной программы МГГ.

Итак, в 15 ч начался митинг. Весь пирс и площадь перед ним заполнены народом. Здесь были рабочие порта, своими руками снаряжавшие корабль, представители трудящихся города.

На трибуне – руководство города и экспедиции. Прочувственные слова говорят И. А. Ман, А. Ф. Трешников, И. В. Максимов. Они пожелали экспедиции счастливого плавания, семи футов под килем, научных достижений во славу советской науки. Народ разошелся.

Ритуал соблюден. Но корабль – не готов. Настала ночь. Мы еще у пирса.

Утро 7 ноября. Мы сидим в кают-компании, завтракаем и в иллюминаторы видим Калининград.

Так или иначе, в день Октябрьской революции, 7 ноября 1956 г. в 16 ч. наш корабль отдал швартовы и медленно отвалил от причала. Плавание началось.

Вечереет. Идем малым ходом к выходу из залива. Медленно плывут назад дома города, причалы, доки, портальные краны. Стоящие у причалов и встречные суда приветствуют нас протяжными гудками – желают счастливого плавания. Мы отвечаем. Над заливом стоит почти непрерывный вой корабельных гудков. Мощный форштевень корабля не спеша режет свинцовую воду и отваливает ее с ритмичными всплесками белыми пенистыми слоями, совсем как плуг своим лемехом отваливает от борозды пласты земли. Как-то сразу стали осмысленны выражения «Пахари моря», «Бороздить моря».

Гудки все реже, залив шире, на берегах зажигаются огни. «Средний вперед!» Выходим из залива. Крепчает ветер. Ритм отвалов водяных пластов сбивается волной. Непередаваемое чувство радостной свободы перекрыло грусть разлуки.

Тем временем в сумерках исчезли берега и вскоре пропали огни. Мы остались наедине с морем.

Позвали к ужину. Ужин вдвойне торжественный. 7 ноября весь день работали, но вечером был праздник. И выход в рейс – тоже праздник. Вечер перешел в ночь.

Вышел на палубу, темень непроглядная. Палуба уходит из-под ног. Крепко держусь за поручни. Нос корабля то поднимается на волну, то куда-то проваливается. Штормовой ветер срывает, подхватывает пенные брызги, окатывает ими палубу. Неприветливо встречает нас ноябрьская Балтика.

К утру шторм утих. Волнение улеглось, и только редкие брызги срываются с гребешков зеленых волн. Корабль полным ходом режет бутылочно-зеленые воды Балтики.

В Кильском канале на малом ходу мы начали юстировку приборов и первые рабочие наблюдения.

До Антарктиды плыть не менее месяца. Пока мы в пути – подумаем о том, что такое Антарктида, как она сформировалась в процессе эволюции Земли, как ее открыли и что она представляет собой сейчас.

 

РОЖДЕНИЕ

АНТАРКТИДЫ

 

История эволюции Земли

Антарктида родилась в общем процессе эволюции и развития Земли, образования и обособления континентов и океанов. История Земли, в которую люди могут заглянуть, насчитывает около 570 млн. лет, т. е. составляет приблизительно восьмую часть ее возраста. Это тот период, когда на Земле уже существовали та или иная форма жизни, те или иные живые организмы, останки которых или слагают целые слои Земли, или попадаются в них и позволяют своим присутствием установить их возраст. Геологи знают и более древние, архейские породы, возраст которых достигает 4,5 млрд. лет, но это так называемые «глухие» слои, не содержащие летописи эволюции Земли.

Горные породы, слагающие земную кору, делятся на магматические, образовавшиеся в результате охлаждения и затвердевания жидкой магмы либо на поверхности Земли, либо в земных недрах, осадочные, накопившиеся в результате химического или механического выпадения осадка из воды или воздуха, жизнедеятельности животных и растительных организмов или переотложения продуктов разрушения других горных пород, и метаморфические, образовавшиеся в процессе существенного изменения осадочных и магматических пород под действием высоких давления и температуры. К первым относятся, например, граниты и базальты, ко вторым – известняки, пески и глины, к третьим – мраморы, сланцы и гнейсы.

В процессе жизни Земли ее поверхность – земная кора – испытывает различные движения: опускания, поднятия, горизонтальные сдвиги. При этом слои, ранее залегавшие горизонтально, часто сминаются в складки. Возникает то сложное строение верхних слоев Земли, которое и наблюдают геологи. Часто горные породы образуют ряд последовательных складок, как бы волн. Вогнутые складки получили название синклиналей, выпуклые – антиклиналей.

Сравнительно узкие и протяженные области Земли, в которых происходили длительное интенсивное прогибание и накопление мощных (до 20 км) толщ осадочных пород, образование складок и разрывов, активная вулканическая деятельность, а позже общее воздымание и горообразование, получили название геосинклиналей, или складчатых геосинклинальных поясов.

Складчатые пояса разделяют обширные (несколько млн. км) области земной коры, отличающиеся более спокойным режимом тектонических движений, называемые кратонами или платформами. В их строении большей частью четко различаются два структурных этажа: фундамент, образованный комплексами пород докембрия или палеозоя, сильно метаморфизованных, смятых в складки и прорванных магматическими породами, и платформенный, или осадочный, чехол, сложенный преимущественно осадочными породами сравнительно небольшой (в среднем 3–4 км) мощности, слабо смятыми в пологие складки.

В пределах платформ выделяются щиты – участки, на которых фундамент платформы обнажается на земной поверхности, и плиты – участки, на которых фундамент закрыт осадочным чехлом.

Кратоны занимают большую часть континентов и дна океанов. В пределах первых они образуют два ряда: северный – включает в себя Северо-Американский, Восточно-Европейский, Сибирский и (условно) Китайско-Корейский кратоны, южный – Южно-Американский, Африкано-Аравийский, Индостанский, Австралийский и Антарктический.

К складчатым геосинклинальным поясам относятся, например, Альпы, Крым, Кавказ, Копетдаг, Памир, Гималаи в Евразии, Анды и Кордильеры в Южной и Северной Америке, Риф и Телль-Атлас в Африке и многие другие горные системы.

Казалось бы, осадочные слои земной коры должны залегать горизонтально и в хронологической последовательности. Однако тектонические движения различных направленности и интенсивности, особенно сильные в геосинклинальных поясах, часто сминают эти горизонтальные слои, нарушают их расположение, порой ставят их вертикально и даже могут запрокинуть так, что более древние породы будут лежать в разрезе выше более молодых (явление шарьяжа).

Возраст пластов определяется по содержащимся в них окаменелым остовам живых организмов. Есть целая наука – палеонтология, изучающая, когда, какие организмы и как долго жили. Этой наукой установлена приблизительная шкала времени различных циклов развития Земли и их последовательности. Нам она понадобится, когда мы будем говорить об образовании и эволюции Антарктиды.

Вся история земной коры делится на зоны, эры, периоды (табл. 1) и эпохи.

Фанерозойский эон, отличающийся от предыдущих бурным развитием жизни, делится на три эры: кайнозойскую – новая эра, насчитывающая приблизительно 65 млн. лет, мезозойскую – средняя эра длительностью 165 млн. лет и палеозойскую – самая древняя эра – 340 млн. лет. Слои земной коры, относящиеся к этим эрам, несут в себе самые значительные следы былой жизни. Хотя примитивные формы жизни, по-видимому, начали образовываться уже около 3 млрд. лет назад, древние пласты этого возраста имеют весьма глухие следы жизни или вовсе не имеют их. Они называются докембрийскими, т. е. лежат ниже самого древнего периода фанерозоя – кембрийского. Названия периодов даны либо по содержащимся в них породам (меловой, каменноугольный), либо по характерным местам, где были впервые описаны их разрезы и определена датировка (пермский, девонский, кембрийский, ордовикский).

 

О механизме эволюции земной коры

Одной из первых научно обоснованных теорий эволюции земной коры была теория катастроф Кювье. Схематично она заключается в том, что в результате какой-либо общеземной или космической катастрофы вымирает существующий вид жизни. Новые формы жизни образуют следующие слои. Катастрофы же вызывают и изменения форм рельефа. Будучи внутренне противоречивой, эта гипотеза не могла просуществовать долго, хотя и объясняла многие явления. На смену ей пришла эволюционная концепция, которой мы придерживаемся и теперь, однако пути эволюции могут быть различными. Одной из эволюционных гипотез была контракционная гипотеза. Эта гипотеза, казалось, неплохо объясняла процесс горообразования, но не могла объяснить разновременность этого процесса и асимметричное расположение материков северного и южного полушарий. Гипотеза состояла в том, что по мере остывания Земли образовывалась твердая внешняя оболочка – земная кора, которая по мере дальнейшего сжатия внутреннего расплавленного вещества растрескивалась и сминалась, как печеное яблоко при остывании. Так в одних местах появились горные области, в других – образовались впадины. Опустившиеся области заполнялись водой и образовывали впоследствии океаны. При таком механизме по мере сжимания Земли горообразовательный процесс должен был идти более или менее равномерно по всей Земле, тогда как мы встречаем и совсем молодые складчатые области, где процесс не завершен и сейчас (Альпы), и совсем древние, даже разрушенные временем (например, Урал и Тиман).

В рамках этой гипотезы невозможно согласовать скорость охлаждения со сжатием. Исходя из коэффициента объемного сжатия, можно подсчитать, что для образования только одной горной цепи длиной несколько тысяч метров Земля должна охладиться на 1000 °C. Тысяча горных цепей или одна горная страна типа Гималаев потребуют охлаждения Земли на 1 млн. градусов. Такой температуры нет и в ядре Земли. Сейчас считают, что температура ядра около 4000–5000 °C.

Позже возникла идея расширяющейся Земли. Причиной могли быть радиоактивный разогрев, общее тепловое расширение вещества Земли и даже уменьшение гравитационной постоянной. Идеей механизма такого расширения, заимствованной из физики и искусственно приспособленной к геологии, была гипотеза П. Дирака об изменениях гравитационной константы.

Любой механизм контракционной гипотезы не может объяснить существенную разновременность процессов горообразования.

Расширение Земли должно вызывать растрескивание коры и образование океанических впадин. Неоднородные конвективные течения магмы, вызванные внутренним разогревом, могли явиться причиной вертикальных движений, подъемов и опусканий целых областей, в результате которых образовались горы. Но и в случае сжимания Земли, и в случае ее расширения должна сохраняться некоторая симметрия континентов и океанов северного и южного полушарий. Основываясь на этом соображении, задолго до открытия Антарктиды люди считали, что должны существовать один или даже несколько южных материков.

Более обоснованной явилась пришедшая на смену концепция холодного происхождения Земли. Разогрев происходит, с одной стороны, от сжатия, с другой – от радиоактивных процессов. Этот механизм может объяснить неравномерность во времени разогрева различных областей. Этот же разогрев может вызывать явления вулканизма и конвективные движения в мантии (так называется оболочка Земли, лежащая под корой и доходящая до глубин 2900 км), которые, в свою очередь, могут вызвать вертикальные движения земной коры. Эти движения и приводят к тому, что современные горные страны, высоко воздымающиеся над уровнем океана, сложены из пород, образовавшихся под водой, т. е. горы эти когда-то были дном моря – областью накопления морских осадков.

 

Гипотеза континентального дрейфа

Пангея, Гондвана и Лавразия

Если внимательно посмотреть на карту мира, можно заметить сходство контуров западного побережья Африки и восточного Южной Америки. Сдвинув эти континенты, мы получим почти без разрывов единый континент. Это наводит на мысль, что когда-то Африка и Америка составляли единый материк. Изучение окаменелостей древней флоры и фауны, например каменноугольного периода, показывает их идентичность на обоих континентах. По-видимому, прежде они действительно не разделялись. Согласно концепции вертикальных движений область Атлантики, когда-то соединявшая оба континента, опустилась, образовав Атлантический океан. Это породило фантастические легенды об Атлантиде. Почему при погружении должно было возникнуть подобие береговых линий?

В 1912 г. немецкий ученый – геофизик А. Вегенер сформулировал четкую новую гипотезу эволюции Земли. Он считал, что основные движения, формирующие лик Земли, – горизонтальные. Добавив к поступательным горизонтальным перемещениям вращательные,

А. Вегенер нашел сходство очертаний береговых линий и других континентов. Он не ограничился только внешним изучением. Исследовав окаменелости флоры и фауны, а также палеоклимат – периоды оледенения, он окончательно сформулировал свою гипотезу.

В древние времена, примерно 300 млн. лет назад, существовал на Земле единый континент – Пангея и единый океан – Панталасса. С течением времени этот материк начал раскалываться и расползаться. Сначала образовались два новых праконтинента: Гондвана, включающая в себя Африку, Южную Америку, Индию, Австралию и Антарктиду, и Лавразия, состоявшая из Евразии и Северной Америки. В дальнейшем и эти два праматерика раскололись, расползлись и заняли современное положение.

Гипотеза Вегенера получила название концепции дрейфа континентов.

Идея существования праматерика зародилась в умах ученых задолго до появления гипотезы Вегенера: на нее наводили следы одинаковых климата, растительности и ископаемых животных. И название Гондвана возникло давно – его дал Зюсс еще в прошлом веке по названию древнего индийского племени Гондов.

Гипотеза нашла многих сторонников, однако базировалась она на шатком основании – не был предложен возможный механизм движения. Концепция вертикальных движений, вызываемых неравномерным разогревом и охлаждением недр и конвекционной миграцией (течениями) пластической магмы, объясняла значительно больше явлений, и очень быстро (уже к тридцатым годам) концепция континентов умерла, точнее, о ней начали забывать. Оставались некоторые энтузиасты, например профессор С. Кэрри из Тасманского университета, который много сил отдал изучению палеомагнетизма и древних оледенений. Профессор Э. Буллард из Великобритании сделал реконструкцию Гондваны по сечениям изобат на разных уровнях и получил наилучшее совмещение по изобате 1000 м (рис. 1).

Рис. 1. Реконструкция Гондваны (по Л. П. Зонненшайну и А. М. Городницкому

I – контур современных материков; 2 – контур Гондваны

Второй Международный геофизический год вызвал к жизни обширную программу постоянных, продолжающихся до сих пор геолого-геофизических исследований. Изучались магнитное и гравитационное поля Земли, особенно океанов, началось и систематически проводится глубоководное бурение, исследуются морфология и геологическое строение дна океанов, сейсмические явления и вулканизм, строение глубоководных впадин и желобов, островных дуг и вулканов, распределение теплового потока. Систематически всеми геолого-геофизическими методами начали изучать Антарктиду. Накопилось много данных, которые на новой основе возродили концепцию дрейфа континентов.

 

Палеомагнетизм. Возрождение идеи дрейфа

Известно, что железо и никель могут намагничиваться и удерживать это свойство неопределенно долго. Эти металлы получили название ферромагнетиков. Ферромагнетики обладают полярностью. Концы магнитов одинаковых полюсов отталкиваются, различных – притягиваются. Земля – тоже магнит, один из полюсов которого находится вблизи Северного, другой – Южного географических полюсов. На этом основано устройство компаса, стрелка которого всегда указывает направление юг – север.

Постоянный магнит не выдерживает высоких температур. Намагниченное железо, нагретое до 770 °C, теряет свою намагниченность. Никель теряет намагниченность при 358 °C. Температура, при которой магнит теряет свои свойства, называется «точкой Кюри» в честь физика, открывшего это явление. Вследствие того что железное ядро Земли имеет температуру намного выше точки Кюри, Земля не может быть постоянным магнитом, и происхождение ее магнетизма – явление сложное и не объясненное до конца и поныне. Мы– уже сказали, что магнитные полюса Земли не совпадают строго с географическими. Их положение медленно изменяется. Отклонение магнитной стрелки от направления меридиана называется магнитным склонением. Оно для различных меридианов различно. Изменения магнитного склонения имеют короткопериодические вариации и вековой ход, но за короткий интервал наблюдений за магнитным полем Земли нельзя установить, как изменялось магнитное поле Земли и каково оно было в глубокой древности.

Но вот недавно, в 40-х годах нашего столетия, было обнаружено интересное явление. Изверженные вулканические горные породы при остывании, проходя точку Кюри, намагничиваются, причем полярность образовавшегося магнита совпадает с полярностью земного магнетизма и силовые линии магнитного поля этого магнита совпадают с силовыми линиями земного магнитного поля. Таким образом, оказалось, что постоянным магнитом могут быть не только ферромагнетики, но и все изверженные породы, однако эти магниты очень слабые. Выяснилось и другое – изверженные и остывшие породы навсегда сохраняют свой магнетизм, обладают как бы «вмороженным» магнитным полем. Лавы, изверженные и застывшие в наше время, обладают магнитной направленностью, соответствующей направленности современного магнитного поля Земли, от которого они намагнитились. Породы, изверженные и застывшие многие тысячи_и миллионы лет назад, имеют направление намагниченности, соответствующее направлению магнитных силовых линий Земли того времени, т. е. указывают направление на существовавший тогда магнитный полюс. Иными словами, по ним можно установить положение магнитных полюсов Земли в ту далекую эпоху. Отсюда название – палеомагнетизм. Может быть, лучше звучало бы название реликтовый магнетизм. В палеомагнетизме мы видим как бы фотографический отпечаток магнитного поля Земли далеких эпох. Определив направление реликтовых магнитных силовых линий изверженной породы в одном месте, мы получим направление на магнитный полюс того времени. Если мы изучим реликтовое магнитное поле одновозрастных образцов пород в разных местах, то на пересечении направлений их полярности найдем точное положение магнитного полюса Земли того времени. Надо только определить возраст исследованных образцов. Но это мы умеем делать, во-первых, методами палеонтологии, во-вторых, более точно методом радиоактивного анализа.

Результаты изучения пути движения магнитных полюсов Земли методом палеомагнетизма явились главным доказательством дрейфа континентов и возродили, казалось умершую, гипотезу.

Предположим, что конфигурация континентов во все времена была неизменна. Тогда направления реликтовых магнитов одинаковых эпох на всех континентах должны пересечься в точках положения полюса тех эпох. Находя эти положения последовательно для различных эпох, получим путь перемещения магнитного полюса. Однако, когда проделали эту работу, оказалось, что древние положения полюса, полученные по данным палеомагнетизма, для разных континентов различны, т. е. для каждого континента был свой магнитный полюс и блуждал он со временем по-своему.

Рис. 2. Пути блуждания магнитного полюса:

а – относительно современного положения материков; б – относительно материков, соединенных в Лавразии; 1 – кембрий; 2 – силур; 2 – силур – девон; 3 – поздний карбон; 4 – Пермь; 5 —триас; 5 – ранний триас; 5" – поздний триас; 6 – юра; 7 – мел

На рис. 2 показаны пути блуждания полюса, полученные по данным палеомагнетизма для Европы и Северной Америки. Здесь хорошо видно, что чем дальше мы уходим в прошлое, тем больше расходятся точки северного магнитного полюса, восстановленные по реликтовому магнетизму для Америки и Европы (рис. 2, а). Почему же для каждого континента свой магнитный полюс? Или изменяется направление реликтового магнитного поля? И то и другое кажется противоестественным. Не проще ли предположить, что повернулись или передвинулись на другое место сами материки.

Можно заняться такой игрой: вырезать из картона фигурки материков, к ним жестко прикрепить линию блуждания полюсов и начать передвигать материки так, чтобы они соединились в один материк. И произойдет удивительное – для кембрийского периода полюса совпадут. Совмещая магнитные полюса разных континентов для разных периодов, получим расположения материков, соответствующие этим периодам (рис. 2, б). Так идея дрейфа континентов получила новый импульс для своего развития. Доказательство казалось убедительным, и число сторонников так называемого мобилизма начало быстро возрастать.

 

Следы оледенения. Схожие геологические формации

Время от времени на Земле наступают периоды оледенения. Мы не знаем точно причин возникновения этого явления, но следы ледниковых периодов весьма четко запечатлены на Земле в виде характерных ледниковых борозд, указывающих на движение ледника, ледниковой морены – скоплений обломочных горных пород, приносимых ледником, ледниковых долин и других специфических форм рельефа. Последнее оледенение в северном полушарии, захватившее значительную часть Евразии, закончилось около 10 млн. лет назад. А 300 млн. лет назад в южном полушарии оно захватило колоссальные пространства в Америке, Африке,

Индии, Австралии и Антарктиде. Если эти материки соединить по подобию береговых линий и направлению реликтового магнитного поля, т. е. реконструировать Гондвану, то и области оледенения соединятся в единую область в южной части этого праконтинента.

Еще одно доказательство этой гипотезы получили геологи в результате исследования большого числа образцов древних горных пород с разных континентов радиоактивным методом. Это уже точный физический метод. Было установлено, что одинаковые древние до-докембрийские породы, т. е. имеющие возраст порядка 600 млн. лет, имеются на всех континентах Гондваны, причем их дислокация отвечает ее реконструкции. Так, кембрийские породы южной оконечности Америки переходят в аналогичные породы Антарктического полуострова Антарктиды. Они же в Восточной Антарктиде переходят в породы Африки, Австралии и Новой Зеландии.

 

Подводные хребты и рифты, желоба и островные дуги

Возрождению идеи дрейфа континентов способствовали исследования океанического дна, ведущиеся удивительно быстрыми темпами последние три десятилетия. За это время в корне изменились представления о строении дна океанов. Одной из достопримечательностей его строения являются срединные хребты. Такой хребет в Атлантическом океане тянется от Гренландии к югу, как бы повторяя контур материкового берега. Южнее оконечности Африки он поворачивает на восток. Огибая Африку, переходит в Западно-Индийский срединный хребет, идущий на северо-восток, и соединяется с Центрально-Индийским хребтом, имеющим северо-западное простирание. Последний, в свою очередь, переходит в Аравийский и в разлом Красного моря. На юге Центрально-Индийский хребет приобретает субширотное направление и, огибая Австралию, переходит в Тихоокеанский, идущий к берегам Южной Америки.

Эти хребты пологие. Их высота – 2000–3000 м от среднего уровня дна, а ширина поднятия 2000–3000 км. Таким образом, средняя, самая удаленная от берегов часть океана сравнительно мелководна, и наибольших глубин океан достигает в областях между хребтом и континентом. Вдоль средней, наиболее высокой части хребта тянется глубокая долина с крутыми склонами – разлом, получивший название рифта. От этого рифта, перпендикулярно к нему отходят так называемые трансформные разломы, которые могли бы возникнуть, если бы части, образующие стенки рифта, перемещались параллельно хребту с разными скоростями. Такие же рифты имеются и на континентах. Большой Африканский рифт тянется в меридиональном направлении от оз. Чад к Красному морю, которое отделяет Африку от Аравии.

Другой интересной особенностью строения океанов являются глубоководные желоба и сопутствующие им островные дуги.

Глубоководные желоба – это узкие протяженные глубокие впадины океанического дна, расположенные всегда вдоль берегов океана и близко к ним. Им сопутствуют цепочки, как правило, вулканических островов, расположенных параллельно желобу со стороны континента, или горные цепи на берегу континента. Такие структуры особенно развиты вдоль тихоокеанского побережья Азии и Америки. От берегов Аляски желоб тянется вдоль Алеутской островной дуги. Далее идет Курильский желоб с Курильской дугой и Японскими островами. На юго-восток от него отходят Идзу-Бонинский и Марианский желоба с Марианской островной дугой и желоб Кермадек-Тонга уже на широте Австралии.

Вдоль цепочки островов Новая Гвинея, Суматра, Сулавеси, Ява протянулся глубоководный Яванский желоб, а вдоль западного побережья Южной Америки параллельно горным цепям Кордильер тянется Перуанско-Чилийский желоб.

Океанические желоба очень глубоководны. Так, Марианский, Курильский и Яванский достигают глубин от 8 до 11 тыс. м. Нигде в других областях Мирового океана таких глубин нет.

Еще одна особенность желобов и островных дуг: они всегда сейсмически активны – в них очень часты землетрясения и проявления вулканизма. Например, в Японии бывает по нескольку тысяч небольших землетрясений в год и часто происходят катастрофические землетрясения. Это же относится к Чили, Индонезии.

Над желобами всегда бывают большие отрицательные аномалии силы тяжести, а это означает, что земная кора и часть верхней мантии в этих областях не пришли в равновесное состояние и испытывают большие подвижки.

 

Полосовые магнитные аномалии. Изменение возраста коры

В конце 50-х – начале 60-х годов американскими геофизиками В. Вакье, Р. Мейсоном и А. Раффом при изучении магнитного поля в районе Восточно-тихоокеанского хребта вблизи о. Ванкувер были обнаружены полосовые магнитные аномалии, тянущиеся вдоль хребта по обе его стороны. Протяженность их несколько сот километров, ширина 20–30 км и напряженность магнитного поля приблизительно 160 мА/м. Оказалось, что у последовательных полос обратная полярность. В теории палеомагнетизма известны такие явления, как инверсии магнитного поля, происходящие по неизвестной нам причине с интервалами от десятков до сотен тысяч лет. При инверсиях изменяется полярность магнитного поля Земли. Это установлено по остаточной намагниченности древних горных пород, возраст которых определялся радиоактивным методом. Этим же методом был установлен возраст намагниченных пород, взятых с океанического дна из областей полосовых аномалий. Оказалось, что чем дальше от срединного разлома подводного хребта расположена полоса магнитной аномалии, тем возраст образца старше.

К 1966 г. А. Коксом, Р. Доуэлом и Д. Дарлимплем, подробно изучившими реликтовую намагниченность большого числа образцов древних горных пород, их возраст калиево-аргоновым методом и полярность, была установлена шкала последовательности и возраста инверсий магнитного поля Земли.

Таким образом, появилась возможность сравнить изменение возраста дна океана вкрест полосовых аномалий с эпохами инверсий магнитного поля. Получилось прекрасное совпадение, возраст каждой полосы определенной магнитной ориентации соответствовал возрасту магнитной инверсии. Объяснить это можно было только одним, а именно тем, что дно океана раздвигается от срединного разлома хребта в обе стороны, в срединном разломе изливается вещество горячей магмы, остывает и, проходя через точку Кюри, намагничивается с той полярностью, которая существует в это время. Эта часть дна, продолжая двигаться от осевой части хребта, сохраняет реликтовую намагниченность заданной полярности. При следующей инверсии породы, остывшие до точки Кюри, намагничиваются уже с другой полярностью. Возникает следующая полоса магнитной аномалии и т. д. Это объяснение полосовых магнитных аномалий дали Ф. Вайн, Д. Метьюз и Л. Морли.

Теперь можно было сопоставить изменение интенсивности аномалий с эпохами инверсий магнитного поля. Но было сделано больше – Вайном была задана некоторая разумная гипотетическая скорость расползания дна и вычислена кривая изменения интенсивности аномалий со временем. Эта гипотетическая кривая удивительным образом совпала с кривой, составленной по фактическим возрасту и интенсивности намагниченности образцов (рис. 3). Полученное совпадение положило начало теории разрастания дна океанов, по предложению Р. Дитца названной «спредингом» (от английского to spread – раздвигаться, расширяться).

Рис. 3. Сравнение интенсивности наблюденных (1) и вычисленных (2) полосовых магнитных аномалий

В дальнейшем аналогичные работы были проделаны в области хребтов Антарктического, Срединно-Индийского и Рейкьянес у Исландии, и всюду результат один: наблюдались полосовые аномалии, которые прекрасно объяснялись раздвижением океанического дна и магнитными инверсиями.

Хронология инверсий магнитного поля прослежена по палеомагнитным данным на континентальных породах на протяжении около 4 млн. лет, т. е. незначительно выходит из четвертичного периода и неогена и охватывает только восемь магнитных инверсий. Исходя из предположения, что и дальше каждая полоса является результатом инверсий и что дно расширяется с одинаковой скоростью, была выполнена экстраполяция расширения дна на 171 инверсию, что соответствовало 76 млн. лет. Теперь в руках геофизиков появились данные для составления карты возраста дна океанов: по равновозрастным магнитным аномалиям были проведены изохроны. Конечно, этот метод, как и всякий экстраполяционный метод, не был надежен и вызывал сомнения. Однако эти сомнения рассеялись после того, как были выполнены бурение и отбор образцов осадочных пород с морского дна. Эта колоссальная, не уступающая по грандиозности космическим исследованиям, работа была выполнена в рамках проекта глубоководного бурения в период 1968–1980 гг. с борта специального судна «Гломар Челленджер». Для отобранных образцов был определен абсолютный возраст палеонтологическим методом, т. е. по останкам окаменелых флоры и фауны, и радиоактивным, т. е. по соотношению (в процентах) распавшегося и нераспавшегося вещества. Это исследование с учетом временного сдвига осадконакопления полностью подтвердило расчет, сделанный по полосовым аномалиям. Таким образом, там, где не было непосредственных измерений возраста намагниченных пород, экстраполяция была подтверждена вполне надежной интерполяцией.

Итак, гипотеза разрастания дна Мирового океана получила настолько надежные подтверждения, что многие считают ее установленным фактом. Идея постоянного движения дна океана отвечает и на вопрос, почему океан (существующий миллиарды лет) имеет столь тонкий слой осадков (средняя мощность его 200 м), тогда как на континентах в осадочных бассейнах он достигает 20 км.

 

О новой тектонике плит

Все ранее описанные явления привели к возрождению идеи дрейфа континентов, но на новой, весьма убедительной основе. Строение внешнего слоя Земли представляется следующим образом: верхний слой коры состоит из твердых кристаллических пород, в большинстве своем покрытых осадочным чехлом. По мере углубления в Земле повышается температура. На глубине около 70 км температура достигает 1000–1200 °C – величины, при которой начинается плавление кристаллических пород. При этой температуре, получившей название температуры точки Солидуса, происходит частичное плавление вещества, а полное его плавление – в интервале температур, соответствующих глубинам между 70 и 260 км, где твердая земная кора переходит в пластическое вещество верхней мантии.

Эти переходы четко отражаются в изменении скорости распространения поперечных сейсмических волн, которая быстро возрастает от 3,6 до 4,6 км/с на глубине приблизительно 30 км, получившей название границы Мохоровичича, далее медленно растет примерно до 4,8 км/с на глубине около 70 км, затем резко падает до 4,2 км/с. Здесь начинается плавление. Это и есть точка Солидуса.

Кровля размягченного плавлением слоя мантии получила название астеносферы. Слои, лежащие выше и состоящие из твердого кристаллического вещества, называют литосферой. Таким образом, создается возможность скольжения твердой литосферы по размягченной поверхности астеносферы.

Литосфера представляется не цельной сферической оболочкой, подобной яичной скорлупе, а состоящей из некоторого числа плит, находящихся в непрерывном движении и несущих на себе материки. В такой схеме можно представить себе три основных типа движения. Первый тип – плиты раздвигаются. Такое движение называется дивергенцией. Второй тип – плиты движутся навстречу друг другу и сталкиваются, т. е. происходит конвергенция, при этом одна плита может поддвигаться под другую. Это явление называется субдукцией. Наконец, третий тип – плиты скользят параллельно друг другу. Каждый тип движения характеризуется специфическими явлениями. Все типы движения взаимно связаны и происходят одновременно.

Областью расхождения плит являются срединно-океанические хребты. Однако между расходящимися плитами не может образовываться пустота. Она заполняется нижележащей расплавленной магмой, которая, выходя на поверхность океана, застывает, образуя новые части океанического дна. Больше того, внутренние процессы в мантии, ее конвективные течения, по-видимому, являются тем механизмом, который заставляет раздвигаться океанические плиты. Так происходят нарастание дна океана и раздвижение плит. Доказательства этого – систематическое старение дна океана по мере удаления от срединного хребта, наличие реликтовых намагниченных пород и их старение по тому же закону. Плиты раздвигаются, скользя по астеносфере. При этом может перемещаться и сам срединный хребет, который не всегда имеет симметричное нарастание вновь образовавшейся коры. Отсутствие симметрии приводит к двум явлениям: образованию трансформных разломов, столь характерных для срединных хребтов, и общему перемещению хребта вместе с нарастающей корой. Очевидно, что, нарастая и раздвигаясь, плита приходит во взаимодействие с другими плитами. Это взаимодействие может иметь характер столкновения или проскальзывания.

Второй тип взаимодействия плит (столкновение, или конвергенция) также может иметь различный характер. Мы уже упоминали о возможности перемещения самого океанического хребта вследствие несимметричного разрастания дна и, в конечном итоге, поддвигания хребта при столкновении под другую плиту. Такой случай, по-видимому, имел место при столкновении древней океанической Тихоокеанской плиты Феникс с Южно-Американской, которое привело к образованию береговой горной цепи Анд.

Другое дело, когда просто сталкиваются движущиеся континентальная и океаническая плиты. В этом случае происходит нечто, совсем не похожее на предыдущий случай. Двигающаяся, или разрастающаяся, океаническая плита, встречая континентальную плиту, погружается под нее, образуя по фронту континента глубокий желоб, через который и происходит субдукция. В то же время из недр мантии поднимается выжимаемая плитой магма и отрывает краевую часть континента, расшатанную уже при поддвигании плиты. Эта краевая часть под давлением той же, поступающей из недр магмы отходит от континента, образуя островные дуги и между ними и материком – окраинные моря. За довольно молодое происхождение окраинных морей, островных дуг и континентальных желобов говорят мелководность этих морей, тонкий осадочный слой на их дне и большие отрицательные гравитационные аномалии над желобами. Будь эти образования древними, большой вынос осадков с континента давно бы заполнил эти моря или во всяком случае создал бы мощный слой осадков, а постоянно стремящаяся к равновесию земная кора выравняла бы отрицательные аномалии перемещением в область малых давлений более плотных масс. Характерным примером такого поддвигания является тихоокеанское побережье Азии с системой глубоководных впадин, желобов и островных дуг.

Подтверждением описанной схемы погружения океанической плиты под континент является распределение очагов землетрясений и теплового потока.

В распределении сейсмически активных областей видна определенная закономерность. Очаги землетрясений размещаются узкими полосами под островными дугами вдоль активных побережий; таковы западные побережья обеих Америк, срединно-океанические хребты, некоторые внутриконтинентальные горные области: Гималаи, Кавказ – Карпаты – Альпы, Скалистые горы Северной Америки. В других областях Земли очагов землетрясений практически нет.

Глубокофокусные землетрясения, лежащие на глубинах более 100 км, почти всегда приурочены к глубоководным желобам. Здесь же очень велика и сейсмическая активность на малых глубинах. Кстати, мелкофокусные землетрясения – наиболее разрушительны. Очаги землетрясений располагаются на наклоненной в сторону континента плоскости, получившей название зона Заварицкого – Беньофа до глубин 500–600 км. Это свидетельствует о том, что погружающаяся океаническая плита, по границам которой происходят землетрясения, остужает окружающую мантию до твердого состояния, при котором только и возможно накопление и мгновенное высвобождение энергии. По расчетам Мак-Кензи холодная плита толщиной 100 км при погружении в мантию со скоростью нескольких сантиметров в год может оставаться холодной до глубин 600–700 км.

Сила тяжести, направленная в сторону погружения тяжелой океанической плиты, и сила давления разрастающегося океанического дна под напором изливающейся магмы в срединном океаническом хребте – главные движущие силы при погружении плиты.

С линиями островных дуг совпадает и распределение вулканов. Однако вулканы в основном находятся на континентальной стороне островных дуг, тогда как подавляющее большинство очагов землетрясений – на океанической. Соответственно и тепловой поток имеет низкое значение с океанической стороны островной дуги и высокое – с континентальной. Над желобом он всегда низок. Отсутствие вулканов и низкий тепловой поток со стороны желоба и океанической стороны островной дуги, а также размещение мелкофокусных землетрясений с той же океанической стороны хорошо согласуются с идеей поддвигания холодной океанической плиты и опять же подтверждает концепцию тектоники плит. Однако с этих позиций пока необъясним факт высокого теплового потока и размещения вулканов со стороны континента.

Теория прямого столкновения континентальных плит разработана менее других теорий. В этом случае будут иметь место дробление пород, сминание их в складки, образование гор. По-видимому, в зоне прямого столкновения образовались Гималаи, Альпы, Кавказ.

Третий тип взаимодействия плит – это параллельное проскальзывание, при котором образуются трансформные разломы. Типичный пример такого движения – разлом Сан-Андреас в Калифорнии.

Экстраполируя разрастание дна океана в далекое прошлое, можно представить себе ряд циклов развития океана и орогенеза. Приняты три типа развития океанов: тихоокеанский, атлантический и средиземноморский. Тихоокеанский тип характеризуется наличием субдукции и образованием береговых горных цепей. Вследствие раздвижения континентов происходят постепенное закрытие Пра-Атлантического океана и образование праматерика Пангеи. В последующем Пангея раскололась, и начался новый цикл развития океана – атлантический. Для этого цикла характерно раздвижение дна океана от Атлантического срединного океанического хребта без субдукции. При этом нарастающие Атлантические плиты раздвигают окружающие их континенты и ведут к сокращению области Тихого океана, дно которого погружается под континенты.

При этих типах раздвижения океана происходит разрастание дна в области срединных хребтов.

При средиземноморском типе развития хребты отсутствуют, разрастания дна океана не происходит, но имеются границы поддвигания. Этот тип (если он существует), по-видимому, является переходным.

 

О механизме движения плит

В качестве механизма движения плит с самого рождения новой плитовой тектоники принималась конвекция в мантии. По мере возникновения трудностей в этом объяснении находились новые аргументы, позволяющие возродить казалось бы уже отвергнутый механизм. Первое сомнение – возможна ли конвекция в такой плотной и вязкой массе, как мантия Земли. На этот вопрос был дан положительный ответ в результате применения закона конвекции Рэлея. Согласно этому закону тепловая конвекция начинается тогда, когда безразмерная функция

R = abgh4/rn·1000,

где а – коэффициент теплового расширения; b – температурный градиент, т. е. скорость увеличения температуры с глубиной; g – ускорение свободного падения; r – температуропроводность; n – вязкость; h – толщина слоя жидкости.

Для слоя всей мантии Земли R· 106, что на три порядка больше критической величины, т. е. мантия способна к конвекции.

Учет твердого ядра усложнил задачу. Однако для такого случая теория Рэлея была развита С. Чандрасекаром, показавшим, что для этих условий общая конвекция через всю Землю заменяется ячейками конвекции. Возражение, основанное на том, что конвекция будет идти лишь в тонком слое астеносферы, а это сведет ячейки к конвективным ячейкам с размерами, равными толщине астеносферы, т. е. примерно к 100 км, кажется, снимается японскими физиками X. Такеути и М. Сакатой, построившими модель конвекции в среде с увеличивающейся с глубиной вязкостью. По их модели конвекционный поток не однороден, а ускоряется в верхних, менее вязких слоях и идет очень медленно на глубине, охватывая всю мантию. Мантийная конвекция пока принимается в качестве механизма движения плит.

 

Общая картина современного положения плит и скоростей их движения

В результате анализа обширных материалов, собранных при океанологических исследованиях в основном за последние 30 лет, можно построить общую схему размещения плит на земном шаре и скоростей их движения (рис. 4). Большие скорости имеют плиты, которые испытывают поддвигание под соседние плиты на значительном протяжении своих границ. Это плиты Тихоокеанская, Кокос, Наска, Филиппинская и Индийско-Австралийская. Скорость их движения 6–9 см/год. Отсюда можно заключить, что скорость не зависит от площади плиты, но зависит от отношения длины границы субдукции к периметру плиты. Это свидетельствует о том, что главной движущей силой плит является затягивание их в области субдукции. Наблюдается корреляция между площадью континентальной части плиты и скоростью движения. Плиты, несущие континенты, имеют скорость порядка 2 см/год, тогда как чисто океанические, но не испытывающие субдукции, – 4 см/год.

Рис. 4. Литосферные плиты и направление их движения:

а – дивергентная граница; б – конвергентная граница; в – характер границы не установлен; г – трансформный разлом; д – направление движения плит

Плиты: I – Филиппинская, II – Индийско-Австралийская, III – Тихоокеанская, IV – Кокос, V – Северо-Американская; VI – Наска, VII – Карибская, VIII – Южно-Американская, IX – Евразийская, X – Анатолийская, XI – Аравийская, XII – Африканская, XIII – Сомалийская, XVI – Антарктическая; поднятия: XV – Австрало-Антарктическое, XVI – Тихоокеанское; желоба: / – Алеутский, 2– Курило-Камчатский, 3 – Японский, 4 – Марианский, 5 – Яванский, 6 – Тонго, 7 – Перуано-Чилийский; хребты: 8 – Рейкьянес, 9 – Срединно-Атлантический, 10 – Аравийско-Индийский (Карлсберг), // – Центрально-Индийский, 12 – Африкано-Антарктический и Западно-Индийский

Новые технические средства высокоточной геодезии позволяют непосредственно измерить скорость и направление движения плит земной коры, если таковые существуют. Такими средствами являются интерферометры с большой базой – два или больше далеко разнесенных на земной поверхности радиотелескопа, принимающих излучение от одного и того же квазара. Разница во времени поступления сигнала на каждый телескоп позволяет с точностью до единиц сантиметров получить расстояние между телескопами. Измерения, произведенные через несколько лет, дают направление и скорость перемещения мест установки телескопов. Второй способ основан на измерении расстояния между станциями с помощью отражения лазерного сигнала от геодезического искусственного спутника Земли. В результате таких измерений, ведущихся уже более 10 лет, установлено, что Евразийская и Северо-Американская плиты медленно расходятся со скоростью 1,5 см/год. Тихоокеанская плита удаляется от Северо-Американской со скоростью 4 см/год, а Индийско-Австралийская, надвигается на Тихоокеанскую плиту со скоростью 7 см/год. Вдоль разлома Сан-Андреас в Калифорнии плиты смещаются с относительной скоростью 7 см/год. Промежуток времени этих наблюдений еще слишком мал, чтобы убедительно доказать монотонность таких перемещений, а стало быть, и реальность континентального дрейфа. Проблема будет решена в результате накопления наблюдательных данных.

 

Реконструкция Гондваны и место в ней Антарктиды

Теперь, когда описаны явления, приведшие к возникновению и развитию теории тектоники плит, расчету направлений и скоростей их движения, настало время сделать общий обзор эволюции лика Земли и обособления интересующего нас континента – Антарктиды.

200 млн. лет назад в конце триасового периода существовали единый материк Пангея и единый океан Панталасса – предок современного Тихого океана. С западной стороны праокеан имел глубоко вдающийся в округлые формы праматерика залив, названный морем Тетис. Это зародыш Средиземного моря.

Вероятно, в это время существовали две основные литосферные плиты: материковая и океаническая.

Под влиянием мантийных процессов, скорее всего конвекции в мантии, в наиболее слабых местах литосферы стали образовываться трещины, ограничивающие литосферные плиты, и началось раздвижение этих плит. Главный разлом отделил северную часть Пангеи от южной. В этот период образовались два праматерика: Лавразия – северный материк и Гондвана – южный. Море Тетис углубилось и из залива превратилось в открытое внутреннее море. Плита Лавразия начала поступательное движение на север и вращательное по часовой стрелке, а Гондвана – делиться на Афро-Американскую и Австрало-Антарктическую части. Возникли срединно-океанические хребты, по которым происходило раздвижение плит. К концу триаса вполне оформились три праконтинента – Гондвана распалась на два. До конца юры, т. е. ко времени, отстоящему от нас на 140 млн. лет, полностью раскрылось Средиземное море, а от Австрало-Антарктической плиты отделилась Индийско-Австралийская, которая под влиянием активного расширения океана начала быстро перемещаться на север. Между Африканской и Южно-Американской плитами окончательно оформился разлом, и начал развиваться Атлантический океан (см. рис. 4). Ко времени мелового периода (65 млн. лет) окончательно оформился Атлантический океан, активно расширяющийся в обе стороны от срединного Атлантического хребта. Средиземное море закрылось со стороны древнего Те-тиса на востоке и открылось на западе, соединившись с Атлантикой. Начался распад Лавразии.

За последние 65 млн. лет лик Земли принял современный вид. В этот период Южная Америка окончательно отошла от Антарктиды, сохранив след былого соединения: островную и мелководную дугу Скоша и вытянутые друг к другу, как бы только что разорванные, утоняющиеся к месту разрыва Антарктический полуостров и мыс Горн. Индийско-Австралийская плита столкнулась с Евразийской и в месте столкновения образовала горную страну – Гималаи. Австралия отошла в северные широты, оставив в одиночестве покрытый вечным льдом континент – Антарктиду.

Но природа сохранила на всех этих, когда-то соединенных континентах (Антарктиде, Австралии, Африке, Южной Америке, Индии) следы их былого единства – контуры древнего оледенения и схожие, переходящие с континента на континент геологические формации.

 

Некоторые сомнения

Мы нарисовали стройную картину эволюции Земли так, как она представляется сейчас многим геологам и геофизикам. Мы постарались дать основные доказательства такой эволюции. Но как бы ни казались все существующие доказательства убедительными, они не могут быть исчерпывающими. Остается много необъяснимых явлений и даже противоречий. Не разработан достаточно надежно механизм движения плит. Кажется натянутым объяснение образования внутриконтинентальных гор и характера расположения в этих областях осадочных пород. Наконец, неясно, почему в древнюю эпоху праокеана и праматерика дробление плит было меньшим, чем в более поздние эпохи, хотя тогда Земля была моложе и процессы шли активнее.

Существует другая теория исторического развития Земли, в основном объясняющая все вертикальными движениями. Она имеет не меньшее право на существование, не менее логична, но и не менее противоречива. Мы полагаем, что следующий этап развития науки об эволюции Земли – это синтез обеих концепций. Здесь мы изложили одну, более молодую, более принятую сейчас и уже более аргументированную.

 

РАЗМЫШЛЕНИЯ У КАРТЫ АНТАРКТИДЫ

 

Открытие Антарктиды

Каждый школьник и даже многие дошкольники знают, что существует шесть континентов: Евразия, Африка, Северная Америка, Южная Америка, Австралия и Антарктида. Антарктида – шестой континент. Определение «шестой континент» имеет права имени собственного. Это потому, что Антарктида открыта позже всех, до сих пор еще не исследована и до последнего времени люди сомневались, правомочно ли считать ее континентом. Только недавно уверились, что Антарктида действительно континент, притом имеющий особенности, не присущие ни одному другому.

Посмотрим, как и кем она была открыта, и познакомимся с основными ее областями.

Так кто же открыл Антарктиду? Джемс Кук – говорят англичане. Бесспорно, что Кук на двух парусных кораблях: «Резолюшен» водоизмещением 462 т (капитан Д. Кук) и «Адвенчер»– 336 т (капитан Т. Фюрно) впервые совершил кругосветное плавание в период 1772–1775 гг. в предельно доступных южных широтах. Сейчас мы можем говорить – плавание вокруг Антарктиды.

Мнение о существовании южного континента существовало и основывалось на принципе равновесного количества суши в северном и южном полушариях. Эта точка зрения обосновывалась в опубликованной в 1770 г. работе англичанина А. Дальримпля.

Свое плавание Кук совершал в поисках этого Южного материка – Терра Аустралиа (Южной Земли), возможно, такого же цветущего и богатого, как Америка.

Увы! В своем дневнике Кук пишет: «Я обошел океан южного полушария на высоких широтах и совершил это таким образом, что неоспоримо отверг возможность существования материка, который если и может быть обнаружен, то лишь близ полюса, в местах, недоступных для плавания… Я не стану отрицать, что близ полюса может находиться континент или значительная земля. Напротив, я убежден, что такая земля там есть, и возможно, что мы видели часть ее. Великие холода, огромное число ледяных островов и плавающих льдов, все это доказывает, что земля на юге должна быть… Это земли, обреченные природой на вечную стужу, лишенные теплоты солнечных лучей; у меня нет слов для описания их ужасного и дикого вида. Таковы земли, которые мы открыли, но каковы же должны быть страны, расположенные еще дальше к югу» (по А. Ф. Трешникову «История открытия и исследования Антарктиды». – М: География, 1963).

Таково заключение Д. Кука. Он убежден, что существуют земли еще дальше к югу, но эти земли он не открывал, да и не видит толку в их открытии.

Не такие земли открывал он в своем предыдущем плавании по южным морям в 1769–1771 гг. На 1770 г. было предсказано два полных затмения Солнца: 25 мая и 17 ноября (по новому стилю). Полоса первого из них проходила вблизи 30° с. ш. через Тихий океан, Индонезию и Индийский океан. Полоса второго располагалась в районе 30° ю. ш. в Индийском океане. Было также предвычислено прохождение Венеры по диску Солнца. Для наблюдения этих редкостных явлений, а попутно и для поисков Южного материка (Терра Аустралиа) английским адмиралтейством была организована экспедиция под командованием капитана Кука. Он же должен был производить астрономические наблюдения. Экспедиция плавала два года. За это время кроме астрономических наблюдений на о. Таити Кук подробно обследовал восточное побережье Австралии. Исследованную землю он назвал Новый Южный Уэллс. Это название поныне носит юго-восточный штат Австралии с главным городом Сидней. Австралийцы чтут память капитана Кука как основного исследователя страны. Они купили его дом в Англии и целиком перевезли в Австралию. Этот дом, увитый плющом, стоит в городском парке Мельбурна как мемориальный музей.

Через 50 лет, в период с 5 июля 1819 г. по 5 августа 1821 г., русские мореходы под командованием Ф. Беллинсгаузена на кораблях «Восток» и «Мирный» (капитан М. П. Лазарев) совершили новое кругосветное плавание в тех же широтах, где прошли корабли Кука. Порой их маршрут проходил южнее маршрута Кука, порой – севернее. Особенно близко к Антарктиде им удалось подойти между 60 и 100° з. д. в районе Антарктического полуострова, где они открыли остров, названный именем Петра I, и Землю, названную именем Александра I. Здесь они достигли 68° 50 ю. ш. (рис. 5). Море, омывающее эту область, названо морем Беллинсгаузена. Также близко к берегам Антарктиды они подошли у 2° 10 з. д., где достигли 69°25 ю. ш., подойдя примерно на 50 км к берегу Принцессы Марты. Им также удалось подойти близко к берегу у 15° в. д. Область океана между этими долготами названа морем Лазарева. Наконец, четвертая близкая к континенту точка достигнута ими на 39° в. д. в районе Земли Эндерби, где они находились в 100 км от берега.

Рис. 5. Маршруты Д. Кука и Ф. Ф. Беллинсгаузена.

1 – открытые берега и год открытия; 2 – маршруты

Об одном из этих подходов М. П. Лазарев пишет: «16-го генваря достигли мы широты 69°23'S, где встретили матерый лед чрезвычайной высоты, и в прекрасный тогда вечер, смотря с саленгу, простирался оный так далеко, как могло только достигать зрение; но удивительным сим зрелищем наслаждались мы недолго, ибо вскоре опять запасмурило и пошел по обыкновению снег. Это было в долготе 2°35'W-ой от Гринвича. Отсюда продолжали мы путь свой к осту, покушаясь при всякой возможности к зюйду, но всегда встречали ледяной материк не доходя 70°» (по А. Трешникову).

Таким образом, русские мореходы впервые подходили так близко ко льдам, окружающим Антарктиду, что могли видеть матерый лед, лежащий на континенте. Это дает право считать Ф. Беллинсгаузена и П. Лазарева первооткрывателями Антарктиды. В дальнейшем континент был изучен в результате героических походов, каждый из которых давал описание то части береговой линии, то ледника, то отдельных участков внутренних областей. Слава раскрытия тайн этого континента принадлежит всем исследователям Антарктиды, которые с риском, а порой и ценой своей жизни, проникали в эти суровые, но манящие земли.

Любопытно, что тщательное изучение некоторых старых карт приводит отдельных историков и географов к выводу, что об Антарктиде люди знали задолго до того, как ледовый континент был открыт 16 января 1820 г. русской экспедицией, возглавлявшейся Ф. Ф. Беллинсгаузеном и М. П. Лазаревым.

Дж. Вайхаупт из университета штата Колорадо предполагает, что еще в бронзовом веке, в периоды, когда климат был значительно теплее, мореплаватели, торговавшие вдоль побережья Африки, отваживались проникать достаточно далеко к югу. Полярные льды занимали тогда меньшую площадь. Однако Вайхаупт подчеркивает, что хотя очертания Антарктиды были известны древним картографам, источник их информации – полная загадка. Ведь даже для грубых картографических съемок этого континента требуются знания навигации и геодезии, далеко выходящие за рамки того, что могло быть известно древним мореходам.

Первые предположения об открытии Антарктиды древними мореходами появились в 1956 г. после опубликования карты, которая, как предполагали, принадлежала турецкому адмиралу Пири Рейсу. Она датируется 1513 г. Правда, подлинность этой карты впоследствии была подвергнута сомнению. Однако существуют и другие карты той эпохи, безусловно, подлинные. В первую очередь это карта мира Оронтиуса Финеуса, созданная в 1531 г., и такая же карта Герхарда Меркатора, относящаяся к 1538 г. На них видны полные очертания материка в районе Южного полюса, некоторые его детали, поразительно схожие с действительными.

За жаждой знаний стояла жажда наживы. Острова Южного океана были населены тюленями. И эти умные, красивые, но неспособные к защите животные стали предметом массового истребления ради тюленьего жира и шкур, использовавшихся главным образом в кожевенном производстве. Сколько добывалось тюленей в Южном океане – никто не считал. Это был «тюлений геноцид». Большинство видов тюленей существует теперь в «Красной книге» – книге, описывающей исчезающие виды животного мира.

Но нельзя охотникам за тюленями отказать в отваге и любознательности. Это они были первопроходцами антарктических морей, они шаг за шагом уточняли очертания льдов, окружающих Антарктиду, и антарктических островов. Имена многих из них вошли в историю в названиях антарктических земель. Это Кергелен, Палмер, Биско, Уздделл, Кемп и многие другие.

К 40-м годам XIX века тюлени были в значительной мере истреблены. Риск уже не оправдывался богатой добычей, и в период с 1840 по 1870 г. упал интерес к антарктическим плаваниям. В исследованиях Антарктиды наступает тридцатилетний перерыв. Промысел китов слишком опасен и пока не получает широкого развития. Но вот в 1867 г. изобретена гарпунная пушка. Убить кита стало проще, и китовый промысел получил новый импульс в своем развитии. Вскоре количество северных китов стало уменьшаться, и отважные авантюристы направили свои пути на юг, в антарктические воды. Такие имена, как Ларсен, Кристенсен, Гальворсен, связаны с поиском и добычей китов в южном океане. На поиски китов Германия еще в 1873 г. снарядила первый в Антарктике пароход «Грейланд».

Промысел китов продолжается, к сожалению, и поныне. В результате многие виды этих удивительных животных попали в «Красную книгу».

Не только жажда наживы, но и жажда познаний влекла людей к неведомой южной земле. Не говоря уже об экспедициях Кука, Беллинсгаузена и Лазарева, всегда было стремление использовать корабли, идущие на промысел, для научных исследований и даже организовать специальные научные экспедиции. Так, в 1839 г. французский мореплаватель Ж. Дюмон-Дюрвиль отправился в антарктические воды с главной задачей найти южный магнитный полюс. В 1840–1841 гг. с большой научной программой обследовал Антарктиду Дж. Росс. В 1874 г. в антарктических водах работало океанографическое паровое судно «Челленджер».

С момента открытия Антарктиды русской экспедицией на шлюпах «Мирный» и «Восток» прошло много времени. И хотя никто уже не ставил под сомнение факт существования в Южнополярной области материка, многое еще оставалось неизвестным, загадочным, тайным. В течение более четырех веков, т. е. с 1502 г. (первая португальская антарктическая экспедиция с участием Америго Веспуччи) и по 1955 г. (австралийская экспедиция, создавшая на побережье в точке с координатами 67° 36 ю. ш. и 62° 53 в. д. основную базу исследований в Антарктиде, названную станцией Моусон), многие государства мира направили в Антарктиду в общей сложности около 220 экспедиций с различными целями.

Норвежец Л. Кристенсен производит высадку небольшой группы на материк у мыса Адэр (в море Росса) во главе с К. Борхгревинком. Эта группа впервые проводит отбор образцов гранитных пород на материке, а спустя четыре года (в 1898–1900 гг.) К. Борхгревинк, возглавляя английскую экспедицию на судне «Южный крест» в море Росса, организовал первую зимовку на материке Антарктида на Земле Виктории.

В начале нашего столетия (1901–1904 гг.) были проведены незначительные океанографические исследования одновременно в морях Росса, Дейвиса и Уэдделла шведской, германской, британской и шотландской экспедициями. Для периода с 1905 по 1912 г. характерны исследования побережья материка с отдельными попытками проникновения в его внутренние районы.

В начале века внимание всего мира приковало соревнование двух государств – Великобритании и Норвегии и двух великих полярных исследователей – Р. Скотта и Р. Амундсена за первенство в достижении Южного полюса. К этому времени контур Антарктиды вырисовывался довольно четко. Стало ясно, что Антарктида – континент, но континент, покрытый льдом, необитаемый и почти недоступный.

 

Ценою жизни к полюсу

У человечества бывают увлечения, охватывающие большие массы людей, когда о предмете увлечения говорят, пишут книги, многое выдумывают. Случается что-то вроде массового гипноза. Таково увлечение в 60-е годы связью с инопланетными жителями, неопознанными летающими объектами НЛО как транспортом жителей других миров, снежным человеком.

В начале века было увлечение полярными исследованиями. Конечно, сами исследования диктовались практическими и политическими целями: открытием новых земель и установлением суверенитета над ними, открытием новых путей, добычей ценных мехов, тюленьего жира. Но была также жажда знаний, открытий неведомого, желание преодоления трудностей. Русские, норвежцы, шведы, американцы исследовали север за Полярным кругом.

В период с 1858 по 1883 г. было организовано девять экспедиций в Северный Ледовитый океан и по Гренландии под руководством Н. Норденшельда, а в 1902 г. он проводит зимовку уже в Антарктиде.

На весь мир прогремела слава Фритьофа Нансена, продрейфовавшего на корабле «Фрам» через Северный Ледовитый океан вблизи Северного полюса.

Изучив течения в Северном Ледовитом океане, Нансен рассчитал, что если вмерзнуть в лед в районе Новосибирских островов, то течением корабль пронесет между Шпицбергеном и Гренландией через Северный полюс. По проекту Нансена было построено специальное судно, которое по расчетам должно было под давлением напирающего на него и замерзающего льда выталкиваться кверху. Для этого судно имело округлое, яйцеобразное днище, было необычайно широким и обладало большим запасом прочности.

Расчеты Нансена оправдались. В сентябре 1893 г. в районе Новосибирских островов «Фрам» вмерз в лед и начал свой дрейф от места с координатами 78° 50 с. ш. и 133° 37 в. д. Зимовка прошла благополучно. Корабль вытолкнуло сжимающим его льдом, и люди провели зиму с относительным комфортом.

14 марта 1895 г., когда корабль достиг 83° 59 с. ш. и 102° 27 в. д., Нансен вдвоем с Йогансеном покинули корабль и на лыжах, с собачьей упряжкой отправились к полюсу. «Фрам» продолжал дрейф и достиг 85° 57 с. ш. при 66° в. д. Далее течение понесло его к югу, он благополучно освободился от льдов и в 1896 г. возвратился в Норвегию. Нансен с товарищем дошли до 86° 14 с. ш., провели благополучно зимовку и отсюда двинулись назад. Они дошли до Земли Франца-Иосифа, где 17 июня 1896 г. случайно встретили американскую экспедицию Джексона, доставившую их домой.

В последующем на «Фраме» Р. Амундсен совершил свой поход в Антарктиду.

Идея завоевания Северного, а потом и Южного полюсов владела умами географов и полярных исследователей. И организовывая свою первую антарктическую экспедицию, Роберт Фолкон Скотт, капитан английского флота, уже имел в виду подготовку к броску на Южный полюс. Эта экспедиция продолжалась с 1901 по 1904 г. 9 января 1902 г. экспедиционное судно «Дискавери» подошло к мысу Адэр на восточном берегу моря Росса и пошло на юг вдоль ледяного барьера. Достигнув шельфового ледника Росса, судно повернуло на восток и вдоль ледника дошло до западного побережья моря Росса, которое Скотт назвал Землей Короля Эдуарда VII. Вернувшись к Земле Виктории, Скотт обследовал пролив Мак-Мердо и о. Росса с вулканами Эребус и Террор, у которого корабль вмерз в лед на зимовку. На мысе был построен дом на случай, если корабль раздавит льдом. Зимовка прошла благополучно. Обследовав в летний период берег, дойдя в санном походе до 82° 17 ю. ш., получив с пришедшего вспомогательного судна пополнение запасов и отправив часть людей на родину, Скотт остался на вторую зимовку. В феврале 1904 г. «Дискавери» был освобожден из ледового плена и благополучно вернулся домой. Сразу же по возвращении Р. Скотт начинает готовить свою вторую экспедицию к Южному полюсу.

Среди отправленных Скоттом из экспедиции людей был Эрнест Шеклтон. Он заболел во время пешего маршрута в глубь континента. Однако, несмотря на болезнь, Шеклтон покинул Антарктиду огорченным и с твердым намерением вернуться. Сразу же по прибытии в Англию Шеклтон начал готовить экспедицию в Антарктиду с целью достижения Южного полюса и исследования и точного установления положения Южного магнитного полюса. 1 января 1908 г. большая экспедиция Шеклтона на корабле «Нимрод» отправилась из Веллингтона в Антарктику. Главной задачей ее было покорение Южного полюса. На о. Росса, недалеко от мыса Хижины, где в предыдущей экспедиции была организована база Скотта, Шеклтон построил свою базу. На зимовку осталось 15 человек. В течение этой зимовки был обследован вулкан Эребус и заложено несколько продовольственных складов на будущем маршруте к полюсу. В своем походе Шеклтон, так же как и Скотт, рассчитывал на лошадей и автомобиль. Это была его главная ошибка. Из десяти лошадей две погибли еще во время плавания, четыре – в первый месяц зимовки. Автомобиль совсем не мог ходить по снегу. А собак было всего десять. Впрочем, если не считать беды с лошадьми и автомобилем, экспедиция была весьма плодотворной и благополучной. Было сделано много научных наблюдений. Люди были здоровы.

В сентябре – октябре были организованы дополнительные продовольственные склады. В начале октября первая партия в составе Р. Доверса, Д. Моусона и Мак-Кея отправилась к магнитному полюсу, а в конце октября Э. Шеклтон в сопровождении Э. Маршала, Дж. Адамса и Ф. Уайльда начал свой поход к Южному полюсу. Вначале сани тащили оставшиеся лошади. Их было всего три. Вскоре и они погибли: двух пришлось застрелить, и они пополнили запас продовольствия, последняя сорвалась в трещину. Так, с нечеловеческими усилиями (мороз крепчал, ветры достигали ураганной силы, в условиях кислородного голодания – высота 3000 м) отважные исследователи 9 января 1909 г. достигли 88° 23 ю. ш. при 162° в. д. Они были в 180 км от полюса, преодолев путь в 1300 км. И все же Шеклтон проявил удивительные мужество и рассудительность – повернул назад, не достигнув заветной цели. Он не стал рисковать своей жизнью и жизнью товарищей, не израсходовал последние силы, и их хватило на то, чтобы добраться до исходной базы. Только 1 марта группа Шеклтона взошла на палубу «Нимрода». На пути к полюсу, в верховьях ледника Бирдмора, на 85° ю. ш. экспедиция обнаружила богатые залежи каменного угля.

Также благополучно и также не без трудностей закончилась экспедиция к магнитному полюсу. Он оказался в точке с координатами 72° 25 ю. ш. и 155° 16 в. д. в районе Земли Адели. 1 февраля 1909 г. путешественники достигли побережья, а 4 февраля их подобрал «Нимрод».

После этого Шеклтон организовал еще три экспедиции в Антарктиду, собравшие большой научный материал. В последней экспедиции 1922 г. на о. Южная Георгия Э. Шеклтон скоропостижно умер от болезни сердца. Так, посвятив всю жизнь Антарктиде, он не расстался с ней до конца.

1 июня 1910 г. судно «Терра Нова» отплыло от берегов Новой Зеландии и 5 января 1911 г. подошло к о. Росса. Здесь был восстановлен и оборудован дом, служивший Скотту еще в первой экспедиции. Для похода на полюс Скотт решил использовать моторные сани и лошадей (трое саней и 17 лошадей). В качестве вспомогательного средства были взяты 33 ездовые собаки.

Южным летом 1911 г. отряд Скотта оборудовал базу для зимовки на мысе Эванс и создал выносные продовольственные склады по будущей трассе движения к полюсу. Последний склад под названием «Депо одной тонны» был заложен на широте 79° 29, т. е. приблизительно в 1100 км от полюса. На весь этот огромный переход необходимо было иметь с собой продовольствие и горючее. Предполагалось часть оборудования оставлять на промежуточных стоянках по дороге от «Депо одной тонны» к полюсу.

Второй отряд экспедиции во главе с В. Кэмпбеллом должен был обследовать п-ов Эдуарда VII. Однако из-за сложной ледовой обстановки к ней он не пробился. В Китовой бухте Кэмпбелл встретил экспедицию Амундсена, который рассказал ему о своем плане похода на полюс. Это известие Кэмпбелл передал Скотту с посланным с «Терра Нова» Э. Аткинсоном. Оно произвело на Скотта тяжелое впечатление. Скотт уже понимал свои трудности. К началу похода он уже потерял семь лошадей и сразу увидел преимущества соперника в этом соревновании. С лошадьми он не мог выйти в поход ранней весной, пока достаточно не потеплеет, и, значит, у него для похода было меньше времени, чем у Амундсена, к тому же его база располагалась на 96 км дальше от полюса.

2 ноября 1911 г. группа Скотта, состоящая из 14 человек, вышла с базы (мыс Хижины) в поход к полюсу. Предполагалось, что 10 человек по мере закладки промежуточных баз будут отправлены назад. Через 13 дней, 15 ноября, экспедиция достигла «Депо одной тонны». Погода не благоприятствовала путешественникам – шел мокрый снег, ветер наметал сугробы, лошади мерзли, а люди, не имея лыж, увязали в снегу. Моторные сани ломались. 24 ноября застрелили одну лошадь и два человека отправили назад. 5 декабря, достигнув широты 83° 24, оставили промежуточный лагерь, в котором из-за пурги пришлось пробыть 4 дня. Этот лагерь получил страшное название, как бы предрешившее трагический конец. Его назвали «Бездной уныния». Следующий ночлег получил еще более страшное название – «Бойня». Здесь пришлось застрелить всех лошадей. Они были непригодны для дальнейшего движения и могли использоваться лишь как пища в случае нехватки ее на обратном пути. Моторные сани вышли из строя уже на пятый день похода. В своем дневнике Скотт отмечает, что собаки бежали хорошо, но их было слишком мало.

По мере приближения к полюсу и создания промежуточных баз Скотт отправлял лишних людей назад на базу. Последняя группа из трех человек покинула его, когда до полюса оставалось 260 км. В штурмовой группе пошли пять человек: Р. Скотт, доктор Э. Уилсон, капитан Л. Отс, матрос Э. Эванс и лейтенант Г. Боуэрс. С ними было двое саней. 18 января 1912 г. группа отважных людей, не доходя 2,5 км до полюса, увидела палатку Амундсена и норвежский флаг над ней. Пройдя еще немного, они убедились, что норвежцы достигли точки полюса, водрузили на ней норвежский флаг, оставили письмо и, отдохнув, на другой день вышли в обратный путь.

Полюс был достигнут, но соревнование проиграно. В тот же день, удрученные этим, они пошли назад.

Хотя Скотт и предполагал, что Амундсен опередит его, и в какой-то мере готовился к этому, все же победа норвежцев подорвала дух героических англичан и в этом смысле способствовала их гибели. Возвращение было столь же героическим, сколь и трагичным.

Палатка отважных полярников и в ней тела трех погибших Р. Скотта, Э. Уилсона и Г. Боуэрса были найдены 12 ноября 1912 г., спустя 7 месяцев, в четверти мили (0,45 км) от опознавательного гурия и в 20 км от «Депо одной тонны». Из дневника Скотта мир узнал о всех подробностях развернувшейся трагедии.

Обратный поход был труден. Люди устали, а погода была плохая, на складах оставлено мало пищи, без учета задержек из-за штормов. Первым сдал Эванс.

17 февраля он отстал, к нему пришлось вернуться и везти на санях до палатки. В палатке он вскоре умер. Оставшиеся нашли невдалеке склад конины и смогли подкрепить слабеющие силы, но этого было недостаточно – они предчувствовали свою гибель. 11 марта 1912 г. Уилсон раздал таблетки опиума, а Отсу, наиболее ослабевшему, ампулу морфия. 15 марта, в пургу, Отс вышел из палатки, сказав: «Пойду пройдусь. Вернусь, может быть, не скоро». Он сознательно ушел на смерть, чтоб облегчить путь товарищам. Но эта жертва не помогла. Они разбили свой последний лагерь 21 марта 1912 г. в 20 км от «Депо одной тонны». Разразилась пурга. Они не смогли добраться до склада. Последняя запись сделана 29 марта 1912 г… Она гласит: «С 21 свирепствовал шторм. Накануне у нас было топлива на 2 чашки чая на каждого и на 2 дня сухой пищи. Каждый день мы готовы были идти, до Депо всего 11 миль, но нельзя выйти из палатки. Несет и крутит снег. Не думаю, что мы теперь можем на что-либо надеяться. Выдержим ли до конца. Мы все слабеем и конец не может быть далек. Жаль, но не думаю, чтобы я был в состоянии еще писать». И приписка: «Ради Бога, не оставьте наших близких».

Так кончилась эта героическая эпопея.

18 января 1913 г. пришла «Терра Нова». Участники экспедиции на вершине холма водрузили крест и начертали на нем имена героев и строку из поэмы «Улисс» А. Теннисона: «Бороться и искать, найти и не сдаваться!»

Руаль Амундсен готовился к большой экспедиции в Арктику, в которой предполагал открыть Северный полюс. Для этого было приобретено судно Ф. Нансена «Фрам» и составлялся скорректированный маршрут дрейфа так, чтобы предельно приблизиться к полюсу для похода к нему на собаках. И вот летом 1909 г. он узнает обескураживающую новость: 6 апреля 1909 г. американец Р. Пири достиг Северного полюса. Эта новость резко снизила интерес к экспедиции. Приз первооткрывателя был завоеван. И Амундсен круто перестраивает свои планы. Не открытым является Южный полюс. Правда, к нему собирается Скотт! Но разве он, Амундсен, не имеет права на соревнование?

И разве Пири остановился перед победой из-за того, что знал намерения Амундсена?

С этого момента подготовка экспедиции продолжается столь же (если не более) энергично. Собираются средства, подготавливаются корабль, снаряжение, отбираются и закупаются собаки. Изменение маршрута решено только в голове Амундсена; такой крутой поворот не должен помешать экспедиции. Ведь неизвестно, как отнесутся субсидирующие ее люди к такой перемене.

Объявив, что «Фрам» огибает Америку для того, чтобы войти в арктические воды через Берингов пролив, Амундсен пошел на юг. Только на о. Мадейра он объявил команде и оповестил мир об изменении своих планов. Отсюда же он послал письмо Скотту, в котором сообщал о своих намерениях.

14 января 1911 г. «Фрам» пришел в Китовую бухту. У западной оконечности ледника Шеклтона была построена зимовочная база, а с 10 февраля начали создавать промежуточные склады на пути к Южному полюсу и готовиться к зимовке. Экспедиция была организована удивительно четко. Были заложены промежуточные склады продовольствия на широтах 80, 81 и 83°. Чтобы их было легче найти, от каждого склада на запад и восток через каждые 900 м было выставлено по 5 вех с номерами и указателями направления. По пути следования для ориентировки экспедиция устанавливала сначала через каждые 15–20 км, а ближе к полюсу через 9 км снежные гурии. В качестве транспорта и пищи экспедиция использовала собак. Люди шли на лыжах. Зимовка прошла успешно. Вся деятельность экспедиции во время зимовки была подчинена главной задаче – достижению полюса. Готовилось снаряжение, проводились тренировки.

19 октября 1911 г. штурмовая группа в составе Р. Амундсена, X. Вистинга, X. Хасселя и У. Бьоланда вышла в поход. Шли все на лыжах. С ними были 52 собаки и четверо саней. Предполагалось проходить в день до 82-й параллели по 28 км, дальше по 37 км и на каждом следующем градусе широты оставлять склад продовольствия.

Люди легко шли на лыжах, буксируемые собаками, которые бодро бежали. На широте 85° 07 при 165° в. д., где кончается шельфовый ледник, был создан главный

продовольственный склад, от которого оставалось приблизительно 550 км до полюса. Отсюда с собой взяли продовольствия на 60 дней. Начался крутой подъем в горы. Самую высокую путники назвали именем Фритьефа Нансена. Далее шло высокогорное плато на высоте около 3000 м. Здесь был создан склад продовольствия. Этот последний, главный склад был, пожалуй, единственным пунктом огорчения – здесь были убиты 24 собаки на пищу людям и другим собакам.

На широте 86° 47 отряд оставил тяжелые меховые одежды и далее пошел налегке. Шли в пургу и туман. 7 декабря 1911 г. отряд прошел широту 88° 23, достигнутую в 1909 г. Шеклтоном. Установилась хорошая, солнечная погода. Высота была 3700 м.

16 декабря 1911 г. отряд вышел в район полюса, поставил палатку, обследовав местность в радиусе 10 км и точно установив точку полюса, водрузил на ней норвежский флаг. Отдохнув, на следующий день, 17 декабря 1911 г., отряд вышел в обратный путь, оставив палатку и в ней письмо. Через 39 дней, 25 января 1912 г., экспедиция вернулась на базу. Поход к полюсу длился всего 99 дней. Все участники вернулись бодрыми и здоровыми.

7 марта 1912 г. уже из Хобарта (Австралия) Амундсен известил мир о своей победе. Южный полюс был открыт.

Порой Амундсена обвиняют в гибели Скотта и в нечестной игре. Но так ли это? Конечно, психологический фактор проигрыша в соревновании ослабил моральные силы Скотта и его товарищей. Но какое основание имеем мы лишать Амундсена права добиваться победы в первооткрытии? Он не ставил препятствий Скотту, он честно известил его о своих намерениях. Почему он не сделал этого раньше, скрывая изменение плана идти на север? Но разве это изменило бы что-нибудь в намерениях Скотта? Это понадобилось Амундсену для того, чтобы меценаты не сорвали его планов.

Причиной гибели Скотта была его собственная непредусмотрительность: расчет на ненадежный транспорт – лошадей, непригодных для полярных условий, и на ненадежные мотосани; то, что он не настоял на обязательном использовании лыж и не тренировал людей в ходьбе на них. Там, где норвежцы легко скользили на лыжах, буксируемые собаками, англичане пешие утопали в снегу, теряя последние силы. Правда, штурмовой отряд Скотта тоже шел на лыжах, но без собак. Наконец, промежуточные склады были недостаточными, и люди, имея неполный рацион, теряли силы. Неблагоприятной была погода, задержавшая отряд по крайней мере на десяток дней. Все это в сумме оказалось роковым. Но все это не умаляет, а, скорее, возвышает беззаветную самоотверженность и героизм этих замечательных людей, навсегда вписавших свои имена в историю исследования и завоевания полярных стран.

Имя Амундсена остается для нас примером такого же героизма и самоотверженности, как имена Скотта и его товарищей, и покрыто такой же трагической завесой – вспомним, что погиб он в Арктике уже пожилым человеком (ему было 56 лет), когда без зова вылетел на самолете «Латам» на поиск пропавшего дирижабля У. Нобиле «Италия».

И первооткрывателями Южного полюса мы должны считать в равной степени и Скотта и Амундсена. Вечная слава этим героям полярных стран.

 

Контур континента

Привычный контур Антарктиды. Карту ориентируем так, чтобы нулевой меридиан шел кверху. Тогда слева, нарушая симметричность, выделяется Антарктический полуостров, протянувший дугу Южных Шетлендских, Оркнейских, Сандвичевых островов к мысу Горн – оконечности Южной Америки. Здесь только сравнительно узкий (640–800 км) пролив разделяет Южную Америку и Антарктиду.

Сейчас после Международного геофизического года континент исследован довольно хорошо, уже не просто перечислить все открытые и получившие названия области. Сделаем только краткий обзор их. Обойдем континент от нулевого меридиана по часовой стрелке. В названиях отображена история открытия и исследования Антарктиды. Имена почти всех отважных исследователей запечатлены на карте Антарктиды (рис. 6).

Рис. 6. Карта Антарктиды

Названия можно расклассифицировать на четыре основные группы. Прежде всего это имена первооткрывателей, исследователей, вложивших свой героический труд, а порой и жизнь, в познание континента. Таких больше всего. Вторая группа – это названия в честь меценатов, финансирующих экспедиции, или фирм, ведущих промысел. Таковы Земля Эндерби, Земля Котса, Земля Мак-Робертсона. Третья группа – названия в честь правителей стран, ведущих исследования: Земля Королевы Мод, берег Принцессы Марты, берег Георга V, Земля Александра I и т. д. Это едва ли не вторая по численности группа названий. Не очень многочисленна группа имен, даваемых первооткрывателями в честь своих близких – ледник Ронне назван в честь отца Фина Ронне, открывшего этот ледник, впрочем он (Фин) тоже был исследователем Антарктиды, чаще в честь жен: Земля Адели (жена Дюмон-Дюрвиля), берег Клари, Земля Мэри Бэрд, берег Ингрид Кристен-сен. Есть названия, данные по разным другим причинам, например п-ов Бетховена, берег Банзарэ (что значит британо-австрало-новозеландская исследовательская экспедиция), или просто по положению или внешнему виду, например Полярное плато, Восточная равнина, горы Сантинел, Трансантарктические горы.

По названиям почти всегда можно определить, представители какой страны исследовали эту область.

Если плыть вокруг Антарктиды от нулевого меридиана на восток, то мы проплывем моря: Лазарева (0– 15° в. д.), Рисер-Ларсена (15–30° в. д.), Космонавтов (35–45° в. д.), Содружества (70–90° в. д.), Дейвиса (90—105° в. д.), Моусона (105–120° в. д.), Дюрвиля (140–160° в. д.), Росса (190 в. д. – 190° з. д.), Амундсена (100–130° з. д.), Беллинсгаузена (70—100° з. д), Скоша (300—50° з. д., 55–60° ю. ш), Уэдделла (10–60° з. д., 78–60° ю. ш). Здесь все названия, кроме двух, напоминают нам об отважных людях, бороздивших эти холодные, неуютные воды с риском для жизни, на годы оторванных от дома, испытавших лишения, но вписавших славную страницу в исследования южных морей.

Второй круг сделаем по побережью. Здесь мы видим названия трех категорий: это либо Земля – значит область, исследованная в глубь материка, либо берег – обследован только контур побережья, либо шельфовый ледник – это спускающийся с континента и лежащий на шельфе, частично плавающий ледник.

Обходя континент опять от 0° на восток, встречаем: берег Принцессы Астрид, берег Принцессы Рагнхилль, Землю Эндерби, берег Кемпа, Землю Мак-Робертсона, шельфовый ледник Эймери, берег Ларса Кристенсена, берег Ингрид Кристенсен, Землю Принцессы Елизаветы, берег Леопольда и Астрид, Землю Вильгельма II, Землю Королевы Мэри, шельфовый ледник Шеклтона, берег Нокса, берег Сабрина, берег Банзарэ, берег Клари, Землю Уилкса, Землю Адели, берег Георга V, берег Отса, Землю Виктории, берег Скотта, шельфовый ледник Росса, берег Гулда, берег Сайпла, берег Сандерса, берег Руперта, Землю Мэри Бэрд, берег Хобса, берег Уолгрина, берег Эйтса, Землю Элсуорта, берег Инглиша, Землю Александра I, Землю Грейама, шельфовый ледник Рисер-Ларсена, шельфовый ледник Ронне, Землю Эдит Ронне, шельфовый ледник Фильхнера, Землю Котса, шельфовый ледник Рисер-Ларсена, берег Принцессы Марты. Здесь из 40 названий половина связана с именами исследователей. Всю Антарктиду от берега Отса (на море Росса) до Земли Котса (на побережье моря Уэдделла) пересекают Трансантарктические горы, разделяющие континент на восточную и западную части.

Но о рельефе Антарктиды разговор впереди.

 

Первопроходцы

Трудно перечислить всех капитанов и все суда, всех охотников за тюленями и китобоев, которые ходили в антарктические воды и вольно или невольно были со-причастны к исследованиям самых южных вод и земель. Наиболее известные из них, чьи имена запечатлены в географических названиях, приведены в табл. 2. Список охватывает период с конца XV до середины XX века, когда исследования Антарктиды стали систематическими. Авторы не претендуют на полноту списка. Охотники упоминаются лишь тогда, когда их плавание сопровождалось фиксированными открытиями.