Русские инженеры

Гумилевский Лев Иванович

Инженерная наука в России

 

 

1. Русская инженерия и развитие промышленности

Как известно, царская Россия вступила на путь капиталистического развития позднее других стран. До шестидесятых годов прошлого века при феодально-помещичьей системе хозяйства существовало очень мало заводов и фабрик. Промышленность развивалась медленно. Подневольный труд приписанных к фабрикам и заводам крепостных крестьян был малопроизводительным.

Тем не менее и за много лет до формальной отмены крепостного права зарождались предпосылки новых, капиталистических форм экономических отношений. Ход экономического развития толкал к уничтожению крепостного права, как ни сопротивлялся этому дворянско-помещичий правящий класс. Ослабленное поражением во время Крымской войны и напуганное крестьянскими бунтами царское правительство вынуждено было пойти на отмену крепостного права.

Однако и после отмены крепостного права, много лет спустя, и в период развития промышленного капитализма в России еще сохранялись остатки докапиталистических отношений и грубая эксплуатация крестьянства, оставленного без земли и очутившегося в полной материальной зависимости от помещиков.

Все это не могло не наложить своего отпечатка на характер и темпы капиталистического развития в царской России.

Промышленный капитализм предполагает как основную свою предпосылку развитие товарного хозяйства, возникающего в связи с разложением натурального хозяйства и развитием общественного разделения труда. Товарное хозяйство в конечном счете нуждается уже в рынках не местного, а общенационального, а затем и мирового масштаба. Но все это, в свою очередь, требует соответственной технической базы — усовершенствования путей сообщения прежде всего, а стало быть, развития машиностроения, металлургии и других отраслей индустрии. Наконец, промышленному капитализму для своего развития необходимо иметь свободные рабочие руки.

Для промышленного капитализма характерна высокая капиталистическая техника, сменяющая мануфактурную.

Развитие капитализма в России после отмены крепостного права вело к преобразованию техники. Росло применение машин как в промышленности, так и в сельском хозяйстве. В. И. Ленин, характеризуя этот процесс, указывал, что «Россия сохи и цепа, водяной мельницы и ручного ткацкого станка стала быстро превращаться в Россию плуга и молотилки, паровой мельницы и парового ткацкого станка»[10].

В создании этой новой техники в России большую роль сыграла передовая русская инженерия, для которой в силу особенностей исторического развития была характерна высокая активность, простота решений, глубокая творческая сознательность и способность внедрять в практику новейшие научные методы.

Необходимо отметить, что общественно-политический строй царской России лишал нашу инженерию возможности осуществлять большую часть передовых идей, проводить в жизнь гениальные по смелости и грандиозности замыслы, безукоризненно разработанные инженерно-технические проекты.

При таком положении дела, как мы увидим дальше на множестве примеров, русские идеи или осуществлялись нередко за границей самими русскими инженерами, или же чаще всего просто похищались беззастенчивыми иностранными предпринимателями. Русский приоритет в ряде научных открытий и технических изобретений замалчивался не только за границей, но и в самой России.

Особенность условий, в которых развивалась русская инженерно-техническая мысль в эпоху развития капитализма в России, наложила свой отпечаток как на деятельность отдельных представителей инженерии, так и на всю русскую инженерную науку и технику в целом.

 

2. Русская школа механиков

Наука и техника строятся из фактов и опыта, как дом из кирпичей. Но не организуемое творческой мыслью простое собрание фактов, опытов, наблюдений так же мало заслуживает названия науки и инженерии, как куча камней — названия дома.

«В человеческой жизни мало таких радостных моментов, которые могут сравниться с внезапным зарождением обобщения, освещающего ум после долгих и терпеливых изысканий, — говорил П. А. Крапоткин, замечательный русский ученый и революционер, создатель теории ледникового периода. — То, что в течение целого ряда лет казалось хаотическим, противоречивым и загадочным, сразу принимает определенную гармоническую форму. Из дикого смешения фактов, из-за тумана догадок, опровергаемых, едва лишь они успеют зародиться, возникает величественная картина, подобно альпийской цепи, выступающей во всем своем великолепии из-за скрывающих ее облаков и сверкающей на солнце во всей простоте и многообразии, во всем величии и красоте. А когда обобщение, подвергаясь проверке, применяется ко множеству отдельных фактов, казавшихся до того безнадежно противоречивыми, каждый из них сразу занимает свое положение и только усиливает впечатление, производимое общей картиной. Одни факты оттеняют некоторые характерные черты, другие раскрывают неожиданные подробности, полные глубокого значения. Обобщение крепнет и расширяется, а дальше сквозь туманную дымку, окутывавшую горизонт, глаз открывает очертания новых и еще более широких обобщений. Кто испытал хоть раз в жизни восторг научного творчества, тот никогда не забудет этого блаженного мгновения. Он будет жаждать повторения. Ему досадно будет, что подобное счастье выпадает на долю немногих, тогда как оно всем могло бы быть доступно в той или другой мере, если бы знание и досуг были достоянием всех»[11].

Характеристика научного обобщения — этого высшего проявления творческой способности человека — выражена Крапоткиным с большим чувством и блеском. И не случайно, конечно, она сделана именно русским ученым, и не только ученым, но и революционером.

Другой русский ученый, К. А. Тимирязев, утверждал:

«Едва ли можно сомневаться в том, что русская научная мысль движется наиболее успешно и естественно не в направлении метафизического умозрения, а в направлении, указанном Ньютоном, в направлении точного знания и его приложения в жизни. Лобачевские, Зинины, Ценковские, Бутлеровы, Пироговы, Боткины, Менделеевы, Сеченовы, Столетовы, Ковалевские, Мечниковы — вот те русские люди, повторяю, после художников слова, которые в области мысли стяжали русскому имени прочную славу и за пределами отечества».

«Не в накоплении бесчисленных цифр метеорологических дневников, — говорил он далее, — а в раскрытии основных законов математического мышления, не в изучении местных фаун и флор, а в раскрытии основных законов истории развития организмов, не в описании ископаемых богатств своей страны, а в раскрытии основных законов химических явлений, — вот в чем главным образом русская наука заявила свою равноправность, а порою и превосходство!»[12].

Если к именам, перечисленным Тимирязевым, прибавить имя самого Тимирязева, прибавить имена таких ученых, как Крапоткин, Ляпунов, Чебышев, Лебедев, Жуковский, Чаплыгин, Павлов, Циолковский, Мичурин, таких инженеров, как Журавский, Крылов, Вышнеградский, Попов, Чернов, Петров, и многих других позднейших деятелей русской науки и техники, если напомнить о Ломоносове, личность которого Тимирязев называет «как бы пророческой», то станет очевидно, насколько правильна характеристика русской науки, данная Тимирязевым.

Для того чтобы уяснить себе значение, которое имела столь славно охарактеризованная К. А. Тимирязевым отечественная наука для развития русской инженерной мысли, в первую очередь необходимо обратиться к замечательной плеяде наших выдающихся ученых механиков.

В первой трети XIX века, в связи с запросами промышленности и развитием машиностроения, особое значение приобретала прикладная механика. В широком смысле слова прикладная механика есть наука о приложениях механики к инженерному делу; по мере своего развития она, в свою очередь, распалась на ряд отдельных дисциплин. К таким дисциплинам относятся, скажем, теория механизмов, теория машин, теория сооружений и т. д.

В развитии прикладной механики как самостоятельной науки огромного значения русские ученые играли виднейшую роль. Их воспитали университеты Москвы, Казани, Харькова. Первым из них был Остроградский; ему суждено было представлять русскую математическую науку в эпоху расцвета математических знаний и работать рука об руку с величайшими математиками, не только не отставая, но иногда и опережая их в разрешении целого ряда важнейших вопросов естествознания.

Сын зажиточного украинского помещика, Михаил Васильевич Остроградский родился в 1801 году, в имении «Пашенная» Полтавской губернии; здесь он вырос и вначале собирался сделать военную карьеру. Но в Полтавской гимназии он обнаружил такие математические способности, что его решили подготовить для поступления в Харьковский университет, который он и окончил в 1820 году по физико-математическому факультету. Для дальнейшего совершенствования в математике молодой ученый отправился в Париж, где быстро убедился в том, что русской математической науке нечего заимствовать у Европы. Скоро Михаил Васильевич стал не учеником выдающихся французских ученых, а товарищем их по работе.

Михаил Васильевич Остроградский

(1801–1862)

Уже первые работы молодого русского математика создали ему высокий авторитет в Париже, который был тогда одним из главных центров математических наук. Авторитет этот был настолько велик, что через два года пребывания во Франции Остроградскому было предложено чтение лекций по математике в Коллегиуме Генриха IV. Заявив о себе в науке, Михаил Васильевич возвратился на родину, занял кафедру прикладной математики в Академии наук и стал, по выражению Н. Е. Жуковского, «звеном, соединявшим тогдашний центр математического знания с нашим отечеством. Своими глубокими научными исследованиями он пополнял и расширял идеи французских геометров, а своими прекрасными лекциями он насадил эти идеи среди русских молодых ученых».

Расцвет ученой деятельности Остроградского проходил в Петербурге, но непосредственное влияние его простиралось далеко за пределы русской столицы. Он находился в постоянном дружеском и научном общении с Николаем Дмитриевичем Брашманом, профессором Московского университета, главная заслуга которого состоит в распространении у нас математических знаний, в особенности механики. Остроградский не только состоял преподавателем во многих училищах, но и был главным наблюдателем преподавания математических наук в военно-учебных заведениях.

По своей должности наблюдателя Остроградскому приходилось присутствовать на экзаменах во многих учебных заведениях. Эти посещения создали Михаилу Васильевичу незаслуженную славу грозного и своенравного педагога, чему способствовали чисто внешние обстоятельства.

Остроградский был человек большого роста, говорил громко — особенно когда сердился. Богатырская фигура его казалась еще более, грозной оттого, что у него не было одного глаза. Он с трудом помещался на стуле, и для него на экзаменах ставили два стула рядом. При плохих ответах учеников и студентов Михаил Васильевич не стеснялся делать выговоры и ученикам и преподавателям. Голос его в экзаменационном зале гремел устрашающе, и, хотя он добродушно исправлял потом неудачному ученику дурной балл, каждый его приезд приводил в трепет и учеников и преподавателей.

Способных учеников он очень любил и называл лучших «Архимедами» и «Ньютонами». Не успевавшим в математике прямо говорил:

— Вам бы впору не высшую математику изучать, а пику в руках держать…

Лекции он читал, увлекаясь предметом и увлекая слушателей. Его живая мысль при этом, правда, нередко опережала его руку, и случалось, что он уже не писал на доске выводимые формулы, а просто читал их наизусть. В такие моменты губка у него фигурировала вместо носового платка, мел исчезал в карманах сюртука.

Большая часть работ Остроградского относится к его любимому предмету — аналитической механике. Он разработал в этой области много вопросов: по теории притяжения, по колебанию упругого тела, по гидростатике и гидродинамике, по общей теории удара.

Во всех этих работах главное внимание сосредоточивалось не на частностях, а на разработке общих теорий, которыми впоследствии широко воспользовалась русская инженерная наука при разрешении частных, практических задач. Так, знаменитая «Теорема Остроградского — Гаусса» имеет общематематический характер, но приложения ее к самым различным областям науки и техники неисчислимы.

«Развитие аналитической механики, — говорит Н. Е. Жуковский, — в недавно истекшем столетии имело, на мой взгляд, три фазы: широкое обобщение вопросов и их аналитическое исследование, разрешение частных задач механики и их геометрическое толкование, расширение методов исследования и их критика. Михаил Васильевич явился деятелем в первой фазе развития аналитической механики. Им сделано в этой области немало самостоятельного и ценного. Россия может гордиться именем Остроградского»[13].

В летние месяцы Остроградский прерывал напряженную ученую и учебную деятельность, уезжал на свою родину. Он любил безмолвно глядеть на широкие просторы украинских степей. Но при этом физическом бездействии в ясном уме ученого зарождались новые широкие идеи; когда они принимали определенные очертания, он немедленно садился за работу и не успокаивался, прежде чем в его руках не оказывался начисто переписанный мемуар.

К концу деятельной жизни Остроградского (он умер в 1862 году) слава его гремела далеко за пределами России. Но и на вершине славы Михаил Васильевич держал себя просто и больше всего не любил говорить о своих заслугах. Прирожденная застенчивость и скромность Остроградского особенно бросались в глаза благодаря его богатырской внешности, громкому голосу и суровому лицу. Когда речь заходила о его заслугах, Остроградский терялся и смущенно старался как-нибудь замять разговор.

А между тем не было ни одной области из всех вопросов, стоявших в центре внимания геометров того времени, которой бы не охватывали работы русского ученого; нельзя назвать ни одного русского механика, который бы прямо или косвенно не испытал на себе влияния Остроградского.

Родоначальник русской геометрии, Остроградский через Николая Дмитриевича Брашмана оказал сильное влияние и на «московскую школу», где под руководством Брашмана начинал свою ученую деятельность Пафнутий Львович Чебышев.

Чебышев пришел в науку, так же как Остроградский, из глубины России, он родился в 1821 году, в имении своей матери «Окатове», в Калужской губернии. Первоначальное образование мальчик получил дома, а затем все семейство Чебышевых перебралось в Москву, где Пафнутий Львович и его братья стали готовиться к поступлению в Московский университет.

Шестнадцати лет Чебышев был уже студентом физико-математического факультета, а семнадцати — получил серебряную медаль за сочинение «Вычисление корней уравнений». Профессор Брашман сам стал руководить занятиями Чебышева, предвидя в нем будущего ученого, и Пафнутий Львович поддерживал дружеские отношения со своим учителем до конца жизни последнего.

Основатель самой значительной математической школы в России, Пафнутий Львович Чебышев сделал ряд замечательных открытий в области чистой математики; сюда относятся его работы по теории чисел и теории вероятностей.

Но для нас в первую очередь имеют интерес его работы в области прикладной механики.

История развития механики в нашей стране еще не написана, но, вероятно, на первых ее страницах должен быть помещен портрет Григория Григорьевича Скорнякова-Писарева — и не только потому, что его сочинение было первой книгой по механике, напечатанной на русском языке.

Пафнутий Львович Чебышев

(1821–1894).

Он первый взглянул на механику, как на теоретическую основу инженерного дела, и в этом смысле был прямым предшественником основоположника русской науки о механизмах — Пафнутия Львовича Чебышева.

Великий математик, член семи академий и бесчисленного множества научных обществ и университетов, Чебышев был типичным носителем русской научной мысли со всеми ее национальными чертами. Он был первым математиком, сознательно ставившим и решавшим математические проблемы, исходя из вопросов практики, и в свое время удивил ученый мир исследованием «О кройке одежды», доложенным им в 1878 году на математическом конгрессе. Он предъявил конгрессу в дополнение к своему исследованию пять небольших выкроек из картона. С улыбкой продемонстрировал он членам конгресса мяч, сплошь покрытый несколькими кусками материи по его способу. Оболочка, плотно облегавшая шар, показала, насколько принятые на практике развертки шара сложнее сделанной докладчиком.

«Сближение теории с практикой, — писал Чебышев в своем исследовании „О черчении географических карт“, — дает самые благотворные результаты, и не одна только практика от этого выигрывает: сами науки развиваются под влиянием ее; она открывает им новые предметы для исследования или новые стороны в предметах, давно известных».

Огромный и постоянный интерес Пафнутия Львовича к вопросам практики удивлял всех его знакомых, друзей и учеников. Да и мы, не зная о природных наклонностях русского ума, не могли бы не удивиться, что ученый, работавший в таких отвлеченных областях, как теория чисел, в то же время писал «О зубчатых колесах», «Об одном механизме», «О центробежном уравнителе», «О черчении географических карт» и даже «О кройке одежды». А между тем все эти сочинения были лишь практическими приложениями математических теорий!

Друг многих выдающихся ученых, Пафнутий Львович навещал их и делал оригинальные доклады на математических конгрессах; но больше всего времени посвящал он фабрикам и заводам.

Получив свою первую заграничную командировку, молодой ученый прежде всего направился в Лилль для осмотра знаменитых в то время лилльских ветряных мельниц. Он, конечно, хорошо знал тогдашнюю теорию мельниц. Но в Лилле Чебышев пришел к заключению, что теорию эту надо построить на новых началах — не только для того, чтобы теоретически рассчитать работу данной мельницы, но, главное, и для того, чтобы указать наивыгоднейшую форму крыльев.

— Как располагать средствами своими для достижения по возможности большей выгоды — вот общая и важнейшая для всей практической деятельности человека мысль! — неустанно проповедовал Чебышев, не отступая ни на шаг от этого правила ни в науке, ни в жизни.

Целые дни проводил он в различных технических музеях, осматривая машины и модели, посещал железоделательные заводы, писчебумажные фабрики, льнопрядильни, литейные. Всюду его интересовали механизмы, служащие для передачи работы пара, от устройства которых «много зависят и экономия в топливе и прочность машины». Здесь Чебышев убедился, что за семьдесят пять лет, с тех пор как появилась паровая машина, инженерам не удалось добиться полного разрешения задачи превращения качательного и вращательного движения в прямолинейное. В знаменитом «параллелограмме Уатта» получалась все-таки не прямая, а более или менее отклоняющаяся от прямой кривая линия. Это отклонение давало вредные сопротивления и изнашивало машину.

Чебышев посмотрел на вопрос глазами чистого математика. Он поставил себе задачей не только создать такие механизмы, в которых криволинейное движение, неизбежное в данном случае, отклонялось бы от требуемого прямолинейного наименьшим образом, но, главное, определить наивыгоднейшие из всех возможных размеры частей машины. Эта чисто практическая задача — задача о построении с наименьшей затратой материала наиболее совершенной и простой машины — привела Чебышева к созданию теории функций, наименее уклоняющихся от нуля, — теории, доставившей ему всемирную славу.

Теоретическую и практическую ценность теории доказывают сохранившиеся в математическом кабинете Академии наук многочисленные приборы и механизмы.

Строились они под непосредственным наблюдением самого творца теории и за его собственный счет.

Каких только поистине удивительных механизмов тут нет! Здесь и самодвижущееся кресло, и «стопоходящая машина», воспроизводящая шаги животного, и всевозможные превращатели одних движений в другие, и гребной механизм, и разные регуляторы, и счетные машины. Некоторые из этих механизмов показывались на различных выставках Европы и Америки, где за них Пафнутию Львовичу присуждались золотые медали, дипломы, похвальные грамоты.

Русская инженерная наука заслуженно гордится замечательным «чебышевским шкафом» и десятками точных и совершенных механизмов, которые в нем собраны.

История науки о механизмах не знает ученого, равного по значению Чебышеву. Еще много лет ученые, инженеры, конструкторы будут изучать наследство Пафнутия Львовича, изумляясь поразительным формам движения, осуществляемым его механизмами. Чебышев шел так далеко впереди своего времени, что только теперь, когда инженерное искусство подошло вплотную к решению проблемы создания быстроходных автоматически действующих машин, может быть вполне оценена творческая деятельность Чебышева как механика.

Гениальный ученый, много сил отдавший разработке точных знаний, необходимых для практического приложения в жизни и отвечающих запросам практики, Чебышев не мог не стать главой научной школы русских математиков и механиков. Непреклонное стремление Чебышева объединить, соединить теорию и практику в большой мере способствовало созданию этой школы.

Пафнутий Львович был организатором науки и педагогом.

«Раз в неделю, в определенные часы, двери его были открыты для всякого, имеющего что-нибудь сообщить о собственных занятиях знаменитому ученому и получить от него указания, — говорят о Чебышеве его ученики, — и редко кто-нибудь уходил от него, не унося с собой новых мыслей и поощрения к дальнейшей работе. Одной из самых незабвенных заслуг Чебышева, как учителя русских математиков, было то, что он своими работами и указаниями в ученых беседах наводил своих учеников на плодотворные темы для собственных изысканий и обращал их внимание на такие вопросы, занятия которыми всегда приводили к более или менее ценным результатам»[14].

Он не только не боялся трудных задач, но неизменно стремился к преодолению самых больших трудностей. Чебышеву удалось подойти к решению труднейшего вопроса теории чисел — вопроса о распределении простых чисел в ряду всех натуральных чисел, занимавшем в течение двух тысяч лет математиков всего мира. Ученикам своим он ставил не менее трудные задачи. Александру Михайловичу Ляпунову Пафнутий Львович предложил задачу, на решение которой Ляпунов потратил семнадцать лет.

В этой работе Ляпунов показал себя «как величайший из русских, а может быть, и всемирных математиков своего времени, но надо помнить, что задача была поставлена Чебышевым», — говорит по этому поводу академик А. Н. Крылов.

Педагогические приемы Чебышева вели к той же цели. Он рассматривал своих слушателей как будущих ученых, а не как преподавателей женских и мужских гимназий.

«К чтению своих лекций Чебышев относился с педантичной строгостью, — рассказывают ученики Пафнутия Львовича, — лекций никогда почти не пропускал, никогда на них не опаздывал и ни одной лишней минуты после звонка не оставался в аудитории, хотя для этого приходилось прерывать лекцию иногда на полуслове. Недоконченный на какой-либо лекции вывод всегда начинал на следующей с самого начала, если только эта лекция не была немедленным продолжением предыдущей. Всякой сколько-нибудь сложной выкладке предпосылал разъяснение ее цели и хода в общих чертах, а затем производил вычисления на доске большей частью молча, предоставляя студентам следить за ним глазами, а не ухом.

Выкладки он делал довольно быстро и настолько подробно, что следить за ним было легко. Во время лекций Чебышев часто делал отступления от систематического изложения курса, сообщал свои взгляды и разговоры с другими математиками по затронутым на лекциях вопросам и выяснял сравнительное значение и взаимную связь с различными вопросами математики. Эти отступления очень оживляли изложение, давали отдых напряженному вниманию слушателей и возбуждали интерес к изучению предмета в более широких рамках»[15].

Еще студентом Чебышев пробовал себя как преподаватель; он взялся подготовить своих братьев и их приятелей к поступлению в университет. Но после нескольких уроков Чебышев отказался от этой затеи и предпочел сесть за ученую работу. Учителем он оказался нетерпеливым, сердился и кричал на своих учеников, досадуя столько же на них, сколько и на себя самого.

Но впоследствии «на экзаменах Чебышев был сдержан и безукоризненно корректен», замечают его ученики.

Организуя русскую научную школу, Чебышев «не придавал значения изучению текущей математической литературы и утверждал, что излишнее усердие в изучении чужих трудов должно неблагоприятно отражаться на самостоятельности собственных работ», но творения классиков математики он раскрывал перед слушателями с необычайной глубиной.

Это убеждение Чебышева оправдывается удивительной его самобытностью в постановке и решении различных задач теории механизмов — и это в ту эпоху, когда за границей существовали развитые школы, с лучшими представителями которых Пафнутий Львович был в постоянном научном и личном общении.

Пафнутий Львович Чебышев — типичный представитель русской научной и технической мысли. Тесная связь теории с задачами практики, особое внимание к обобщающим, основным теоретическим проблемам — вот что характерно для него и для всей русской инженерной науки.

 

3. Объединение теории и практики

Стремление русских ученых к широким обобщениям, к установлению основных законов для дальнейшего их приложения в жизни сказались и в том, что, например, научные методы были поставлены у нас на службу железнодорожному транспорту уже в те времена, когда самое сочетание слов «наука» и «железнодорожный транспорт» многим казалось невозможным.

Именно в России началось успешное внедрение научных методов в практику железнодорожного дела.

Первым на этот путь встал Дмитрий Иванович Журавский. Он был виднейшим деятелем и провозвестником новой эпохи в истории железнодорожного дела.

Жизнь выдвигала перед строителями железных дорог одну задачу за другой, и случалось нередко, что задачи эти ставили втупик практиков железнодорожного дела.

Крупнейшей из этих задач на ранней поре железнодорожного строительства надо считать необходимость преодоления водных рубежей. Для этого нужны мосты, легкие и прочные, способные выдерживать очень большие нагрузки, а для переправы через широкие реки требовались и мостовые сооружения небывалой длины.

Разрешение проблемы постройки железнодорожного моста принадлежит русской инженерно-технической мысли.

Деревянные мосты представляют самую раннюю их форму. Сначала их строили просто из балок, потом стали усиливать подкосами, а затем, в половине XVIII века, появились арочные мосты из косяков и гнутых брусьев, соединенных в арки. Затем были изобретены новые конструкции; вероятно, деревянные мосты будут строить еще очень долго, особенно в богатых лесом краях. Правда, дерево подвержено гниению и опасно в пожарном отношении, но в последнее время найдено много огнеупорных и противогнилостных средств.

Шедевром деревянного мостостроения является проект и модель знаменитого моста Кулибина через Неву.

Дмитрий Иванович Журавский так оценивал «кулибинскую арку»:

«На ней печать гения; она построена на системе, признаваемой новейшею наукой самою рациональною; мост поддерживает арка, изгиб ее предупреждает раскосная система, которая, по неизвестности того, что делается в России, называется американскою».

Д. И. Журавский, как мы увидим дальше, был одним из крупнейших русских инженеров, завоевавших себе непререкаемый авторитет во всех вопросах, касающихся теории и практики мостостроения не только на родине, но и во всем мире. Его мнение о мосте Кулибина для нас особенно ценно тем, что оно устанавливает приоритет нашей страны в создании раскосной системы, над исследованием которой более всего трудился сам Журавский и теорию которой он создал.

К несчастью, Журавский жил и работал во время самого грубого преклонения перед иностранщиной, во времена самого наглого пренебрежения русской наукой и техникой со стороны правящих классов, и он не решился в своем труде «О мостах раскосной системы Гау» отдать должное создателю этой системы.

По тем же причинам и замечательная работа профессора А. С. Ершова «О значении механического искусства и о состоянии его в России», опубликованная в 1859 году, осталась малоизвестной, хотя в ней автор восстанавливал историческую правду не в отношении одного только Кулибина, а и в отношении целого ряда русских механиков.

Мысль Кулибина о применении железа в мостостроении была вскоре осуществлена, хотя и не в России.

Роберт Стефенсон в 1850 году построил мост «Британия» — огромную железную трубчатую балку длиной почти в километр, состоящую из двух вертикальных стен, перекрытых сверху и снизу горизонтальными листами. Собственно, мост состоял из двух самостоятельных труб, так как железная дорога была двухпутной.

Ряд трубчатых железных балок образует простейший мост, часто встречающийся на железных дорогах при небольших пролетах; при больших же пролетах такие балки становятся тяжелыми, и поэтому их сплошную вертикальную стенку заменяют сквозной, состоящей, как у Кулибина, из двух рядов плоских раскосов: часть их работает на сжатие, часть — на растяжение. Такая балка и представляет собой раскосную ферму.

Фермы укладывают целыми по всей длине моста или разрезают на каждом устое, так что весь мост состоит из отдельных мостов. Для удобства сборки перешли от балочных мостов к консольным мостам — у них фермы, покрыв один пролет, повисают над следующим. Два таких пролетных сооружения с висящими концами, или «консолями», соединяются так называемой подвесной фермой и покрывают третий пролет.

Мостостроение в своем дальнейшем развитии перешло к более сложным фермам, с кривым верхним или нижним поясом. Разнообразные требования, предъявляемые мостостроителям, заставили их создавать соответствующие этим требованиям конструкции. Требования эти так широки и разнородны, что можно говорить об искусстве мостостроения. Многие, особенно большие, мосты строятся каждый по-иному, в зависимости от их назначения, условий места и т. д.

Постройка мостов заканчивается их испытанием путем соответствующей заданию нагрузки. В европейской практике бывали случаи разрушения мостов уже при их испытании. В русской практике подобные происшествия, во всяком случае при сооружении больших мостов, совершенно неизвестны.

Проблема железнодорожного моста с большими отверстиями, или пролетами, легкого и прочного, встала во всем своем объеме перед русскими инженерами уже при прокладке первой русской магистрали — Петербургско-Московской железной дороги. Полностью эта проблема была решена двумя замечательными представителями русской инженерно-технической мысли: Станиславом Валерьяновичем Кербедзом и Дмитрием Ивановичем Журавским.

Станислав Валерьянович Кербедз происходил из бедной литовско-польской крестьянской семьи. Он учился в Ковенской гимназии, затем в Виленском университете и в 1831 году окончил курс в Петербургском институте инженеров путей сообщения, где ввиду его выдающихся способностей и был оставлен для подготовки к научно-педагогической деятельности.

Институт инженеров путей сообщения назывался, впрочем, в то время еще Институтом корпуса инженеров путей сообщения. Он был учрежден в 1809 году и был первым высшим техническим учебным заведением в России, в котором в основу преподавания была положена высшая математика.

Этому институту, единственному для того времени, выпускавшему инженеров с настоящим научно-техническим образованием, и суждено было сыграть важную роль в создании научно-технических кадров в России.

В качестве ассистента по математике, прикладной механике и строительному искусству Кербедз получал так мало, что положение его немногим отличалось от студенческих лет жизни, когда он существовал частными уроками. У него не хватало в это время средств даже для того, чтобы купить золотое обручальное кольцо, когда он женился, так что пришлось удовольствоваться серебряным. Это серебряное, почерневшее кольцо он носил до конца жизни и, показывая его, говорил:

— Пусть оно напоминает мне о бедности!

Начав так рано преподавательскую деятельность, читая лекции в институте, в Горном корпусе, в Военно-инженерной академии, Кербедз в то же время постоянно строил, разрабатывал проекты, стоял во главе разных комиссий и одним из первых выдвинул вопрос о постройке железных дорог в России как спешную и неотложную задачу.

В 1837 году вместе с другим видным русским инженером, П. П. Мельниковым, он был командирован в Англию, Францию и Бельгию для ознакомления с железнодорожным строительством в Европе. Именно обстоятельный доклад Кербедза и Мельникова убедил правительство в необходимости начать постройку магистральных железнодорожных линий, в первую очередь между Москвой и Петербургом.

Правда, принять участие в этом строительстве Кербедз не смог, так как ему в это время было поручено строительство «моста-первенца» — первого постоянного моста через Неву в Петербурге, получившего название Николаевского.

Вопрос о необходимости сооружения постоянного моста через Неву для соединения центра Петербурга с Васильевским островом был решен в 1840 году.

Репутация Кербедза к этому времени настолько уже установилась, что остановились на нем, как на инженере, которому можно доверить сооружение моста.

Постройка моста по проекту и под наблюдением Станислава Валерьяновича продолжалась восемь лет, и в 1850 году мост был открыт для движения. Это был чугунный арочный мост с разводной, для пропуска судов, частью возле берега. В свое время мост этот был одним из замечательнейших сооружений в Европе и, простояв около ста лет, вплоть до наших дней, был перестроен только в 1940 году академиком Г. П. Передернем. Перестройка эта вызывалась не столько старостью мостовых сооружений, сколько необходимостью расширить разводную часть моста для пропуска больших современных судов.

Осуществленная по проекту Передерия перестройка моста, который носит имя лейтенанта Шмидта, сделала его совершенно иным: ширина моста значительно увеличена, разводная часть вынесена на середину, что представляет, конечно, большие удобства.

Мостовые опоры Кербедза остались неизменными. Сохранился анекдот, связанный с ними и имевший в свое время широкое распространение.

Когда началась постройка моста, Николай I велел за постройку каждого быка повышать Кербедза в следующий чин. Узнав об этом, Кербедз будто бы сделал изменения в проекте и, вместо проектировавшихся четырех быков, поставил мост на шести быках, так что, начав строительство инженер-поручиком, закончил его инженер-генералом.

Как всякий анекдот, этот анекдот характеризует более его сочинителей, с характером же Кербедза он никак не вяжется. Станислав Валерьянович всю свою жизнь очень мало заботился о чинах и положении в придворных кругах и, даже получив большое денежное вознаграждение за постройку моста, ни на йоту не изменил ни своего образа жизни, ни скромной обстановки, в которой жил.

Инженерное дело и инженерная наука были такой всеохватывающей и единственной его страстью, что пораженные его постоянной и неутомимой деятельностью друзья говорили ему:

— Вы сжигаете работой свою жизнь! А он отвечал:

— Я считаю, что жить и работать — это одно и то же, и для меня нет жизни без работы.

Станислав Валерьянович работал как инженер и профессор шестьдесят лет, выйдя в отставку только в 1891 году, и умер в 1899 году, дожив таким образом, при своей системе жизни и работы, до девяноста лет.

Чем же ознаменована эта большая и деятельная жизнь в истории русской инженерии?

В 1852 году Кербедз начал разработку проекта железных мостов для Варшавской железной дороги, вводя впервые в России, а по сути дела, и впервые в Европе, железные решетчатые фермы, так как первым мостом значительного пролета этого типа был мост через реку Лугу, построенный им в 1853–1857 годах.

Ему же принадлежит проект моста через Западную Двину с пролетами свыше 80 метров каждый. Когда в 1863 году Александр II, отправляясь за границу, при осмотре в Германии станции Диршау спросил сопровождавшего, его управляющего министерством путей сообщения А. И. Дельвига, согласен ли он с общим мнением, что здешний мост через Вислу — превосходная вещь и в инженерном и в архитектурном отношении, Дельвиг, рискуя навлечь неудовольствие царя, ответил:

— Устройство моста действительно хорошо, но в России есть много мостов, которые не уступят ему, и, между прочим, мосты, через которые мы проехали, именно мост через Западную Двину и через Неман.

Дельвиг тут же пояснил, что архитектурные украшения немецкого моста при станции Диршау не соответствуют своему назначению, а потому и являются неуместными, с чем Александр и вынужден был согласиться.

Этот разговор происходил в то время, когда Кербедз заканчивал постройку спроектированного им Александровского моста в Варшаве. Проект Кербедза был принят потому, что его мост оказался более легким и дешевым, чем мост по проекту английского инженера Виньоля.

Мостостроение не было единственной областью инженерного искусства, в которой работал Кербедз. Он произвел изыскания по соединению Варшавской железной дороги с Кенигсбергской, построил линии Петербург — Петергоф — Лигово — Царское Село. Руководящую роль играл он в разработке вопросов об устройстве Петербургского и Кронштадтского портов, а также Либавского порта, вопроса об устройстве Мариинского водного пути, приладожских каналов и многих других инженерных предприятий.

Большой вклад в историю русской инженерии сделал Кербедз и своей преподавательской деятельностью. В Военно-инженерной академии его учениками был ряд выдающихся русских инженеров, сохранивших на всю жизнь благодарное воспоминание о своем учителе.

Наконец в области строительной механики Кербедзу принадлежит большая заслуга в том, что он дал метод расчета цилиндрических сводов и ввел приближенный расчет многорешетчатых мостовых ферм, принадлежащих к самым сложным.

В связи с возложенным на него поручением по строительству моста через Неву он в начальном периоде железнодорожного строительства в России не принимал непосредственного участия и не мог оказать никакого содействия при проектировании железнодорожных мостов первой русской магистрали.

Мосты Петербургско-Московской дороги представляют историческую достопримечательность русского железнодорожного дела. Строил эти мосты Дмитрий Иванович Журавский.

Дмитрий Иванович Журавский

 (1821–1891).

Он родился и вырос у родственников своей матери, в селе Белом, на просторе курских полей, под голубым степным небом. Окончив курс в Нежинской гимназии высших наук, Журавский в 1836 году отправился в Петербург разыскивать себе какую-нибудь должность. Он не мог, однако, устоять против обаяния имен знаменитых русских математиков Буняковского и Остроградского, читавших лекции в Институте путей сообщения, и вместо службы поступил в институт.

Курс в институте Журавский окончил блистательно в 1840 году и вскоре был направлен в распоряжение строительной комиссии Петербургско-Московской железной дороги. Не только глубокие познания, но и страстная приверженность к новому тогда железнодорожному строительству привлекли к нему внимание. После того как молодой инженер пробел ряд изыскательных работ на проектируемой линии, ему поручили проектирование мостов.

Двадцатилетний инженер не мог не считаться с тем, что, несмотря на огромный опыт строителей, качество мостов все еще было низким. Аварии и крушения преследовали многих строителей. Так, например, в первой половине XIX века потерпели крушение два моста: один близ Филадельфии — в 1811 году, другой в Брайтоне — в 1833 году; после восстановления этих мостов они снова разрушились: филадельфийский — в 1816 году, а брайтонский — в 1838 году. Катастрофы случались в Германии, в Англии, во Франции, и общее число их было очень велико.

Понадобилось много времени для того, чтобы инженеры научились при постройке мостов учитывать все возможные нагрузки, как постоянные: собственный вес сооружения и давление земли и воды, так и временные: движение поезда, людских масс и экипажей, давление ветра, силу торможения, центробежную силу при движении поезда и т. д.

С огромным мостом через Тейский залив в Шотландии, строившимся уже в 1870–1878 годах, катастрофа произошла дважды при таких обстоятельствах. Во время постройки, 2 февраля 1877 года, два больших пролета и один малый упали в воду вследствие недостаточной устойчивости опор, вовсе не рассчитанных на давление ветра. Вторая катастрофа была значительно более серьезной, но произошла она по той же причине: строители опять не учли возможного давления ветра, которое при сильной буре может доходить до 200, 300 и даже до 600 и 700 килограммов на квадратный метр.

И вот 29 декабря 1879 года, во время сильного ветра, когда по мосту шел скорый поезд, обрушились тринадцать больших пролетов. Поезд упал в воду, причем никто из людей не спасся.

Более счастливым оказался знаменитый английский писатель Чарльз Диккенс, едва не погибший при подобной же катастрофе в Англии. Вагон, в котором он находился, повис над обрушившейся мостовой фермой, в то время как следующие вагоны оборвались и упали в воду.

Эта катастрофа произвела тяжелое впечатление на писателя, и тень пережитого страха лежит на его очерках «Станция Мегби».

Насколько был велик в те времена страх перед мостовыми сооружениями, можно судить по комическому эпизоду, происшедшему с поездом Николая I на открытии Петербургско-Московской железной дороги.

Довольный осуществлением своего предприятия, Николай благодарил инженеров и вообще чувствовал себя отлично, но перед каждым мостом, из боязни катастрофы, выходил из вагона, предпочитая итти пешком вслед за поездом.

Мост через Тейский залив в Шотландии, дважды, в 1877 и в 1879 годах, обрушивавшийся из-за недостаточной устойчивости опор.

Открытие Царскосельской железной дороги в октябре 1837 года. С акварели.

У моста через Веребьинский овраг произошел забавный случай. Дорожный мастер, желая отличиться и зная, что царь будет осматривать этот самый большой и высокий мост, распорядился выкрасить ржавые, некрасивые рельсы масляной краской, которая к проезду царского поезда не успела еще просохнуть.

Выйдя из вагона перед мостом, Николай I махнул платком, подавая знак, что поезд может отправляться дальше. Но паровоз забуксовал на масляных рельсах, отказываясь повиноваться царскому приказу. Водители паровоза не могли понять, что случилось и, только сойдя на землю и увидев выкрашенные рельсы, догадались, в чем дело.

Быстрое развитие железнодорожного транспорта должно было заставить мостостроителей заняться теорией, для которой, кстати сказать, уже имелись основания в прекрасно разработанной классической механике. Однако иностранные практики мостостроения продолжали искать новые системы ферм обычным для них эмпирическим путем. Так, американский инженер Гау предложил сквозные деревянные фермы, представляющие точную копию ферм Кулибина, имеющих восходящие сжатые раскосы из дерева и растянутые тяжи из железа круглого сечения. Хотя раскосные фермы представляют собой весьма близкий к совершенству тип ферм, особенно деревянных, Гау очень мало помог мостостроению. Делал он раскосы ферм одинаковой мощности, одинакового сечения и при испытании своих моделей не приходил к удовлетворительным результатам.

В России вопросы мостостроения встали очень остро при постройке Петербургско-Московской железной дороги. Всех мостовых строений насчитывалось около ста, некоторые, как Веребьинский мост, имели в длину более полукилометра.

Из всего опыта мостостроения раскосные фермы Гау привлекли наибольшее внимание Журавского. Молодой петербургский инженер сначала просто следовал им, но при постройке Веребьинского моста с отверстиями по 25 с половиной сажен он отступил от образцов Гау. С большим умом и смелостью он применил неразрезные над опорами фермы с пересечениями раскосов. Этому нововведению Журавский предпослал теоретическую разработку способа определения усилий в частях фермы Гау, как разрезной, так и неразрезной, с одним или несколькими пересечениями раскосов.

Русский инженер имел перед американцами одно преимущество: он глубоко верил в науку и решил заменить недостающий опыт научным исследованием.

Если американцы, строя новый мост, выбирали размеры его частей, руководясь опытами предшествующих построек, то Журавский сначала разработал способ определения сил, сжимающих или растягивающих при проходе поезда составные части фермы и каждый отдельный стержень. Результаты расчета тотчас же убедили Журавского в том, что нет никакой нужды делать все тяжи, все раскосы одного и того же размера: он выяснил, что тяжи и раскосы, ближайшие к середине пролета, испытывают меньшие усилия, чем расположенные около опор, а стало быть, им можно дать меньшие поперечные сечения.

Американский консультант Уистлер нашел выводы молодого инженера не внушающими доверия. Тогда Журавский построил небольшую модель фермы, заменив болты проволоками одинаковой толщины. Нагрузив модель, Журавский стал водить смычком обыкновенной скрипки по этим проволокам, и тогда все смогли услышать, что проволоки вблизи опор давали более высокий тон, чем находившиеся в середине: следовательно, они были натянуты сильнее. Этот остроумный опыт, бесспорно, подтверждал правильность теоретических выводов Журавского.

Надо сказать, что Журавский держался того убеждения, что «вычисления без контроля опыта часто уходят в область фантазии», и все свои теоретические расчеты проверял опытным путем, на моделях проектируемых сооружений.

Убедившись в необходимости решительно изменить мостовые конструкции, строившиеся до него, Журавский и пришел к мысли о целесообразности устройства для Веребьинского моста неразрезных деревянных ферм, то-есть таких ферм, которые перекрывают несколько пролетов, не прерываясь над опорами.

Задача была трудная, так как теории определения усилий в решетчатых неразрезных фермах не существовало и Журавскому приходилось разрабатывать ее самостоятельно. Путем простых и ясных соображений ему этот метод удалось создать и пойти далеко впереди инженеров и теоретиков всего мира. Он первый в мире нашел наивыгоднейшее отношение крайнего и среднего пролетов неразрезной фермы и совершенно правильно указывал в предисловии к своему сочинению «О мостах раскосной системы Гау»:

«Исследование балок, состоящих из брусьев, раскошенных и связанных между собой, было сделано в России прежде, чем о том было напечатано на английском, немецком или французском языках; сочинения американского инженера Лонга и австрийского Гега вовсе не давали понятия о распределении напряжений по всем частям составной балки».

Одновременно с разработкой способа расчета решетчатых ферм Журавскому пришлось заниматься и вопросом о прочности материалов, из которых делались фермы: железа и дерева. Никаких сведений о свойствах русских лесных пород тогда не было. Журавский сам сконструировал машины для испытания материалов и проделал тысячи опытов, изучая не только прочность древесных пород, но и отдельные элементы ферм из этих материалов.

«Научные исследования Д. И. Журавского, как и его практическая деятельность, отличались смелостью, оригинальностью и самостоятельностью, — говорит профессор Н. М. Беляев о великом русском инженере. — Для него характерно умение ясно представить себе действительную картину работы конструкции, „игру сил“ в ней. Это позволяло ему обходиться без сложного математического аппарата и достигать своей цели путем простых и элементарных рассуждений. Это умение было тесно связано с его любовью к экспериментам, которые позволяли ему непосредственно наблюдать работу конструкции и проверять правильность основных предпосылок создаваемой им теории». В результате этих исследований Журавский сделал ряд ценнейших открытий, и постройка Веребьинского моста доставила молодому русскому инженеру всемирную славу.

Разработанные им методы расчета были применены при проектировании и постройке всех мостов Петербургско-Московской дороги. По окончании постройки Веребьинского моста в 1865 году Журавский издал свои исследования под названием «О мостах раскосной системы Гау». Труд этот положил начало теоретическим исследованиям в области мостостроения не только у нас, но и во всем мире.

Мост Журавского через реку Мсту.

Сочинение Журавского, по отзыву Чебышева, высоко оценившего математическую его часть, получило Демидовскую премию Академии наук.

Продолжая свои исследования, Журавский в конце концов полностью разобрался в сложной теории ферм и их расчете. В 1856 году Кербедз построил по его методу для Петербургско-Варшавской железной дороги мост из сквозных металлических ферм через реку Лугу. Это был первый в мире мост, построенный с привлечением теоретической науки к непосредственному обслуживанию техники. С появлением работ Журавского и последовавших за ними других исследований началось строительство тех легких, ажурных мостов с огромными пролетами, вступая на которые водитель поезда не снижает скорости, а пассажирам не приходит в голову и мысль об опасности.

Посвященный как будто одним фермам Гау, труд Журавского содержал в себе, однако, выводы и обобщения, которые распространялись на все вообще мосты раскосной системы, занявшие первенствующее место в железнодорожном строительстве.

Подобным же образом осуществил Журавский постройку знаменитого металлического шпиля собора Петропавловской крепости в Петербурге взамен прежнего, деревянного. Приступая к этой работе, Журавский должен был найти способ вычисления усилий в составных частях пирамидального остова шпиля. Путем опытов над моделями Дмитрий Иванович выяснил характер напряжений в тонкой стенке сгибающейся металлической двутавровой балки и первый в мире обнаружил явление так называемого косого скалывания.

Разработкой теории сквозных пирамидальных конструкций Журавский намного опередил заграницу: там занялись этим вопросом лишь в конце прошлого века.

Петропавловский шпиль — одна из достопримечательностей Петербурга — создал Журавскому славу и популярность. Он был произведен в чин полковника, а затем назначен членом совета Главного общества российских железных дорог.

В историю русского железнодорожного строительства Журавский вошел не только как замечательный мостостроитель. При удивительном своем добродушии, «стараясь добираться во всем до корня вещей», Дмитрий Иванович оказался прекрасным администратором и хозяйственником. Его статьи по вопросам строительства русских железных дорог обнаруживают у автора и глубокое знание предмета и полнейшую независимость взглядов. Не стесняясь отвергать укоренившиеся в Западной Европе идеи, неприложимые в России, он указал целый ряд наивыгоднейших направлений железнодорожных линий и имел удовольствие еще при жизни убедиться, что его предсказания оправдались в полной мере.

Как инженер, Журавский отличался необычайной оперативностью. Она сказалась при несчастном случае с большим мостом через Мсту. Осенью 1869 года Мстинский мост от неустановленной причины загорелся и сгорел бы дотла, если бы не находчивость дорожного мастера: он велел обрубить горевшие фермы и тем спас остальные, так что погибло только три пролета. Движение по дороге должно было совершаться с переправой пассажиров и почты на лодках. Журавский восстанавливал мост в необычайно трудных условиях. Работы производились при тридцатиградусном морозе. Плотники для сруба ферм должны были работать, вися очень высоко над руслом реки. Однако Журавский нашел средства преодолеть все трудности.

Будучи членом комиссии по исправлению Приладожских каналов, Журавский в 1876 году избавил население Петербурга от угрожавших ему бедствий северной зимы. В этот год Приладожские каналы обмелели настолько, что подвоз дров в столицу должен был совершенно прекратиться. Дмитрий Иванович взял на себя заботу о дровах для Петербурга. Благодаря его распорядительности и изобретательности почти все суда были проведены через каналы, объявленные специалистами непроходимыми.

Ни генеральский чин, ни высокое положение директора Департамента железных дорог, которое он занимал последние десять лет своей жизни, ни почетное членство во многих технических обществах — ничто не могло превратить Журавского в царского чиновника того типа, с которым мы так хорошо знакомы по повестям Гоголя или Достоевского. Дмитрий Иванович начал жизнь как инженер и инженером остался до конца ее. Вместо всех знаков отличия, всего множества полученных им русских и иностранных орденов он носил повседневно один только знак инженера путей сообщения. В Департаменте он взял на себя заведование техническо-инспекторским комитетом, который оставил на семидесятом году своей жизни, всего лишь за год до смерти.

Прирожденная склонность к широким обобщениям, к установлению основных законов для дальнейшего их приложения в жизни сказалась у Журавского в том, что он не только построил замечательные мостовые сооружения, но и пришел к ряду выводов и обобщений, позволивших распространить на все мосты раскосной системы указанный им метод расчета раскосных ферм.

Деревянные мосты Журавского, составляющие законную гордость русского инженерного искусства, превосходно выстояли положенный им срок, до того самого времени, когда они были заменены металлическими мостами по проектам другого замечательного русского инженера — Николая Аполлоновича Белелюбского.

История механики в России мало разработана, хотя русские ученые внесли крупный вклад в теоретическую механику и особенно много сделали в области приложения механики к специальным задачам. В сущности говоря, благодаря трудам русских представителей этой науки произошел переворот во взгляде на задачи и методы механики: к концу прошлого века из простого приложения к математике, как она понималась до того, именуясь официально «прикладною математикой», механика превратилась в определенную науку о природе.

Русская школа механики в лице ее представителей П. Л. Чебышева, Н. П. Петрова, И. А. Вышнеградского, Н. Е. Жуковского, С. А. Чаплыгина и А. Н. Крылова раньше всех и глубже всех поняла необходимость эксперимента при исследовании механических явлений и стала их проводить, создавая специальные лаборатории, а затем, после Великой Октябрьской социалистической революции, и специальные научно-исследовательские институты.

Огромное значение для внедрения теоретической науки во все области железнодорожного транспорта имели две специальные лаборатории: механическая, созданная при Институте путей сообщения Николаем Аполлоновичем Белелюбским, и паровозная, организованная Александром Парфеновичем Бородиным в Киеве.

Белелюбский кончил курс в Таганрогской гимназии в 1862 году, после чего поступил в Институт путей сообщения. Он вспоминал впоследствии, что огромное влияние на выбор им профессии путейца оказала конная железная дорога, проложенная между Качалинской станцией и Дубовкой, по которой он однажды в раннем детстве совершил путешествие.

По окончании курса в институте Белелюбский остался при нем для подготовки к профессуре, которую он и получил в 1873 году. Заведуя кафедрой строительной механики, имея в своем распоряжении механическую лабораторию, он стал руководить учащимися, занимавшимися проектированием мостов.

Одновременно он посвящает себя и практической деятельности, проектируя и строя мосты. По его проектам и под его техническим надзором были перестроены все семьдесят мостов на Николаевской железной дороге. Замена деревянных мостов Журавского новыми, металлическими мостами была произведена Белелюбским в 1868–1872 годах, причем без перерыва движения на линии.

Наиболее замечательными мостами, построенными по проекту Белелюбского, надо считать самый старый из больших железнодорожных мостов — мост через Волгу у Сызрани и мост через Днепр у Днепропетровска.

Сызранский мост, построенный в 1881 году, существует до сих пор. Он состоит из тринадцати пролетов, в 111 метров длины каждый, и в общем имеет протяжение почти в 1,5 километра. Это балочный мост раскосной системы с параллельными поясами, представляющий собой как бы трубу, покоящуюся на каменных устоях.

Сызранский мост принадлежит к выдающимся созданиям инженерного искусства. По длине он долгое время занимал первое место на европейском континенте. Долгое время этот мост оставался и единственным звеном, соединяющим общую сеть русских железных дорог с Заволжьем, со степными пространствами, расположенными между Сибирью и Туркестаном, и с громадными областями Сибири, простирающимися до берегов Великого океана.

Интересен мост Белелюбского через Днепр в Екатеринославе, ныне Днепропетровске. Он представляет собой такую же трубу, как и Сызранский мост, но двухъярусную; по верхнему ярусу происходило движение экипажей и пешеходов, а внутри трубы проходили поезда.

Николай Аполлонович Белелюбский

 (1845–1922).

Но не эта сторона практической деятельности знаменитого русского инженера имеет истинно историческое значение. Белелюбскому обязана была блестящим своим состоянием механическая лаборатория Института путей сообщения, получившая затем значение центральной станции для механического исследования строительных материалов. Поставив на научную почву испытание материалов, участвуя в выработке правил и условий их приемки, Белелюбский подвинул далеко вперед это дело. С полным правом он выступил с докладом об испытании материалов на Всемирном конгрессе механиков и строителей в 1889 году, во время Всемирной парижской выставки.

Приоритет и смелость мысли русских инженеров во многих областях техники пришлось защищать Николаю Аполлоновичу Белелюбскому не только за границей, но и у себя дома, после того как профессор К. А. Оппенгейм в одном из своих учебников высказался в том смысле, что русское мостостроение шло на поводу у заграницы. В ответ на это выступление одного из недоброхотов русской науки и техники Белелюбский в 1917 году и опубликовал свою страстную статью под заглавием «За русского инженера».

Он писал:

«Русский инженер зарекомендовал себя и смелостью взгляда, и распорядительностью, и беспримерной быстротою исполнения, и никто не решится сказать, что это будто плод жизни в поводу у немецкой техники. За долгие годы своей жизни я вынес глубокое убеждение, что русские техники, выросшие на почве долгого теоретического и практического труда, представляют уверенный кадр работников для того громадного строительства, которым должна будет заняться с окончанием страшно разрушительной войны обновленная Россия под знаменем нового строя».

Развертывающееся на наших глазах колоссальное строительство подтверждает правильность характеристики русских инженеров, сделанной Белелюбским.

Для высокой оценки русских инженеров у него было полное основание. Русское мостостроение заявило о себе не только сооружением целого ряда замечательных мостов, но и созданием оригинальных конструкций. Так, Н. А. Белелюбский разработал конструкцию балочных многораскосных мостов, А. В. Семиколенов — конструкцию консольных ферм, Б. А. Проскуряков — мостов консольной и шпренгельной систем, Р. П. Передерни — систему железобетонных мостов с трубчатой арматурой.

Таким образом, почти все основные типы мостовых строений самостоятельно, а зачастую и впервые были разработаны русской инженерной наукой.

Отметим, что идея цепных мостов родилась также в России, но осталась неосуществленной и неразработанной, потому что она уж слишком далеко уходила вперед, не соответствуя возможностям тогдашней техники.

«В 1809 году, — рассказывает Александр Лаврентьевич Витберг, замечательный архитектор и инженер, — прогуливаясь однажды по Английской набережной, переходя мост, на Крюковом канале находящийся, я остановился и сначала осуждал перестраивавших этот мост. Мост этот был составлен из двух подъемных частей, и обе половины поднимались обыкновенным способом, цепями, прикрепленными к столбу. Подъемные части приходили в ветхость, и потому их надлежало сделать вновь. А как по Крюкову каналу суда никогда не ходили, то сделали помост цельный. Таким образом, цепи остались без надобности, и из них сделали висячий фестон, весьма некрасивый. Но, рассматривая этот фестон, мне пришло в голову, что, спустя от этих цепей вертикальные цепи, к ним можно подвесить помост… Я немедленно стал чертить такие мосты, и мне казалось, что эта идея весьма полезно может быть употреблена для моста через Неву»[16].

Идея цепного висячего моста тем более заинтересовала Витберга, что в то время постоянного моста через Неву в Петербурге еще не было. При разработке проекта Витберг столкнулся с трудными техническими вопросами, разрешить которые в то время, не имея методов расчета, можно было лишь путем очень громоздких и дорогих опытов. Конструктор не знал, например, какую тяжесть может поднимать цепь и даже может ли она выдержать свою собственную тяжесть.

Работая над проектом храма-памятника Отечественной войне 1812 года в Москве, Витберг идеей цепного моста больше не занимался. Вспоминая же о ней, он с грустью писал, что в России часто рождаются «идеи гениальные, но, не имея поддержки ни от правительства, ни от общества, должны или гибнуть прежде рождения, или затеряться во тьме подьяческих форм и происков».

При всей бесспорной справедливости этого заключения следует сказать, что, даже при полной поддержке правительства, новая идея вряд ли могла быть разработана при тогдашнем состоянии инженерной науки, развившейся, как мы видели, много позже.

Страстный патриот, Белелюбский умер в 1922 году, не дожив до того времени, когда советская власть развернула небывалое, грандиозное строительство. Об этом строительстве мечтали все выдающиеся русские инженеры и техники. Д. И. Журавский в одной из своих речей указывал:

«Чтобы сокровища, разбросанные на огромном пространстве, могли сделаться действительным достоянием народа, чтобы достигающее ста миллионов население могло слиться в одну могучую массу, нужно много труда со стороны инженеров, требующего много знания и большой энергии… Да не устрашат нас ни горы с вершинами, одетыми снегом и облаками, ни глубокие и широкие реки, ни скалы, ни тундры!»

Деятельность Белелюбского чрезвычайно способствовала увеличению славы русской школы мостостроителей, созданной Кулибиным, Журавским, Кербедзом.

Первые металлические мосты, которые вслед за Кербедзом начали строить за границей, долго не удавались европейским и американским инженерам. Дело в том, что они, переходя на металл, копировали фермы деревянных мостов, между тем как железные мосты требовали иного типа ферм, подсказываемого точным расчетом. В результате катастрофы в Европе и Америке не прекращались и с переходом на металл в мостостроении.

В то время как в России с 1870 по 1900 год, в годы усиленного строительства путей сообщения, обрушилось лишь одно мостовое сооружение, в Америке каждый год обрушивались десятки мостов: в 1880 году, например, обрушилось двадцать мостов, в 1881 году — сорок четыре, в 1882 году — тридцать восемь, и так продолжалось до тех пор, пока Европа и Америка не пошли на выучку к русским мастерам мостовой техники.

Учителем их главным образом был Белелюбский, за свою полувековую инженерную деятельность спроектировавший более сотни металлических мостов, общая длина которых превышает семнадцать километров. Сызранский мост, о котором мы говорили, был не только самым длинным в Европе, но и самым совершенным по выполнению и расчету.

О пролетных строениях Сызранского моста его создатель писал:

«В них, в отличие от немецких мостов, введены особенности, которые стали принадлежностью весьма значительного количества русских мостов».

Стоит напомнить о том, что некоторые из этих введенных Белелюбским особенностей, как, например, особенности спроектированного им Тверского моста, присваивались затем иностранными фирмами. Тверской мост был забракован Техническим комитетом именно из-за этих особенностей, но когда та же система ферм появилась позднее в России под названием «ферм Дитца», она привела в восторг членов Технического комитета.

Сызранский мост был построен из сварного железа, а затем Белелюбский первый в мире стал применять литое железо. За границей отнеслись к этому новшеству недоверчиво. Но вот в 1887 году в Румынии произошла тяжелая катастрофа с Черноводским мостом через реку Прут, заставившая мостостроителей всех стран собраться для обсуждения вопроса о том, из какого материала строить мосты. Составившаяся здесь Международная комиссия решила обратиться за советом к Белелюбскому. Он коротко ответил:

— Вот уже четыре года в России широко применяется для мостов литое железо!

Последовав в мостостроении совету Белелюбского, немцы все же начали распространять легенду о том, что литое железо для мостов начали применять впервые германские инженеры, которым мир и обязан этим достижением техники.

Николаю Аполлоновичу пришлось в 1901 году на Международном конгрессе в Будапеште прочесть специальную лекцию о русском мостостроении и рассказать правду о применении литого железа.

Только после этой лекции, прочитанной Белелюбским со свойственной ему горячностью и убедительностью, историкам мостостроения пришлось раз навсегда признать, что Белелюбский ввел в России применение литого железа в мостостроении раньше, чем оно начало применяться в других странах.

Его главный труд «Курс строительной механики» и все работы по мостостроению до сего времени не утратили ни научного значения, ни практического интереса.

Это был живой, необычайно энергичный человек. Студенты звали его «непоседой». Он находил время страстно бороться и за международное объединение техников-строителей и за распространение женского образования. Может быть, при своем огромном даровании он сделал в области теории меньше, чем мог, но как организатор он был не менее нужен науке и строительному делу.

Руководя работой студентов по проектированию мостов, поставив на большую высоту лабораторию по испытанию материалов и написав ряд учебников, этот замечательный специалист оказал большое содействие развитию русского инженерного искусства и внедрению научных методов в железнодорожное строительство.

Из механической лаборатории института вышло немало интереснейших работ, освещавших самые тонкие вопросы механики, в том числе и «механики грунтов», имеющей такое огромное значение для железнодорожного строительства.

Землей как строительным материалом человечество начало пользоваться с незапамятных времен. Однако долгое время производители земляных работ исходили лишь из опыта и основанного на нем самого приблизительного расчета, не думая ни о каких теориях и научных исследованиях. Но в разряд земляных работ входят и те, которые обеспечивают устойчивость сооружения, то-есть устойчивость земляных масс и грунта как основания. При этих работах приходится считаться с давлением земли на грунт и давлением земли на стену, возводимую для противодействия обрушению земляной массы.

Вопрос о напоре земли на поддерживающую ее стену был, правда, теоретически разработан французским ученым Кулоном в записке, представленной им во Французскую Академию наук в 1773 году. Но «Теория давления земли» Кулона была построена на предположении, которое не совпадает с действительностью, и инженеры, для того чтобы пользоваться формулами Кулона, чрезвычайно упрощали все дело: они принимали состав грунта везде одинаковым, а поверхность обрушения принимали за плоскость, чего в действительности, конечно, никогда не бывает.

Точные формулы давления земли были найдены лишь русскими учеными на основании непосредственных опытов и связанных с ними теоретических изысканий. Профессор Р. Е. Паукер сделал свои замечательные выводы относительно глубины заложения оснований в песчаном грунте. Затем Валерьян Иванович Курдюмов, профессор Института путей сообщения, дал новую теорию сопротивления естественных оснований; причем в подтверждение своих выводов он произвел ряд интереснейших опытов в механической лаборатории института, впервые применив фотографию для установления действительных форм выпучивания грунта под давлением призматических тел. Такими телами являются и устои мостов и железнодорожные насыпи. Доставившая Курдюмову известность работа его «О сопротивлении естественных оснований» была опубликована в 1889 году.

Своеобразные условия, часто весьма отличные от европейских, в которых развивалось русское железнодорожное строительство, нередко выдвигали трудности, для преодоления которых не было ни своего, ни чужого опыта.

Все знают, что где-то на севере существуют области вечной мерзлоты. Вряд ли, однако, многим известно, что вечная мерзлота занимает площадь в семь с половиной миллионов квадратных километров только в Советском Союзе; это составляет около трети территории нашей Родины. «Пятна» вечной мерзлоты обнаружены даже на Северном Кавказе возле Железноводска, в Закавказье у озера Севан, на Урале, в горах Алтая, на Памире.

Всякое строительство, а в особенности железнодорожное, одновременно захватывающее разные области, рискует столкнуться с этим явлением. Между тем ничто не оказывает более упорного сопротивления строительству, как эта обладающая коварными свойствами вечная мерзлота. Она калечит железнодорожное полотно, выдергивает столбы, разрывает каменные устои мостов, проглатывает печи в зданиях, ломает дома.

Наибольшие заботы и неприятности приносит даже не самая вечная мерзлота, а талый, деятельный слой над нею, так называемая дневная поверхность. Поведение дневной поверхности при зимнем замерзании и весеннем оттаивании очень своеобразно. Оно характеризуется так называемым пучением, или выпячиванием, грунта зимой и обратным оседанием его летом.

Пучение грунта происходит не только в областях вечной мерзлоты, но и за их пределами. Можно предположить, что там, где границы вечной мерзлоты отодвинулись к северу, особые свойства дневной поверхности сохраняются еще на неопределенно долгое время.

В первые же годы после открытия движения по Петербургско-Московской дороге обнаружилось загадочное и странное явление. Зимой полотно дороги со всем верхним строением стало подниматься, образуя ряд неправильных горбов, искажавших продольный, а иногда и поперечный профиль полотна. Такое пучение грунта начиналось с наступлением морозов, достигало в январе, феврале и даже марте наибольшей силы, а затем ослабевало и к лету совершенно прекращалось. Высота горбов была неодинаковой в разных местах и в разное время, но иногда они поднимались выше нормального уровня полотна более чем на двадцать сантиметров. Пучины резко сказывались на плавности движения поездов, а иногда приводили к поломке рессор и вызывали сход с рельсов. Поэтому управление дороги в первые же годы ее эксплуатации начало искать средства для устранения бедствия.

В это время и на других железных дорогах северной и средней полосы России вынуждены были начать борьбу с таинственным пучением грунтов, но и там не добились толку. Единственным успешным средством борьбы с пучением оказывалось очень дорогое предприятие: замена грунта на полную глубину промерзания балластом — щебнем или камнем.

Управление дороги обратилось к представителям науки, справедливо полагая, что, прежде чем производить дорогие капитальные работы, надо разгадать тайну пучения. И вот профессор Горного института С. Г. Войслав в 1890 году взялся за изучение физической стороны загадочного явления. Он определил состав почвы, расположение водоносных пластов, направление течения вод и глубину промерзания, а затем подверг в лаборатории взятые им грунты искусственному замораживанию и оттаиванию. Он произвел такой опыт: брал замороженные образчики грунта и клал их на блюдечко с водой; через короткое время грунт впитывал в себя воду. При повторном замораживании и подливании воды образчик продолжал поглощать ее и в конце опыта увеличивался почти вдвое.

И до опытов Войслава было ясно, что пучины слишком велики для того, чтобы объяснить их появление только расширением воды при замерзании. Теперь, после опытов Войслава, казалось доказанным, что замерзший грунт непрерывно впитывает в себя протекающую подпочвенную воду и растет за счет этой воды, превращающейся в лед внутри грунта.

После этого стала ясна необходимость замены грунта балластом — камнем или щебнем.

Вопросы строительства в полосе вечной мерзлоты, поднятые железнодорожниками перед наукой, привели к внимательному изучению этого загадочного явления и созданию новой науки — мерзлотоведения, естественно, получившей у нас наибольшее развитие и значение.

Семидесятые и восьмидесятые годы прошлого столетия ознаменовались быстрым ростом железнодорожной сети в России. Создание сети железных дорог имело жизненное значение для развития страны. Железные дороги разрушали экономическую разобщенность отдельных районов, укрепляли единый национальный рынок и в сильнейшей степени содействовали бурному подъему русской промышленности. Создание железных дорог потребовало миллионов пудов рельсов, тысяч паровозов и вагонов, вызвало к жизни многообразные новые отрасли промышленного производства.

Дорожное строительство на Кавказе проходило при невообразимых трудностях, в постоянной борьбе с природой и привлекало к себе в свое время пристальное внимание европейской инженерно-технической общественности. Но еще большее внимание обратило на себя русское инженерное искусство сооружением Закаспийской железной дороги и Великого Сибирского пути.

Сооружение дороги на Кавказе.

Сооружение Закаспийской железной дороги, начатое в 1880 году, является первым опытом железнодорожного строительства в условиях песчаной пустыни. Оно имело поэтому мировое значение. Постройка Закаспийской линии предпринималась с военными целями — для обеспечения воинских перевозок от Каспийского моря в глубь Средней Азии. Но позднее из экономических соображений линия была проложена до Мерва, Чарджуя и Самарканда.

Основным препятствием и трудностью для постройки здесь железной дороги явились сыпучие пески между Байрам-Али и Чарджуем. На протяжении полутораста километров все пространство представляло собой голую песчаную пустыню, состоящую из барханов — песчаных холмов, переносимых ветром с места на место. Некоторое время существовало даже прочное убеждение, что проложить здесь рельсовый путь невозможно. Едва успевали уложить полотно, как оно разрушалось пустыней. Ветер заносил выемки, сметал насыпи, выдувал песок из-под шпал и нагромождал песчаные холмы на рельсах. Строители в отчаянии начинали заново работу на разрушенном участке, но ветер опять все разрушал. Человеческий разум оказывался бессилен в этой борьбе с природой. Трудности казались непреодолимыми, и некоторые даже предлагали строить дорогу сплошь в искусственном тоннеле, чтобы предотвратить песчаные заносы. В мировой практике железнодорожного строительства не было ни одного примера строительства в подобных условиях. Русским инженерам пришлось полотно и откосы устилать колючкой, ветвями тамариска и саксаула; устраивать защиту от ветра из валежника; обсаживать путь кустарниками, растущими кое-где на песках, а полотно и резервы подле него покрывать слоем глины.

На самых трудных участках постоянно дежурили люди, сметавшие с рельсов накоплявшийся песок. Наконец пришли к решению — поднять железнодорожное полотно до уровня барханов.

Все эти мероприятия, настойчиво проводившиеся в течение нескольких лет, победили, наконец, сопротивление природы. Пески сдались, заносы прекратились, сообщение пошло без перерывов.

Много хлопот доставил также полуторакилометровый мост через Аму-Дарью. Вследствие быстрого течения Аму-Дарьи и рыхлости ее песчаного русла отдельные части моста несколько раз обрушивались.

Основной непреодолимой бедой дороги остался недостаток воды. Водоснабжение осуществлялось развозкой воды по станциям, лишенным собственных источников. К тендеру паровоза прицеплялась дополнительная платформа, на которой стоял огромный чан, наполненный водой; были даже особые «водяные поезда», составленные из таких платформ с чанами и в определенные дни и часы, по расписанию, снабжавшие водой все станции своего участка. Такие поезда до сих пор доставляют в цистернах воду жителям железнодорожных поселков; но отсутствие воды теперь уже не влияет на движение, так как паровая тяга на большинстве участков дороги заменена тепловозной.

Насколько русский опыт железнодорожного строительства в безводной пустыне обогнал свое время, можно видеть из того, что хотя проект постройки железной дороги через пустыню Сахару имеет восьмидесятилетнюю давность, магистраль эта до сих пор еще не осуществлена.

Еще до постройки Закаспийской дороги, в 1859 году, французский инженер Андо предложил правительству Франции построить «железную дорогу через пустыню». Огромное экономическое, стратегическое и культурное значение дороги было признано всеми. Однако только после франко-прусской войны 1870 года французское правительство создало «Комиссию по строительству Транс-Сахарской дороги». В Сахару отправилась изыскательская экспедиция, чтобы обследовать трассу, но после недружелюбного приема, оказанного приезжим местными жителями, и убийства нескольких изыскателей в горах Хоггар экспедиция принуждена была вернуться назад.

Опыт строительства Закаспийской дороги в России заставил французских капиталистов, которые ожидали огромных доходов от дороги в Сахаре, вернуться к проекту Андо. Банкиры и промышленники составили акционерное общество и в 1912 году произвели картографическую съемку местности. На этот раз, однако, предприятие натолкнулось на ожесточенное сопротивление не туземцев, а французских автомобильных компаний, пароходных обществ и железных дорог, поддерживающих сообщение между Северной и Западной Африкой. Они опасались конкуренции новой дороги.

После первой мировой войны в Сахару снова отправились отряды изыскателей. Им удалось составить несколько проектов, из которых один, кратчайший, вариант пути был принят в 1941 году.

При проектировании и изыскательных работах французы использовали русский опыт и, очевидно, будут возвращаться к нему еще не раз.

Сооружение Сибирской дороги, начатое в 1893 году и законченное в 1903 году, следует считать самым грандиозным предприятием в истории железнодорожного строительства. Общая длина Великого Сибирского пути составила около шести тысяч километров.

Дорога потребовала около десяти миллионов шпал. Вес уложенных рельсов и скреплений составил три с половиной миллиона тонн.

Общая длина железных мостов через реки составляет десять километров, а деревянных — втрое больше.

Надо заметить, что военные соображения заставили царское правительство вести работы с большой энергией. Укладка пути шла значительно быстрее, чем, скажем, на Канадской линии, строившейся с наибольшей по тем временам скоростью: среднее протяжение уложенного за год пути составило в Сибири семьсот километров, а в Канаде — меньше пятисот.

Французская газета «Ля Франс» писала по поводу окончания постройки, что «после открытия Америки и сооружения Суэцкого канала история не отмечала события, более выдающегося и более богатого прямыми и косвенными последствиями, чем постройка Сибирской дороги».

Прямые и косвенные последствия постройки Великого Сибирского пути вскоре сказались не только в районах, непосредственно соседствующих с железной дорогой, но и по всей огромной территории за Уральским хребтом, до берегов Тихого океана. Сибирский железнодорожный путь как бы заново открыл Сибирь и Среднюю Азию для экономической эксплуатации.

Веками в России не думали об улучшении путей сообщения в Сибири. С одной стороны — сеть судоходных рек, по которым плавали пароходы, с другой — большой тракт — путь чайных караванов — удовлетворяли огромную область, мало населенную и почти не имевшую промышленности.

Только во второй половине XIX века экономическое развитие России выдвинуло вопрос о создании оборудованных путей сообщения на огромной сибирской территории. Этому способствовал также ряд стратегических соображений — сначала присоединение к России Амурской области, а затем угрожающий рост военной мощи Японии, ее захватнические стремления. Чтобы сохранить свои владения на Дальнем Востоке, Россия должна была располагать возможностью быстро перебрасывать во Владивосток войска и боеприпасы. Сначала предполагалось улучшить водные пути сообщения, соединив каналом бассейны Оби и Енисея. Но созданный таким образом водный путь был бы благодаря речным излучинам очень длинным и вдобавок закрывался бы в зимнее время на шесть-восемь месяцев. Необходима была железная дорога.

Трудность прокладки Великого Сибирского пути была ясна; все же правительство Александра III решилось на постройку, и в 1889 году во Владивостоке начались строительные работы.

Правительственный «Комитет по сооружению Сибирской железной дороги» понимал, что создание такого колоссального предприятия может быть облегчено, если ему придать характер национального, патриотического начинания. За такой завесой скрывались русские капиталисты, которые ни с кем не хотели делить барыши от выгодных поставок. Им-то, в первую голову, и было выгодно постановление Комитета о том, «чтобы Сибирская железная дорога, это великое народное дело, была осуществлена русскими людьми и из русских материалов». Только семнадцать километров пути, между станциями Красноярск и Минино, были выложены рельсами, заказанными ранее в Англии и очутившимися в Сибири в результате опыта доставки грузов через Ледовитый океан. Все остальные материалы поставляли русские заводы.

Строительство велось хищнически. Стоимость одной версты сибирской дороги вдвое превышала среднюю стоимость версты железнодорожного пути в центре страны. «Великая сибирская дорога» была великой не только по своей длине, но и по чудовищному лихоимству, беззастенчивому грабежу казенных денег, по беспощадной эксплуатации рабочих, занятых на строительстве.

Постройка военной железной дороги на маневрах 1871 года под Петербургом.

Чтобы ускорить постройку дороги, работы были начаты в нескольких местах сразу. Раньше чем на других, открылось движение по Западносибирской линии, хотя строителям этого отрезка Сибирской магистрали пришлось, несмотря на благоприятный рельеф местности, встретиться с существенными затруднениями. Прежде всего — это было очень короткое лето: многие работы, особенно по постройке зданий и мостов, пришлось выполнять зимою. Заготовка строительных материалов производилась далеко от линии, что заставило прокладывать дороги, обзавестись обозами, баржами, пароходами, кирпичными и лесопильными заводами. Недостаток рабочих рук побудил строительное управление применить впервые в России при земляных работах землекопные машины.

Следующий участок магистрали — Среднесибирская линия — строился в еще более неблагоприятных условиях. Пересеченный, гористый характер местности заставил произвести значительное количество земляных работ и возвести многочисленные искусственные сооружения. Климатические условия оказались еще более суровыми. Особенно же затруднительными были работы в необъятной и непроходимой тайте с болотистым верхним слоем почвы. Прежде чем проложить путь через эти густые смешанные леса, надо было строить подъездные дороги, укладывать бок о бок бревна, осушать верхние слои почвы при помощи сети водоотливных каналов и очищать их от валежника, хвои и листвы, переплетенных корнями деревьев и растений.

При полном отсутствии какой-либо местной промышленности все материалы, начиная от гвоздей и сортового железа, привозились из России, совершая далекий и сложный путь.

Летом 1898 года путь был доведен до Иркутска, и в конце года Среднесибирская линия вступила в строй. Через год управления Среднесибирской и Западносибирской линий были объединены в одно управление Сибирской железной дороги.

Продолжение Сибирской магистрали на восток от Иркутска упиралось в озеро Байкал, переправу через которое решено было осуществлять посредством парома-ледокола.

Опыта с перевозкой целых составов на паровых судах в России не имелось. Правительство командировало инженера Соколова в Америку, где существовала паромная переправа через пролив между озерами Мичиган и Гурон: в течение всего года на протяжении одиннадцати километров железнодорожное сообщение поддерживалось при помощи парового парома-ледокола, принимавшего на борт целиком железнодорожный поезд.

Такую же переправу решили устроить и через Байкал, лишь бы не пробивать тоннелей в горах. Ледоколы, заказанные в Англии, обошлись недешево. Дорого стоило также оборудование молов и пристаней. С перевозками же паромы не справлялись, и в конце концов ледокольную переправу пришлось заменить Кругобайкальской железной дорогой, а при сооружении ее пойти на дорогую и трудную прокладку тоннелей.

Трудность постройки Кругобайкальской железной дороги увеличивалась еще и тем, что работы производились в суровом климате и в почти неприступной местности, на обрывах, нависших над глубокими водами Байкала, при возможности сообщения по озеру исключительно в тихую погоду.

При строительстве дальнейшего участка Забайкальской линии в Забайкалье случилось небывалое по своим размерам наводнение, разрушившее три участка дороги; вода переливалась через полотно слоем до трех и более метров. Пятнадцать деревянных мостов всплыло и было унесено водою. Наводнением были снесены целые селения и даже город Дородинск.

В результате всю линию пришлось перестроить.

В не менее трудных условиях строились и другие линии, вошедшие в состав Сибирской магистрали: Уссурийская, Китайско-Восточная, Амурская.

Тем не менее постройка магистрали была осуществлена в очень короткий срок, главным образом потому, что работы были начаты сразу в нескольких местах. Два крайних участка магистрали: Владивосток — Хабаровск и Златоуст — Иркутск были открыты для движения в 1899 году. Но в центральной части магистрали трудности постройки оказались не в пример более значительными. Так, в долине Амура наводнением был разрушен почти законченный участок в несколько сот километров длиной. Да и после открытия всей магистрали еще многие годы приходилось перестраивать отдельные участки, здания, сооружения.

Строительство Сибирской магистрали, потребовавшее огромного количества рабочих рук, — на постройке одновременно работало до семидесяти тысяч человек — вынудило царское правительство осуществить ряд мероприятий, поощрявших переселение. Крестьянским ходокам предоставлялась возможность выбирать отводимые для переселенцев земельные участки; для переселенцев были введены льготные железнодорожные тарифы. Переселенцы освобождались на несколько лет от всяких налогов и податей.

Возвратясь на родину, крестьянские ходоки рассказывали землякам обо всем, что ждало их на новом месте. И вот мало-помалу представление о Сибири, как о месте ссылки и каторги, сменилось картиной богатейшего края, где всякий может открыть обетованную землю, где нет барина и кулака, где можно найти пропитание семье и выбиться в люди. Крестьяне центральных районов страны, задыхавшиеся от безземелья, скрепя сердце уезжали в далекую чужую сторону, рассчитывая найти там счастье.

Переселенцы с семьями долгими месяцами ехали к месту назначения. По дороге многие погибали от истощения и болезней. Но и на новом месте переселенцам приходилось не лучше: их ждала жизнь в землянках, нечеловеческий труд в глухой тайге, бесконечные лишения. Только наиболее сильные выживали и осваивались на новых местах.

И все же, несмотря на величайшие трудности, строительство дороги было доведено до успешного конца. Этому в немалой степени содействовало то обстоятельство, что сооружение такой дороги отвечало жизненным интересам страны.

Сибирская железная дорога получила в литературе наименование «Великий Сибирский путь». Значение ее заключается в том влиянии, которое она оказала и оказывает на всю культурную, промышленную и экономическую жизнь Сибири, в том, что она явилась, по выражению одного журналиста, «позвоночным хребтом русского великана».

Как инженерное сооружение Великий Сибирский путь является грандиозным памятником высокого уровня русской инженерно-технической мысли.

Железнодорожный транспорт в России уже в годы своего возникновения стал одной из основных сфер приложения русской технической и научной мысли. Несомненно, что проникновение науки в железнодорожный транспорт России содействовало в высокой степени как тому, что русские инженеры создали ряд инструкций и усовершенствований в железнодорожном деле, так и тому, что железнодорожный транспорт стал наиболее передовой и наиболее развитой отраслью народного хозяйства в России.

Широко и щедро вводил научный метод в железнодорожное дело и Николай Павлович Петров, которого, по справедливости, следовало бы называть «отцом железнодорожной науки».

Он родился в 1836 году в дворянской семье, богатой и знатной, и получил лучшее по тем временам образование в Николаевской военно-инженерной академии. Академия готовила преимущественно практиков военно-инженерного дела, но люди по складу своего ума бывают преимущественно художниками или преимущественно мыслителями — одни склонны к непосредственной практической деятельности, другие — к размышлению. И хотя Николай Павлович уже в студенческие годы проектировал машины для перестраивающегося заново Охтенского порохового завода, все же практической работе он предпочел изучение прикладной механики.

Военно-инженерная академия в Петербурге, преобразованная из Военно-инженерного училища, сосредоточивала в себе в то время выдающийся профессорский персонал. Огромное влияние на Петрова оказал Остроградский.

«Основу знания я получил от знаменитого нашего соотечественника Михаила Васильевича Остроградского, — говорил Николай Павлович через пятьдесят лет после смерти своего учителя, в день своего юбилея. — Он был выдающийся ученый и вместе с тем обладал удивительным даром мастерского изложения в самой увлекательной и живой форме не только отвлеченных, но, казалось бы, даже сухих математических понятий. Это мастерство и помогало ему приготовлять многих отличных преподавателей математики. Теперь я часто вспоминаю те счастливые часы, когда, благодаря его мастерскому изложению, какая-то магическая сила неизгладимыми чертами вписывала в моем уме новые знания, всегда представляя и красоту и силу знания в таких формах, которые внушали нам веру в могущество знания. Как все могущественное обладает притягательной силой, так и наука действовала на нас притягательно, побуждая изучать ее глубже и служить ей, не ожидая другой награды, кроме сознания высокой чести быть ее слугой. Вот какие благие для меня последствия проистекли из того, что я имел счастье быть учеником Остроградского»[17].

Николай Павлович получил должность преподавателя в Инженерной академии и в Технологическом институте, где уже в тридцать два года он стал профессором.

Директором Технологического института был в то время другой русский механик, ученый и инженер — Иван Алексеевич Вышнеградский.

Он много содействовал улучшению постановки учебного дела расширением механических лабораторий, введением обязательных репетиций и увеличением студенческих стипендий.

При таком директоре, как Вышнеградский, Н. П. Петров смог широко развернуть научно-исследовательскую работу в лабораториях института и в 1882 году выступил со своей «Гидродинамической теорией трения при наличии смазывающей жидкости», доставившей ему мировую славу.

До Петрова теоретическая механика установила законы для двух основных видов трения: когда одно тело скользит или когда оно катится по другому телу. При этом считалось, что при наличии смазывающей жидкости между телами существенных нарушений законов скольжения и катания не происходит.

Но в практической жизни большую роль играет трение твердых тел, между которыми имеется слой смазки, как это имеет место прежде всего во всех двигателях.

Известно, что далеко не вся работа двигателей идет на ту цель, которая имеется в виду при устройстве машины. Значительная доля мощности двигателя расходуется на трение его частей, производящее теплоту, которая пропадает бесполезно. Трение в машинах, а вместе с тем развитие бесполезной теплоты значительно уменьшается смазывающими веществами.

Техники давно уже заметили неодинаковую работу двигателя при употреблении тех или других смазочных материалов. Разница эта иногда очень значительна. Чем больше развивались промышленность и транспорт, чем больше становилось паровых машин, чем больше расходовалось топлива, тем яснее ощущалась необходимость уменьшения непроизводительных потерь мощности двигателя на трение его частей. Техники и ученые всего мира стали изучать свойства смазывающих веществ, чтобы правильным выбором их возможно более уменьшить непроизводительную часть работы машины.

Однако все исследователи, занимавшиеся этим вопросом, обращали внимание только на силу трения самих машинных частей, а потому и не приходили к удовлетворительным результатам.

Практики так и не получали от науки ответа на интересующие их вопросы: когда, где и какое смазочное вещество выгоднее всего употреблять?

Петров первым ответил на этот вопрос, посмотрев на дело с совершенно иной стороны.

«Вглядываясь во все сделанное многими инженерами и учеными для изучения законов трения, — говорит он во „Введении“ к своей теории, — и вдумываясь в причины безуспешности разъяснения того влияния, которое оказывают свойства смазывающей жидкости на силу трения смазанных ею твердых тел, нельзя было оставить без внимания совершенное отсутствие всякой попытки найти объяснение сущности или схемы явления, приняв в расчет замечания практиков-инженеров, что для смазывания машин можно употреблять только такие жидкости, которые действием сил, сжимающих твердые тела во время надлежащего движения машины, не вытесняются из промежутков, предназначенных для смазывающей жидкости. Это замечание заслуживает тем большего внимания, что оно общеизвестно и настолько признается правильным, что для обозначения качества масла не вытесняться давлением трущихся частей английские техники имеют даже особое слово. Несмотря на всю кажущуюся незначительность этого замечания, оно на самом деле чрезвычайно плодотворно и способно заставить глядеть на трения смазанных твердых тел с совершенно новой точки зрения»[18].

Николай Павлович Петров

 (1836–1920).

Замечание практиков-инженеров, которым до Петрова пренебрегали теоретики, помогло русскому ученому проникнуть в физическую сущность явления и привело его к чрезвычайно важным обобщениям.

«Если смазывающая жидкость должна обладать таким свойством, чтобы не вытесняться, — говорит он дальше, — то это нельзя понимать иначе, как так, что во время движения смазывающий слой должен совершенно отделять одну металлическую поверхность от другой, не допуская их взаимного прикосновения. Если же жидкий слой, смазывающий два твердых тела, вполне отделяет их одно от другого, то непосредственного трения твердых тел уже, очевидно, не может быть… Следовательно, сила трения твердых, хорошо смазанных тел, отделенных друг от друга жидким слоем, вызывая движение этого слоя относительно твердых тел и движения внутри самого слоя, состоит из некоторой совокупности сил трения жидкого слоя с твердыми телами и сил трения, развивающихся внутри самого жидкого слоя».

Это была тонкая догадка.

«Как только явление рассматривается с этой точки зрения, — справедливо заключает творец теории, — так тотчас же вопрос о силе трения двух хорошо смазанных твердых тел сам собой переходит в область гидродинамики и вместе с тем обнаруживаются те физические свойства смазывающих жидкостей, которые могут оказывать влияние на силу трения твердых тел, смазанных этими жидкостями. Свойства эти, очевидно, суть: внутреннее трение смазывающей жидкости и ее внешнее трение с твердыми телами».

В 1882 году в статье «О трении в машинах», помещенной в «Инженерном журнале», Петров, став на свою, как мы видим, совершенно новую точку зрения, теоретически вполне разрешил вопрос, над которым так долго и так безуспешно трудились виднейшие ученые.

Русский инженер показал прежде всего, что трение твердых тел при достаточной смазке подчиняется совершенно иным законам, чем трение несмазанных тел.

В свете новой теории представилась возможность разрешить многие вопросы, касающиеся трения и непонятные до того наблюдателям.

Разрешить эти вопросы, проверить правильность теорий можно было только экспериментальным путем. Заинтересованный в этих опытах, имеющих огромное практическое значение, съезд техников железных дорог предоставил создателю теории денежные средства. Они были невелики, но «при помощи сотрудников, беспредельно преданных науке, и безграничного желания во что бы то ни стало разыскать истину» Петрову удалось в течение последующих пяти лет довести дело до успешного конца.

Насколько велик был труд по проведению опытов, можно судить хотя бы по тому, что над одной только вагонной осью было произведено не менее пятнадцати тысяч наблюдений, тщательно и умело записанных; во время этих наблюдений вагонная ось сделала более десяти миллионов оборотов.

Практическими результатами опытов явилась, с одной стороны, неоценимая для машиностроителя возможность предсказывать величину силы трения для данной машины, а с другой стороны, возможность выбора смазочных масел для машин, работающих в тех или иных условиях. Особенно важным было установление смазывающей способности масел в зависимости от температуры.

Теоретические выводы свои Николай Павлович неизменно подкреплял практическими доводами. Изучив свойства различных смазок, он убедился, что при замене общепринятых смазочных веществ неопределенного состава рекомендуемыми им смесями трение могло быть уменьшено на сорок процентов. Взяв затем отчет Министерства путей сообщения за 1883 год, из которого было видно, что пробег всех осей пассажирских и товарных поездов перевалил за пять миллионов верст, русский теоретик подсчитал, что надлежащий выбор смазочного масла позволил бы сэкономить за этот год свыше трех миллионов пудов угля. При тогдашних ценах на уголь речь шла, стало быть, об экономии в полмиллиона рублей золотом только в железнодорожном хозяйстве.

Не меньшее значение выбор смазки имеет, конечно, и во всех других областях промышленности, где работают двигатели и механизмы, нуждающиеся в смазочных веществах.

С тех пор как русский ученый создал свою «Гидродинамическую теорию трения хорошо смазанных тел», прошло много лет, но она по-прежнему составляет основу всех работ, посвященных вопросам трения, и остается одним из основных достижений теоретической механики.

Другие научно-исследовательские работы Николая Павловича посвящены главным образом также вопросам, существенно важным для развивавшегося на его глазах и с его участием железнодорожного транспорта. Он писал «О непрерывных тормозных системах», «Об изнашивании и пробе стальных шин», о «Хранении и перегрузках хлебного зерна и каменного угля» и о многих других вещах;

В 1871 году, после основательной подготовки, Николай Павлович ввел в Технологическом институте новый курс — о подвижном составе железных дорог. Для этого курса им были выведены формулы тяговых расчетов, из которых многие, как формулы полного удельного сопротивления паровоза, формулы среднего рабочего давления пара в цилиндрах и т. п., до сих пор фигурируют во всех руководствах.

Николай Павлович принимал непосредственное участие в строительстве русского железнодорожного хозяйства в качестве председателя Правления казенных железных дорог, директора железнодорожного департамента, многолетнего председателя «Комиссии Н. П. Петрова», представлявшей собой высший орган фактического контроля над постройкой Сибирской железной дороги, и, наконец, в качестве товарища министра путей сообщения. В заслугу ему надо поставить неуклонное стремление ввести науку и научный метод в железнодорожное дело.

Н. П. Петров не был узким специалистом железнодорожного дела. Даже те его работы, которые касались специальных вопросов, носили характер широких обобщений и оставляли заметный след в теоретической и прикладной механике. Не говоря уже о его «Гидродинамической теории», редкая статья Николая Павловича не привлекала к себе внимания специалистов — математиков и механиков.

По поводу исследования «Влияние поступательной скорости колеса на напряжение в рельсе» Жуковский писал Николаю Павловичу:

«Ваш прием позволяет распространить вывод на случай подвижных опор и приводит к интересному заключению об опасном влиянии этой подвижности. Посылаю вам найденное мною доказательство любопытного свойства наших графиков, которое вы указываете…»

В дискуссии, разгоревшейся вокруг исследования Петрова «О скольжении ремня на шкивах», Жуковский решительно склоняется на его сторону и приводит ряд доказательств правильности его теоретических соображений.

Н. П. Петров вводил науку и научный метод в железнодорожное дело не только как профессор и администратор — своей ученой деятельностью он немало способствовал вовлечению русской науки в интересы железнодорожной техники.

Не менее энергичным и замечательным организатором научно-исследовательской работы на железнодорожном транспорте в России был другой блестящий русский инженер — Александр Парфенович Бородин.

Как и его брат, известный ботаник, Александр Парфенович был не только талантливым, но широко образованным человеком. Он обладал неиссякаемой энергией и огромной любознательностью. После окончания курса Института путей сообщения в 1872 году он быстро завоевал себе репутацию отличного инженера и превосходного организатора, так что никто не был особенно удивлен, когда в начале восьмидесятых годов Бородин занял должность управляющего Юго-Западными железными дорогами.

Стремление к экономии топлива и успехи в применении принципа двойного расширения пара привели техников всех стран к попыткам применить этот принцип, так называемый принцип «компаунд», к паровозам.

Система двойного расширения пара в двух цилиндрах с неравными диаметрами была введена уже очень давно. К паровозам эту систему впервые, но без успеха, применил в 1876 году Малле, известный конструктор сочлененных паровозов, получивших название «маллет». Широкое же распространение компаунд-паровозы получили позднее, главным образом в результате работ русских инженеров — прежде всего Бородина.

В 1882 году Бородин организовал в Киеве первую в мире паровозную лабораторию для изучения вопроса о целесообразности применения принципа «компаунд» в паровозостроении. Лаборатория эта помещалась в Киевских мастерских Юго-Западных дорог. Опыты производились с двухцилиндровым компаунд-паровозом, переделанным из паровоза простого действия. Работал он в качестве стационарной машины. Это был первый в мире опыт научного исследования работы паровоза в лабораторных условиях.

Исследования показали, что система «компаунд» в применении к паровозам может дать значительную, примерно до двадцати процентов, экономию в расходе пара по сравнению с паровозами однократного расширения.

После этого Бородин переделал на систему «компаунд» еще несколько паровозов и продолжил свои исследования в условиях нормальной эксплуатации.

Управляющий крупнейшей сетью железных дорог превращался при этих исследованиях и в машиниста, и в смазчика, и в кочегара. Копоть, сажа и угольная пыль густым слоем покрывали с ног до головы и Александра Парфеновича и его помощников.

Черные пятна от сажи на Протоколах научных испытаний как бы свидетельствовали о полном единстве теории и практики, научного исследования и опыта.

Этот талантливый представитель инженерной науки шел верным путем. Исследования показали, что действительная экономия пара меньше полученной в лаборатории, но вместе с тем выяснилось, что эта экономия может иметь место при условии продолжительной работы паровоза и при правильном расчете некоторых деталей конструкции.

В 1886 году Александр Парфенович опубликовал результаты своих исследований в трактате «Опытные исследования над применением системы „компаунд“ и паровых рубашек к паровозной машине, произведенные на Юго-Западных железных дорогах». Вслед за этим повсеместно начались опытные исследования, подтвердившие правильность выводов русского инженера.

Исследования на Юго-Западных дорогах продолжались. Положительные результаты многолетних и всесторонних испытаний компаунд-паровозов побудили Юго-Западные дороги перейти к постройке новых компаунд-паровозов, вскоре получивших в России значительное распространение. В связи с русским опытом начали их строить и за границей.

Следует заметить, что в 1890 году Коломенский завод поставлял пассажирские компаунд-паровозы за границу, успешно конкурируя с германскими заводами.

Метод научного исследования, введенный впервые в практику паровозостроения Бородиным, имел огромное значение для дальнейшего развития у нас этой области железнодорожного хозяйства. Все последующие усовершенствования в области паровозостроения, как, например, перегрев пара или сочленение паровозов, вводились в России раньше и с большим успехом, чем за границей.

Любопытна история русских «маллетов». Сочлененные компаунд-паровозы системы Малле появились у нас на Московско-Рязанской дороге в 1897 году, тогда как во Франции, в Германии и Швейцарии «маллеты» не оправдали своего назначения и от постройки их отказались.

Появление сочлененных паровозов было вызвано у нас необходимостью усилить мощность паровозов на участках дороги с возросшим движением. Слабое верхнее строение пути не позволяло усилить давление на рельсы от оси паровоза. Чтобы не прибегать к укладке более тяжелых рельсов, начальник службы тяги Московско-Рязанской дороги Е. Е. Нольтейн решил поставить на опытную работу паровоз системы «компаунд». Основная причина неуспеха «маллетов» за границей заключалась в их неспособности трогать с места тяжелые поезда, что противоречило расчету. Проверив расчет, Нольтейн пришел к выводу, что дефект кроется в каком-то конструктивном недостатке, ускользнувшем от строителей.

Придя к такому заключению, Нольтейн отправился на тот паровозостроительный завод, который строил сочлененные паровозы, и предложил им построить паровоз такой системы по его указаниям.

Дирекция завода отнеслась к проекту критически, и инженеру с большим трудом удалось убедить завод взяться за выполнение заказа.

Заказанный паровоз прибыл на место и при первых испытаниях не оправдал надежд Нольтейна. Не падая духом, он взялся за исследование паровоза и после многих опытов увидел, что все дело кроется в том, что в ресивере, соединяющем цилиндры высокого давления с цилиндрами низкого давления, недостаточно давление пара. Дефект этот был устранен небольшим изменением конструкции, и система «компаунд» вдруг получила все права гражданства.

После этого Коломенский завод начал строить шестиосные паровозы серии «В», с размещением осей на двух тележках. С 1903 года паровозы серии «в» работали на Сибирской железной дороге. В 1910 году на этих паровозах был введен и перегрев пара.

Русский «маллет».

Так как перегреватель пара на паровозах Коломенский завод стал устанавливать раньше, чем американские и английские заводы, то в результате работ русских паровозостроителей в России и появился тот тип сочлененного компаунд-паровоза с перегревателем, который показал свои эксплуатационные достоинства и послужил примером для Америки, не имевшей у себя паровозов такой системы.

С этого момента многие железные дороги стали вводить сочлененные паровозы, постепенно усиливая их и помещая на восьми, десяти и даже на пятнадцати осях. Из скромного шестиосного сочлененного паровоза Московско-Казанской дороги, имевшего восемьдесят тонн сцепного веса, «маллет» вырос до пятнадцатиосного триплекс-паровоза со сцепным весом в триста восемьдесят семь тонн.

Нельзя не пожалеть о ранней смерти Бородина, «крестного отца» этого великолепного паровоза.

Этот замечательный русский инженер в своих статьях ни разу не упомянул о том, что он шел впереди американской техники и указывал пути дальнейшего развития в области паровозостроения. Не предвидел он и той блестящей судьбы, которая ожидала его сочлененные паровозы.

Вероятно, так же мало подозревал и Иван Алексеевич Вышнеградский то, какое огромное значение для современного машиностроения будет иметь его учение о регуляторах и насколько впереди своего времени шел он, создавая теорию автоматического регулирования. Если до него проектирование автоматических регуляторов всецело зависело от догадливости и изобретательности инженера-конструктора, то после его работ это важное и сложное дело получило теоретическую основу. Опираясь на науку, на теорию, на расчет, автоматическое регулирование машин, как известно, достигло к нашему времени удивительной высоты.

На нынешней ступени развития техника в ряде областей стремится не только заменить автоматическими механизмами исполнительные машины, но и автоматизировать управление ими. Вот в этом последнем деле автоматическая регулировка хода машин и механизмов и приобретает свое, исключительное значение.

Автоматический регулятор является важнейшей частью современной машины, так как он сообщает ей устойчивость движения. Без устойчивости, без способности поддерживать постоянный режим работы машина не может хорошо работать. Механизм регулирования состоит в том, что регулятор приходит в действие от изменения регулируемой величины и передает в исполнительный механизм определенное усилие, чтобы воздействовать на источник энергии, питающий данную машину. В силу инерции исполнительный механизм продолжает свое движение, и равновесие достигается лишь после нескольких постепенно убывающих колебаний.

Задача науки состояла в том, чтобы исследовать природу этих колебаний и найти способы их устранения. Вышнеградский решил эту задачу просто и ясно. Применив тонкий математический аппарат, он охватил всю сложную физическую картину взаимодействия машины и регулятора в движении и написал две имевшие большое значение работы «О регуляторах прямого действия» и «О регуляторах непрямого действия».

Конструирование различных устройств для автоматического регулирования, управления или защиты стало ныне особой областью инженерной науки и машиностроения. Но основоположником учения о регуляторах остается Вышнеградский, труды которого и по сей день не утратили своего значения.

Сын вышневолоцкого священника, он родился в 1831 году, учился в духовном училище, в семинарии, но затем — конечно, не без ссоры с отцом — оставил семинарию и поступил на физико-математический факультет Педагогического института в Петербурге. Михаил Васильевич Остроградский направил своими лекциями интересы семинариста в область механики. По окончании курса Вышнеградский некоторое время был преподавателем в Кадетском корпусе, а затем стал преподавать механику в Артиллерийской академии, ведя одновременно научно-исследовательскую работу в различных областях теоретической механики. Вышнеградский становится профессором механики в Артиллерийской академии, а затем начинает читать лекции по паровым машинам в Технологическом институте. Здесь он развивает огромную организационную деятельность и становится директором института.

Типичный представитель интересов промышленной буржуазии, Вышнеградский старался поставить инженерную науку на службу своим хозяевам.

Прежде всего он принимает участие в перестройке Охтенского порохового завода и проектирует для него ряд машин, среди которых сконструированный им пресс получил широкое распространение у нас и за границей. Здесь же он применил небывалую для того времени передачу силы проволочными канатами на большое расстояние. Это новшество обратило на себя внимание технического мира и заграничной литературы. Принимая активное участие в проектировании, строительстве и пуске нового орудийного завода и первого в России завода для изготовления металлических патронов, Иван Алексеевич лично руководил монтажем и наладкой оборудования.

В 1872 году вышел из печати «Курс подъемных машин» Вышнеградского. Это один из лучших курсов по подъемным машинам. «Кто умеет строить краны, тот сумеет любую машину построить», — говорил Вышнеградский. По словам профессора В. Л. Кирпичева, этот курс представляет собой «введение к изучению машиностроения», так как он содержит «изложение общих правил машиностроения, и подъемные машины представляют лишь конкретный пример, на котором изъясняются общие правила».

Этому в значительной степени оригинальному труду Вышнеградского предшествовал и собственный его практический опыт. Состоя инженером-механиком Главного артиллерийского управления, он создал ряд оригинальных механизмов для подъема орудий. Ему же принадлежит проект устройства в Рыбинске пристани с механической перегрузкой грузов из барж в вагоны с помощью незадолго перед тем появившихся гидравлических механизмов.

Проект этот был осуществлен самим автором.

В те времена, когда Вышнеградский начинал свою научную и инженерно-практическую деятельность, машиностроительная промышленность у нас едва начинала развиваться и многие машины еще привозились из-за границы.

Однако Вышнеградский считал своей основной задачей подготавливать не механиков заграничных машин, а создателей своих собственных механизмов. Справедливо говорит о нем его ученик профессор Владимир Львович Кирпичев, что «введение в России преподавания машиностроения, а следовательно и подготовка к отечественному производству машин, есть дело И. А. Вышнеградского, и в этом состоит его главная заслуга и особое значение».

Вышнеградский не только создал ряд курсов по машиностроению, в числе которых была и его «Элементарная механика», изложенная лишь с помощью начальной математики. Вышнеградский прочел множество публичных лекций в зале «Петербургского пассажа», этого своеобразного учреждения, игравшего в середине прошлого века видную роль в развитии русской науки. Лекции были организованы здесь по инициативе научно-популярного издательства торгового дома «Общественная польза» и отнюдь не имели благотворительного характера.

«Изящный, специально отстроенный зал был, вероятно, первым вполне приспособленным к чтению лекций с необходимой обстановкой для опытов и демонстраций при помощи волшебного фонаря, — вспоминает К. А. Тимирязев. — В антрактах красная драпировка между белыми колоннами, составлявшая фон аудитории, раздвигалась, как бы приглашая публику в ряд помещений, своего рода педагогический музей, где она могла знакомиться с диковинной для нее химической посудой, физическими приборами, естественно-историческими коллекциями, так как в круг деятельности торгового дома входила и торговля этими почти неизвестными публике предметами. Читавшиеся в этой аудитории курсы могли бы принести честь и любому европейскому научному центру»[19].

Здесь-то и выступал Вышнеградский со своими общедоступными лекциями о паровых машинах, о механической теории теплоты, о «которой, — говорит Тимирязев, — и с университетской кафедры, по крайней мере, нам, натуралистам, еще не приходилось слышать».

Многие из деятелей русской науки и техники, по свидетельству Тимирязева, «признавали в этих лекциях первый толчок, пробудивший и в них желание изучать естествознание».

Вопросы электротехники и машиностроения занимали при этом едва ли не первое место и благодаря эффектным опытам, сопровождавшим чтение лекций, привлекали особенно много публики.

 

4. «Русский свет» в Европе

История науки и техники свидетельствует, что никакое научное знание, никакое научное открытие не может остаться не приложенным к жизни. Так или иначе оно найдет свое применение и даст практические результаты, хотя вначале иногда трудно предвидеть, когда и как это произойдет.

Бывает, что теоретик исследует природу и проникает в ее тайны без мысли о том, когда, где и к каким практическим результатам это исследование приведет; однако он совершенно убежден, что так или иначе оно будет применено в практике. Не всегда, однако, практическое приложение научного знания делает сам ученый. Бывает, что практические выводы из научного открытия делает инженер, изобретатель, техник.

В этом отношении большой интерес представляет история русской электротехники.

В конце XVIII столетия, как известно, при физических опытах с лягушками, исследователи случайно столкнулись с непонятным явлением, получившим название «гальванизма». Они нашли, что таинственная сила электричества «течет», движется, то-есть открыли то, что мы называем теперь электрическим током. Долгое время этот ток называли «гальваническим», а не электрическим. Впрочем, непонятному явлению вначале приписывалось чисто животное происхождение.

Открытие электрического тока произвело огромное впечатление на ученых того времени, и многие стали основательно изучать «гальванизм».

Вскоре было замечено, что гальванический ток появляется при взаимодействии некоторых веществ и металлов. В 1799 году физик Вольта построил так называемый «вольтов столб» из ряда кружков меди, цинка и кожи, смоченных уксусом. На проволоке, соединявшей медные и цинковые кружки, возникал непрерывный гальванический ток. Источник его был, стало быть, электрохимический и получил название «гальванических элементов». Они широко применяются до сих пор, особенно если нужен слабый ток, причем взаимодействуют в таких «элементах» самые разнообразные вещества.

Впоследствии открылось, что в природе существует много источников электричества. Электрохимический был первым из открытых и оставался довольно долгое время единственным; им и пользовались ученые и инженеры всех стран при изучении магнитных и электрических явлений.

Самый большой «вольтов столб» построил профессор Медико-хирургической академии в Петербурге Василий Владимирович Петров, который уже в 1803 году издал обширный труд с подробным описанием произведенных им оригинальнейших опытов и сделанных им открытий. Книга его называлась «Известие о гальвани-вольтовских опытах… посредством огромной наипаче батареи, состоявшей иногда из 4 200 медных и цинковых кружков».

Самым замечательным открытием русского ученого было получение белого пламени между двумя кусками древесного угля, от которого «темный покой достаточно ярко освещен быть может». Так впервые был получен электрический свет. Значение этого открытия трудно переоценить.

Василий Владимирович Петров, открывший явление теплового и светового действия электрического тока, названное впоследствии «вольтовой дугой», писал на русском языке. Трудно сказать, было ли его сочинение прочитано английскими учеными. Как бы то ни было, они объявили изобретателем «вольтовой дуги» своего соотечественника Гемфри Дэви, наблюдавшего то же явление десять лет спустя.

Надо заметить, что работы Петрова, по своему значению непосредственно идущие за работами Ломоносова, в силу распространенного тогда раболепия перед заграницей долго замалчивались в России.

Василий Владимирович Петров родился 8 июля 1761 года в семье священника города Обояни, Курской губернии, учился в Харьковском «коллегиуме», откуда перешел в Петербургскую учительскую гимназию, где и занимался преимущественно физикой и математикой. Потребность в учителях даже при весьма скромном количестве школ в те времена была столь велика, что Петрова за год до окончания курса направили уже на службу в Барнаул — преподавать математику и физику ученикам Горной школы. Возвратившись в 1791 году в Петербург, Петров стал преподавателем Инженерного кадетского училища, а затем его перевели во Врачебное училище. Когда вскоре это училище было преобразовано в Медико-хирургическую академию, Петров был назначен профессором «физико-математики».

В блестящей образованности, показанной молодым профессором на пробных лекциях, был только один «пробел»: «природный россиянин», по его собственным словам, он не имел случая «пользоваться изустным учением иностранных профессоров физики». Но насколько он стоял вполне на уровне современной ему науки, показывают уже его первый труд «Собрание физико-химических новых опытов и наблюдений», вышедший в 1801 году, и в особенности последовавшее затем «Известие о гальвани-вольтовских опытах».

Несомненно, однако, что по своему дарованию и склонностям Петров был не только теоретиком, но и инженером-практиком. Он был первым у нас организатором физических кабинетов и конструировал различные приборы для физических и химических опытов. Открыв явление «вольтовой дуги», Петров тут же предсказал и применение ее в технике не только для освещения, но и для сварки металлов и для выплавки их из руд.

Нисколько не сомневаясь в том, что инженерно-техническая мысль именно таким образом использует его открытие, Василий Владимирович писал в своей книге:

Павел Львович Шиллинг

(1786–1837).

«Я надеюсь, что просвещенные и беспристрастные физики по крайней мере некогда согласятся отдать трудам моим ту справедливость, которую важность сих последних опытов заслуживает».

При жизни своей он был почтен избранием в члены Академии наук, где организовал замечательный физический кабинет, но по проискам всяческих «недоброхотов» русской науки был «паче всякого чаяния» уволен из Медико-хирургической академии после сорокалетней там службы.

Уволенный «на пенсию» в 1833 году, он умер в следующем же году, лишенный возможности продолжать деятельность, составлявшую единственный смысл его жизни.

Если идея использования электрического тока для практических целей явилась уму русского ученого почти одновременно с открытием «вольтова столба», то для осуществления этих идей понадобилось еще немало научных открытий в области электромагнитных явлений.

О связи между магнитными и электрическими явлениями думал и писал Петров. Но установить форму этой связи удалось несколько позднее. В 1820 году было случайно обнаружено, что при протекании электрического тока вблизи стрелки компаса она отклоняется. Те, кто сумел разглядеть в этом с виду пустячном явлении ключ к покорению великой силы электричества, стали основоположниками всей современной электротехники с ее могучими динамомашинами и электромоторами, так же как и техники слабых токов, на которой основаны современный телеграф и телефон.

Для русской инженерно-технической мысли характерно, что в бурном развитии электротехники XIX века русские инженеры выступали пионерами практического приложения многих новых открытий. Именно русские инженеры проложили пути, по которым пошла современная электротехника.

Так, инженер Павел Львович Шиллинг построил первый в мире практически годный и применявшийся на деле телеграф.

При кажущейся сегодня несложности его конструкции, телеграф Шиллинга потребовал от конструктора большой изобретательности и долгих опытов. Сборку своего аппарата Шиллинг закончил в 1830 году, а в 1832 году он продемонстрировал свой телеграф.

Борис Семенович Якоби

(1801–1874).

Внутри деревянной рамки, густо обмотанной изолированной проволокой, на шелковой нитке висела магнитная стрелка. Соответственно с известным правилом, при прохождении электрического тока от гальванического элемента по проволоке стрелка отклонялась то в одну, то в другую сторону. На той же нитке висел картонный кружочек, с одной стороны черный, а с другой — белый. Имея шесть таких стрелок, Шиллинг комбинацией черных и белых кружков передавал условно обозначенные ими буквы. Между станциями пришлось проводить поэтому даже не шесть, а семь проводов, так как в аппарате была еще седьмая стрелка, дававшая знать о начале и конце передачи телеграммы. Любопытно, что Николай I, познакомившийся с изобретением Шиллинга, не нашел ничего лучшего, как поручить ему провести телеграф из Зимнего дворца в дома разных приближенных. Правда, позднее изобретателю было поручено построить телеграфную линию от Петербурга до Кронштадта.

Во время выполнения этой последней работы Шиллинг умер, и дело не было доведено до конца. Дальнейшим усовершенствованием шиллинговского аппарата стали заниматься сначала англичане Кук и Уитстон, а затем американец Морзе, которому и удалось создать аппарат, в основных чертах существующий и поныне.

Особую активность русской инженерно-технической мысли вызвало открытие в тридцатых годах прошлого столетия способа превращения магнетизма в электричество. Михаил Фарадей нашел, что если к проводнику приближать и удалять от него магнит, то в нем возникает электрический ток. Фарадей брал катушку изолированной медной проволоки и быстро вводил в пустую сердцевину катушки магнитный стержень. По проволоке проходил электрический ток как в момент введения магнита в катушку, так и в момент удаления его оттуда. То же самое получалось, если двигали катушку, оставляя магнит неподвижным.

Это удивительное явление, которое было названо магнитной индукцией, давало возможность получать электрические токи простым движением магнита возле замкнутого пучка изолированной проволоки.

Какая же могла быть особенная техническая трудность в том, чтобы строить электрические машины, в которых движущийся взад и вперед магнит рождал бы в проволоке электрический ток? Такие электрические машины стали появляться десятками. Все они в основном состояли из нескольких больших и сильных магнитов, между полюсами которых вращались катушки изолированной проволоки. Однако заменить гальванические элементы, где ток вырабатывался химическим путем, магнито-электрические машины смогли не так-то скоро: ток в них был слабый, а магниты быстро нагревались. Пока все эти электрические машины служили лишь для опытов всякого рода, весьма подвинувших вперед наши познания об электромагнетизме.

Одно из самых важных открытий в этой области сделали два наших академика: Борис Семенович Якоби и Эмилий Христианович Ленц, избранный академиком на место Петрова после смерти последнего. Исследуя электромагнитные явления, они установили обратимость электромагнитного цикла: когда в электромагнитной машине вращали катушки, в них получался электрический ток; но если в катушки подавали электрический ток от постороннего источника, то катушки сами начинали вращаться и машина работала уже не как источник тока, а как электродвигатель.

Электродвигатель Якоби.

Это открытие имело колоссальное значение для дальнейшего развития электротехники и чрезвычайно расширило область применения электрического тока для практических нужд человечества. Первым, кто взглянул на электрические машины с точки зрения энергетика, был сам Якоби. Он не только построил первый электродвигатель по этому принципу, но и сделал попытку использовать его для целей судоходства.

Якоби установил свой двигатель на небольшом боте для вращения гребного винта. На этом боте в 1839 году Якоби с членами комиссии, испытывавшей первый в мире электроход, сделал большую прогулку по Неве, на сорок километров от Петербурга. Двигатель питался током от трехсот двадцати медно-цинковых гальванических элементов, размещенных на дне лодки.

Таким образом была доказана практическая возможность использования электричества как двигательной силы. Через несколько лет один иностранец-авантюрист пытался выдать двигатель Якоби за свое изобретение, но был уличен учеными всех стран.

Использование электричества в промышленности и на транспорте задерживалось теперь только из-за отсутствия мощных генераторов электрического тока. Однако для их осуществления все научные предпосылки были налицо, и такие генераторы вскоре были созданы. В развитии и совершенствовании генераторов видная роль принадлежит русским инженерам Д. Лачинову, А. Полешко, М. Доливо-Добровольскому и другим. Особенную же услугу инженерам-электротехникам в этом деле оказала докторская диссертация знаменитого русского физика Александра Григорьевича Столетова «О функции намагничения железа». В этой работе Столетов установил закон намагничения железа, чем положил основу для расчета и проектирования любых электрических машин. Открытием Столетова пользуются конструкторы генераторов и моторов.

Хотя диссертационная работа Столетова имела чисто теоретический характер, Александр Григорьевич, как типичный представитель передовой науки, указывал в заключении и на практическое значение произведенных им исследований:

«Изучение функции намагничения железа может иметь практическую важность при устройстве и употреблении как электромагнитных двигателей, так и тех магнито-электрических машин нового рода, в которых временное намагничение железа играет главную роль… Знание свойства железа относительно временного намагничения так же необходимо здесь, как необходимо знакомство со свойствами пара для теории паровых машин»[20].

Передовая роль русской науки и техники в прикладной электротехнике была во второй половине XIX века общепризнана.

Особенную славу русскому инженерному делу доставило практическое разрешение проблемы электрического освещения, которое вначале иначе и не называлось за границей, как «русское солнце» и «русский свет».

«Русское солнце» взошло над миром благодаря трудам двух замечательных русских инженеров — Павла Николаевича Яблочкова и Александра Николаевича Лодыгина, создателей двух главных видов электрического освещения. Эти два, типа освещения — лампа с вольтовой дугой и лампочка накаливания, В первом случае используется свечение газа, в частности атмосферного воздуха, при прохождении через него электрического тока между сближающимися углями; во втором — происходит нагревание током какого-либо твердого «тела накала» в форме стержня или нити до температуры, когда тело излучает яркий свет. Для практического использования того и другого метода надо было преодолеть, однако, ряд трудностей, найдя при этом для преодоления их простые технические решения.

Александр Григорьевич Столетов

 (1839–1896).

Простые решения, как можно было уже заметить, очень характерны для русской науки и инженерного искусства. В этом отношении Яблочков является особенно ярким представителем русской инженерии.

Более полувека после открытия «вольтовой дуги» Петровым изобретатели всего мира работали над проблемой электрического освещения дуговыми лампами. Было предложено и разработано множество остроумных технических решений, не подвинувших, однако, дела вперед ни на шаг. Основная трудность заключалась в том, что по мере сгорания углей расстояние между ними увеличивалось и «вольтова дуга» погасала. Естественно, инженерно-техническая мысль направилась к конструированию всякого рода регуляторов, которые автоматически поддерживали бы нужное расстояние между углями.

Яблочков нашел гениально простое решение: он изменил расположение углей, поставив их рядом, а не против друг друга, как они располагались обычно. При таком параллельном расположении угли, сколько бы ни горели, оставались на одном расстоянии друг от друга, и «вольтова дуга» не затухала, пока угли не сгорали до конца. Благодаря такому размещению углей они имели вид горящей свечи, и сконструированная русским инженером лампа получила наименование «свечи Яблочкова».

Друзья Павла Николаевича рассказывают, что мысль о параллельном размещении углей пришла к нему «случайно», когда, сидя за столиком в одном из парижских кафе, он что-то писал и положил рядом два карандаша. Эти карандаши и подсказали ему идею «свечи». Яблочков сознательно и упорно искал техническое решение поставленной перед собой задачи, и притом простое решение. Простые решения стоят у самых вершин в творческом деле именно потому, что они наиболее трудны. Они даются с трудом даже гениальным умам, ибо путь к ним лежит через преодоление привычного хода мысли, ибо поступить в своем деле так, как никто еще в нем никогда не поступал, очень трудно.

«Свеча Яблочкова» была первым решением проблемы электрического освещения, но в царской России это блестящее изобретение не получило поддержки правительства. «Русский свет», техническая идея, рожденная в русском народе, из-за пренебрежения правящих классов старой России ко всему русскому, национальному должен был сначала привиться на чужбине.

«Свеча Яблочкова» была запатентована во Франции в 1876 году. Крупные конструктивные и эксплуатационные преимущества созданного русским инженером рационального источника электрического освещения вызвали к «русскому свету» внимание во всех уголках земного шара. Для эксплуатации «свечи Яблочкова» было создано в Париже крупнейшее электротехническое предприятие. Вслед за Францией «русский свет» засиял в Англии, Германии, Италии и в других странах, дойдя до «дворцов персидского шаха и короля Камбоджи». Общества по эксплуатации изобретения Яблочкова множились во всем мире. Иностранные предприниматели прибрали к рукам «русский свет» и сделали его предметом спекуляции. Осветительные компании наживали огромные барыши. Но Павел Николаевич не стал богатым человеком. Все свои средства он отдал для того, чтобы получить право реализации своего изобретения в России. Деньги, душевные силы, инженерное дарование он одинаково щедро и безрасчетно расходовал на осуществление грандиозного плана повсеместного внедрения в России электрического освещения, на осуществление целого ряда электротехнических идей. Через несколько лет после изобретения своей «свечи» Яблочков разработал оригинальную конструкцию якоря электрической машины, которую присвоил и выдал за свою Гефнер Альтенек.

Как и все русские электротехники, Яблочков жил одним убеждением, которое кратко выражено Столетовым в его отчете о конгрессе электриков:

«В электричестве человек нашел путь к решению самых разнообразных, самых фантастических задач своего ума».

Разнообразные проблемы электротехники и составляли предмет постоянной работы творческого ума Яблочкова.

Яблочков проложил путь современной электротехнике в промышленном применении переменного тока, многофазных машин, трансформаторов и конденсаторов, а также в конструкциях гальванических элементов. По поводу только этой последней серии работ в дни, когда отмечалось у нас пятидесятилетие со дня смерти Яблочкова, говорилось:

Павел Николаевич Яблочков

 (1847–1894).

«Рассмотренный перечень изобретений Яблочкова в области гальванических источников показывает чрезвычайно богатое и находчивое воображение образованного конструктора, редкостные, исключительные способности комбинирования материала и формы и, кроме того, глубокое проникновение изобретателя в сущность процесса. Благодаря этому ценность его идей не только сохранилась до наших дней, но многие из них только теперь, когда наука и техника ушли вперед, и становятся понятными».

Чтобы составить себе полное представление о Яблочкове, как о характернейшем представителе русской инженерно-технической мысли, надо напомнить, что он, в сущности говоря, даже не дожил до полного расцвета своих творческих сил. Он умер сорока шести лет 31 марта 1894 года в том же Саратове, где рос и гимназистом конструировал то счетчики для измерения пройденного повозкой пути, то землемерные инструменты, которыми крестьяне в имении его отца пользовались, кажется, до самой смерти конструктора.

Понимая все значение широкого специального образования, Яблочков не только окончил прекрасно поставленное Николаевское инженерное училище, но еще прошел после службы в Киевской крепости «офицерские гальванические классы».

Его учителями были Якоби и Тотлебен, друзьями — Лодыгин и Чиколев. Собственно говоря, только последние двадцать лет жизни Яблочкова были посвящены инженерной деятельности, и они, конечно, явились скорее школой опыта, чем зрелостью, периодом скорее формирования творческого характера, чем его проявления. И тем не менее смелостью мысли, грандиозностью замыслов, простотою технических решений Яблочков привел в изумление своих современников и заставил восклицать распространенную французскую газету:

«Русский свет» на набережной Темзы в Лондоне.

«Свет идет к нам с Севера!»

Можно думать, что ранняя смерть Яблочкова была одной из основных причин, помешавших дальнейшему развитию того типа электрического освещения, над методами которого работал Павел Николаевич. Опережая свое время, он определял оба метода освещения современным языком: электрический разряд в газах и свечение накаленных тел. Оба эти метода за истекшие полвека не переставали конкурировать друг с другом, но только в наши дни мировая электротехника, благодаря развитию учения о люминесценции газов при прохождении в них электрического тока, возвратилась с большим успехом к, идеям Яблочкова.

Александр Николаевич Лодыгин

 (1847–1923).

Наибольшее распространение, однако, до сих пор еще имеет второй тип электрического освещения, создателем которого был Александр Николаевич Лодыгин. Ровесник Яблочкова, он на много лет пережил его и умер в 1923 году, но был менее счастлив в своих электротехнических предприятиях.

Лодыгин является одним из тех блестящих русских инженеров, которые умели, сочетав практическую целеустремленность с широтой теоретического обобщения, увенчать дело простым и ярким решением. Он получил известность как создатель электрической лампочки накаливания; но мы должны напомнить и о другом его создании, оставшемся малоизвестным, потому что работы его в этом направлении велись совершенно секретно. Лодыгин является первым конструктором геликоптера с электрическим двигателем. Отрывочные сведения о нем появились в «Ремесленной газете» в 1871 году и прошли незамеченными.

Проблемой динамического полета Александр Николаевич увлекся еще в юности. Обогнав мировую авиаконструкторскую мысль, он уже в 1869 году смог представить Главному инженерному управлению проект геликоптера с электрическим двигателем. «Электролет» Лодыгина ничего не имел общего с проектировавшимися в те времена управляемыми аэростатами.

Конструктор исходил из принципов механики, основываясь на известном положении, что «если к какой-либо массе приложить работу Архимедова винта и сила винта будет более тяжести массы, то масса двинется по направлению силы». Основанный на этом принципе «электролет» Лодыгина представлял собой длинный, хорошо обтекаемый цилиндр, оканчивающийся спереди конусом, а сзади полушарием. Со стороны полушария был укреплен винт, сообщавший снаряду движение в горизонтальном направлении. Сверху же снаряда располагался второй винт. Устанавливая его лопасти под различными углами, конструктор рассчитывал менять скорость «электролета», а комбинацией работы того и другого винта сообщать аппарату движение то вертикальное, то горизонтальное.

Конструктор не получил поддержки от правительства для продолжения своих работ, и «электролет» не был построен. Но, вспоминая «аэродромическую машину» Ломоносова и геликоптер Б. Н. Юрьева, полностью разрешивший проблему этого типа летающего аппарата, ныне получившего права гражданства в авиации, нельзя не напомнить о нем, как о детище русской инженерно-технической мысли.

Значительно позднее, уже в начале первой империалистической войны, Лодыгин предложил царскому правительству проект своего «электролета», развившегося у конструктора в летательную машину типа орнитоптера с машущими крыльями. Четыре гребных винта были спроектированы так, что «идя вниз, опираются на воздух всей своей поверхностью, поднимаясь же вверх, становятся в положение наименьшего сопротивления».

Билет для входа на опыты А. Н. Лодыгина

 7 августа 1873 года.

Домовая установка для электрического освещения.

 Рисунок из журнала «Электричество» за 1886 год.

Технический комитет Главного военно-технического управления, опираясь на экспертизу профессора Н. Л. Кирпичева, пришел к выводу, что аппарат Лодыгина может быть полезен военной авиации и что в теоретических обоснованиях и расчетах конструктора никаких неправильностей нет; тем не менее Лодыгину и на этот раз никакой поддержки оказано не было.

Александр Николаевич принадлежал к числу образованнейших инженеров и обладал большим конструкторским дарованием. В проектированных им машинах для летания бросаются в глаза остроумнейшие конструкции устройств для автоматического регулирования силы тока, идущего в моторы; этим способом автоматически направлялся аппарат при кренах от атмосферных воздействий.

Однако наиболее крупной его заслугой перед человечеством было изобретение электрической лампы — нового, невиданного еще источника освещения. Чтобы построить практически приемлемую лампочку накаливания, надо было прежде всего добиться, чтобы тело накала не сгорало в кислороде воздуха. Лодыгин разрешил эту трудную по тем временам задачу простым способом, который в основном употребляется и поныне. Он построил достаточно долговечное тело накала в виде двух угольных штабиков и заключил их в стеклянный резервуар, откуда выкачивался воздух. В 1873 году Лодыгин читал в Петербурге лекцию о своем методе и демонстрировал фонари для уличного и комнатного освещения, лампы для железнодорожной сигнализации, для рудников и даже для подводного освещения.

Передовая научно-техническая интеллигенция приветствовала замечательное открытие Лодыгина. В 1874 году Академия наук присудила ему Ломоносовскую премию. В том же году организовалось «Товарищество электрического освещения» для эксплуатации изобретения. Однако, лишенный организационной поддержки со стороны правительственных учреждений, Лодыгин не смог технически доработать свою систему, и предприятие не имело успеха.

Лодыгин запатентовал свою лампочку во всех крупнейших странах. Узнал о ней и американец Эдисон. Повидимому, он познакомился с лампой Лодыгина через русского морского офицера А. М. Хотинского. В 1879 году, после внесения в изобретение Лодыгина некоторых усовершенствований, Эдисон начал широкое распространение ламп накаливания. Иностранная печать безудержно восхваляла Эдисона как пионера и основоположника электрического освещения. Позднее американский суд вынужден был аннулировать патент Эдисона и подтвердить приоритет Лодыгина. Несмотря на это, сейчас в зарубежной литературе честь изобретения, сделанного Лодыгиным, систематически приписывается Эдисону.

Лампа с тугоплавкой вольфрамовой нитью, вскоре вытеснившая лампы с угольной нитью, также была изобретена Лодыгиным еще в девяностых годах прошлого столетия. Патент на нее был приобретен американской фирмой «Дженерал электрик», и факт изобретения такой лампы Лодыгиным также остался малоизвестным.

Александр Николаевич работал с большой интенсивностью до последних дней жизни, и среди заявленных им в эти годы патентов есть патенты на индукционные электрические печи, получившие в наше время большое значение.

На протяжении двух последних десятилетий прошлого века русские инженеры давали одно за другим все новые решения сложных проблем электротехники. В 1881 году Дмитрий Александрович Лачинов в старейшем русском техническом журнале «Электричество» подтвердил расчетами высказанную еще Ломоносовым мысль о возможности и выгодности передачи электрической энергии на расстояние. В дальнейшем эти идеи развил талантливый французский инженер Марсель Депре, опыты которого привлекли внимание Маркса и Энгельса. В 1882 году русский физик, препаратор кафедры физики Московского университета Иван Филиппович Усагин, изобрел трансформатор. В 1886 году талантливый русский инженер Классон спроектировал и построил первые электрические станции Москвы, Петербурга и Баку. В 1890 году русский инженер Михаил Осипович Доливо-Добровольский изобрел гениально простой электродвигатель — трехфазный асинхронный мотор, с тех пор получивший широчайшее распространение. В 1891 году Доливо-Добровольский и Классон доказали выгодность передачи электрической энергии на большие расстояния. Пущенная ими 25 августа 1891 года опытная линия передавала энергию напряжением 8 500 вольт на расстояние 175 километров. Весь мир убедился, что электрическая энергия может дойти к потребителю и на таком большом расстоянии. Это был крупнейший триумф электротехники.

Лампочка Лодыгина

К этому же периоду относятся замечательные работы русских инженеров в области электросварки металлов, что предусматривал еще В. В. Петров.

В 1875 году Николай Николаевич Бенардос, обедневший полтавский помещик по происхождению, страстный изобретатель и технолог, взял в Петербурге патент на свой способ электросварки, а в 1880 году стал первым в мире производить такого рода опыты, пользуясь для сваривания электрической дугой Петрова. Одним полюсом дуги служил сам свариваемый предмет, а другим — угольный электрод. Опыты производились с кусками железа; края кусков сваривались, но к свариваемому месту примешивались угольные частицы, и это делало металл ломким по шву.

Справедливо полагая, что за дальнейшим усовершенствованием найденного им метода электросварки дело не станет, Бенардос запатентовал свой метод во всех странах и организовал общество для эксплуатации изобретения.

Николай Гаврилович Славянов, горный инженер, управлявший Пермским сталелитейным и пушечным заводом, предложил в 1890 году другой способ электросварки, названный им «электросплавкой металлов». Он заменил угольный электрод стержнем из того же металла, что и сплавляемый предмет. Этот стержень плавился в дуге Петрова и заполнял шов сплавляемых поверхностей. После того как ему удалось исправить таким способом целый ряд забракованных на заводе изделий, Славянов взял также патент на свой способ. При испытаний сплавленные по методу Славянова металлические изделия оказывались по шву даже более прочными, чем по целому металлу.

Между Бенардосом и Славяновым возник спор, можно ли считать замену угольного электрода металлическим самостоятельным изобретением. Суд признал обоих равноправными, опираясь на экспертизу известного русского физика Ореста Даниловича Хвольсона. Хвольсон правильно указал, что принципиальное решение вопроса о применении электрической дуги для сварки металлов принадлежит Петрову, и если встает вопрос об аннулировании патента Славянова, то с таким же основанием может быть аннулирован и патент Бенардоса.

Судебный процесс поднял интерес к замечательному изобретению, имевшему революционизирующее значение для многих отраслей промышленности. Еще большее внимание привлекло предложение Славянова применить его способ для восстановления Царь-колокола. Широко применять дуговую электросварку при сооружении металлических каркасов, при постройке кораблей, мостов, вагонов начали в Америке.

Этим обстоятельством воспользовались «недоброхоты» русской национальной культуры, — конечно, для того, чтобы предать забвению имена пионеров огромного дела или хотя бы объявить их незадачливыми «самоучками», не сумевшими довести свою идею до практического применения.

Однако «из сохранившихся описаний, чертежей и рисунков в архиве Н. Н. Бенардоса, — говорит академик В. П. Никитин, — видно, что им изобретен не только способ сварки угольной дугой, которому он придавал основное значение, но, по существу, все основные способы дуговой электрической сварки, применяющейся поныне. Так, им были разработаны: „Сварка косвенно действующей дугой, горящей между двумя или несколькими электродами“, называемая обычно способом Цернера, „Сварка в струе газа“, известная ныне как способ Александера, „Магнитное управление сварочной дугой“, нашедшее применение в американской практике в автоматах Линкольна, и, наконец, дуговая резка как на поверхности, так и под водой. В его чертежах был реализован целый ряд остроумных приспособлений и устройств, в том числе несколько систем автоматов для сварки угольным электродом, автоматы с металлическим электродом, а также угольные и металлические электроды самых разнообразных форм и сочетаний»[21].

Деятельность Бенардоса и Славянова Русское техническое общество отметило присуждением высших наград, а Бенардосу, кроме того, было присуждено звание инженера.

Между тем инженерно-техническая мысль в России, опережая своей активностью и смелостью мировую инженерию, указывала практические приложения все новым и новым открытиям в области электричества.

Еще Фарадей утверждал, что распространение электрической и магнитной силы представляет собой колебательное явление и происходит с определенной скоростью, но лишь сорок лет спустя это положение приняло форму развитой теории. Максвелл доказал, что вокруг текущего по проводнику электрического тока возникают электромагнитные волны, распространяющиеся со скоростью света. Он высказал убеждение, что и свет является разновидностью электромагнитных волн.

Математические расчеты Максвелла были очень убедительны. И вот другой ученый, Генрих Герц, взялся за то, чтобы доказать опытным путем существование этих электромагнитных волн. Он построил два прибора: вибратор, излучавший электромагнитные волны, и резонатор, обнаруживавший их. Герц и не помышлял о том, чтобы найти своему открытию какое-нибудь практическое приложение. Когда его однажды спросили, нельзя ли применить электромагнитные волны для телеграфирования без проводов, он воскликнул с удивлением:

— Ну что вы! Мои опыты имеют чисто теоретический интерес, и я не вижу в них никакой практической ценности.

В развитие опытов Герца были созданы улавливатели электромагнитных волн, в частности «когерер», посредством которого волны можно было уже обнаружить на расстоянии нескольких метров от вибратора, причем они обнаруживались очень явственно. Но никто не видел во всем этом ничего, кроме обычных физических приборов для демонстрации электромагнитных волн.

Возможность практического применения этого открытия показал миру скромный преподаватель Минных офицерских классов в Кронштадте Александр Степанович Попов. 7 мая 1895 года он продемонстрировал членам Русского физико-химического общества первый в мире радиоприемник и заявил;

— Могу выразить надежду, что мой прибор при дальнейшем усовершенствовании его может быть применен к передаче сигналов на расстояние при помощи быстрых электрических колебаний.

Первая электросварочная мастерская Бенардоса.

Страница из вахтенного журнала первой практической радиоустановки 1900 года.

Александр Степанович Попов

 (1859–1905).

Насколько эта надежда была твердой, можно судить по словам Александра Степановича, сказанным им своему помощнику и другу П. Н. Рыбкину:

— Петр Николаевич, мы с вами сделали открытие, значение которого сейчас едва ли кто поймет.

Радиоприемник Попова принимал электрические разряды, которые возбуждаются в воздухе грозами, почему и был назван «грозоотметчиком»; но из него выросла вся современная радиотехника, днем рождения которой и считается 7 мая 1895 года. Менее чем через год, в марте 1896 года, Попов провел первую в мире радиопередачу в аудитории физического кабинета, а в феврале 1900 года радиостанция Попова уже помогала спасать рыбаков, унесенных на льдине. Величайшее изобретение XIX века вошло в плоть и кровь человечества, чтобы дать свое имя наступившему XX веку.

Александр Степанович Полов родился 16 марта 1859 года на Урале — этом старейшем индустриальном центре нашей страны, в поселке Турьинского рудника, где техника была частью пейзажа и быта. Его отец был священником. Рано пробудившийся интерес к технике привлекал мальчика к деятельности, и детское любопытство его удовлетворял обычно не отец, занятый приходом и хозяйством, а управляющий рудником Николай Осипович Куксенский, Возвращаясь из Петербурга, он привозил с собой технические новинки и, кажется, с наибольшей охотой демонстрировал их будущему ученому. Мальчик удивлял его и своей любознательностью, и своей сообразительностью, и, главное, своим влечением к технике и конструкторскими способностями.

Однажды Куксенский привез гальваническую батарею и электрический звонок, которым оборудовал свою квартиру. Мальчик пошел дальше; он построил из старых часов, звонка и гальванической батареи электрический будильник.

Всякого рода конструкциями Александр Степанович занимался и в духовном училище и в семинарии, где учился до поступления в университет, Богословские науки, которые занимали центральное место в программах духовных учебных заведений, оказывали на юношу мало влияния. Интерес к инженерии привлек его на физико-математический факультет Петербургского университета, который он и окончил в 1882 году. Через год Попов уже был преподавателем Минных офицерских классов, из которых вышли первые русские электротехники, где работали и Лодыгин, и Яблочков, и Якоби.

Попов вел практические занятия и заведовал физическим кабинетом, Нельзя представить себе более подходящей обстановки для будущего конструктора тончайших электротехнических приборов. Александр Степанович с увлечением совершенствовал аппаратуру для демонстрации физических опытов и, едва отложив журнал, в котором он прочел впервые об опытах с когерером, принялся за постройку этого нового прибора.

Основной частью прибора была «трубка Бранли», в которой ученые видели готовый улавливатель электромагнитных волн. Бранли не занимался электромагнитными волнами, он изучал сопротивление металлических опилок. Он насыпал эти опилки в стеклянную трубку с металлическими пробками и производил с такой трубкой различные опыты. Тогда-то он и обнаружил, что «на сопротивление металлических опилок влияют электрические разряды, производимые на некотором расстоянии от них».

Влияние электромагнитных волн на трубку Бранли, не проводившую электричества, сводилось к тому, что опилки слипались и начинали проводить электрический ток. Если же трубку встряхивали, она опять теряла свойства проводника. Таким образом, трубка Бранли могла с успехом заменить резонатор Герца, очень слабо откликавшийся на воздействие электромагнитных волн. В трубке Бранли был лишь один недостаток; чтобы опилки вновь смогли принять электромагнитный сигнал, их необходимо было встряхнуть.

И вот обратим внимание на то, как устранялся этот недостаток.

Бранли со свойственной французам живостью просто пальцами встряхивал трубку и продолжал свои опыты, не обременяя себя решением привходящей задачи об автоматизации встряхивания.

Лодж, наоборот, призвал на помощь весь высокий технический опыт Англии и решил задачу встряхивания при помощи очень сложного часового механизма с пружинами, шестеренками, регуляторами. Механизм автоматически встряхивал опилки и действовал безукоризненно, но чувствительности трубки Бранли он не увеличил. Она принимала волны с расстояния нескольких метров — не более семи-восьми.

Русский конструктор поступил иначе и проще: он использовал для встряхивания опилок те самые электромагнитные волны, которые посылал вибратор. Это был решающий шаг к глубоко задуманной цели. Сконструированный им прибор стал настолько чувствителен, что для опытов Попова уже стало тесно в обширном физическом кабинете.

Конструктивно задача решена была с гениальной простотой. Попов высыпал опилки на листок слюды, лежавший на раме гальванометра. Регистрируя прием электромагнитных волн отклонением всей рамки, гальванометр тем самым и встряхивал опилки.

Но намерения конструктора простирались неизмеримо дальше. Для грандиозного замысла — улавливать сигналы с любого расстояния — нужно было увеличить чувствительность приемника. И через две недели после того, как были поставлены первые опыты с приемом электромагнитных волн, в руках Попова оказался приемник, улавливавший сигналы с расстояния в восемьдесят метров и даже отдаленно не напоминавший собой ни резонатор Герца, ни трубку Бранли, ни когерер Лоджа. Это и был «грозоотметчик», дававший знать о приеме электрических разрядов коротким звонком. Чувствительность прибора была еще больше увеличена введением антенны.

Опытная радиостанция А. С. Попова, построенная на острове Гейкар-Саре.

Работа над радиоприемом в руках Попова оказалась цепью простых и остроумных решений, начиная с антенны и кончая использованием явлений резонанса.

Судьба великого изобретения А. С. Попова любопытна и поучительна. Спустя всего лишь год после первой демонстрации приборов Александром Степановичем, в июне 1896 года, в Англии была подана заявка на патентование радиоаппаратуры, принципиально тождественной с аппаратурой А. С. Попова. Эту заявку представил итальянец Маркони, учившийся у профессора Риги, который бывал в Петербурге и был осведомлен о работах Попова. Английские предприниматели охотно вложили свои капиталы в предприятие, сулившее значительные барыши. Компания Маркони настойчиво развивала свою коммерческую деятельность, стремясь захватить не только европейский, но и американский рынок. Не считаясь с затратами, она назойливо и беззастенчиво рекламировала Маркони как изобретателя радио. Несмотря на то, что еще в 1908 году авторитетная комиссия Русского физико-химического общества, а затем в 1935 году Верховный суд США по делу об «изобретении Маркони», на основании документальных данных, установили бесспорный приоритет нашего соотечественника, шумиха вокруг Маркони, выгодная коммерсантам, продолжается и поныне. Дошло до того, что в Риме был организован «международный» съезд, посвященный пятидесятилетию со дня «открытия» радио Маркони.

Так великое изобретение русского ученого и инженера спустя полвека не дает покоя зарубежным любителям присвоения чужих идей.

«Наиболее замечательные и совершенные произведения человеческого духа всегда несут на себе ясный отпечаток творца, а через него и своеобразные черты народа» страны и эпохи, — говорил академик С. И. Вавилов в своем докладе о Ломоносове и о русской науке. — Это хорошо известно в искусстве. Но такова же и наука, если только обращаться не просто к ее формулам, к ее отвлеченным выводам, а к действительным научным творениям, книгам, мемуарам, дневникам, письмам, определившим продвижение науки.

Никто не сомневается в общем значении Евклидовой геометрии для всех времен и народов, но вместе с тем «Элементы» Евклида, их построение и стиль глубоко национальны. Это одно из примечательнейших проявлений духа древней Греции наряду с трагедиями Софокла и Парфеноном. В таком же смысле национальны физика Ньютона, философия Декарта и наука Ломоносова.

История русской науки показывает, что ее вершинам, ее гениям свойственна особая широта задач и результатов, связанная, однако, с удивительной почвенностью и реальностью и вместе с тем простотой подхода к решениям. Эти черты, этот стиль работы, которые мы встречаем и у Менделеева и у Павлова, особо выразительны у Ломоносова[22].

Тот же стиль, те же черты, тот же национальный творческий характер видим мы и у виднейших представителей русского инженерного искусства во всех его областях.

 

5. Применение открытий

Все основные этапы, через которые прошла в своем развитии современная нефтяная промышленность, и все области техники, где применяется нефть, были связаны с работой русских инженеров. Это обстоятельство покажется особенно характерным и значительным, если вспомнить, что нефть была известна с незапамятных времен.

Новый период в истории нефти начался в 1823 году, когда в технике появился первый перегонный аппарат, позволивший «превращать черную нефть в белую», то-есть всем известный сегодня керосин. Аппарат этот был создан руками русских крепостных крестьян.

Месторождение нефти в Баку, принадлежащее к богатейшим на земном шаре, оценил уже Петр I, приказавший ввозить оттуда нефть в Россию. С этого времени и начинается знакомство русских людей с нефтью.

И вот «в то время, когда патентованные ученые Европы смотрели еще на нефть, как на материал, годный лишь для обмазки колес и других машин, — говорит старейший историк нефтяного дела В. И. Рагозин, — в горах Северного Кавказа люди, ближе стоявшие к жизни и наблюдавшие вещи непосредственно, работали над „превращением черной нефти в белую“, то-есть над перегонкой нефти и получением из нее продуктов, более пригодных для освещения, чем сырая нефть. Люди эти — братья Дубинины, и им принадлежит по праву имя основателей керосинового производства».

Действительно, в архиве управления кавказского наместника сохранилось «описание изобретенного крестьянином графини Паниной Василием Дубининым с братьями способа очищения черной нефти». К этому описанию приложены чертеж перегонного устройства и объяснения изобретателя.

Изобретатели, жившие в Грозненском районе, в районе города Моздока, в 1823 году собственными силами построили первый в мире нефтеперегонный завод. Практических последствий это важнейшее изобретение, как и множество других в царской России, не получило. Не встретив никакой поддержки, оно вскоре заглохло.

Но идея носилась в воздухе. В 1830 году керосин был получен из нефти в лабораторных условиях. Однако в промышленном масштабе производство керосина началось лишь спустя десятки лет, после того как появились керосиновые лампы.

Занимаясь разного рода промышленными предприятиями в Нижнегородской губернии, обратил внимание на русскую нефть Виктор Иванович Рагозин. Математик по образованию, талантливый инженер по складу ума, Рагозин начал с чисто практического предложения — установить перевозку нефти по Волге в специальных наливных баржах. До этого нефть перевозилась в бочках, что было дорого и хлопотливо и никак не могло содействовать широкому потреблению нефти, хотя бы в качестве топлива.

Но более существенной заслугой Рагозина было химическое исследование природы нефти, В результате этого исследования Виктор Иванович приготовил из нефти превосходный смазочный материал, не примешав к нему растительных и животных жиров, как это до него делалось повсюду. В 1877 году он построил в Нижнем Новгороде специальный завод нефтяных смазочных масел и сумел поставить производство в таком масштабе и выпускать товар такого качества, что русское нефтяное смазочное масло заняло на мировом рынке господствующее положение.

Труды Рагозина по технологии нефти доставили ему редкостную награду: Технологический институт почтил его званием почетного инженера-технолога.

Одновременно с Рагозиным занимался исследованием химической природы нефти другой технолог — Александр Александрович Летний. В начале своей практической деятельности он производил в Сызранском уезде исследования асфальтовых залежей на берегу Волги. Он выяснил глубину залегания и распространения асфальта и тем самым оказал содействие основанию первого русского асфальтового завода.

Затем он перешел к исследованию химической природы нефти и в результате своих опытов сделал открытие, колоссальных последствий которого он, конечно, в те времена не мог предвидеть.

Публикуя в 1875 году свой труд «Сухая перегонка битуминозных ископаемых», а в 1877 году — «Исследование продуктов древесно-нефтяного газа», он первым в мире показал, что, пропуская кавказскую нефть и нефтяные остатки через накаленные железные трубы, можно получить целый ряд углеводородов ароматического ряда, в том числе бензин.

Позднее указанный Летним способ перегонки нефти нашел широчайшее распространение. Но взятая русским технологом пятилетняя привилегия на способ добывания антрацена и бензина из нефти не обогатила его и не составила ему мировой известности, так как свое нынешнее значение бензин получил уже в XX веке, в результате бурного развития автомобильного транспорта и авиации.

Александр Александрович Летний умер в 1884 году, не имея представления о том, каким достижениям содействовало его открытие и какую огромную роль суждено было играть бензину и нефти в истории человечества.

Колоссальный спрос на бензин привел к тому, что путем так называемого «крекинг-процесса», идеи которого были заложены в работе Летнего, стали получать бензин и из остатков первичной перегонки нефти, то-есть из мазута и соляровых масел, не содержащих бензина.

Однако мало кто знает, что и этот процесс, получивший английское название и запатентованный в 1915 году Бартоном, задолго до Бартона, в 1891 году, был предложен и разработан в России Владимиром Григорьевичем Шуховым, получившим тогда же и патент на промышленную крекинг-установку. Способ этот, правда, не был осуществлен в дореволюционной России, как и многие другие смелые идеи.

Владимир Григорьевич Шухов принадлежит к числу блестящих русских инженеров, обогативших отечественную науку замечательными открытиями. Едва начав свою практическую деятельность после окончания Московского высшего технического училища в 1876 году, Шухов сконструировал особого типа форсунку для отопления нефтью паровых котлов на волжских судах; эта форсунка получила затем широчайшее распространение.

Вслед за тем он построил водотрубный котел своей системы, который, по крайней мере в Московской промышленной области, почти начисто вытеснил котлы старейших английских фирм, так как превосходил их по экономичности, безопасности и дешевизне.

После этого Шухов погрузился в изыскание наиболее рациональных типов строительных ферм, развил теорию и пришел к системе сетчатых железных покрытий.

Внося предложение об избрании Шухова почетным членом Московского политехнического общества, Жуковский дал такую характеристику своему талантливому ученику:

«В разрешение всех вопросов, с которыми Владимиру Григорьевичу пришлось соприкасаться за продолжительное время его технической деятельности, он вносил тонкое научное исследование и оригинальность мысли. Его работа по исследованию подпочвенных вод Яузского бассейна представляет стройное и строго научное, обоснованное исследование, которое является ценным вкладом в литературу вопроса об эксплуатации подпочвенных вод.

Его исследование по трубопроводам является результатом обширных опытных данных по транспорту нефти. В нем Владимир Григорьевич разрешает задачу о наивыгоднейшем сооружении нефтепроводов, принимая во внимание все элементы расхода на сооружение и его эксплуатацию. Эта идея об изыскании наивыгоднейших конструкций лежит в основании почти всех технических работ Владимира Григорьевича. Он проводит ее в стройной и простой математической форме, иллюстрируя свою мысль таблицами и графиками. На эту идею опирается сочинение Владимира Григорьевича о наивыгоднейшей форме резервуаров. Особенную же изящность в применении ее мы встречаем в общеизвестной работе Владимира Григорьевича по паровым насосам прямого действия, где изыскивается наивыгоднейшая конструкция насоса Вортингтона с цилиндрами.

Столкнувшись с вопросом о наиболее легком покрытии, Владимир Григорьевич изобрел особую систему арочных ферм, которые работают на растяжение и сжатие благодаря присоединенным к ним тягам из проволоки. Изыскание расположения тяг и размеров фермы ведется исследователем под условием наименьшего веса сооружения»[23].

Указывая далее на широкое применение покрытий по системе Шухова при постройке зданий Нижегородской всероссийской выставки, Жуковский подчеркивал тот факт, что все теоретические работы Шухова идут рядом с осуществленными на деле конструкциями и являются, таким образом, проверенными на опыте.

«В годы своей юности Владимир Григорьевич увлекался теоретической механикой и хотел посвятить свои выдающиеся способности изучению небесной механики, — сказал в заключение Николай Егорович, — но жизнь сложилась так, что ему пришлось работать над механикой земной; но и в эту область, рядом с опытными наблюдениями и разрешением вопросов практики, он всегда вносил глубину мысли и тщательность математической обработки».

Наиболее интересным памятником деятельности Шухова в этой области является башня на Шаболовке для радиостанции имени Коминтерна в Москве. Эта башня, воздвигнутая по проекту Шухова в 1922 году, конструктивно очень своеобразна и резко отличается от типа башни Эйфеля, по образцу которой строились в Европе все антенные башни.

В. И. Ленин, как известно, придавал большое значение радиовещанию, называя его делом гигантски важным, «газетой без бумаги и „без расстояний“». В 1920 году им было подписано постановление о строительстве центральной радио-телефонной станции, которая и была пущена в ход 17 сентября 1922 года. Если вспомнить, что начало радиовещания в Англии относится к ноябрю, а во Франции к декабрю 1922 года, не говоря уже о Германии, начавшей радиовещание лишь в октябре 1923 года, то следует признать, что наша страна, которая была родиной радиосвязи, и в этой ее области была самой передовой.

Постройка радиомачты, спроектированной Шуховым, была закончена в очень короткий срок. Владимир Григорьевич работал на этот раз с особенным подъемом. Уже в процессе разработки своей теории сетчатых железных покрытий он был поражен открывшимися перед ним инженерными возможностями. Одну из этих возможностей и осуществляла спроектированная им башня.

Можно сказать, что постройка башни в годы восстановительного периода уже тогда предвозвестила тот особый, неповторимый советский стиль инженерной работы, который потом так великолепно проявился в годы пятилеток, в годы индустриализации страны.

Строители башни и до сих пор вспоминают памятные дни. Стояла суровая зима. Высота башни достигала ста пятидесяти метров. На такой высоте, даже при небольшом ветре, вершина башни качается, как маятник. Мороз достигал наверху шестидесяти градусов. Верхолазы-монтажники работали в меховых комбинезонах летчиков, в унтах и шлемах. Нужно особое искусство, чтобы работать в таких условиях, да и не одно только искусство, а еще и мужество, и ловкость, и особенная приверженность к своему делу.

Владимир Григорьевич Шухов

 (1853–1939).

Нынешняя техника сооружения радиомачт и башен, конечно, значительно отличается от той, которая существовала в то время; советские инженеры сейчас ставят перед собой новые задачи, считая, например, совершенно реальной постройку радиомачты в четыреста метров высотой. Но в свете новых достижений тем большее значение приобретает деятельность пионеров.

В котлостроение, в переработку нефти, в строительное дело — во все области инженерного дела, которых он касался, Шухов вносил смелую идею, широкий размах, техническую изощренность.

Среди множества изобретений и сооружений Шухова наибольшее значение имеет крекинг-процесс, произведший революцию в нефтяном деле, но для нефтяной русской промышленности имели огромное значение предложенные Шуховым новые средства для транспортировки и хранения нефти.

Для транспортировки нефти Шухов предложил перекачивать нефть по трубопроводам и в 1879 году построил первый такой у нас нефтепровод, причем на основании своих опытов дал и знаменитую «формулу Шухова» для расчета движения нефти по трубам.

Для перевозки нефти по воде Шухов предложил строить нефтеналивные суда для Каспийского моря и железные, клепаные баржи для перевозки по Волге, Такие баржи до полутораста метров длиной строились на судостроительном заводе в Саратовском затоне, Это было чудо тогдашней строительной техники: инженерам-практикам такая постройка казалась невыполнимой.

Баржи строились по чертежам Шухова, изготовленным в Москве, а работу производил выписанный с юга превосходный специалист своего дела, котельный мастер Давыд Трофимович Дыньков. С необыкновенной быстротою он собирал громадные, клепаные железные конструкции благодаря точной разбивке шаблонов, чему научил Шухов русских техников.

Случай свел меня много позднее с Д. Т. Дыньковым, оставшимся навсегда в Саратове, и об этом строительстве нефтяных барж он вспоминал как о самой лучшей школе. Как-то, перелистывая его записную книжку, я с удивлением увидел там длинный ряд формул.

— Откуда это у вас? — спросил я.

— Да это еще Владимир Григорьевич показал мне и научил ими пользоваться!

Труды таких инженеров, как Рагозин, Летний, Шухов, подняли промышленное значение нефти настолько, что она получила у нас характерное название «черного золота». Еще большую ценность нефть получила, и опять-таки не без прямого участия русской инженерно-технической мысли, после того, как появились двигатели внутреннего сгорания, дизель-моторы, впервые нашедшие себе настоящее применение в России.

В 1892 году немецкий инженер Рудольф Дизель опубликовал сочинение, в котором излагал теорию двигателя, названного им дизель-мотором, и описывал его конструкцию. Работа его была озаглавлена так: «Теория и конструкция рационального теплового двигателя, призванного заменить паровую машину и другие существующие в настоящее время двигатели».

Несмотря на высокую технику и оснащенность машиностроительных заводов Германии, изобретателю не удалось осуществить свой рациональный мотор. Дизель вынужден был пойти на ряд отступлений от своего первоначального проекта. Но в конце концов в 1897 году он все-таки смог представить миру первый дизель-мотор мощностью в 20 лошадиных сил.

Этот первый дизель имел коэффициент полезного действия в 34 процента, то-есть втрое выше, чем у паровых машин, и вдвое выше, чем у газовых и бензиновых двигателей.

Двигатель работал по новому циклу, названному циклом Дизеля. При первом такте он засасывал чистый воздух, при втором такте обратным ходом поршня воздух подвергался сжатию до одной четырнадцатой своего первоначального объема с такой силой, что нагревался до температуры около 750 градусов, и вводимое в цилиндр при третьем такте топливо вспыхивало в раскаленном воздухе само собой. Четвертым ходом поршня выбрасывались продукты сгорания.

Топливо впрыскивалось в цилиндр постепенно, так что сгорало, а не взрывалось. Кроме клапанов, автоматически открывавшихся для впуска топлива и воздуха, для выхлопа, двигатель приводил в действие еще компрессор, то-есть насос, нагнетающий воздух в отдельный резервуар. Этот сжатый воздух употреблялся для впрыскивания в цилиндр топлива, а также для пуска, двигателя в ход.

Развитие и распространение дизель-моторов превзошло самые смелые ожидания Дизеля. Произошло это, однако, лишь после того, как конструкторское бюро петербургского завода Русского общества «Дизель» заставило работать дизель-мотор на сырой нефти вместо керосина, применявшегося самим Дизелем и всеми строителями моторов в Западной Европе.

Любопытно отметить, что, продавая свой патент в Россию, Дизель, как многие иностранцы, считавший русскую технику очень отсталой, потребовал от покупателя организации специального Русского общества «Дизель», которое должно было консультироваться по всем вопросам с немецкими заводами.

Первый дизель-мотор, работавший на сырой нефти.

Но консультация понадобилась немецким заводам, а не русским. В ноябре 1899 года Георгий Филиппович Депп, видный русский теплотехник, профессор Технологического института и председатель Русского технического общества, произвел испытания созданного в России первого в мире двигателя тяжелого топлива, работающего на сырой нефти. Испытания дали блестящие результаты, и, докладывая о них членам Русского технического общества, Депп сказал в заключение, изложив историю получения патентных прав от Дизеля:

— Моя уверенность, что заводы, способные строить самые совершенные машины, у нас найдутся, оправдалась. Первая же попытка построить у нас двигатель, пользующийся нефтью, которой столь богата наша родина и которая представляет наивыгоднейшее во всех отношениях топливо, увенчалась успехом. Безукоризненно выполненный нефтяной мотор пущен в ход, и я не могу не подчеркнуть, что именно у нас разрешен вопрос об экономичном тепловом двигателе, так как только с переходом на нефть решается судьба дизель-мотора, обеспечивается ему применение и широчайшее распространение.

Предвидение Деппа оправдалось вполне: с этого момента дизель-мотор, превращенный в двигатель тяжелого топлива, начал широко применяться, завоевывая одну область применения за другой в промышленности и на транспорте.

Хотя двигатели этого типа и сохраняют еще название дизель-моторов, или просто дизелей, им, конечно, подходит более название «русского двигателя», под которым они были известны за границей в первое время. Это название тем более законно, что двигатель тяжелого топлива не только был создан в России, но в России же и был впервые применен для разных целей.

В России впервые он был поставлен для работы на электростанциях, на судах, на подводных лодках. Речные и морские суда, оборудованные двигателями Дизеля, получили название теплоходов. Поставленные в качестве судовых машин сначала на волжскую нефтеналивную баржу «Вандал», а затем на буксирный волжский пароход «Коломенский дизель», дизели произвели переворот в мировом судостроении; с этого времени началось строительство речных и морских теплоходов. Русские пассажирские теплоходы, оборудованные с необыкновенным для того времени совершенством, вскоре составили Волге мировую славу.

Русский опыт применения дизелей в качестве транспортных машин был учтен не только судостроителями. Он побудил инженерно-техническую мысль к попыткам использовать дизели для железнодорожной тяги. Первый локомотив с дизелями построен был в Германии. Дизель-тепловоз был принят в 1912 году для практической работы на линию Берлин — Мансфельд, но не оправдал возлагавшихся на него надежд и вскоре был сдан на слом.

Опыт этот заставил европейских инженеров надолго отказаться от задачи, но русские инженеры продолжали работать над ней, пока не добились успеха.

По указанию В. И. Ленина для конструирования тепловозов была привлечена группа выдающихся отечественных специалистов. На заводах «Красный путиловец», Балтийский судостроительный и «Электрик» началась постройка тепловоза конструкции профессора Якова Модестовича Гаккеля.

Бывший народоволец и политический ссыльный, а позднее профессор Электротехнического института, Яков Модестович Гаккель, едва сойдя со школьной скамьи, увлекся летным делом и создал ряд оригинальных конструкций. На первой Международной воздухоплавательной выставке, например, поплавковый гидросамолет Гаккеля получил Большую серебряную медаль.

Перед первой мировой войной Гаккель, однако, отошел от авиации, так как занимался постройкой электростанций в Петербурге и Киеве.

Первый в мире теплоход — волжское нефтеналивное судно «Вандал».

После Великой Октябрьской социалистической революции Яков Модестович взял на себя инициативу создания первого русского тепловоза. Он учел опыт Дизеля и русских конструкторов и решил применить электрическую передачу.

К этой идее конструкторская мысль возвращалась не без колебаний и сомнений. Дело в том, что первые теплоходы на Волге имели как раз электрическую передачу, но их очень скоро заменили суда, где дизель работал непосредственно на винт. Разница между движением судна в воде и движением локомотива по рельсам понятна: трогание с места и ход судна осуществляются прямой скоростью вращения гребного винта или колеса, опирающегося на воду, — законы движения локомотива по гладким рельсам своеобразны и требуют наибольшей силы тяги при наименьшей скорости.

Чувствуя постоянное внимание к своему детищу, Гаккель взялся за дело с огромной энергией. Проект он составил очень быстро, но построить тепловоз при отсутствии опыта и новизне дела удалось не так скоро.

Это были годы, когда рабочие возвращались с фронтов гражданской войны на фабрики и заводы. Они сызнова учились держать инструмент в руках, знавших столько лет лишь пулемет и винтовку. Но уже рождалось новое, социалистическое отношение к труду. Еще едва мерцало электричество, но и при керосиновых коптилках техники и конструкторы упорно сидели за чертежными досками.

Тепловоз Гаккеля — удивительное создание советских рабочих и инженеров. Тепловоз собрали из частей валявшихся без дела машин. Основной агрегат — дизель-мотор — сняли с подводной лодки, электрические части подобрали также из заброшенных агрегатов. И тем не менее этот тепловоз не только успешно прошел опытный период, но и выдержал эксплуатацию в течение трех лет.

5 августа 1924 года первый в мире мощный магистральный тепловоз с электрической передачей появился на рельсовых путях Балтийского завода.

6 ноября тепловоз был передан для дальнейшего испытания железнодорожникам ленинградского узла. Газета «Гудок» сообщала тогда своим читателям:

«Первые испытания, произведенные с тепловозом инженера Гаккеля на 30-верстной дистанции между Ленинградом и Колпином, дали хорошие результаты. Теперь тепловоз будет испытан на большом расстоянии».

Много впечатлений осталось в памяти советских железнодорожников от первых рейсов на тепловозе.

«Помню, — рассказывает инженер Овсянников, — иду на одной из узловых станций к дежурному докладываться, чтобы зря не держал поезд, а дежурный как раз с диспетчером разговаривает.

— Пришел состав, — докладывает дежурный, — а паровоза нет ни в голове, ни в хвосте…

Пришлось объяснить, что локомотив в голове, что он в полной исправности и что уже можно давать отправление.

У тепловоза на каждой станции, где останавливаемся, толпа: путевые рабочие, машинисты, пассажиры… Только успевай отвечать на вопросы, которыми забрасывают бригаду! Да, этому локомотиву ни воды, ни угля не требуется: может пробежать без остановки хоть тысячу верст. Есть ли еще где-нибудь в мире подобные машины? Нет, это первая. Конструировали тепловоз советские инженеры, построили ленинградские рабочие.

Бимоноплан Я. М. Гаккеля (1909–1910 годы).

Первые рейсы были проделаны на Октябрьской железной дороге, на коротких плечах, однако с составами весом в 1 000 тонн. Затем начались регулярные рейсы по маршрутам Москва — Курск, Москва — Харьков. Были и более дальние поездки и не одного только исследовательского характера: из Баку и из Грозного доставляли мы в Москву на седьмые-восьмые сутки нефтеналивные составы. 12 тысяч верст проходили со средней коммерческой скоростью 28 верст в час; при этом вели состав с грузом нефти брутто 79 тысяч пудов, а расход топлива — почти в четыре раза меньший, чем у паровоза серии „Э“.

Яков Модестович Гаккель

 (1874–1945).

Потребовалось в кратчайший срок подвезти для ленинградских предприятий топливо из Москвы — и эта задача была поручена нам, тепловозникам. Из Коканда в Москву на девятые сутки доставляли груз хлопка. На тепловозах были проделаны рейсы и из Москвы в Челябинск с особо срочными и важными грузами: туда мы вели составы через Куйбышев, а возвращались через Свердловск — Казань. Помню, как удивило тогда многих эксплуатационников, что тепловоз прошел 4 500 километров и не заходил ни в одно депо. Удачно провели рейс из Москвы на Сурамский перевал и обратно».

В дни, когда на магистральные пути ленинградского узла вышел в первый рейс тепловоз профессора Гаккеля, были успешно завершены испытания другого советского тепловоза, построенного за границей по проекту русских инженеров и заказу нашего правительства.

6 ноября 1924 года был торжественно подписан протокол испытаний тепловоза, который гласил:

«…Создание этого тепловоза и опыты с ним вывели идею тепловоза из стадии академического изучения и воплотили ее в формы, пригодные для несения регулярной товарной службы.

Последний факт заслуживает быть отмеченным на страницах истории железнодорожной техники».

Вместе с советскими инженерами этот протокол испытаний тепловоза советской конструкции подписали представители германской науки тех лет, представитель дорог Голландии, представитель английской технической прессы и многие другие представители иностранной науки и техники.

Советский тепловоз двадцатых годов.

И только спустя немало лет, когда был уже накоплен опыт успешной работы советских тепловозов, зарубежная техника, и в частности американская, решилась приступить к постройке мощных поездных тепловозов и вступила на путь, смело проложенный русской технической мыслью.

 

6. Рождение новой науки

Русские инженеры не только применяли научные открытия для новых инженерных решений, но нередко являлись и сами основоположниками новых научных дисциплин. Такою дисциплиной является, например, инженерная геология, получившая огромное значение как для разведки недр, так и для строительства крупных и конструктивно-сложных сооружений, которые требуют устойчивых оснований.

Леонид Иванович Лутугин, профессор Горного института, — один из основоположников инженерной геологии. Он первый придал практическую, «индустриальную» направленность геологическим исследованиям и показал, какое огромное практическое значение может иметь эта новая отрасль инженерного дела.

В 1905 году, увлеченный революционным движением, Леонид Иванович выступал на заседаниях Вольно-экономического общества, в союзе инженеров и техников как выразитель идей передовой русской интеллигенции. Реакция расправилась с Лутугиным: он был уволен по «третьему» пункту, то-есть без объяснения причин, из Геологического комитета, по поручению которого руководил работами в Донбассе.

В Горном институте он сам подал в отставку, не желая навлечь неприятности на студентов, которые обязательно ответили бы на его увольнение забастовкой.

Так Лутугин оказался вольным геологом, отстраненным от государственной службы, лишенным привычных средств к существованию.

Он всецело отдался всегда привлекавшей его практической работе.

«Увольнение Лутугина из Геологического комитета поставило этот комитет в очень трудное положение, — свидетельствует профессор Александр Александрович Гапеев, ученик и друг Лутугина. — Лутугин был крупнейшим специалистом, отлично знавшим Донбасс; он из года в год руководил составлением геологической карты Донбасса, и заменить его было буквально некем.

Так называемое „присутствие Геологического комитета“, то есть собрание крупных русских геологов, постановило: „Просить бывшего руководителя продолжать съемку в Донецком бассейне“. При этом, однако, в своем постановлении они побоялись назвать фамилию Лутугина.

Леониду Ивановичу это было очень обидно: обидно и за себя и за них… Но он любил свою работу; составление геологической карты Донбасса было делом его жизни, и он остался руководителем съемки, отказавшись при этом от всякого вознаграждения со стороны Геологического комитета. Вся наша группа продолжала под его руководством исследования в Донецком бассейне»[24].

Инженерное дарование Лутугина поражало его учеников. Он легко разгадывал самые таинственные, казалось бы необъяснимые, явления. «Когда мы, например, приехали на Павловский рудник, — рассказывает один из его учеников, — нам сообщили, что при проходке нового шурфа в земле, в целике, которого никто никогда не трогал, на глубине нескольких саженей под поверхностью был найден мешок, обыкновенный холщовый мешок. Это казалось чем-то сверхъестественным. Лутугин услышал толки удивленных людей и расхохотался.

Оказалось, что невдалеке протекала речка, вода из которой проникала в шахту по известняку, и много лет назад какой-то управляющий приказал заложить трещину просасывания мешками с землей. С годами земля вымылась, а подземный ток воды протащил мешок по пустоте в горной породе, и вот теперь его нашли при проходке шурфа».

Другой случай произошел на Жиловском руднике. Показывая его, Лутугин говорил, что здесь три пласта. Один шахтер, слушавший Лутугина, перебил его, утверждая, что в шахте не три, а два пласта.

— Нет, три, — настаивал Лутугин.

— Я здесь работаю два года, — ответил рабочий, — и знаю, Что два пласта.

— Работаешь, а знаешь плохо.

В это время подошел другой старый шахтер.

— О чем спорите?

— Да вот, — отвечал рабочий, — господин рассказывает, что здесь три пласта, а я знаю, что два…

— Ах ты, чудак, — сказал старик. — А еще споришь. Я сам ствол здесь проходил, третий пласт в стволе…

Геологические исследования Донецкого бассейна Лутугин начал вместе с академиком Ф. Н. Чернышевым. Но Чернышев отошел от этой работы, и вся ее тяжесть сразу же легла на плечи Лутугина.

Углепромышленники и управляющие рудниками с особенным почетом, чуть ли не с подобострастием, встречали Лутугина. Это отмечали все его ученики.

«Приезжаем на рудник, нам предоставляют лучшее помещение, лошадей, подают изысканную пищу и даже вино, — рассказывают они, — а к вечеру приходят владельцы или управляющие и среди разговора обязательно спрашивают Лутугина: мы наткнулись на такое-то нарушение или сброс, как тут следует поступить?

Лутугин охотно рассматривал планы и карты и давал советы, никогда не принимая денег за такую консультацию.

Авторитет Лутугина в Донбассе был колоссальным. На рудниках, принадлежавших иностранным компаниям, управляющие не совершали никаких сделок, ничего не покупали и не продавали без визы Лутугина. За эту визу Лутугину нужно было бы платить большие деньги, если бы он был другим человеком. Но Леонид Иванович никогда не брал ни копейки за справки. Ему предлагали стать директором или членом правления того или иного акционерного общества, он отвечал:

— Куда мне! Жить осталось мне мало. Нахапать много не успею, а некролог испорчу!

В Донбассе Лутугин обычно жил на станции Дебальцево, откуда расходятся железнодорожные линии во все стороны. Сюда и приезжали все, кому был нужен знаменитый инженер. Швейцар станции извлекал из этого изрядный доход. Он превратился в своего рода адресный стол лутугинской группы, сообщая, кто куда едет, к кому направился Лутугин.

Человек кристаллически ясной и чистой души, Леонид Иванович оставил в сердцах окружающих необыкновенную память»[25].

Леонид Иванович Лутугин

 (1856–1915).

«Поэт Донбасса», каким он слыл на юге России, инженер удивительного разностороннего таланта, Лутугин связал со своим именем целый ряд предприятий в Донецком каменноугольном районе.

Имя Лутугина носит шахта в Чистяковском антрацитовом районе. Неподалеку от Ворошиловграда находится станция Лутугино. Близ этой станции поезда проходят через большой тоннель длиной около километра. Создание этого тоннеля тоже связано с именем Лутугина.

Железнодорожная линия, которую предполагалось спрямить при помощи тоннеля, принадлежала частному акционерному обществу. В технической части Государственного совета, куда общество обратилось за разрешением проложить тоннель, заявили, что без визы Лутугина, знатока геологии Донецкого бассейна, разрешение не будет дано.

Обратились к Лутугину, считая, однако, что виза геолога лишь пустая формальность.

Лутугин целый месяц производил исследования вдоль предполагаемой трассы тоннеля. Впоследствии оказалось, что Лутугин в точности указал, как расположены пласты под земной поверхностью, где и как будут встречены угли и водоносные известняки. Все это удивительно точно совпало с натурой и показалось инженерам-путейцам, производившим работу, едва ли не чудом.

В 1911 году за Лутугиным приехали с Тквибульского рудника. Там открытыми работами вскрыли мощный пласт угля, выходящий на поверхность и падающий по склону юры. Было ясно видно направление, по которому тянулся пласт. Владельцы решили пройти штольню у подошвы склона, встретить пласт и начать разработку. Прошли штольню — пласта нет! Прощупали разные направления — пласта нет! Всего на расстоянии нескольких десятков метров от места поисков пласт был виден — и вдруг исчез.

Лутугин провел здесь две недели и указал, где искать пласт. При проходке по его указанию оказалось, что он ошибся в расстоянии всего на один метр!

Руководствуясь своим инженерным опытом, все более и более обострявшимся с накоплением многоразличной практики, Лутугин совершал множество подобных чудес, спасая предприятия, сохраняя средства, облегчая работу.

Целью жизни Лутугина было составление детальной геологической карты Донбасса. За эту карту Леонид Иванович получил в 1915 году золотую медаль на Всемирной выставке в Турине. Еще до этого, в 1913 году, группа лутугинцев оставила работу в Донбассе ввиду того, что директор Геологического комитета Богданович неожиданно и совершенно необоснованно заявил, что работы в Донбассе идут медленно и стоят дорого.

Лутугин не получал от Геологического комитета никакого вознаграждения, его сотрудники получали по триста рублей в год.

Так как составление карты Донбасса было в основном закончено, лутугинцы отказались от дальнейшей работы в Геологическом комитете. Так в 1913 году Лутугин и его молодые ученики стали свободными.

Уход Лутугина и лутугинцев из Геологического комитета побудил многих промышленников обратиться к знаменитому инженеру с новыми деловыми предложениями. Директор-распорядитель только что организованного акционерного общества «Копикуз», что означало «Копи Кузбасса», предложил всем лутугинцам ехать в Кузнецкий бассейн. Дело было совершенно новое, лутугинцев оно увлекло, и они приняли предложение. Лутугин поставил лишь два условия: во-первых, он не хотел получать больше, чем кто-либо из его сотрудников, а во-вторых, он потребовал, чтобы результаты исследований публиковались для всеобщего сведения, хотя работы и производились для акционерного общества.

У «Копикуза» были особые причины ухаживать за Лутугиным. Общество получило в концессию Кузнецкий бассейн, который принадлежал «Кабинету его величества», то-есть был личной собственностью царя. Концессия была довольно своеобразная. «Копикузу» было предоставлено право выбирать на огромном пространстве Кузнецкого бассейна все промышленные площади, которые он хотел бы закрепить за собой. «Копикуз» потому так и стремился залучить к себе Лутугина, что только один он мог выбрать лучшие копи.

В Кузбассе Лутугин не искал специально уголь, а тщательно исследовал и записывал все обнажения горных пород, чтобы знать, в каком порядке перемежаются между собой пласты известняков, сланцев, песчаников и углей. Уже через год после начала работ стало ясно, что перед исследователями не второстепенный бассейн, а одно из крупнейших в мире месторождений угля.

Лутугин не дожил до опубликования результатов исследования, но значение его работ остается огромным для всей дальнейшей истории Кузнецкого бассейна. Можно смело сказать, что он с группой своих учеников открыл богатства Кузбасса. Он умер в 1915 году в Кузбассе, на посту, на полевой геологической работе. Запаянный цинковый гроб с телом Лутугина был перевезен его учениками из Сибири в Петербург.

«Его похороны превратились в демонстрацию, — вспоминают его ученики, — за гробом шло около десяти тысяч человек. На одном из венков была лаконическая надпись: „1905 год. Л. И. Лутугину“. И все, кто провожал гроб, понимали, что означает эта короткая надпись».

В комитет по увековечению памяти Лутугина входили Максим Горький и Короленко. Сборы на народный университет имени Лутугина дали около 350 тысяч рублей.

В далеком Кузнецком бассейне имя Лутугина увековечено на Кемеровском руднике, где есть «Лутугинский пласт».

Ученики Лутугина совершили немало открытий для Советской страны не только в Кузбассе. Профессор Яковлев на западном склоне Урала получил блестящие результаты, какие раньше не получал никто из исследователей этих мест. Открытие богатейших запасов Карагандинского угольного бассейна тоже целиком заслуга учеников Лутугина. Д. В. Голубятников составил детальную геологическую карту по месторождениям нефти в Биби-Эйбатском районе.

Во многих геологических открытиях, совершенных в Советском Союзе, труд и талант Лутугина сказались во всем их объеме.

Разработанная Лутугиным методика составления инженерно-геологических карт лежит в основе этого дела и поныне. Такие карты, составленные теперь для всех больших городов, позволяют правильно размещать промышленные и гражданские сооружения и выбирать основание для них. Проектирование и строительство крупных гидротехнических сооружений, таких, как гидроэлектростанции на Волхове, на Днепре, на Свири, повлекло за собой исключительное развитие инженерной геологии в Советском Союзе.

Один из корифеев инженерной геологии, Лутугин указал то направление геологическим исследованиям, благодаря которому работы инженеров-геологов могли во многих отношениях обеспечить успех таких строительств, как Беломорско-Балтийский канал, Канал имени Москвы, Московский метрополитен.

В тесной связи с запросами инженерной практики возникла в нашей стране и еще одна научная дисциплина — металловедение, — превратившая металлургию из ремесла в науку и искусство.

 

7. Превращение ремесла в искусство

Можно сказать, что вся история металлургии от древнейших времен до открытия, сделанного Черновым, сводится в основном к поискам все новых и новых способов переделки чугуна в железо и сталь.

Вся эта работа велась чисто опытным путем и представляет длинную цепь более или менее счастливых находок. Находки держались в секрете. Так, англичанин Дод Дудлей, открывший способ «плавить железную руду и обращать ее в отличные вещи и полосы посредством ископаемого угля в печах с мехами», ухитрился окружить свое открытие столь густою тайной, что в течение целого столетия, пока оно не было повторено, никто не смог им воспользоваться.

Изготовление знаменитой дамасской, или булатной, стали, даже после открытия ее рецепта Аносовым, до работ Чернова многим представлялось загадкой, хотя закаливать сталь люди умели еще в глубокой древности.

Закаленные булатные клинки, по свидетельству греческого ученого Аристотеля, жившего за две тысячи триста лет до нас, существовали в Индии. Вероятно, задолго до того было замечено, что сталь становится очень твердой, если ее нагреть добела, затем быстро охладить, опустив в воду. При этом, правда, сталь становится очень хрупкой; но так же давно кузнецы открыли, что закаленную сталь можно «отпустить», снова нагрев ее уже не добела, а лишь досиня. Разумеется, что эти операции закалки и отпуска производились на глаз, причем каждый мастер хранил свое искусство в большой тайне.

Немало было связано с этим делом всевозможных суеверий и нелепостей. Английский институт железа и стали отыскал, например, в одном старинном рецепте приготовления стальных клинков такое дикое указание:

«Нагревать кинжал, пока он не засветится, как восходящее солнце в пустыне, затем погрузить его в тело сильного раба, пока кинжал не примет цвета царского пурпура».

С подобными рецептами металлургия рассталась, конечно, очень давно; но истинных представлений о строении и превращениях стали при закалке и отпуске ни наука, ни, тем более, сталевары и кузнецы не имели до Чернова.

Самое большое металлургическое предприятие почти ничем, кроме размеров, не отличалось от простой кузницы, качество изделия всецело зависело от опытности, ловкости и цеховой осведомленности мастера. Закаливал ли он сталь, отпускал ее или ковал, или прокатывал, он действовал по традиции, иногда по наитию, но того, что происходило при этом в структуре металла, он не знал, да и не мог знать. Никаких научных знаний тут не существовало. Для каждого отдельного случая существовал выработанный веками наиболее благоприятный режим тепловой обработки, и этим исчерпывались все знания мастера.

«Хотя общее состояние науки, в частности физики, к середине прошлого века достигло уже высокого развития, однако наука о металле представляла всего два-три параграфа в разделе физики, посвященном учению о твердых телах, — говорит профессор Ю. М. Покровский в своих очерках по истории металлургии. — А между тем развитие массового производства требовало сознательного пересмотра производившихся термических и механических операций и поставило совершенно по-иному проблему металла. Рост общего машиностроения и массовое производство самих машин потребовали точного научного знания для оценки какого-либо свойства металла. Необходимы были широкое обобщение и систематизация всех данных о тепловом состоянии металла, как и дальнейшее их углубление и развитие»[26].

Сознательное отношение к тепловой и механической обработке стало еще более необходимо, когда изготовление новых ответственных деталей специального машиностроения заставило заводы придавать металлу качества, необходимые в новых разнообразных условиях эксплуатации. Этого потребовали, например, изделия, работающие под большим давлением, прежде всего стволы орудий. А в то же время само улучшение производства, расчленение заводских операций на составные фазы — ковку Металла, отжиг, прокатку и другие — вызвали нужду в согласовании этих операций.

Насколько старая, эмпирическая, опытная техника металлургии оказывалась внутренне беспомощной в новых производственных условиях, показывает, история известного русского инженера Павла Матвеевича Обухова.

Горный инженер по образованию, Обухов после окончания курса в институте в 1845 году был назначен на скромную должность смотрителя Серебрянского завода в Пермский губернии. Молодой инженер обратил на себя внимание администрации и был послан за границу для изучения железоделательного производства. Сдав блестящий отчет о своей командировке, Павел Матвеевич получил должность управляющего сначала Кувшиновским заводом, а затем — Юзовским, где он начал производить опыты приготовления литой стали.

Действовал он так же, как и все металлурги. Убедившись, что при разных добавках сталь получается различной твердости, он после многих проб нашел добавки, которые лучше всего прибавлять к сплаву. В 1853 году после ряда проб Обухов получил отличную сталь. Тонкую пластинку, изготовленную из этой стали, не пробивали выстрелы из ружья, в то время как панцырные кирасы вдвое большей толщины, изготовлявшиеся в Златоусте, давали при таком испытании тридцать процентов брака.

Опыты Обухова побудили Военное ведомство перевести талантливого инженера в Златоуст.

Павел Матвеевич явился на Урал во время Крымской войны, в 1854 году. На Златоустовском заводе сталь, хотя и полученная из отличной руды, была все же очень невысокого качества. Заводы, основанные при Петре I, почти ни в чем с тех времен не изменились.

Вот здесь, на Златоустовском заводе, Обухов и начал практиковать стальное литье, которое впервые в мире ввел выдающийся русский металлург П. П. Аносов.

Дело это было трудное. Техника разливки, до введения в практику литой стали, касалась только чугуна. Приходилось варить сталь одновременно во многих небольших по объему тиглях. Сталь должна была поспевать одновременно во всех тиглях.

Павел Матвеевич начал с того, что заказал тигли своеобразной формы, в виде усеченной пирамиды, а затем подготовил нескольких рабочих к варке стали по новому способу. Уральский чугун был достаточно чист, а магнитный железняк находился вблизи Златоуста. Установив опытным путем пропорции того и другого, Обухов в конце 1855 года получил превосходную сталь, не уступавшую по качеству знаменитой крупповской. Сделанные из обуховской стали кирасы, сабли, ружья превосходно выдержали испытания. Инструментальная сталь Обухова рубила английскую такой же закалки, а инструменты, сделанные из нее, работали дольше, чем английские.

Прибывшая из Петербурга специальная комиссия произвела испытания ружейных стволов из обуховской стали. В результате оказалось, что при последовательном увеличении заряда, а стало быть, и давления газов крупповские стволы разрывались при восьмом выстреле, а обуховские — при четырнадцатом.

Оружейный комитет Военного ведомства, перед которым была поставлена после неудачи Крымской войны задача Перевооружения армии, писал:

«Принимая во внимание, что сталь Обухова, будучи произведением нашего края, может быть приобретаема независимо от политических событий, сверх того она стоит от полутора до двух рублей серебром, крупповская же свыше пяти рублей за пуд, а сталь Эгера около того же. Оружейный комитет признал необходимым сколь возможно скорее повторить опыты в больших размерах над сталью подполковника Обухова, для чего доставить оную с первым весенним караваном в Ижевский и Сестрорецкий заводы в количестве на одну тысячу стволов».

Сталеплавильня девяностых годов прошлого столетия.

Обухов получил патент на свои рецепты стали, ему был увеличен оклад жалованья.

Небывалый успех не вскружил голову самому Обухову, по создал ему завистников и врагов. Однако Павел Матвеевич спокойно продолжал свое дело и вскоре представил проект изготовления в России стальных орудий.

Надо сказать, что до этого времени у нас умели лить только бронзовые и чугунные орудия с гладкими стволами, литье которых было несложно и хорошо знакомо русским мастерам. Стальные же орудия с нарезными стволами только начинали входить в употребление во всем мире; этому способствовало открытие новых способов переделки чугуна в сталь, ускоривших и удешевивших производство.

Проект Обухова заинтересовал Военное ведомство, и ему была предоставлена возможность начать производство стальных орудий в Златоусте. Подготовительные работы Павел Матвеевич провел очень быстро и в начале 1860 года отлил первые орудия.

Опыт прошел с полным успехом. Его пушки отлично стреляли на опытном полигоне. Их погрузили затем на сани и отправили для показа в Петербург. Здесь результаты стрельбы превзошли все ожидания друзей Обухова. При трехтысячном выстреле ядро летело с такой же точностью, как при первом. Одну из пушек после четырех тысяч выстрелов отправили в Артиллерийский музей.

Павла Матвеевича засыпали наградами и почестями, поручив ему всемерно развивать сталеорудийное производство, с тем чтобы изготовлять в год не менее пятисот орудий в одном Златоусте. Крупповская монополия в России кончилась.

После отмены крепостного права развитие промышленного капитализма в России быстро пошло вперед, несмотря на остатки крепостничества, сильно тормозившие экономический прогресс. По всей стране, и больше всего в Петербурге, стали возникать одно за другим промышленные предприятия — в том числе судостроительные, а рядом с ними и железоделательные заводы.

Дело в том, что созданный Петром I замечательный русский флот, поддерживавшийся на той же высоте в течение всего XVIII века, в царствование Александра I пришел в упадок, так как установился взгляд, что флот России не нужен. Неудивительно, что переворот, произведенный в промышленности паровым двигателем, застал военный флот царской России врасплох. В тридцатых годах вместо колеса появился гребной винт, имевший огромное преимущество для военного судна. Весь мир стал немедленно перестраивать военные суда. Строились только винтовые корабли. В 1848 году, после испытания опытного железного судна, Англия приступила к замене деревянных военных судов железными. За нею последовали и все другие страны.

Но России с ее слабо развитой в те времена промышленностью и техникой не удалось вовремя ввести во флот паровую машину и винт и начать замену деревянных кораблей железными. Вследствие этого русские суда не могли вступить в бой с англо-французским флотом, поддерживавшим Турцию в Крымской кампании, хотя русский флот и одержал на Черном море незадолго до того, в сражении с турками 18 ноября 1853 года, великолепную Синопскую победу.

То была лебединая песня парусного флота. Когда на помощь Турции в Черном море появились англо-французские морские силы, русский флот по приказу командования был затоплен при входе в Севастопольскую бухту и русские войска вместе с моряками начали памятную для всего мира Севастопольскую оборону.

После окончания войны Морское ведомство ревностно взялось за постройку винтовых кораблей. Однако этого было мало. С появлением за границей железных, броненосных судов и нарезной артиллерии русский флот мог опять попасть в положение, подобное тому, какое было перед Крымской войной.

Тогда-то и началось капитальное переустройство казенных верфей для железного судостроения, развитие существовавших и организация новых механических, судостроительных и сталелитейных заводов. Петербург стал в центре развивающейся промышленности и металлургии. Тогда-то и возникли такие заводы, как Невский, Балтийский, Франко-русский и Обуховский.

Инициатором создания Обуховского завода был разбогатевший, окрыленный успехом, деятельный и неутомимый Павел Матвеевич Обухов. Он начал дело один, но затем в 1863 году составил частную компанию, затеявшую постройку большого сталелитейного завода. Компанию составляли Обухов, Путилов и Кудрявцев. Они заложили завод близ Петербурга, в селе Александровском, на берегу Невы. Компании удалось довести постройку и оборудование завода до конца, но из-за недостатка средств через три года она передала предприятие Морскому ведомству.

Оборудование завода было по тем временам превосходно. Завод располагал рецептами обуховской стали и опытом самого Павла Матвеевича, первого директора завода. Привезенные из Златоуста сталевары считались безукоризненными мастерами тигельной плавки.

Таким образом, Павел Матвеевич сделал все, чтобы обеспечить полный успех предприятия; не было человека, который сомневался бы в том, что русская армия и русские корабли получат безукоризненное новейшее артиллерийское вооружение.

А между тем дело не ладилось и вскоре приняло прямо-таки драматический характер.

Когда завод перешел к изготовлению орудий большого калибра, оказалось, что нередко при выстреле пушки разрываются, причиняя увечья артиллеристам. На Охтенском морском полигоне даже из испытанных пушек приказано было выстрел производить гальваническим способом, а прислуге орудия находиться в блиндаже. Несмотря на прекрасный рецепт Обухова, механические качества металла оказывались плохими. Попытки же разобраться в причинах низкого качества орудий оставались безуспешными. В конце концов поднялся даже вопрос о прекращении производства стальных орудий в России и о передаче заказов на иностранные заводы.

Литье стальных орудий обратилось в проблему, которая интересовала всю техническую и военно-морскую общественность. Изучением вопроса занималось множество людей. В «Артиллерийском журнале» за 1867 и 1868 годы появился ряд статей по этому поводу. Двум видным инженерам того времени — А. Н. Лаврову и Г. С. Калакуцкому — как будто бы удалось несколько подвинуть решение задачи путем изучения пороков стального литья: усадочных раковин, пустот. Статьи по этому поводу в продолжение двух лет не сходили со страниц журналов.

Но все это мало помогало делу. Павел Матвеевич страдал невыносимо, теряясь в догадках. Он запил и с переходом завода в Морское ведомство, после назначения нового директора, отстранился от дела, уехал из Петербурга и, всеми забытый, умер в 1869 году.

Однако перед тем как уйти, этот последний представитель чистого опыта, чистой практики в минуту просветления почувствовал, что необходимость раз навсегда установить законы явлений, протекающих в металле при его тепловой и механической обработке, достигла своего предела. Поняв, что без науки о строении металлов, без установления, точных законов, управляющих этим строением, дальнейшее развитие металлургической промышленности немыслимо, он поступил опять-таки как практик, а не как исследователь, Он не стал сам заниматься исследованием, а решил пригласить для этого человека иного склада мысли.

Выбор его остановился на Дмитрии Константиновиче Чернове, и если, по словам Добролюбова, талантливость деятеля прежде всего познается по умению подобрать себе сотрудников, то Обухова надо признать талантливейшим русским инженером: лучшего выбора нельзя себе и представить.

Дмитрий Константинович Чернов родился 8 ноября 1839 года, то-есть в те самые дни, когда в уме Белинского не только сложилось, но уже и сформулировалось знаменитое пророчество о России через сто лет, о России 3 1940 году, «стоящей во главе образованного мира», дающей «законы в науке и искусстве» и принимающей «благоговейную дань уважения от всего просвещенного человечества».

Белинский с его «светлой, русской головой», как сказал о нем А. И, Герцен, с его тонким и глубоким умом одним из первых понял особенный, национальный характер русской научной, технической и художественной мысли.

Чернов был первенцем поколения, на долю которого выпала счастливая обязанность оправдать произнесенное над его колыбелью пророчество великого русского просветителя и демократа.

Дмитрий Константинович родился и вырос в Петербурге. В этой приморской столице, поставленной Петром I на страже интересов России как великой морской державы, Чернов учился, жил и работал до глубокой старости, до тех пор, пока возраст не сказался на самой возможности продолжать этот страстно деятельный образ жизни.

Его отец, петербургский чиновник невысокого ранга, не походил ни на героя «Медного всадника», ни на Макара Алексеевича Девушкина, ни, тем более, на Акакия Акакиевича Башмачкина.

Огромное влияние Гоголя на нашу литературу XIX века общеизвестно, и о нем нет нужды особо говорить. Немудрено, что наше представление о петербургском чиновном мире идет в значительной мере от гоголевской «Шинели». Но это представление — не вся правда. В этом мире существовали и люди совсем другого типа. Может быть, их было немного, но они все-таки были. И при тех возможностях для творческой работы, которые они отвоевывали себе у бюрократической среды, эти люди создавали великие памятники русскому народу.

Отец Чернова хорошо и, главное, во-время понял, что ему следует избавить сына от бесплодной траты сил в петербургских департаментах и сделать из него человека, более подходящего к духу времени.

Если недовольный своим собственным положением деятельный и способный петербургский чиновник не мог сам превратиться в инженера, то он стал стремиться к тому, чтобы сделать инженером своего сына.

Чернов-отец мало при этом считался с наклонностями сына, да, впрочем, их и трудно было определить. Мальчик одинаково успевал по всем предметам гимназического курса, его как-то все интересовало, но никакой особенной страсти к машинам и механизмам у него невозможно было заметить. Скорее, он даже был склонен к безмолвному размышлению, к отвлеченным рассуждениям, правда, по совершенно конкретным поводам. От сверстников его отличали наблюдательность и верный глаз, подмечавший самые тонкие, едва уловимые характерные черты предмета.

Сталеплавильня начала XX века.

Наблюдательность привела Чернова к открытию, составившему ему мировое имя. Но она была у него и каким-то самостоятельным дарованием, которое он берег и развивал в себе. Дарование это проявлялось везде и всюду. Всю жизнь, например, Дмитрий Константинович часами рассматривал старинные скрипки работы знаменитых итальянских мастеров. Он старался подсмотреть, в чем заключается их таинственная особенность. В конце концов от его глаза, очевидно, ничто не укрылось, так как ему удавалось изготовлять скрипки, настолько схожие со старинными итальянскими, что даже специалисты часто не в состоянии были их различить.

Не хуже, чем гимназию, юноша закончил и Петербургский технологический институт. Девятнадцати лет он уже осуществил мечту своего отца и получил диплом инженера-технолога. Но ему самому этого, видимо, было недостаточно. Он остался в институте в качестве преподавателя математики и одновременно зачислился вольнослушателем на физико-математический факультет Петербургского университета.

В то время в Петербургском университете математику преподавали Остроградский и Чебышев. Они очень высоко оценили способности Чернова и его аналитический ум, но в область чистой математики увлечь молодого ученого им не удалось. Время, пространство, движение, вес, масса представлялись Чернову реальными, ощутимыми и видимыми вещами, а не отвлеченными понятиями. Его аналитический ум опирался на верный и точный глаз; оперировать с чисто математическими понятиями он не любил.

Закончив университетский курс, Чернов еще несколько лет оставался преподавателем в Технологическом институте. Он не собирался стать профессором, но хотел быть широко образованным человеком. Будучи помощником заведующего большой научно-технической библиотеки института, он располагал всей новейшей научно-технической литературой и с увлечением предавался чтению. В это время и вспомнил Павел Матвеевич Обухов о молодом преподавателе-математике, имевшем диплом инженера-технолога. Чернов заинтересовался работой на заводе с современным техническим оборудованием и принял приглашение.

Так, в 1866 году он оставил преподавательскую деятельность и начал работать на Обуховском заводе, где ему поручили исследовать вопрос о плохом качестве орудий.

Заложить основы новой науки, проникнуть в загадочную жизнь металла только и мог человек такого творческого склада, каким отличался Чернов. Он не был связан привычным отношением к технологическому процессу и традиционными взглядами, как все специалисты, и мог поступить, как никто еще не поступал. Склонность к широкому обобщению на основе точного исследования основных законов явлений была ему в высшей степени свойственна. И он обладал точным и верным глазом — тонкой наблюдательностью, которая могла в известной мере заменить физические приборы, привычные для металлографа в наши дни.

Молодой инженер два года почти не покидал закопченных, угарных мастерских; он присутствовал при испытаниях орудий в лаборатории и на полигоне. Далеко не все пушки были плохи: одни отличались высокой прочностью, другие разрывались при первом выстреле.

Молодой исследователь стал изучать места разрыва. Тогда он заметил, что сталь разорвавшегося орудия имеет у места разрыва крупнозернистую структуру. Исследуя на разрыв орудия, имеющие продолжительный срок службы, Чернов установил, что их сталь при том же химическом составе имеет другое, мелкозернистое строение.

— Дело не в рецепте Обухова, не в химическом составе стали, а в неодинаковой обработке литья! — заключил Дмитрий Константинович.

Заводские инженеры занимались главным образом изучением самого литья. Чернов отправился в кузнечный цех, где производилась механическая обработка литых болванок.

На старом уральском заводе. Выпуск чугуна.

Здесь-то и понадобилась исследователю его тонкая наблюдательность, потому что на первый взгляд никакой разницы в обработке болванок не было. Их нагревали в печи, ковали и, быстро погружая в воду, охлаждали. Так как приборов для измерения высоких температур не существовало, то болванки вынимали из печи, определяя степень нагрева на глаз, по цвету раскаленного металла.

То пользуясь опытом старых кузнецов, то доверяясь собственному чутью, Чернов быстро научился определять степень нагрева по цвету болванки. Сталь принимает при нагревании последовательно все цвета каления — от тёмнокрасного до ослепительно белого, а при медленном охлаждении на воздухе теряет их в обратной последовательности. Но при таком медленном охлаждении со сталью происходило сверх того нечто очень странное: постепенно темнеющая масса металла в какой-то момент остывания вдруг внезапно раскалялась, точно вспыхивала, а затем снова начинала темнеть и далее уже ровно охлаждалась до конца.

Самые опытные кузнецы не могли объяснить Чернову, отчего происходит такая вспышка, когда она происходит и что она означает. Да и самое явление это мастера наблюдали редко, потому что еще до вспышки, происходившей при определенной степени охлаждения, сталь обычно погружалась в воду для закалки. При быстром охлаждении вспышек не бывало.

Странное явление необычайно заинтересовало исследователя. Он предположил, что внезапная вспышка стали соответствует какому-то преобразованию, происходящему внутри металла, и стал дознаваться, в чем заключается это преобразование, что происходит со сталью, когда она, как говорил Чернов, «проходит через некоторую критическую точку, соответствующую какой-то определенной температуре».

Начал он с того, что заставил отковать и закалить болванку, прошедшую через критическую точку, и болванку, не прошедшую через нее, а затем подверг и ту и другую всяческим испытаниям и сравнил результаты. Оказалось, что болванка, прошедшая критическую точку, закалки не приняла, осталась мягкой.

Это было открытие. Повторив опыт десятки раз, Чернов убедился, что ошибки не было, что он подходил к разгадке каких-то очень важных законов, и стал искать новые их проявления.

Но прежде всего надо было ответить на основной вопрос, с которым он пришел в кузнечный цех: при каких условиях получается в стали крупная зернистость и при каких — мелкая. Многие думали, что для получения мелкой зернистости нужно просто усилить давление на сталь при ковке. Это было довольно правдоподобно, но плохо согласовалось с практикой, и Чернов с особенным вниманием начал следить за ковкой отливок.

Дмитрий Константинович Чернов

 (1839–1921).

Среди этих наблюдений он сделал второе открытие, а именно: обнаружил существование другой критической точки, также соответствующей определенной температуре. Эту критическую точку он назвал «точкой В» в отличие от первой, названной им «точкой А».

Открытие Черновым «точки В» особенно удивительно, так как прохождение через нее стали сопровождается почти неуловимыми внешними признаками. Чернову первому удалось заметить такие признаки.

Академик А. А. Байков вспоминает[27], что много лет назад, посетив однажды Чернова вместе с академиком М. А. Павловым, он спросил Дмитрия Константиновича, каким образом тот заметил, что при температурах возле «точки В» в стальной болванке происходит какое-то непонятное превращение.

Знаменитый металлург ответил:

— Превращение в «точке В», действительно, с внешней стороны ничем не проявляется, но оно сопровождается характерными признаками, которые могут быть наблюдаемы привычным и опытным глазом во время ковки стали. Таких признаков два: первый признак в том, что во время перехода стали через «точку В» поверхность ее, нагретая до красного цвета каления, начинает как бы морщиться и лущиться. Это происходит оттого, что легкий слой окалины на поверхности металла начинает растрескиваться и отделяться от металла в виде мельчайших чешуек. Второй признак такой: хотя температура стали при переходе через «точку В» почти не меняется и болванка, подвергающаяся ковке, сохраняет свой красный цвет почти неизменным, все же внешний вид поверхности ее выше и ниже «точки В» не одинаков.

Дальнейшее объяснение Чернова дает полное представление о его необыкновенной наблюдательности:

— Это различие при известном навыке привычный глаз легко обнаруживает, — говорил он. — Это различие можно сравнить с различием во внешнем виде белого мрамора и гипса. Когда вы бываете в музее, вы легко можете по одному взгляду различать мраморные и гипсовые статуи. И те и другие белого цвета, но мраморные статуи своеобразнее, они имеют как будто блестящий, маслянистый вид, тогда как у гипсовых статуй вид матовый, тусклый. Точно так же стальная болванка: выше «точки В» она имеет накаленную, красную, как бы маслянистую, блестящую мраморовидную поверхность, когда же она охладится ниже «точки В», она сохраняет тот же красный цвет, но поверхность ее тускнеет, утрачивает блеск и становится матовой, напоминающей вид гипсовых статуй.

Опираясь на свой верный и точный глаз, Чернов произвел, как мы увидим дальше, целый переворот в металлургии; но когда после двух лет напряженных занятий на заводе он вышел из угарных цехов, первое, что ему понадобилось, были очки, которых он уже не снимал до конца жизни.

Конечно, не все еще было понятно исследователю в том загадочном мире, таинственную завесу которого он приоткрыл; но одно было для него несомненно: что этот мир существует, что его законы доступны исследованию, что не только можно постигать эти законы, но что, зная их, можно сознательно и безошибочно управлять явлениями природы.

В апреле 1868 года, ясным петербургским вечером, уже предвещавшим приближение белых ночей, Чернов направился не на завод, как всегда, а в зал заседаний Русского технического общества.

Его доклад носил очень скромное название: «Критический обзор статей Лаврова и Калакуцкого о стали и стальных орудиях и собственные Д. К. Чернова исследования по этому же предмету», но значение сделанных им сообщений выходило далеко за пределы предмета.

В зале были и доброжелатели и критики, но, во всяком случае, докладчик имел дело с людьми сведущими. Многие из присутствовавших и сами пытались работать над разрешением проблемы стальных орудий.

Критическим разбором работ Лаврова и Калакуцкого Чернов воспользовался только для того, чтобы резче оттенить найденную им связь между тепловыми превращениями в стали и ее свойствами, чтобы резче подчеркнуть установленную им зависимость свойств и структуры стали от термической и механической ее обработки.

Этот молодой, мало кому известный инженер был более похож на преподавателя математики, нежели на исследователя, и с трудом верилось, что именно ему удалось проникнуть в сущность загадочного явления. Между тем он утверждал необычайные вещи. Он заявил собранию, что сталь не остается неизменной при нагревании, а в определенные критические моменты претерпевает особые превращения. Они изменяют ее структуру и свойства, и он, докладчик, установил критические точки нагревания, при которых происходят внутренние превращения стали.

Строение стали под микроскопом: слева — до тепловой обработки, справа — после обработки.

Дмитрий Константинович объяснил, что одна из этих точек, названная им «точкой А», соответствует темновишневому цвету нагретой стали, вторая, «точка В», характеризуется красным цветом каления, и третья, «точка С», почти совпадает с температурой плавления данной стали.

Затем докладчик перешел к изложению своих взглядов на теоретическое и практическое значение этих критических точек, получивших теперь в науке название «критических точек Чернова».

— Сталь, нагретая ниже «точки А», не закаливается, — заявил он. — При дальнейшем нагревании, если нагревание не дошло до «точки В», сталь хотя и начинает принимать закалку, но по виду излома можно заключить, что в ней не совершается еще заметной перегруппировки частиц, потому что в этом случае и после медленного и после быстрого охлаждения структура стали остается та же, что и до нагрева… Если же нагревание дошло до «точки В», перегруппировка частиц совершается очень быстро, и после охлаждения сталь переменяет свою структуру из крупнозернистой в мелкозернистую. Следует предположить, что при прохождении через температуру «точки В» размягченные зерна, или кристаллы, стали слипаются между собою и образуют воскообразную массу аморфного сложения, которое при быстром охлаждении болванки, прошедшей критическую «точку В», остается уже без перемены. При медленном же охлаждении болванки, прошедшей температуру «точки В», масса стали распадется снова на отдельные зерна, или кристаллы, и степень этой кристаллизации будет зависеть от того, насколько выше температуры «точки В» была болванка нагрета, и от медлительности охлаждения. Этой обратной кристаллизации можно помешать быстрым охлаждением болванки до температуры ниже «точки В».

Практически это означало, что для получения мелкозернистой структуры, или «аморфной», обеспечивающей изделию высшие механические качества, надо нагреть это изделие до «точки В» или немного выше и затем быстро охладить.

К этому молодой инженер мог добавить, что с тех пор, как Обуховский завод стал руководствоваться при обработке орудийных стволов указанными им критическими точками, случаи разрывов пушек при испытаниях совершенно исчезли. Тем не менее большая часть слушателей нашла его выводы поспешными и смелыми. Отвечая критикам, Чернов сказал:

— Ну, что касается вообще до проводимых мною идей, то, рискуя показаться еще более смелым, я выскажу свое окончательное заключение в следующих словах: вопрос о ковке стали при движении его вперед не сойдет с того пути, на который мы его сегодня поставили!

В этом заявлении Чернова не было и тени легкомыслия. Его уверенность покоилась на прочном основании. За два года, проведенные им почти безвыходно в цехах Обуховского завода, он не только произвел тысячи опытов, но и сотни раз проверил свои выводы. Мало того, он уже развернул огромную исследовательскую работу по изучению внутреннего строения стали и с первых же шагов убедился в правильности всех своих заключений. Он знал больше, чем говорил, и можно было удивляться не смелости его выводов, а скромности и осторожности, с какими он умалчивал о своем проникновении в тайны металла.

Мало сказать по поводу смелых выводов Чернова: он был прав, — надо сказать больше.

В течение двух десятилетий, после того как Чернов заявил о своем открытии, целый ряд исследователей своими работами полностью подтвердил существование «критических точек Чернова» и превращений стали в этих точках. Заметим для характеристики русского ученого, что в распоряжении его последователей были уже изобретенные позднее термоэлектрические пирометры для измерения высоких температур.

Но дело не только в этом. Своими успехами нынешнее металловедение вообще обязано работам Чернова и его последователей. Правда, все они экспериментировали на сталях. Но с научной точки зрения сталь и железо есть не что иное, как сплав углерода с железом, и изучение их ведется совершенно так же, как и всяких других сплавов. Исследуя зависимость физических свойств стали от ее химического состава и строения, Чернов, в сущности говоря, указывал металлургии общий путь к получению сплавов — чисто научный путь, а не путь слепого опыта, догадок, пробований и попыток. Он не только открыл возможность широкого применения термической обработки к простой и специальной стали, не только выяснил основы физико-химических процессов, протекающих в металле, но и указал метод получения самых разнородных сплавов и сталей, без которых нынешняя техника не могла бы существовать.

Большинство сплавов — не просто механические смеси. Вещества, составляющие сплав, дают частью химические соединения, а частью «твердые растворы»; различие состоит в том, что в химическое соединение вещества входят в строго определенной пропорции, а твердые растворы одного вещества в другом образуют непрерывные ряды различных смесей, где каждый компонент может входить в количестве от 1 до 100 процентов. В реальном сплаве микроскопические зерна перемежаются с зернами соединения, и разрез сплава имеет под микроскопом вид, скажем, гранита.

Чтобы понять строение такого сплава, как сталь, Чернову пришлось идти обходным путем, изучая на глаз температуру стали в критических точках и условия затвердевания, при которых в сплаве происходят химические изменения; в это мгновение Падение температуры прекращается, и она остается постоянной, пока не закончится перестройка сплава, после чего остывание продолжается.

Значение критических точек наглядно разъяснил Чернову опыт охлаждения раствора поваренной соли. Охлаждая десятипроцентный раствор соли, Чернов наблюдал равномерное падение температуры до -8°. При такой температуре падение ее на некоторое время задерживалось; в растворе замерзала часть воды, так что насыщенность раствора повышалась.

После этого температура снова равномерно падала до следующей остановки при -22°, когда застывал весь оставшийся раствор. Дальнейшее охлаждение раствора никаких новых критических точек и остановок в падении температуры не обнаружило.

Повышая насыщенность соляного раствора до двадцати процентов и далее, Чернов без труда установил, что нижняя критическая точка у любого раствора соли остается постоянной и соответствует -22°, а верхняя точка перемещается в зависимости от насыщенности раствора.

Подобное же перемещение критических точек происходит и в стали. Перемещение это Чернов правильно связал с процентным содержанием углерода.

Критические точки Чернова сегодня легко обнаруживаются при помощи различных приемов и точных приборов. Но все эти приемы и приборы были разработаны много позднее. До того же наблюдать превращения стали при критических точках, особенно в «точке В», удавалось с трудом, не каждому и не всегда.

Непосредственное значение для металлургии стали имело доказанное Черновым основное положение, что «прочность непрокованной стали нисколько не меньше прочности прокованной, если они имеют одинаковую структуру». Он показал, что литая, непрокованная сталь может иметь самую лучшую мелкозернистую структуру и наилучшие свойства, если ее нагреть и охладить по установленному им способу.

До Чернова надлежащую структуру стали стремились получать путем механической обработки, ковки. Чернов показал, что эта задача гораздо вернее и лучше решается при помощи тепловой обработки нагревом и охлаждением. Ковка же стали является лишь дополнительной операцией, имеющей целью придать изделию нужную форму.

Производство литых стальных изделий получило совершенно иной характер. Важнейшими заводскими операциями для получения стали нужной структуры сделались нагрев и охлаждение в различных сочетаниях.

Учение Чернова о превращениях стали при прохождении ее через критические точки открыло все цеховые секреты и производственные тайны металлургии, в том числе и тайну булата — знаменитой дамасской стали. Замысловатый узор булатных клинков оказался попросту рисунком крупнозернистой структуры чистой углеродистой стали, рельефность которого получается от травления клинка. Замедляя охлаждение, дамасские мастера добивались в стали очень крупных зерен, а последующей ковкой при температуре ниже «точки В» они изменяли форму кристаллов, вытягивая их, но не нарушая при этом крупнозернистого строения.

Открытия Чернова превратили металлургию из ремесла, основанного лишь на вековом опыте, в одну из областей приложения точного знания к практическим требованиям техники.

Главное управление кораблестроения Морского ведомства, вооружавшее новые военные корабли стальными пушками для нападения и стальной броней для защиты, избрало Чернова своим почетным сотрудником. Вскоре он был назначен главным инженером Обуховского завода и превратил этот завод в исследовательский центр новой, основанной им науки.

Чернова нельзя относить к людям чистой науки, которые предоставляют другим делать практические выводы из научного исследования и находить практическое, приложение научных знаний в жизни. Его вели к научному исследованию потребности практики: завод для него естественным образом превращался в лабораторию.

Не для того стремился он проникнуть в физическую сущность металлургических процессов, чтобы, постигнув их законы, удовлетвориться добытым знанием. Постигая природу металла, он мечтал поставить сталь на службу русской технике и промышленности, на службу человеку.

Под непосредственным руководством своего главного инженера Обуховский завод первым в России отказался от варки стали в тиглях и создал так называемый русский способ бессемерования.

Генри Бессемер не был металлургом. Он занялся сталью случайно и в металлургию пришел со стороны. До того он занимался изобретательством и сам гораздо более ценил другие свои изобретения, вроде гидравлического пресса и золочения бронзовой пылью разных изделий.

Отсутствие практического опыта и знаний в области металлургии, с одной стороны, сильно затрудняло Бессемеру усовершенствование нового метода производства стали, но в какой-то степени сослужило ему пользу: в самом деле, Бессемер подошел к своим опытам без привычного, ставшего традиционным и казавшегося непогрешимым взгляда на технологию сталеварения и смог поступить так, как никому до того не приходило в голову.

Однако, найдя новый способ производства стали, Бессемер не смог сделать его универсальным, пригодным для всякого сырья. Каждая страна, переходя на новый способ, создавала свои — шведский, американский, русский — варианты бессемерования.

Поводом к созданию нового процесса послужило Бессемеру изобретение им артиллерийского орудия. Ему захотелось получить более скорым способом сталь для отливки орудия или, как он сам писал, «получить металл со свойствами, подобными свойствам железа и стали, но который можно было бы в жидком состоянии отливать в формы и болванки».

И вот для ускорения и удешевления процесса Бессемеру пришла в голову счастливая мысль: чугун, находившийся в тигле, продувать воздухом или паром, чтобы ускорить протекающую в нем реакцию окисления углерода.

При первых же попытках продувки чугуна воздухом Бессемер обнаружил, что поступающий в чугун воздух не только не охлаждает металла, но даже повышает его температуру настолько, что его можно отливать в формы. Замечательное открытие, сделанное Бессемером, послужило темой его доклада о «получении железа и стали из чугуна без горючего материала». Оно было положено автором в основу изобретенного им «конвертора». Это цилиндрический сосуд, выложенный огнеупорным материалом; в сосуде плавится чугун, продуваемый воздухом. При продувании находящиеся в чугуне примеси — углерод, марганец, кремний — быстро выгорают, отчего и повышается температура чугуна.

Преимущества бессемеровского способа чрезвычайно ясны: он быстр и прост, производительность его высока, сталь получается в жидком виде.

Кроме того, благодаря возможности в любой момент прекратить продувку и остановить процесс Бессемер мог получать в своем конверторе любой продукт, начиная от мягкого железа и кончая высокоуглеродистой сталью. Позднее он сконструировал вращающийся конвертор, а металлурги, постепенно увеличивая установку, довели емкость его до пяти тонн.

Когда механизм процесса еще не был ясен, бессемерование не всегда и не везде удавалось.

Наиболее успешно проходило бессемерование чугуна, богатого примесью кремния, так как сгорание кремния более всего повышает температуру в конверторе.

Хотя Бессемер сделал свой доклад в 1856 году, а с 1858 года уже пустил в ход конверторы, в России, как мы видели, сталь все еще варилась в тиглях, так как малокремнистый русский чугун не поддавался бессемерованию.

Чернов предложил русский способ бессемерования, характеризующийся перегревом чугуна. Более высокая температура чугуна меняет ход процесса: выгорание углерода начинается сразу, а незначительное количество кремния выгорает главным образом в конце продувки; но для достижения «нормального жара операции» при таких условиях оказывается достаточной и небольшая примесь кремния. Работа с перегретым малокремнистым чугуном оказалась даже более удобной, чем с кремнистым «холодным» чугуном.

24 февраля 1876 года Чернов доложил свои «Материалы для изучения бессемерования» Техническому обществу.

На современном металлургическом заводе. Разлив стали по изложницам.

В основу введенного на Обуховском заводе нового способа получения стали Чернов положил глубокое понимание природы бессемеровского процесса. Он расчленил его на четыре периода и указал признаки начала и конца каждого из периодов. Им было установлено существование трех разновидностей процесса: нормального, при котором получается лучший металл, холодного и горячего.

Чернов не ограничился теорией, а предложил практические способы превращения холодного и горячего хода процесса в нормальный путем изменения количества вдуваемого воздуха. Он разработал и приспособление, с помощью которого можно было регулировать ход процесса и температуру конвертора.

Теоретически обосновав русский способ бессемерования, Чернов доказал на практике его преимущества.

Для русской металлургической промышленности способ Чернова имел не меньшее значение, чем само изобретение Бессемера. Без вмешательства Чернова русская металлургия не могла бы дать вооружение армии, броню кораблям и рельсы вновь строящимся железным дорогам.

Работы по бессемерованию слились у Чернова с разработкой вопроса о внутреннем строении стали.

Недостатком бессемеровской стали была пузырчатость металла, пустоты в нем — так называемые усадочные раковины, газовые пузыри, рыхлость, неоднородность. На процесс разливки жидкой стали в те времена смотрели, как на простую механическую операцию, не нуждающуюся ни в каком научном обосновании.

Чернов посмотрел на дело иначе. Он заподозрил, что процесс разливки стали и ее остывания нуждается в регулировании, в управлении. Переход металла из жидкого состояния в твердое в какой-то мере определяет качество будущего изделия, а плохо, с пороками застывший металл не всегда может быть исправлен последующей обработкой.

В этом вопросе Чернов не первым стал на правильный путь. Несколько ранее исследованием процесса разливки стали и ее остывания в изложнице занимался Павел Петрович Аносов, горный инженер, некоторое время бывший томским губернатором. П. П. Аносов, как и его сын, еще более известный в свое время горный инженер, открывший золотые прииски в Амурской области, принадлежал к тому обойденному нашей литературой типу предприимчивых русских людей, которые холодному бюрократизму России Николая I умели противопоставлять горячую жажду дела и волю к живой, творческой работе.

Воспитанник Горного корпуса, Павел Петрович Аносов в 1817 году был направлен в качестве шихтмейстера на новую оружейную фабрику в Златоустовском горном округе. Администрация фабрики и главные мастера-специалисты оказались немцами, выписанными из Золингена. Молодой инженер, рассчитывавший учиться у этих специалистов, должен был сам взяться за организацию плавки литой стали, так как золингенский мастер не справился с делом, что вынуждены были признать и его соотечественники, руководившие предприятием.

Аносов заложил основы нового, передового по тому времени процесса производства стали, дававшего возможность организовать плавку стали в больших количествах. Открытие Аносова, имевшее огромное значение, высоко оценивал Чернов, одну из своих лекций посвящавший своему предшественнику. Эту лекцию он начинал указанием на приоритет Аносова:

«Раньше, чем установился процесс получения стали в тиглях по способу Ухациуса или Круппа, русским горным инженером Аносовым, имя которого известно всякому знакомому с историей стального дела, в начале тридцатых годов настоящего столетия был введен на Златоустовском заводе комбинированный тигельный способ цементования и плавки стали, причем в тигель закладывается чистое кричное железо и ничего больше».

Пионер высококачественной металлургии, родоначальник учения о стали, применивший первым в мире микроскоп для изучения кристаллического строения стали, Павел Петрович поставил своей задачей раскрыть секрет приготовления булатной стали и добился того, о чем мечтали все металлурги и чего не достиг ни один: русский инженер отыскал способ получения настоящих булатов.

Невозможно перечислить все опыты, которые произвел этот неутомимый человек. Он испытывал сплавы железа с алюминием, марганцем, хромом, вольфрамом, серебром, золотом и даже с платиной. Булата не получалось. Он получил его наконец, сплавляя тагильское железо с высокосортным графитом и ведя плавку в тигле в продолжение пяти с половиной часов.

Сделанные Аносовым из этой стали клинки были настоящими булатами в отличие от немецких, которые оказались лишь «дамасцированной сталью». Немецкие мастера просто вытравливали на клинках узор, который и исчезал при перековке. По поводу этой удивительной работы Аносова, представленной на соискание Демидовской премии Академии наук, в отзыве говорилось:

«Г. Аносову удалось открыть способ приготовления стали, которая имеет все свойства столь высоко ценимого азиатского булата и превосходит своей добротой все изготовляемые, в Европе сорта стали».

Партии «недоброхотов» ко всему русскому, составлявшей академическое большинство, удалось отклонить присуждение Аносову премии, но русское крестьянство, прознав о новой стали, начало предпочитать импортным австрийским русские серпы и косы, сделанные из аносовской стали.

Дмитрий Константинович Чернов изучил опыт старейшего русского металлурга, изложенный в его работах «Новый способ закалки стали в сгущенном воздухе» и «Приготовление литой стали», и к опытам своего замечательного предшественника прибавил свои исследования.

Чтобы проникнуть в физическую сущность процесса, происходящего в остывающем и отвердевающем металле, Дмитрий Костантинович много лет подряд изучал кристаллизацию различных веществ. В архиве Дмитрия Константиновича нашлись фотографические снимки с самых причудливых и фантастических оконных узоров льда. На одном из снимков сохранилась дата — 1915 год. В возрасте семидесяти шести лет Чернов все еще пополнял свою коллекцию кристаллов фотографиями ледяных узоров на стекле.

Он выращивал большие кристаллы поваренной соли и квасцов. Рассматривая замерзание воды, как процесс кристаллизации, он заставлял воду замерзать при самых разнообразных условиях. Ему случалось в яркий зимний день, каких немного в Петербурге, встречать на Неве возчиков, грузивших на розвальни квадратные ледяные глыбы. Тогда он спускался к проруби и часами простаивал около льда, стараясь проникнуть в тайны строения твердого вещества у какой-нибудь глыбы, по зеленоватой поверхности которой быстро, почти на ходу, замерзала струя воды.

Схему затвердевания стали подсказала Чернову хорошо изученная им кристаллизация раствора квасцов при замерзании. Первое положение, которое высказал Чернов в результате своих наблюдений, сводится к тому, что сталь затвердевает не аморфно, не воскообразно, а кристаллически.

О том, какое значение может иметь понимание процесса кристаллизации стали в практических делах, Чернов указал уже в первом своем докладе.

«Если расплавленную в тигле сталь, — говорил он, — вы будете при охлаждении постоянно приводить в сильное сотрясение, достаточное для того, чтобы все частицы ее приходили в движение, тогда охлажденный слиток будет иметь чрезвычайно мелкие кристаллы; если же эту сталь оставить без всякого сотрясения и дать массе спокойно и медленно охлаждаться, тогда у вас эта же самая сталь получится в крупных, хорошо развитых кристаллах. Вид этих кристаллов и способность вообще кристаллизоваться при этих условиях зависят от чистоты стали»[28].

Основываясь на наблюдении, что сталь, застывая, образует сложную систему кристаллов, Чернов первым в мире начал изучать стальные слитки как результат кристаллизации расплавленного, жидкого металла.

В своем докладе «Исследования, относящиеся до структуры стальных литых болванок», сделанном 3 декабря 1878 года членам Технического общества, Чернов совершенно уверенно и определенно указал, что кристаллы стали — результат совместной кристаллизации железа и углерода. При таком процессе образуются кристаллы переменного состава. Они представляют, как теперь говорят, «твердые растворы углерода в железе». Он только не употребил выражения «твердые растворы». Этот термин появился в науке недавно.

Современное представление о природе и структуре стальных слитков было в главных чертах совершенно правильно установлено исследованиями Чернова.

Памятником этих исследований остается знаменитый «кристалл Чернова», найденный им в усадочной раковине стотонного стального слитка. Этот громадный кристалл весит три с половиной килограмма и описан во всех учебниках металловедения. Иногда случается, что в усадочной пустоте начинает расти отдельный кристалл. Такой кристалл, не встречая препятствий для своего роста со стороны других кристаллов, достигает больших размеров, причем форма его не искажается.

Указав на сложность процесса кристаллизации, Чернов разобрался в недостатках стальных отливок, систематизировал их, выяснил причины их возникновения, а затем указал и способы для их устранения.

Сопоставляя процессы охлаждения и затвердевания металлических сплавов с процессами затвердевания растворов поваренной соли и квасцов и обобщая наблюдения, Чернов предположил, что из жидкой смеси двух или нескольких веществ, входящих в сплав, выделяются сперва кристаллы одного из них:

Кристалл Чернова.

«Одно вещество, более мягкое, менее углеродистое, бросает оси, а другое, более углеродистое, оставаясь в то время еще жидким, тотчас же вслед за тем облепляет ростки».

Поняв до конца внутреннее строение стали и условия, его определяющие, Чернов без труда мог ответить на ряд вопросов: почему по мере приближения к центру болванки металл становится более рыхлым, почему появляются в литье пузыри, раковины, пустоты. Он разъяснил тысячи вопросов, в том числе и вопрос о том, что же делается с раскаленной сталью, когда ее быстро охлаждают погружением в воду.

Очевидно, что в таком случае в стали как бы фиксируется ее жидкое строение: углерод остается в виде карбида — соединения с железом, растворенного в чистом железе.

Самое интересное для нас в технологическом искусстве Чернова — это немедленный переход от чисто теоретических выводов к практическим.

Так, для лучшего уплотнения стали наряду с применявшимся способом прессования жидкой стали Чернов разрабатывает метод разливки во вращающиеся изложницы. Исходя из практики, додуматься до вращающихся изложниц без какого-нибудь подсказывающего случая невозможно. Но знание физической сущности процесса отвердевания, или кристаллизации, металла совершенно логично порождает такую идею.

«В самом деле, — говорит Чернов, — если при отливке стали в изложницу эту последнюю приводить в быстрое вращательное движение, то растущие нормально к поверхности изложницы разрывные кристаллы не в состоянии будут так сильно развиваться, как это имеет место при спокойном росте, и сталь будет нарастать гладкими, аморфного сложения слоями».

Таинственный и странный мир частиц и кристаллов, заключенный в куске стали, раскрывался Чернову во всей своей поучительной сложности.

И вот в тот самый момент, когда, постигая жизнь металла, великолепный исследователь и вдохновенный инженер готовился начать изучение сил, связывающих частицы и кристаллы, его напряженная деятельность была прервана вмешательством бюрократической стихии.

Как ученый Чернов оставался вне поля зрения официальной русской науки и после того, как заслуги его были признаны всем миром.

По справедливому замечанию академика М. А. Павлова, окончив Горный институт, студенты могли не знать даже о существовании Чернова, хотя они жили бок о бок с великим металлургом и сами готовились работать в качестве металлургов.

«Мне довелось узнать о нем случайно, — рассказывает М. А. Павлов, вспоминая о своих студенческих годах. — Занимаясь техническими переводами с иностранных языков, я, порывшись в библиотеке, разыскал выходившую в то время французскую химическую энциклопедию Фреми и решил перевести слово Ferrum — железо. В конце статьи об этом слове я встретил фамилию Чернова и краткое изложение его знаменитых статей о наблюдениях над кристаллизацией стали и основах тепловой обработки. Вот таким образом — из французской энциклопедии — я узнал о работах выдающегося русского металлурга»[29].

Чернов не снискал себе и расположения директора Обуховского завода адмирала Н. В. Колокольцева. Типичный и худший представитель правящих дворянских кругов России, весь секрет успеха полагавший в соблюдении внешней субординации, заносчивый и нетерпимый, Колокольцев не выносил вмешательства главного инженера в его распоряжения. Чернов же служил «делу, а не лицам» и, в свою очередь, не мог проходить мимо тех приказов и предписаний Колокольцева, которые, по его убеждению, несли вред развитию производства.

Можно сказать, что в лице Колокольцева и Чернова столкнулись не характеры, не личности, а две России: Россия феодальная, бюрократически-равнодушная к нуждам народа, и Россия передовой интеллигенции, стремившейся пробудить к действию все творческие силы страны.

Микрошлиф стали.

Человек прямой, убежденный и твердый, Чернов не сделал ни одной даже формальной, уступки в своих столкновениях с директором. Колокольцев в конце концов отстранил его от должности главного инженера, но оставил консультантом при заводе. По тем временам переход на положение «консультанта» был попросту замаскированным увольнением на пенсию. Чернов подал заявление об отставке, в котором со свойственной ему прямотой так и объяснил причину своей отставки:

«Я еще не старик, чтобы переходить на пенсию».

Надо сказать, что, уходя в отставку, Чернов наносил себе серьезный материальный ущерб. Право на полную пенсию, равную всему окладу содержания, государственные служащие имели лишь после двадцатипятилетней службы. Чернов же прослужил только четырнадцать лет. Но не это обстоятельство, с которым Чернов вовсе не считался, оставило в нем горькое воспоминание о пребывании на Обуховском заводе:

«К сожалению, даже первый образец, приготовленный мною, не подвергся наблюдениям, потому что среди моих приготовлений я должен был уступить грубой силе обстоятельств и покинуть не только мои занятия на Обуховском заводе, но и вообще стальное дело».

В этом признании есть нечто большее, чем горечь обиды.

Конечно, отстранить Чернова от стального дела было так же невозможно, как нельзя было в свое время отставить Ломоносова от первого русского университета. Когда горечь простой человеческой обиды прошла, вдохновенный металлург вернулся к своему делу.

Но некоторое время Дмитрий Константинович действительно занимался не сталью, а разведкой каменной соли. В Бахмутском уезде, возле Брянцевки, он открыл богатейшие залежи. По его указанию они стали позднее разрабатываться в промышленных целях и сегодня представляют собой крупнейший центр соляных разработок на юге.

Эпизод этот свидетельствует не только о неугасимом стремлении к практической деятельности, которое так характерно для разночинной интеллигенции того времени. Он полностью раскрывает нам и замечательную личность Чернова. «Грубой силе обстоятельств» он противопоставляет свою душевную мощь; вырванное из его рук стальное дело он заменяет другим и в недрах земли открывает клад, а в куске соли находит тот же мир частиц и кристаллов, где просторно действовать его разностороннему инженерному таланту.

В резком разрыве Чернова с Обуховским заводом, с любимым своим делом — металлургией, с Петербургом таились и элементы протеста: поднимая промышленную мощь страны, деятели типа Чернова боролись против ее отсталости, против остатков крепостничества, сковывающих развитие производительных сил.

Впрочем, может быть, для самого Чернова между металлургией и геологией не было даже резкой разницы. И там и тут в основе лежало наблюдение, дававшее материал для выводов и обобщений. Он бродил по просторам южных степей, подмечая тончайшие признаки, по которым можно было судить о характере земных недр. За четыре года, проведенных в геологических изысканиях, он стал опытнейшим следопытом, и немудрено, что именно ему удалось найти богатейшие залежи, хотя несколькими годами раньше тут же рядом работал такой геолог, как А. П. Карпинский.

В 1884 году, покончив с соляными копями, Чернов возвратился в Петербург. Он принял обязанности главного инженера Отдела по испытанию и освидетельствованию казенных заводов, а затем начал руководить кафедрой металлургии в Петербургской артиллерийской академии.

Так, с середины восьмидесятых годов Чернов становится учителем целого ряда военных металлургов. В то же время, изучая выполнение казенных заказов, он разрабатывает методику обработки стали для специальных целей — начиная от корабельной брони и бронепробивающих снарядов и кончая стволами магазинных ружей и знаменитой нашей трехлинейной винтовки.

Методикой Чернова воспользовались впоследствии для изготовления стволов к пулеметам Максима, выдерживающих в момент выстрела колоссальное давление, доходящее до трех с половиной тысяч атмосфер.

Подчас бывает трудно сказать, какими путями то или иное открытие или изобретение проникает в практику.

В конце концов всякое новое знание, всякое открытие или изобретение, будь то дуга Петрова или световое давление Лебедева, найдет себе практическое приложение. Не надо только ожидать, что его непременно сделает сам ученый. Часто исследователь более всех бывает изумлен теми практическими приложениями, которые находят для его открытия другие люди. Теоретик и практик мыслят не одинаково: у каждого свой путь к цели.

Но случается, что в одном и том же человеке объединяются ученый-исследователь и инженер-конструктор, теоретик и практик. Такое счастливое сочетание мы имеем в Чернове. Открытия Чернова особенно были нужны военной технике. Именно военная техника твердо направила Чернова к его открытиям, которые он немедленно ставил на службу обороне страны.

Известно, что военная техника во все времена и у всех народов была предметом большого внимания. Легко уяснить политические причины, заставляющие то или иное государство уделять особую заботу увеличению своей военной мощи. Но мы хотим отметить, что существуют и внутренние силы, обеспечивающие военной технике особое развитие — силы, обычно не замечаемые.

Внутренние силы, двигающие развитие военной техники, рождаются из противоречий, заключенных в ней самой. В силу самого ее характера военная техника должна в одно и то же время совершенствовать и средства нападения и средства защиты от них.

Чернов занимался вопросами производства стальных снарядов, способных пробивать броню. Но одновременно он занимался и вопросами защиты судов от артиллерийских снарядов.

Формально «оставив стальное дело», Дмитрий Константинович, конечно, не переставал заниматься им и во время разведки каменной соли на юге России. Во всяком случае, возвратившись в Петербург в начале 1884 года, он уже 10 марта выступал в Техническом обществе с докладом «Обобщения по поводу некоторых новых наблюдений при обработке стали» — докладом, далеким от вопросов геологической разведки.

Впрочем, геологические занятия ученого, может быть, и не оставались без значения. Резкая перемена обстановки очень часто меняет ход мысли.

Подобно тому как течению ручья нужны какие-то новые условия для того, чтобы изменить свое русло, без воздействия новых, свежих впечатлений и уму человека бывает трудно изменить привычный ход мысли.

Хотя подготовленные на заводе опыты для выяснения вопроса о внутренних напряжениях в стали не были даже начаты Черновым, вопрос этот не переставал его занимать. Душевная сила Чернова побеждала грубую силу обстоятельств.

В новой обстановке ум Чернова иначе, чем раньше, разрабатывал вопрос. Он опирался теперь на чужой опыт. Размышляя, Чернов сопоставлял различные чужие наблюдения со своими собственными. Правда, они довольно далеко лежали от занимавшего его предмета, но при его способности к широким обобщениям и они могли служить основной цели — исследованию внутренних напряжений в металле. Чернов сопоставил такие явления: при разрыве черных железных образцов после перехода через предел упругости, когда окалина начинает шелушиться, на поверхности появляются группы кривых линий. Такое же явление обнаружили на полированных образцах другие исследователи. Подобные кривые линии наблюдаются и на полированной поверхности металлических листов, когда их разрезают ножницами или продавливают в них дырки. Напряжения в стеклянных пластинках также изучались физиками: рассматривая пластинки в поляризованном свете, можно обнаружить те же фигуры.

И вот, обобщая собранные факты, Чернов заключает, что все эти явления имеют общее происхождение: они зависят от распределения напряжений, причем то, что наблюдается в стекле лишь во время приложения к нему сил, в стали остается навсегда как деформация при переходе напряжения за предел упругости.

Через два месяца после доклада, имевшего как будто чисто теоретический интерес, Чернов выступил с докладом «О приготовлении стальных бронепробивающих снарядов». Рассказывая о превосходных бронепробивающих снарядах, только что выпущенных заводом Круппа, он раскрыл секрет их изготовления и предложил свой метод закалки для получения стали более высокого качества.

Когда Чернов начал читать курс лекций по сталелитейному делу в Петербургской артиллерийской академии, один из слушателей спросил его:

— Почему выгорают каналы стальных орудий при стрельбе?

Тогдашняя наука не могла объяснить разрушительного действия горячих пороховых газов на сталь.

«Таким образом, — просто говорит Чернов, — мне оставалось разработать этот вопрос на основании своих личных наблюдений над явлениями выгорания и, по соображению с теми условиями, в которых находится металл стенок орудия во время стрельбы, прийти совершенно самостоятельно к отысканию до тех пор неисследованного фактора, который имеет в этом отношении преобладающее значение».

Вопросом о выгорании Чернов занимался два десятилетия. Он начал с наблюдения первых признаков воздействия горячих пороховых газов, а кончил призывом к борьбе за стойкость стали, за долговечность орудия.

Точный и верный глаз его увидел, что первые признаки выгорания обозначаются появлением матовых пятен на полированной поверхности канала орудия. Гуттаперчевые слепки показали, что пятна представляют собой переплетение тонких, неглубоких трещин.

Дальнейшие наблюдения удостоверили неутомимого исследователя, что при продолжительной службе орудия трещины удлиняются, встречаются с соседними и образуют замкнутые петли сплошной сетки. Величина и рисунок этих петель зависят от калибра и длины орудия, от формы нарезов, от сорта пороха и от структуры металла. При повторной стрельбе возрастает глубина и ширина трещин, причем резче всего возрастание происходит там, где направление трещин совпадает с направлением оси орудия, а следовательно, и с направлением движения пороховых газов.

Очевидно, трещины появляются от быстрого нагревания очень тонкого поверхностного слоя канала орудия во время выстрела и последующего быстрого охлаждения этого слоя остальной массой металла этого орудия.

Чернов предложил, во-первых, создать сталь, которая обладала бы возможно большей пластичностью и вязкостью при высоких механических свойствах, а во-вторых, подобрать состав пороха, дающий более низкую температуру сгорания.

Через двадцать лет после того, как задан был Чернову на лекции простой вопрос, почему выгорают каналы орудий, он ответил на него исчерпывающим докладом на заседании Русского металлургического общества, состоявшемся 10 мая 1912 года. Этот доклад «О выгорании каналов в стальных орудиях» напечатал «Артиллерийский журнал», а отсюда его перепечатал ряд иностранных технических журналов. Это был первый научный труд по данному вопросу, и многие на месте Чернова сочли бы дело исполненным.

Но русскому инженеру этого было мало. Он побудил Артиллерийский комитет создать «Комиссию по изучению выгорания каналов орудий», а когда эта комиссия занялась вместо дела бюрократической перепиской «об изыскании необходимых средств», Чернов гневно заявил председателю комитета:

Кристаллическая структура железа.

«Если Артиллерийский комитет считает вопрос о выгорании орудий важным, а личный состав комиссии достаточно компетентным в предложенном к решению вопросе, то для успеха дела необходимо ассигновать потребный кредит на производство опытов без скептического отношения к их целесообразности. Комитет может быть уверен, что понапрасну комиссия тратить денег не станет. При ином отношении комитета к комиссии я откажусь от участия в ее работах, так как не привык топтаться на одном месте и проводить время только в разговорах».

Артиллерийский комитет был всего лишь совещательным учреждением при Главном артиллерийском управлении, а комиссия этого комитета и вовсе являлась пятой спицей в колеснице. Но Чернов, как всякий крупный деятель, понимал, что в жизни нет маленьких дел, что для достижения поставленной цели «не надо предпринимать ничего невозможного, но делать все возможное», и хотел работать здесь в полную меру своих сил, как работал всюду.

Он выступал, как мы уже видели, перед тогдашней русской инженерной общественностью с техническими проектами, которые и сейчас только приближаются к практическому осуществлению.

В смелости Чернова не было ничего поспешного, плохо обдуманного. Его выводы и заключения основывались на точном знании; они являлись результатом тщательных исследований, наблюдений и размышлений. Выступал ли он с докладом о выгорании стальных каналов или говорил о возможности механического летания — его решения всегда оказывались правильными. Правильность решений Чернова еще яснее сегодня, когда мы видим их в ряду десятка других, оказавшихся неверными.

В 1893 году, за десять лет до того, как братья Райт поднялись в воздух на своем аэроплане, Дмитрий Константинович выступал в Русском техническом обществе с докладом «О наступлении возможности механического воздухоплавания без помощи баллона».

Принципиальная возможность полета на аппарате тяжелее воздуха к этому времени была, впрочем, уже доказана А. Ф. Можайским, Н. Е. Жуковским, выступавшими со своими сообщениями несколько раньше Чернова. Все они исходили из наблюдений над полетом птиц и воздушных змеев, все одинаково утверждали, что человек может и будет летать по воздуху; но только Чернов вышел на трибуну с заявлением, что время для практического осуществления механического летания уже наступило. Он считал себя вправе об этом заявить, потому что не только основывался на теоретических заключениях, но и держал в руках сконструированный им прибор, наглядно показавший существование подъемной силы у движущейся в воздухе лопасти при определенном наклоне.

Этот остроумный прибор состоял из вертикально установленного валика с насаженными на его верхнем конце металлическими лопастями. Валик с лопастями приводила во вращательное движение стальная пружина, на завод которой требовалось затратить значительную силу. Весь прибор весом в четырнадцать килограммов Чернов помещал на весы, после чего давал действовать пружине.

И вот оказалось, что если лопасти ставились с наклоном в один градус, а валик делал девяносто оборотов в минуту, то вес всего прибора, как показывали весы, уменьшался на пять граммов, составлявших подъемную силу. При увеличении числа оборотов до ста сорока в минуту подъемная сила прибора возрастала до шестнадцати граммов.

Когда Чернов устанавливал лопасть с наклоном в два градуса, то при ста сорока оборотах в минуту подъемная сила выражалась величиной в двадцать семь граммов.

В сущности говоря, прибор Чернова решал весь вопрос о механическом полете. Он доказывал, что подъемная сила летательного снаряда зависит от скорости движения крыла и от величины того угла, под которым оно встречается с потоком воздуха.

Чернов видел, что лопасть винта — то же крыло, с той разницей, что обычное крыло движется только поступательно, а лопасть винта совершает более сложное движение, вращаясь около оси.

Русское техническое общество, выслушав сообщение Чернова, направило его доклад на отзыв виднейшим русским ученым и прежде всего Н. Е. Жуковскому в Москву. «Отец русской авиации» не только дал подробный отзыв о работе Чернова, но, глубоко заинтересованный его теоретическими заключениями, сделал в Москве в марте 1894 года доклад по поводу «Теории летания, предложенной Д. К. Черновым».

Предшествующее развитие науки и техники настолько подготовило к концу XIX века воплощение тысячелетней мечты человечества, что просто немыслимо установить теперь, кому принадлежит решительный шаг в осуществлении механического летания по воздуху. Возможно, что работа Д. К. Чернова по теории летания имела огромное влияние на разрешение вопроса, а может быть, единственным практическим следствием ее было установление дотоле не существовавшей связи между Воздухоплавательным отделом Русского технического общества, находившегося в Петербурге, и Московским воздухоплавательным обществом.

Но мы не для полноты заслуг Чернова упомянули о его работе по теории летания. Нам важно установить, что открытия Чернова в области металлургии — открытия, создавшие ему мировую известность, — не были делом случая, следствием счастливого стечения обстоятельств. Необычайная наблюдательность, точный и верный глаз, обобщающий светлый ум, последовательность и страстность в поисках одинаково отличали Чернова всюду, куда бы его ни приводило живое течение жизни.

Конечно, немало случайного в том, что Чернов клеил скрипки или искал соль, но не случайно, что все, до чего он касался, становилось в его руках наукой: и скрипки, и разведка пород, и строение металлов, и летание по воздуху. В лице этого гениального инженера теоретическая наука победоносно сливалась с инженерной практикой.

Осенью 1916 года Чернов покинул Петербург больной и усталый, измученный бесплодной борьбой с Артиллерийским комитетом.

Врачи направили старого ученого в Ялту для отдыха и лечения.

Не скоро и не сразу мог свыкнуться его деятельный ум с иным течением жизни.

В ноябре из Ялты Чернов присылает в журнал Русского металлургического общества письмо по названию и статью по существу, посвященную структурным превращениям стали и точному установлению температуры «точки В», при которой происходят эти превращения. То была последняя работа старого ученого, последняя весть от него — и она касалась того же вопроса, с разработки которого начал свою деятельность молодой инженер полвека тому назад.

В 1919 году гражданская война отрезала юг России. После разгрома «добровольческой армии» Деникина остатки ее укрылись в Крыму. Авантюра Врангеля затянула гражданскую войну в Крыму еще на восемь месяцев. Только к зиме 1920 года Красная Армия изгнала белогвардейские войска из Крыма.

Судьба судила Чернову пережить все бедствия гражданской войны, все неустройства быта этих лет, все унижения интервенции и умереть в дни восстановления советской власти в Крыму — 2 января 1921 года.

Блестящий представитель русской инженерно-технической мысли, Дмитрий Константинович Чернов не был революционером в социальной области, каким он был в своем деле. Но незадолго до освобождения Крыма с ним произошел известный инцидент, который характеризует его как патриота и русского человека.

Врангелевская авантюра, как известно, была организована англо-французскими империалистами. Общее положение занятого белогвардейскими бандами Крыма было в Англии хорошо известно.

В Англии знали, что «отец металлографии», выдающийся ученый, чьи работы оказали огромнейшее влияние на пути развития всей мировой металлургии, находится в Ялте и живет в нужде. Британское правительство решило, воспользовавшись обстоятельствами, залучить к себе выдающегося ученого, и командиру миноносца, находившегося в водах Черного моря, было приказано направиться в Ялту и передать знаменитому металлургу приглашение прибыть в Лондон, предоставив в его распоряжение для этой цели корабль.

Поручение английского правительства было командиром корабля выполнено. История не сохранила нам подробностей свидания и беседы, происходившей между русским ученым и английским офицером в скромном ялтинском домике. Но мы знаем, что Дмитрий Константинович отказался переселиться в Англию и остался в Ялте, спокойно ожидая вступления Красной Армии в город.

Человек огромного ума и орлиной зоркости, он вполне ясно понимал всенародность совершавшейся на его глазах социалистической революции. Он не принимал в ней физического участия, но ему было с ней по пути.

Черты истинного гения проглядывают во всех работах Чернова и в самой его человеческой личности.

Он не только стал «отцом металлографии», как назвали его современники, не только заложил основу науки металловедения. Он сделал нечто большее — он превратил металлургию из скучного ремесла в инженерное искусство, в одну из самых интересных, одну из самых увлекательных областей созидательной человеческой деятельности.

Тридцать лет читал он лекции по сталелитейному делу в Петербургской артиллерийской академии, увлекая слушателей в область совершенно новых для них интересов. Он воспитал целое поколение металлургов и, можно сказать, создал русскую школу металлургии, отличительной чертой которой является внедрение в производство научного исследования. Даже тогда, когда его ученики уже руководили предприятиями, старый профессор продолжал помогать им, отвечая на все вопросы, давая советы, указывая на заблуждения.

Но дело, конечно, не в этих непосредственных учениках Чернова, а в том новом отношении к инженерной практике, которое Чернов утверждал всей своей деятельностью до последних дней своей жизни.

Каким значительным было это влияние, можно судить по «благоговейной дани уважения», которая была воздана Чернову на собрании экспертов в Париже.

В 1900 году на Парижской всемирной выставке происходили торжественные заседания Французской Академии наук и экспертных комиссий. В состав их входили виднейшие представители науки и техники.

И вот на первом же заседании комиссии экспертов-металлургов директор крупнейшего металлургического завода во Франции Поль Монгольфьё, обращаясь к собравшимся, сказал:

«Считаю своим долгом открыто и публично заявить в присутствии стольких знатоков и специалистов, что наши заводы и все сталелитейное дело обязано настоящим своим развитием и успехом в значительной мере трудам и исследованиям русского инженера Чернова. Приглашаю вас выразить ему искреннюю признательность и благодарность от имени всей металлургической промышленности»[30].

В ответ на приветственные аплодисменты многочисленного собрания с одного из боковых кресел в глубине зала поднялся инженер Чернов. Аплодисменты продолжались долго и тем были шумнее, чем более смущали того, к кому были обращены.

Человек, трудам и исследованиям которого была обязана своими успехами металлургия, вступавшая в самую блестящую эпоху своего развития, не выдержал обращенных на него взглядов множества людей и, склонив седую голову, сел на свое место.

У него не было щегольского вида большинства французских инженеров, находившихся в зале. Да на его седых усах и простой русской бороде фиксатуар был бы попросту смешон. Ранняя седина его, видимо, была случайностью. Никаких других следов возраста нельзя было заметить ни в его фигуре, ни на его добром русском лице, сохранившем способность розоветь от смущения. Такое впечатление усиливалось еще и от того, что слегка поднятые густые брови его оставались черными, а большие и тоже черные зрачки за стеклами золотых очков блестели ярко, как свечи.

Поль Монгольфьё по знаку председателя продолжал свою речь. Аплодисменты стихли, а виновник их еще долго сидел, опустив глаза, стараясь побороть свое волнение.

Скромность сопутствует большим людям не только как нравственная добродетель. Она, как инстинкт, охраняет деятельный ум от возможных ошибок и поспешных заключений: русский инженер, конечно, знал и без демонстрации мировой общественности, какое место и значение имеют его труды и исследования для науки и техники наступающего века стали и электричества.

Но в истории русского инженерного дела демонстрация комиссии экспертов на Всемирной выставке 1900 года по адресу Чернова имеет свое значение. За нею стояло нечто большее, чем простое признание заслуг русского инженера, — за нею стояло признание русского отношения к теории и практике инженерного дела, признание смелого и ясного русского ума.

Дмитрий Константинович Чернов делил в Париже «благоговейную дань уважения просвещенного человечества» со всей русской наукой, техникой и инженерией, выдвинувшей из своей среды замечательных металлургов, превращавших, как и он, металлургию из ремесла в искусство.

Таким инженером был прославленный русский доменщик М. К. Курако.

В биографии Михаила Константиновича Курако оставалось много смутного, неясного и загадочного до самого последнего времени, когда А. Н. Бек[31] вполне восстановил его жизнь по рассказам современников и разным документам, а академик Иван Павлович Бардин дал в своих воспоминаниях яркую характеристику этого замечательного инженера и организатора производства.

Михаил Константинович родился в 1872 году в семье белорусского помещика, где рос и воспитывался под наблюдением гувернеров и обожавших единственного сына родителей. Ему готовили блестящую карьеру, предполагая, что он закончит образование в Лейпциге. Но к пятнадцати годам мальчик был исключен уже из четырех школ — кадетского корпуса, двух гимназий и реального училища — за резкие протесты против палочной дисциплины, царившей в тогдашних учебных заведениях, и ряда наложенных на него жестоких взысканий.

Тогда его отдали в уездное земледельческое училище, но отсюда Курако вынужден был бежать после того, как в отчаянии поднял руку на директора школы, который подверг его наказанию розгами.

Ошеломленный собственным поступком, Курако ночью, оставив на берегу свою одежду, переплыл реку и голый помчался домой. Поймав на лугу лошадь, он ускакал на ней в деревню к своему молочному брату. Выслушав рассказ юноши, тот посоветовал ему бежать в Екатеринослав. На рассвете, одевшись в крестьянскую одежду, Курако ушел от него и через несколько дней уже работал на Брянском заводе, у доменных печей.

Человек со страстной и самолюбивой натурой, полный неистощимого любопытства и беспредельной смелости, Курако нашел тут свое место. Подобно тому как часто учителя плавания начинают первый урок с того, что бросают ребенка в воду с целью разбудить в нем дремлющий, как во всяком живом существе, инстинкт плавания, жизнь бросила Курако к доменным печам, чтобы пробудить в нем с небывалой силой талант инженера.

Этот мальчишка в деревянных башмаках и рваной одежде, едва явившись на завод, приобрел уважение окружающих. Однажды он с бездумной смелостью повторил фокус старого мастера-француза, которым тот хвастался всю жизнь. Француз перешибал голой ладонью струю расплавленного металла, словно это была струя воды. Рассерженный самомнением мастера, Курако сделал то же самое на глазах у изумленных рабочих. Оказалось, что даже ощущения тепла не остается при этом на ладони, если она совершенно суха.

В другой раз Курако остановил доменную печь, когда у нее вырвало стенку и все рабочие в ужасе бежали прочь, спасаясь от неминуемого взрыва. На юном доменщике тлел рукав куртки, дымились деревянные башмаки, ему опалило лицо, но печь затихла и взрыв был предотвращен.

Овладение доменным искусством стало единственной целью и делом жизни Курако. Он работал на заводах Криворожья и Донбасса, переходя от одного предпринимателя к другому. Иностранцам тогда принадлежало большинство металлургических заводов в России.

Особые условия России — дешевая рабочая сила, высокие цены на продукцию промышленности на внутреннем рынке, явное покровительство иностранным капиталистам со стороны правительства, огромные дотации — все это привлекало в Россию зарубежных капиталистов. Они отнюдь не были заинтересованы в развитии русской промышленности; ее отсталость была им наруку. Они толкали страну на путь превращения в полуколонию, стремились полностью закабалить Россию, сделать ее придатком растущего европейского и американского империализма.

Всякие новшества, механизация в горнозаводском деле вводились иностранцами лишь постольку, поскольку это облегчало выколачивание огромных прибылей.

Когда американцы построили в Мариуполе две новые печи, Курако отправился туда. Мариупольские домны были оборудованы целым рядом механизмов: фурманные устройства, загрузка, воздухонагревательные приборы — все было механизировано.

Во главе дела стоял Вальтер Кеннеди, брат конструктора. Курако стал учиться английскому языку, на котором писал и говорил конструктор, чтобы иметь возможность изучить американскую технику.

Насколько хорошо он вскоре изучил американскую технику, показывает такой случай, описываемый Беком:

«Однажды Курако заметил, что ход печи расстраивается. Он послал за мастером. Ричардсон веселился где-то в приморском кабачке, и его не нашли. Курако побежал к воздуходувной машине и потребовал усилить дутье. Машинист-американец послал его к черту. Курако кинулся к регулятору, сам повернул ручку и дал большой пар. Машинист, огромный рыжий детина, отшвырнул Курако от регулятора ударом кулака. Сбросив кепку, Курако ринулся на машиниста. Худой и невзрачный, он обладал исключительной физической силой, в минуты ярости она удваивалась. Он сбил машиниста с ног; тот пытался подняться и снова под ударами падал. Испуганный и окровавленный, машинист отполз в угол. Курако стоял на площадке управления, положив на рукоятку руку. Печь пошла исправно.

Михаил Константинович Курако

 (1872–1920).

На другой день в кабинете Кеннеди состоялся суд. Учинив строгий допрос свидетелям, Кеннеди задумчиво посмотрел на Курако, затем обратился к секретарю и сказал:

— Купите билет в Нью-Йорк для Ричардсона, на его месте будет работать Курако».

Через год американцы уехали из Мариуполя. Мариупольские печи приняли французы и сразу же посадили «козла», то-есть охладили печь так, что в ней застыл весь металл. Специалисты нашли, что, не ломая печи, «козла» нельзя удалить, но Курако расплавил его. И его слава, слава «победителя „козлов“», широко распространилась на юге. За ним стали часто приезжать с других заводов; он воскрешал «закозленные» печи с необычайным искусством, и имя его гремело по всему югу.

Осенью 1902 года Курако пригласили на Краматорский завод, принадлежащий немецкой фирме «Борзиг». Одна печь «Краматорки» стояла из-за «козла», вторая выдавала негодный металл. Миллионы пудов бракованного чугуна лежали на дворе завода.

«Начальником доменного цеха здесь был немецкий ученый-инженер, профессор Зиммербах. Когда Курако приехал на завод, ему сказали, что хотели бы с ним посоветоваться. Курако ответил директору:

— Советоваться тут нечего, надо работать!

— А как работать?

— Это я покажу тогда, когда вы назначите меня начальником цеха.

Предложение было принято, но сверх того Курако поставил условие — механизировать обе печи.

— Зачем вам это нужно? — спросил немец. — Русский лапоть — самая дешевая механизация.

Побледнев, Курако ответил:

— Когда им бьют по морде… Немец не понял и переспросил:

— Что вы сказали?

Курако поднялся с кресла, стукнул кулаком по столу и повторил медленно и четко:

— Когда лаптем бьют по морде.

Директор принялся успокаивать доменщика. Они договорились, что прибыль, которую даст Курако, будет ассигнована на переустройство печей».

Курако стал первым русским начальником доменного цеха на юге. Из Мариуполя в «Краматорку» явились на работу преданные ему рабочие-доменщики. Печи стали выдавать в полтора раза больше, чем до того, превосходного чугуна. Михаил Константинович расставил своих людей и, поселившись в доменной будке, дни и ночи проводил в цехе. Потом он построил новую домну.

«В день задувки на завод приехал окружной инженер, желтый и хромой старик, в фуражке с двумя молоточками, — рассказывает А. Бек. — Он должен был подписать разрешение на пуск домны.

Осмотрев ее, инженер спросил:

— Кто строил?

Курако в измазанном синем рабочем костюме, в войлочной шляпе, с гаечным ключом в замасленных руках ответил, вскинув голову:

— Курако.

Инженер попросил предъявить диплом к разрешению на производство строительных работ. Узнав, что у Курако нет диплома, он запретил пускать печь.

— Вы намудрили здесь, молодой человек! Где у меня гарантия, что у вас не разнесет все это к черту?

Задувка печи — одна из наиболее ответственных и опасных операций доменного дела. Впуск газа в кауперы часто сопровождается взрывами. Для образования гремучей смеси достаточно, чтобы какой-либо шов пропускал воздух. Небольшие хлопки почти неизбежны при задувке, и обычно секунду спустя после пуска газа вихрь синего пламени с громким выстрелом вырывается через предохранительный клапан.

Сдвинув шляпу на затылок, глядя на старого инженера смеющимися, дерзкими глазами, Курако спросил:

— Значит, вам нужен диплом?

— Да-с, молодой человек, это единственная для меня гарантия.

Курако прыгнул в трубу газопровода и побежал по ней к предохранительному клапану. Опершись ногой о железный рычаг, он крикнул, подняв руку:

— Петро, дай газ!

Все замерли вокруг печи. Доменщики знали, что хлопок в клочья разнесет человека. Максименко взялся за шибер и остановился, нерешительно глядя на Курако.

— Дай газ! — вновь прокричал Курако, потрясая кулаком и добавив крепчайшее ругательство.

Максименко повернул рукоятку. В кауперах тотчас засвистало и запело пламя. Курако, стоял, вскинув голову, секунду, другую и третью. Хлопка не было.

Курако подошел к инженеру:

— Вот мой диплом.

Инженер покачал головой, подвигал губами, повернулся и пошел.

— Что, хромой черт, скушал? — бросил Курако ему вслед, Доменщики кинулись его качать.

Так началась конструкторская работа Курако.

Квартира его обратилась не то в испытательную мастерскую, не то в лабораторию, не то в конструкторское бюро. Столы были завалены чертежами, циркулями, линейками. На полу громоздились кучи руды, флюса и кокса, железные модели. При работе над загрузочным аппаратом своей системы Михаил Константинович, экспериментируя на моделях, сыпал в особые лотки этого механизма материалы из разбросанных кругом куч и следил, как падают и ложатся кусочки руды, известкового камня и кокса. Он изменял высоту падения, варьировал угол наклона лотков. Часами сидел он у моделей, совершенствуя механизм попеременно открывавшихся перемычек. И снова сыпал камни, следя за их падением»[32].

После долгих испытаний загрузочный аппарат системы Курако был построен и стал действовать на вершине домны.

Результаты первых плавок оказались отличными. Курако поздравляли с победой. Но спустя три недели Курако обнаружил у своей новой печи признаки бокового хода.

Зная по опыту, как прихотливы и случайны причины расстройства печи, Курако несколько дней мучительно бился, исследуя каждую деталь. Все казалось в порядке: шихта составлялась правильно, газовщики внимательно следили за регуляторами, печь получала нужное количество дутья. Оставалось искать причину бокового хода в действии засыпного аппарата. Часами находясь на колошнике, Курако наблюдал за работой механизмов.

Не было никакой конструкторской ошибки в устройстве загрузочного механизма. Виновником всех бед оказалось железное кольцо. Это кольцо было укреплено на внутренних стенках печи, непосредственно у колошника, в том поясе, где ударяются падающие сверху куски руды, флюса и кокса. Кольцо должно было предохранять кладку от разрушения непрестанными ударами сползавшей шихты. Но когда Курако в поисках ошибки в сотый раз стал оглядывать печь, он заметил, что в одном месте кольцо покоробилось от жара и слегка выпятилось к центру печи. Маленький дефект грубо нарушил сход и распределение материалов.

И вот произошел случай, в то время почти небывалый. Курако проник в непотушенную домну вместе с механиком Еременко и двумя слесарями и удалил злополучное кольцо.

Слава и популярность Курако росли. «Директора заводов охотились за Курако, как за драгоценной добычей, — говорит в книге „“ о своем учителе академик Иван Павлович Бардин. — В случаях тяжелых аварий, когда, казалось, были исчерпаны все силы и средства, которые могли бы спасти положение, приглашали Курако, и он творил чудеса. Он являлся всегда спокойный, сосредоточенный, во главе своей изумительно спаянной бригады. Курако тотчас же принимался за работу и нередко ставил в неловкое положение кичливых инженеров, ученых с именами, известных доменщиков».

«Я часто задавал себе вопрос: кем был бы я, если бы судьба не столкнула меня с Курако? — говорит дальше И. П. Бардин. — Я, наверное, стал бы зауряд-человеком, незначительным чертежником, обывателем, каких были тысячи, живших и боровшихся только ради своего маленького куска хлеба. Встреча с Курако совершила переворот во всей моей жизни. Курако оставлял глубокий след во всяком, кому приходилось с ним работать»[33].

В воспоминаниях Ивана Павловича образ Курако встает перед нами во всей своей покоряющей строгости и простоте:

«Курако был яркий, цельный человек, точно высеченный из крепкой породы. Среднего роста, жилистый, худой. Твердая, изящная походка. Уверенная поступь. Красивой, правильной формы голова, высокий лоб, лицо, слегка покрытое морщинами, но сухое, энергичное, энергию которого подчеркивали тонкие губы, опушенные рыжеватыми усами и бородкой.

Всегда красные, воспаленные веки, должно быть от ослепительных ярких фурменных „глазков“, в которые он часто заглядывал. Чрезмерно острые глаза, пронизывающие и вместе с тем удивительно теплые, человеческие. Никогда таких изумительных глаз я не встречал раньше. Они сразу вас останавливали, в этих глазах светился большой ум, едкая ирония и насмешка. Испытывая на себе его взгляд, вы чувствовали, что глаза этого человека видят глубоко, проникая как бы в вашу сущность.

Одежда на нем была всегда одинакова. Одевался Курако чрезвычайно просто. Летом — синяя куртка, синие брюки, вправленные в сапоги, обязательные во всех случаях. Редко Курако надевал ботинки, и то только на званый обед или если случалось присутствовать на банкете. Рубашка на нем была без галстука, а на голове, как правило, шляпа. Фуражку он надевал только тогда, когда ходил на охоту. Зимой Курако носил кенгуровую шубу, а вместо шляпы на голове капелюху — меховую шапку-ушанку.

Говорил Курако звонким, очень резким, но приятным голосом. Он обладал исключительной силой убеждения. Когда он разговаривал с вами один на один и хотел вас в чем-нибудь убедить, то делал это очень осторожно и тонко. Он умел с такой задушевностью подойти к вам, что вы чувствовали — с вами разговаривает близкий вам человек.

Вместе с тем Курако мог быть резким, холодным и безжалостным. Органически чуждый всякой аффектации и рисовки, простой в обращении с людьми, он ненавидел пустое бахвальство и внешний лоск. Он презирал белоручек, маменькиных сынков, карьеристов и слюнтяев, бегущих от „черной работы“. Над такими белоручками Курако любил издеваться. Он презирал тех инженеров, которые любили носить фуражку с кокардой и надменно обращались с мастерами и рабочими.

— Никогда кокарда не заменит башку на плечах, — говорил он.

Поэтому инженеры, работавшие у Курако, отличались простотой и никогда не носили формы.

Курако обращал серьезное внимание на то, как человек работает, гнушается ли физического труда. Он уважал только таких работников, которые готовы в любую минуту засучить рукава. Если ему что-либо не нравилось в вашей работе, он никогда не вводил изменений в форме приказа. Курако давал вам совершенно четкие и ясные советы, доказывал, почему именно так, а не иначе надо работать.

Рабочих он убеждал только личным примером: идет бывало Курако по цеху, и если увидит, что какой-нибудь рабочий неправильно работает, то, не стесняясь, берет лопату и показывает, как надо работать, — скажем, разделывать канавы для чугуна.

— Канавы не пустяк. Это искусство. Плохо разделал канаву — и вся плавка закозлится.

Курако неутомимо, настойчиво убеждал:

— Вы начальники, руководители, лица, которые приказывают, и поэтому вы сами должны знать, что представляет собой всякая физическая работа. Просто приказывать рабочему нельзя. Это у домен не годится, и это большой риск. Здесь вы имеете все время дело с грозной массой расплавленного металла. Поэтому не надо стыдиться, берите ломик в руки и научитесь заправлять пушку. Это полезно даже инженеру. У вас тогда создастся реальное представление о трудностях.

Курако непрестанно учил инженеров:

— Половину дня или ночь вы являетесь главным человеком в цехе. У вас тысяча рабочих, под вашим началом несколько доменных печей, у вас большие и сложные механизм мы. И вот, представьте себе, положение требует от вас мгновенного, безоговорочного решения, потому что расплавленный металл не будет ждать, куда вы его направите, и пойдет своим путем, сокрушая все в своем движении. Вы же, тем не менее, не чувствуете, что способны распорядиться, потому что не уверены в знании дела. Это скандал, катастрофа, над вами смеются рабочие, вы навсегда потеряли авторитет.

— Вы сами почувствуете момент, — говорил он, — когда вам можно будет начать приказывать. Но если вы только недавно появились в цехе в качестве начальника, не думайте, что можно сейчас же начинать командовать, учить людей, не позволять им делать то, что они привыкли делать каждый день. Запомните это. В самом начале ваша обязанность — учиться самому, присматриваться, как работают люди. Систематически изучайте дело, около которого находитесь. Не стесняйтесь, советуйтесь с мастерами, беседуйте с рабочими, они тоже очень много знают о нашем деле. Но не все принимайте на веру: иной раз они вам могут помочь, но часто могут привить свои ошибки.

У Курако была удивительно крепкая связь с рабочими. Он всех их прекрасно знал в лицо. Часто он помогал им деньгами и всем давал взаймы. Он знал каждого рабочего по имени. Знал его прошлое, его быт, семейное положение, знал, кто пьет, гуляет, безобразничает, учится и сколько денег посылает домой. „Скажите, как зовут вон того подручного? — опрашивал Курако, чтобы выяснить, знаете ли вы людей, с которыми работаете. — В цехе вас окружают живые люди. Они трудятся, радуются, любят, горюют, чувствуют, болеют. Это люди. Они живут. И вы, их начальник, обязаны присматриваться к ним, изучать их, когда надо, быть их судьей, братом, товарищем, учителем“.

Рабочие любили Курако, и ни одна свадьба, крестины или какое-нибудь другое семейное торжество не обходилось без его участия. В гости к рабочим Курако ходил запросто. Он пил с ними водку, смеялся, шутил и забавлял ребятишек.

Зато на работе он был требователен и строг. Он приказывал и приказание отдавал только один раз. Но это было точно взвешенное и проверенное приказание. Повторяться он не любил. В случае неподчинения никакого помилования он не признавал. Сгоряча он мог выругать, без разбора, рабочего или инженера самыми последними словами, но если видел и знал, что человек хочет работать, учиться, то всегда прощал.

Но потерю человеком собственного достоинства Курако никогда не прощал никому. Это была самая жестокая провинность перед ним. Человек сильной воли, непреклонных, твердых принципов, смелый и дерзновенный, Курако не выносил тех, кто приходил к нему унижаться, плакать, кляузничать или, становясь на колени, просить прощения. Таких людей он безжалостно выгонял с завода и расставался с ними навсегда.

Под руководством Курако все работали много и страстно. Этот человек, неутомимый и беспокойный, казалось, никогда не спал. Часто по утрам он приходил на работу с воспаленными, затуманенными глазами. Но как только Курако подходил к домнам, он преображался.

Герб города Луганска (ныне Ворошиловград).

Курако искал пути облегчения человеческого труда в металлургии. Он разрешал вопросы смело и просто. Он первый в России ввел машину, забивающую выпускное отверстие. Машину привезли американцы, но поставить ее не удалось. Курако работал день и ночь и вышел победителем. Он первый в России правильно решил задачу с загрузочным отверстием колошника. Курако обладал какой-то гениальной технической прозорливостью, удивительным даром технического обобщения. Его горн живет до сих пор. Горн Гогота, выдающегося инженера-металлурга, оказался непригодным, и его выбросили.

Но Курако было тесно в душных рамках того времени.

— Эх, Павлыч, — говорил он злобно и разочарованно, — точно сдавили мне плечи тисками, и вот задыхаюсь я, барахтаюсь, машу руками и не могу развернуться!»

Курако рвался на широкую дорогу механизации. Он мечтал строить в России крупный механизированный металлургический завод. Но перед ним вставала глухая стена российской отсталости. Его замечательные способности распылялись в мелких перестройках одной-двух печей, сводились к довольно мизерным улучшениям и переделкам.

И. П. Бардин рассказывает:

«Меня Курако не только сделал опытным металлургом, инженером-доменщиком, но научил также мечтать о высокой металлургической технике. Я приходил к нему с папкой технических журналов подмышкой. Он усаживал меня в кресло против себя и, призвав всех к молчанию, советовал внимательно слушать чтение. Металлургия его чрезвычайно интересовала. Эти часы знакомства с мощной индустрией, с механизированными домнами и сложным оборудованием как-то особенно волновали Курако. Глаза его расширялись, загорались злым огнем. Возбужденный, он начинал ходить по комнате.

— Вот на каком заводе хотелось бы поработать, черт возьми».

В 1917 году такой красавец завод компания капиталистов затеяла соорудить в Кузбассе. Курако со своими чертежами, с верной дружиной уехал в Сибирь.

Великая Октябрьская социалистическая революция, а затем начавшаяся в Сибири гражданская война направили жизнь Курако по новому пути. Он стал членом ревкома в Кузнецке и там же был принят в Коммунистическую партию.

Только после Октябрьской революции пришел час, которого ждал Курако всю жизнь. Советское правительство, едва лишь закончилась гражданская война в Сибири, предложило знаменитому доменщику строить в Кузнецке громадный завод.

Вдохновленный инженер телеграфировал тогда Бардину: «Сейчас получил телеграмму от представителей центра. Будем строить завод. Хорошо в Сибири. Здесь быстрые реки и чистая вода…»

В разгар работы, 8 февраля 1920 года, Михаил Константинович умер от сыпного тифа. Его похоронили в Кузнецке, недалеко от того места, где вырос потом гигантский Кузнецкий завод. Этот завод строил ученик Курако Иван Павлович Бардин, и сталь первого прокатанного на заводе рельса была отдана им на могильный памятник учителю.

 

8. Создатель самолета

В 1757 году швейцарские плотники братья Грубенман построили в Цюрихе через реку Лиммат очень интересный деревянный мост с пролетом в 32 метра Это был мост сложной системы, с параллельными поясами, с подвесками и раскосами… Для защиты от непогоды мост имел стены и крышу.

Так вот относительно этого замечательного для своего времени моста крупнейший наш специалист и тонкий знаток дела академик Г. П. Передерни говорит в своем «Курсе мостов»:

«Это типичный образец творений недюжинного конструктора, не воооруженного, однако, ясным пониманием распределения сил в частях сооружений, а руководствующегося лишь инстинктивным чувством»[34].

Сознавая ошибочность такого определения, в новом издании своего «Курса мостов» автор оставил ту же характеристику швейцарских плотников, но заменил понятие «инстинктивного чувства» словом «чутье».

О творческой работе древних русских мостостроителей идет речь уже в «Русской Правде».

Много позднее русских мастеров братья Грубенман строили свои мосты, из которых один, через ту же реку Лиммат, имел пролет в 119 метров. Это наибольший пролет, какой когда-либо перекрывался деревянным строением.

Однако более замечательными произведениями инженерного искусства являются каменные арочные мосты Грузии, Аджарии, Абхазии и Армении. Эти прекрасные памятники архитектуры свидетельствуют об изобретательности строителей, о понимании ими многих закономерностей в строительной практике.

Грузинские мостостроители нашли новые рациональные способы кладки каменных арок. В каждом отдельном случае сочетая мост с природными условиями, древние строители создавали превосходные инженерные и художественные произведения. Один из древнейших, известных человечеству, мост через Куру в Мцхете, неоднократно переделывавшийся, прослужил тринадцать с половиной столетий.

На территории Абхазии, недалеко от Сухуми, и сейчас существует древний однопролетный арочный каменный мост через реку Беслети.

Прекрасный памятник высокого строительного искусства грузинского народа построен в XI–XII веках, как об этом свидетельствует надпись на фасаде.

Мост расположен между горами. Над устоем правого берега установлен теперь мраморный камень с указанием исторического значения и даты постройки.

В Грузии находится старинный каменный мост на реке Тедзами. Его арка очерчена не по дуге круга: кривизна уменьшается от центра к пятам, и очертание напоминает параболу, то-есть форму, принятую в современных мостах как наиболее выгодную и найденную на основе статических расчетов.

Такое же очертание арок в сводах древних каменных мостов, сохранившихся на территории Аджарии. На реке Аджарис-Цхали близ села Дондало построенный в XI–XII веках каменный арочный мост с пролетом 22,3 метра сложен из плит. Ширина моста по верху — около двух метров. Смело перекинутая через реку тонкая и пологая арка моста в Махунцети пролетом почти в 18 метров висит над водой уже восемь столетий.

На территории Армянской ССР есть гораздо более древние мосты. В одном Иджеванском районе известны три моста, постройка которых относится к XIII веку.

Через бурную горную реку Дебеда-Чай перекинут Санаинский мост, поражающий своей монументальностью и величием.

Он представляет собой полуциркульную арку. На левом берегу она опирается на устой, а правой пятой — на естественный выступ скалы. Пролет арки — 26 метров, высота над водой — 14,5 метра.

Мост, построенный в 1234 году, эксплуатируется до сего дня, то-есть более семи столетий!

«Римляне строили свои мосты с полуциркульным очертанием арок, персы применяли стрельчатые арки, повторившиеся в мостах средневековой Европы, — говорит по поводу этих замечательных созданий инженерного искусства архитектор Надеждин, — грузинские же строители уже в глубокой древности каким-то особым чутьем нашли наиболее рациональную форму арок. Такая форма избавляла от необходимости применять дорогостоящие клинчатые камни. Строители мастерски умели выкладывать очень тонкие своды из почти необработанного плитняка. Они строили мосты довольно больших пролетов и так прочно, что многие стоят и по сей день, вызывая в советских людях восхищение и гордость искусством и смелостью предков. Параболическая форма арок применялась грузинскими мостовиками на несколько веков раньше, чем были открыты законы статики, и путем расчета найдена эта же самая форма, получившая полное признание и применение в современном мостостроении».

Характеризуя людей науки, техники, прошлого инженерного искусства, часто говорят об «элементах бессознательного» в их творчестве, об «интуиции», о «чутье» и относятся к ним, как к явлениям непонятным, необъяснимым, чуть ли не сверхъестественным.

В действительности же ничего чудесного, таинственного и необъяснимого в этих явлениях мы не найдем, как только подойдем к ним материалистически.

В «Философских тетрадях» В. И. Ленина говорится:

«Жизнь рождает мозг. В мозгу человека отражается природа. Проверяя и применяя в практике своей и в технике правильность этих отражений, человек приходит к объективной истине»[35].

Этот процесс очень многообразен и сложен; чтобы понять его, рассмотрим несколько примеров.

С элементами простейшей техники имел дело уже первобытный человек.

Как же он проверял и применял в практике своей правильность отражений в мозгу природы?

Дерево, упавшее с одного берега ручья на другой, по которому перебирались через ручей животные, запечатлевалось в мозгу человека. Он осмысливал это явление и потом проверял его на практике. Когда при нужде человек сам нарочно валил дерево с берега на берег, чтобы перейти реку, он применял в практике своей отраженную в мозгу природу и, проверив правильность этого отражения, приходил к верной идее — конструкции простейшего, балочного моста.

Легко себе представить, какое бесконечное множество всевозможных отражений запечатлевалось в мозгу человека каждый день, каждый час, каждую минуту, и этих отражений было тем больше, чем обширнее опыт человека, чем разнообразнее среда, его окружающая.

Особое, всем известное свойство запечатленных в мозгу отражений заключается в том, что мы можем произвольно комбинировать их. Природа не может создать крылатого коня Пегаса, женщину с туловищем рыбы — русалку, а человек без всякого труда, комбинируя имеющиеся в мозгу отражения, создает в своем представлении и Пегаса и русалку. Но он не может представить себе ничего, что не было бы целым или произвольно комбинированным отражением: объективным миром определяет человек свою деятельность, зависит от него, имеет его перед собой в практической деятельности.

Простейший балочный мост не побуждает говорить о чутье или интуиции конструктора потому только, что люди знают, из каких отражений, из каких комбинаций отражений возникла данная конструкция. Но когда видят деревянный мост сложной системы с подвесками и раскосами или каменный арочный мост с уменьшающейся кривизной от центра к пятам, говорят о чутье и интуиции потому, что трудно сразу догадаться, путем какой комбинации, каких отражений природы пришли древние строители к этим интересным конструкциям.

Одним из примеров того, как, проверяя и применяя в практике своей и в технике правильность отражений природы, человек приходит к своей цели, может служить история осуществления мечты людей — свободного летания по воздуху, где, кстати сказать, русским инженерам суждено было сыграть выдающуюся роль.

Среди живых существ, населяющих нашу планету, есть множество разнообразных видов, способных летать или скользить по воздуху. Летают не только птицы и насекомые. Есть летающие ящерицы, лягушки, рыбы.

Отраженная в мозгу человека природа убеждала наших предков в том, что при помощи тел, более тяжелых, чем воздух, таких, как крылья, перепонки, мускулы, кости, можно овладеть воздушным океаном, представляющим собой идеальные пути сообщения.

Первые попытки осуществить механический полет относятся в нашей стране к очень далеким от нас временам. В одном из древнейших памятников русской литературы «Молении Даниила Заточника», относящемся к началу XIII века, автор, перечисляя народные увеселения у славян, указывает, что «иный летает с церкви с высоки палаты пазолочиты крилы», то-есть на шелковых крыльях.

Конечно, не все дошедшие до нас сообщения об этих попытках можно считать совершенно достоверными. Но, во всяком случае, они свидетельствуют о глубокой уверенности наших предков в возможности летания, в возможности построить летательный аппарат.

Безуспешность первых попыток заставляла современников относиться к ним пренебрежительно. Но для нас они представляют огромный интерес.

Почти полвека назад, после первых публичных полетов в Москве и Петербурге, русские библиофилы и хранители старины начали извлекать из своих хранилищ поразительные документы.

Так, профессор Н. Д. Зеленин опубликовал в журнале «Природа и люди» за 1909 год сообщение, что во второй половине XVI века летать пробовал «смерд Никитка, боярского сына Лупатова холоп». Дело происходило под Москвой, в Александровской слободе, в присутствии царя и большого стечения народа.

Царский приказ гласил:

«Человек — не птица, крыльев не имать. Аще кто приставит себе аки крылья деревянны, противу естества творит, за сие содружество с нечистой силой отрубить выдумщику голову. Тело окаянного пса смердящего бросить свиньям на съедение, а выдумку после священные литургии огнем сжечь».

В 1840 году поэтом Языковым были изданы «Дневные записки» Ивана Афанасьевича Желябужского, русского дипломата и близкого к царю Алексею Михайловичу боярина. В записках Желябужского имеется такой рассказ, относящийся к 1695 году:

«Того жь месяца апреля в 30 день закричал мужик караул и сказал за собой государево слово, и приведен в Стрелецкий приказ и роспрашиван, а в роспросе сказал, что он, сделав крыле, станет летать, аки журавль. И по указу Великих Государей сделал себе крыле слюдяные, а стали те крыле в восемнадцать рублев из государевой казны. И боярин Иван Борисов Троекуров с товарищи и с иными прочими, вышед, стал смотреть; и тот мужик те крыле устроя, по своей обыкности перекрестился и стал мехи надымать и хотел лететь, да не поднялся и сказал, что он те крыле сделал тяжелы. И боярин на него кручинился, и тот мужик бил челом, чтоб ему сделать другие крыле иршеные, и на тех не полетел, а другие крыле стали в пять рублев. И за то ему учинено наказание: бит батоги снем рубашку, и те деньги велено доправить на нем и продать животы его и остатки».

Это происшествие послужило сюжетом рассказа «Русский Икар», напечатанного в сборнике Смирдина «Новоселье» за 1833 год, и темой для известней гравюры академика И. Д. Черского.

Попытка безвестного мужика летать по воздуху, наверное, не осталась неизвестной государям, наследовавшим Алексею Михайловичу. Сохранилось предание, что Петр I говорил Меншикову в день закладки Петропавловской крепости:

«Не мы, а наши правнуки будут летать по воздуху, аки птицы!»

Вслед за Н. Д. Зелениным другой собиратель старины, А. К. Родных, предъявил русской общественности в 1910 году рукопись «О воздушном летании в России с 906 лета по Р. X.». Автор с большим терпением и любовью собрал некоторые сообщения, касающиеся попыток русских людей летать по воздуху на устроенных ими аппаратах.

В деле рязанской воеводской канцелярии за 1699 год Сулакадзев нашел такое известие:

«1669 года, стрелец Рязанской Серов делал в Ряжске крылья, из крыльев голубей великие, и по своей обыкности хотел лететь, но только поднялся аршин на семь, перекувыркнулся и упал на спину не больно».

В записках одного из своих предков, некоего Боголепова, русский библиофил находит такую запись:

«1724 года в селе Пехлеце Рязанской провинции приказчик Перемышлева фабрики Островков вздумал летать по воздуху. Зделал крылья из бычачьих пузырей, но не полетел, опосле зделал как теремки из них же, и по сильному ветру подняло его выше человека и кинуло на вершину дерева, и едва сошел, расцарапавшись весь».

В «теремках» из бычачьих пузырей не трудно угадать планер. Надо думать, что Островков был первым в мире планеристом, поднявшимся в воздух на своем аппарате за полтораста лет до Лилиенталя.

Из дела воеводы Воейкова за 1730 год Сулакадзев приводит такую выписку:

«1729 года в селе Ключе, недалеко от Ряжска, кузнец, Черная Гроза называвшийся, зделал крылья из проволоки, надевал их как рукава: на вострых концах надеты были перья самые мяхкия как пух из ястребков и рыболовов и по приличию на ноги тоже как хвост, а на голову как шапка с длинными мяхкими перьями. Летал тако мало дело ни высоко ни низко, устал, спустился на кровлю церкви, но поп крылья сжог, а его едва не проклял».

И снова из записок Боголепова в хронологическом порядке выписывает Сулакадзев:

Воздушный шар братьев Монгольфье.

«1731 года в Рязане, при воеводе, подьячий нерехтец Крякутной фурвин зделал как мяч большой, надул дымом поганым и вонючим, от него зделал петлю, сел в нее, и нечистая сила подняла его выше березы, и после ударила его о колокольню, но он уцепился за веревку, чем звонят, и остался тако жив. Его выгнали из города, он ушел в Москву, и хотели закопать живого в землю или сжечь».

Переписчики документов не раз превращали неизвестное слово «фурвин» в собственное имя летателя, но оно означает просто огромный мешок.

Несомненно, что это был первый полет на воздушном шаре в истории человечества.

Но русское сердце не лежало к такому громоздкому, медлительному плаванию по воздуху. Русский человек хотел летать и продолжал делать крылья.

Тот же Боголепов, так тщательно собиравший все исторические происшествия, имевшие место в пределах Рязанской провинции, записывает через несколько лет:

«1745 года из Москвы шел какой-то Карачевец и делал змеи бумажные на шестиках и прикрепил к петле. Под нею зделал седалку и поднялся, но его стало крутить, и он упал, ушиб ногу и более не подымался».

И этот русский опыт летания на змеях опередил на целое столетие подъемы на воздушных змеях, к которым стали прибегать в конце XIX века некоторые изобретатели.

В сухом, лаконическом перечне рязанского хроникера все необыкновенно характерно для русского отношения к воздушному океану: и последовательность попыток, и упорные поиски новых и новых реальных средств для летания, и изобретательность, и полное доверие летописца к излагаемым событиям. Все записи А. И. Сулакадзева относятся лишь к Рязани и ее окрестностям. Очевидно, попыток летания по воздуху в России было сделано гораздо больше, чем мы могли сейчас указать на основании обнаруженных документов и записей летописцев. И это естественно: именно Россия с ее необъятными просторами рождала мысль о воздушном транспорте в мечтах русских людей, отважных, стремительных, ловких и страстных.

В 1815 году поэт и публицист Ф. Н. Глинка выпустил в свет путевые записки под заглавием «Письма русского офицера». Там он рассказывает об одном талантливом русском изобретателе, который был глубоко убежден в том, что «придет время, когда люди полетят».

«Многие испытывали подниматься в воздух, привязывай крылья к рукам, — объяснял изобретатель, — но это неудобно, потому что от частого махания руки тотчас устанут и замлеют. Надежнейшее средство — прикреплять крылья к середине тела и приводить их в движение ногами посредством упругих пружин, к ним привязанных».

Анализируя далее технику птичьего полета, изобретатель приходит к выводу, что человек вполне может перенять ее. Но его страшит одно:

«Овладев новою стихией, воздухом, люди, конечно, не преминули бы сделать и ее вместилищем своих раздоров и кровавых битв. К земным и морским разбойникам прибавились бы еще и разбойники воздушные, которые, подобно коршунам или известному в сказках чародею Тугарину, нападали бы на беззащитных. Тогда не уцелели бы и народы, огражденные морями: крылатые полки, вспорхнув с твердой земли, полетели бы, как тучи саранчи, разорять их царства».

Уже по этим далеко не полным документам, приведенным нами, можно видеть, что история возникновения летного дела в России есть история независимая и самостоятельная.

Ограничиваясь кратким изложением этой истории, укажем, что после многих неудачных попыток создать крылья для летания по воздуху, у нас был построен первый в мире аэроплан.

Первый в мире самолет построил Александр Федорович Можайский. Постройке этого самолета предшествовало замечательное испытание сделанной изобретателем модели, о чем в 1877 году популярная русская военно-морская газета «Кронштадтский Вестник» за подписью инженера П. Богословского опубликовала следующее сообщение:

«На-днях нам довелось быть при опытах над летательным аппаратом, придуманным нашим моряком г. Можайским. Изобретатель весьма верно решил давно стоявший на очереди вопрос воздухоплавания. Аппарат, при помощи своих двигательных снарядов, не только летает, бегает по земле, но может и плавать. Быстрота полета аппарата изумительная; он не боится ни тяжести, ни ветра и способен летать в любом направлении. Так как фигура и двигатели аппарата составляют секрет изобретателя, то мы и не в праве описывать их Подробно. Скажем только, что г. Можайский еще в 1873 году пытался проверить свою мысль на практике, но, по обстоятельствам, мог исполнить это лишь летом прошлого года: в наскоро сделанном им аппарате он два раза поднимался на воздух и летал с комфортом. Замечательно, что хотя теперешний опыт с моделькой, по причине ее незначительной величины и жалкой беспомощности со стороны наших технических производств, имел за собой все невыгоды для осуществления замечательной идеи изобретателя, но, несмотря на это, моделька все-таки выполнила свое дело прекрасно. Опыт доказал, что существовавшие до сего времени препятствия к плаванию в воздухе блистательно побеждены нашим даровитым соотечественником. Г. Можайский совершенно верно говорит, что его аппарат, при движении на всех высотах, будет постоянно иметь под собою твердую почву и что плавание на таком аппарате в воздухе менее опасно, чем езда по железным дорогам».

Переходя затем к перспективам, раскрывающимся перед новым достижением человеческого гения, П. Богословский писал:

«Нужно ли говорить о неисчислимых последствиях этого замечательного изобретения. Для примера укажем на злобу дня — войну. Представьте только, какую панику, какой ужас способна навести на неприятеля одна такая летучка, вооруженная адскими снадобьями динамита и нитроглицерина, и какое губительное расстройство может она произвести на его сборных пунктах и сообщениях! Крепости и минные заграждения не спасут от ее когтей ни армий, ни пресловутых броненосных флотов. А между тем, сама летучка, носясь в воздухе и сыпля кругом смерть, будет оставаться неуязвимой на высоте, откуда не в силах снять ее ни Берданы, ни Круппы. Другая, мирная сторона наклонностей этой летучки прямо уже обещает много доброго: наука сразу шагнет вперед, особенно в приобретении данных для разработки многих важных космических вопросов и явлений, и мы без излишнего труда коротко познакомимся тогда с центральными землями Азии и Африки и с обоими полюсами. В этих видах мы не можем не приветствовать горячо изобретение г. Можайского и желаем ему полнейшего успеха в доведении дела до конца».

Из этого сообщения видно, что развивавшиеся в годы русско-турецкой войны работы великого русского изобретателя были окружены тайной и создаваемый им аппарат рассматривался прежде всего как изобретение для военных целей.

Но это обстоятельство было только одной из причин того, что дореволюционные исторические исследования, как русские, так и иностранные, обошли почти полным молчанием деятельность крупнейшего русского инженера-конструктора.

Советские исследователи положили немало труда и времени для того, чтобы засвидетельствовать русский приоритет в создании самолета и покорении воздушной стихии.

Сын моряка и сам моряк по профессии, Александр Федорович Можайский родился 9 марта 1825 года и получил обычное по тогдашним временам для морского офицера воспитание: говорил по-французски, умел держать себя в обществе, прекрасно танцевал, был почтителен со старшими и не давал себя в обиду сверстникам.

Учился он в привилегированном Морском кадетском корпусе, где, впрочем, было неплохо поставлено преподавание общеобразовательных предметов, в особенности математики, которую преподавал Михаил Васильевич Остроградский.

Остроградский читал лекции, увлекаясь предметом и увлекая слушателей. Он умел не только сделать понятной и доступной свою науку, но и обладал искусством прививать своим ученикам любовь к научному исследованию, к самостоятельной работе.

Многие из учеников Остроградского впоследствии стали выдающимися учеными и инженерами, сохранив навсегда глубокую привязанность и благодарность к своему учителю.

К числу их принадлежал и Можайский.

Окончив корпус, Можайский начал в 1841 году свою многолетнюю службу в морском флоте, сначала гардемарином в Балтийском флоте, а затем в офицерских чинах на разных кораблях, крейсировавших в полярных водах и в Белом море. Не раз отправлялся Можайский и в дальние плавания.

По свидетельству академика А. Н. Крылова, Александр Федорович «был человек громадного роста, широкий в плечах, богатырски сложенный». Впервые А. Н. Крылов познакомился с Можайским, экзаменуясь у него по морской практике на выпуске из Морского корпуса.

Эту морскую практику Можайский знал превосходно.

Будучи старшим офицером военного корабля «Прохор», Можайский прославил свой корабль необычайной дисциплинированностью команды. Его команда исполняла труднейшие учения в исключительно короткое время и приводила в изумление адмиралов, производивших смотр.

Александр Федорович Можайский

 (1825–1890).

В январе 1885 года фрегат «Диана», на котором плавал Можайский вместе со своим братом, находясь в японской бухте Симоди, попал в район катастрофического землетрясения. В бухту ворвался водяной вал и с огромной силой обрушился на фрегат. Корабль бросало из стороны в сторону. За полчаса он сделал 42 оборота на якоре, то и дело ударяясь о дно. В этом опасном положении русские моряки проявили необычайное мужество и выдержку, спасая фрегат. Братья Можайские появлялись на самых опасных местах, отдавая приказания, выручая из беды матросов. Громовый голос, хладнокровие и находчивость Александра Федоровича, отлично справлявшегося с кораблем, во многом содействовали спасению «Дианы».

Можайский был человеком большой физической силы и еще большего упорства и воли. Профессия моряка наложила свой отпечаток на занятия Можайского. Долгие наблюдения над парусами, над действием воздушных змеев, с помощью которых в условиях шторма приходилось перебрасывать линь на берег, над полетом морских птиц, часто сопровождавших корабль, заставили Александра Федоровича задуматься над тайной летания. Он тщательно изучает структуру и кинематику птичьего крыла.

Составив чертеж, на котором были показаны размеры голубя, площади крыльев и хвоста, центры величины и тяжести и вес живого голубя, Можайский делает поразительное открытие, впоследствии составившее основу теории полетов:

«Для возможности парения в воздухе существует некоторое отношение между тяжестью, скоростью и величиной площади или плоскости, и несомненно то, что чем больше скорость движения, тем большую тяжесть может нести та же площадь».

Одновременно уделял внимание Можайский и исследованию движения воздуха:

«Если мы найдем возможность действовать против воздуха с такою же быстротой, с какою он обрушивается на нас во время бури, то мы получим тот же отпор, или ту же силу сопротивления, какую он выказал во время бури».

Этот вывод приводит Можайского к убеждению, что летательный аппарат построить можно. Изучая судовую паровую машину и гребной винт, Можайский пришел к мысли, что винт, вращающийся в воздухе, врезываясь в воздух, найдет в нем опору и даст работу, подобную работе винта в воде.

Тайна воздушного летания так поглотила творческую мысль офицера, что всю вторую половину своей жизни, выйдя в 1869 году в отставку, Можайский посвящает целиком работам над проблемой аэроплана и достигает успеха, несмотря на то, что у него почти не было предшественников, на чей опыт он мог бы опереться.

Департамент торговли и мануфактур в выданной в 1881 году изобретателю привилегии свидетельствовал, что «на сие изобретение прежде сего никому другому в России привилегий выдано не было».

Можайский пришел к идее своего аэроплана не столько от подражания птицам, как это случалось со всеми самолетостроителями до него, сколько от обыкновенного бумажного детского змея. Он начал практическую разработку вопроса с того, что стал сам летать на такой штуке. Гигантские воздушные змеи буксировались тройкой лошадей, впряженных в телегу. Несомненно, что первый наш авиаконструктор действительно «с комфортом» поднимался на этих змеях. «Удачно или нет, — шутливо замечает по этому поводу академик А, Н. Крылов, — сказать не могу, но, во всяком случае, когда я его знал, он хромал и ходил, опираясь на здоровенную дубину, так что никто не решался его спросить, не было ли это результатом его полетов на змее».

Воздушный змей, с незапамятных времен служащий игрушкой детям, указывал гораздо более правильный путь к летающей машине, чем машущая крыльями птица. Полет змея основывается на свойстве плоской пластины создавать подъемную силу, когда на пластину набегает под некоторым углом, называемым «углом атаки», воздух.

Для того чтобы змееобразный самолет мог подняться в воздух, нужен был лишь сильный и легкий двигатель, который исполнил бы роль мальчишки, тянущего за нитку бумажный змей. Лошади, впряженные в гигантский змей Можайского, убедили его, что дело только за двигателем, и в этом отношении изобретатель был прав.

Но он служил во флоте как раз в те годы, когда русские парусные корабли после Крымской войны начали переходить на паровые установки. Можайский хорошо знал, какие успехи сделали судовые паровые двигатели во флоте, и надеялся, что нужный ему двигатель, достаточно мощный и достаточно легкий по весу, он найдет.

Так, решая одну за другой сложнейшие задачи, произведя множество наблюдений и опытов на самим им создаваемых приборах, Можайский приходит к конструкции своего самолета, имеющей все основные составные части современного самолета: несущие плоскости, или крыло, двигатель с винтом, корпус, или фюзеляж, для груза и экипажа, рули для управления полетом и шасси для облегчения взлета и посадки.

Первоначально он строит модель будущего аэроплана с часовой пружиной, вращающей винты.

По свидетельству инженера Богословского, профессора Алымова, воздухоплавателя Спицына, присутствовавших при опытах Можайского, модель его «бегала и летала совершенно свободно и опускалась плавно», представляя собой «моноплан с одной несущей плоскостью и корпусом, похожим на лодку».

После этого Можайский сделал попытку заинтересовать своим изобретением военное ведомство. Для оценки его предложения была создана специальная комиссия, в которую вошел и великий русский ученый Дмитрий Иванович Менделеев.

Менделеев, как это можно видеть из его работы «О сопротивлении жидкостей и воздухоплавании», вышедшей в 1880 году, не только безусловно верил в возможность динамического полета, но и предрекал победу над воздухом именно русскому народу.

«Россия приличнее для этого всех других стран, — писал он. — У других много берегов водного океана. У России их мало сравнительно с ее пространством, но зато она владеет обширнейшим против всех других образованных стран берегом еще свободного воздушного океана. Русским поэтому и сподручнее овладеть сим последним, тем более что это бескровное завоевание едва ли принесет личные выгоды: товаров, должно быть, не будет выгодно посылать по воздуху, а между тем оно, вместе с устройством доступного для всех и уютного двигательного снаряда, составит эпоху, с которой начнется новейшая история образованности».

Рисунок модели Можайского.

О великом даре научного предвидения Менделеева мы судим по его работам в химии. Он открыл периодическую систему элементов, предсказав появление новых элементов и указав их свойства. Он впервые определил значение нефти как химического сырья, заявив, что «нефть не топливо, топить можно и ассигнациями». Он предсказал, что со временем «угля из земли вынимать не будут, а там, в земле, его сумеют превращать в горючие газы и их по трубам будут распределять на далекие расстояния».

Этот человек действительно умел «охватить гармонию научного здания с его недостроенными частями», как это он требовал от всякого ученого. Он предвидел развитие техники за много лет вперед и в таком направлении, о каком еще никто не смел думать. Совершенно ясно видел он и возможность и необходимость покорения воздуха.

Руководимая доводами Менделеева, комиссия полностью одобрила работы Можайского, указав, что он «в основание своего проекта принял положения, признаваемые ныне за наиболее верные и способные повести к благоприятным конечным результатам». Программа дальнейших изысканий Можайского была одобрена. Ему было ассигновано 3 тысячи рублей для проведения опытов.

Наиболее трудным и ответственным во всем предприятии Можайского была постройка нужного ему легкого, но мощного двигателя.

«Что же касается силы машины, — писал он, — то она должна быть наивозможно большая, так как только при быстром вращении винта может получиться быстрота движения аппарата, необходимая для разбега его по земле и для получения парения и, главное, для отделения аппарата от земли…»

Закончив экспериментальные работы, Можайский передал министерству проект первого в мире аэроплана. Началась обычная история волокиты. Просьбы Можайского оставались без ответа.

Собрав личные средства, великий энтузиаст летного дела приступил к постройке своего аэроплана.

Летом, по одним источникам — 1882 года, а по другим — 1884 года, аэроплан был готов и состоялось его первое испытание на военном поле, в Красном Селе под Петербургом.

Конструктивно аппарат Можайского напоминал испытывавшиеся им модели и соответствовал описанию, данному в его «привилегии». К бортам деревянной лодки были прикреплены прямоугольные крылья, несколько выгнутые вверх. Деревянные переплеты крыльев обтягивал желтый шелк, пропитанный лаком. Три винта приводились в движение паровыми двигателями, расположенными в лодке. Самолет имел вертикальный и горизонтальный рули.

Для облегчения веса двигателя Можайский применил легкую сталь, сделал пустотелым коленчатый вал, штоки поршней. В результате по его проекту Русско-Балтийский завод создал двигатель, легче которого тогда не было в мире.

При испытаниях аппарата Можайский добился серьезного успеха: скатываясь по деревянной наклонной плоскости, заменявшей беговую дорожку, аэроплан Можайского набирал необходимую для взлета скорость и поднимался в воздух, совершая недолгий полет. При одном из повторных опытов, приподнявшись и отделившись от земли, аппарат потерял равновесие и упал крылом набок.

Таким образом, аппарат Можайского был первым в мире аэропланом, на котором впервые человек поднялся в воздух, осуществляя свою вечную мечту.

Если с точки зрения обывателя опыты Можайского и казались в свое время неудачными, передовые люди того времени, как свидетельствуют их воспоминания, научные и технические работники, инженеры чувствовали в этих первых робких полетах нарождающуюся эпоху воздухолетания. Не важно, что полеты Можайского напоминали скачки, что аппарат его лишь приподнимался на воздух, совершая движение в воздухе по прямой, измеряемой десятками сажен; важно то, что человек поднялся на воздух: все остальное было лишь вопросом дальнейшего технического совершенствования.

В наше время строители самолетов, обладая огромным опытом предшественников и большим запасом теоретических знаний, все же отделяют труд конструктора самолета от труда конструктора мотора. Можайскому приходилось быть и конструктором мотора и создателем самолета. Его таланта и сил хватило бы, чтобы справиться с задачей. Ему нехватило другого — денежных средств; по свидетельству его сына, он истратил на опыты все свое состояние. Получить же материальную поддержку от царского правительства Можайскому, как и многим другим изобретателям того времени, не удалось.

Трагическое положение разрешилось смертью изобретателя.

Таким образом, Александр Федорович Можайский первым построил чрезвычайно легкую летательную машину и первым показал возможность подняться на ней в воздух, чем наглядно подтвердил возможность свободного полета. Его самолету недоставало только легкого двигателя, но такого двигателя тогда ведь и не существовало. Когда был изобретен легкий бензиновый мотор, люди стали летать на аппаратах, построенных принципиально так же, как строился первый русский аэроплан.

Как показывают факты, летное дело не только зачиналось в России, но в нашей стране оно прошло и через все узловые пункты своего нынешнего развития. Так, уже в 1912 году был построен у нас, первый во всем мире, многомоторный самолет.

Это было очень смелое, невиданное еще предприятие. Зимою 1912 года Русско-Балтийский машиностроительный завод в Петербурге, не имевший ни опыта, ни оборудования для нового дела, стал строить самолет «Русский витязь» с четырьмя моторами «Аргус», по сто сил в каждом. Моторы были установлены попарно с каждой стороны нижнего крыла. В кабине этого первого гиганта помещалось восемь пассажиров. Пассажирская кабина и кабина летчика были закрытыми. На «Русском витязе» впервые была продемонстрирована возможность полета с одним неработающим мотором, на нем же впервые была показана возможность передвижения в фюзеляже без нарушения равновесия. Осенью 1913 года «Русский витязь», весивший без нагрузки почти три тонны, с семью пассажирами на борту поставил рекорд продолжительности полета, пробыв в воздухе час и четыре минуты.

Зимние полеты «Ильи Муромца» в начале 1914 года.

В следующую зиму тот же завод построил еще большую машину, получившую название «Илья Муромец». Были построены и другие машины этого типа. Опыт постройки и полетов «Ильи Муромца» открыл новые пути мировому самолетостроению, как и одновременно спроектированный у нас самолет «Святогор», превосходивший «Илью Муромца» и по грузоподъемности и по скорости.

Проектирование и постройка этих машин велись, когда не существовало еще правильного теоретического представления о целесообразной форме винта и крыла, а найденные опытным путем формы были еще очень далеки от совершенства. При таком положении дела резкий переход от легких конструкций одномоторного самолета к машине с четырьмя моторами потребовал не только творческой смелости, но и большого опыта и знания.

По чертежам самолета «Святогор» в аэродинамической лаборатории Московского высшего технического училища были сделаны модели, подвергшиеся испытаниям в аэродинамической трубе, после чего под руководством Н. Е. Жуковского был составлен подробный аэродинамический расчет «Святогора», который полностью подтвердил правильность выбранных конструкторами данных.

Жуковский не строил самолетов, он даже никогда не поднимался на них в воздух, но именно его В. И. Ленин назвал «отцом русской авиации».

Жуковский, как мы увидим дальше, был живым олицетворением того творческого пути, который указан В. И. Лениным в «Философских тетрадях»:

«От живого созерцания к абстрактному мышлению и от него к практике — таков диалектический путь познания истины, познания объективной реальности».

Когда мы теперь оцениваем замечательные сооружения швейцарских плотников и грузинских каменотесов, то мы видим только плоды их творческой деятельности и лишь в самых общих чертах можем себе представить их творческий путь.

При огромном запасе живого созерцания, обобщаемого абстрактным мышлением, практический вывод опытный инженер делает так быстро, легко и просто, что путь, приводящий его к выводу, оказывается неуловимым, и тогда людям, отрывающим мышление от материи, которая мыслит, ничего не остается, как говорить о чутье, интуиции и инженерном чувстве.

Но когда такой великолепный инженер, как А. Н. Крылов, стоящий у самых вершин теоретической науки, все-таки говорит о том, что «инженер должен верить своему глазу больше, чем любой формуле», то он имеет в виду все тот же диалектический путь познания объективной реальности.

Несколько лет назад, беседуя с крупнейшим советским авиационным конструктором, я спросил его: верит ли он в существование инженерного чутья, интуиции, о которых так много и так неопределенно говорится.

— Да ведь что такое чутье, — ответил он, подумав. — Вот я иду по цехам завода. Со мной идут начальник цеха, главный инженер. И они смотрят, и я смотрю, и смотрим мы на одно и то же, а я вижу то, чего они не видят. Почему же это так происходит? Да потому, что у меня опыта больше, практики больше, знаний больше. И я указываю: это надо вот как, а это вы не так делаете, лучше вот как… Называйте это чутьем, пожалуй, как хотите, — суть дела не в названии, а в том, что успокаиваться на достигнутом нельзя, а надо учиться и учиться и работать. Тогда и чутье будет.

Рассказывая о старейшем и виднейшем нашем самолетостроителе академике Андрее Николаевиче Туполеве, приводят обычно для характеристики его поразительного «чувства авиации» такой случай. Как-то Туполев проходил по аэродрому, где стоял только что выпущенный из сборочного цеха опытный самолет. Бегло осмотрев машину, Туполев заметил сопровождавшему его инженеру:

— Не полетит!

И самолет действительно не полетел.

Самым интересным в этом происшествии оказалось то, что факт, настолько поразивший окружающих, даже не удержался в памяти самого конструктора.

— Ведь когда знаешь дело, таких случаев бывает много! — сказал он мне по этому поводу и тут же рассказал о другом происшествии, которого не успел забыть, вероятно, потому, что ему самому только что довелось о нем услышать.

Разыскивая какое-то военное учреждение, Андрей Николаевич обратился к проходившему мимо инженеру в авиационной форме. Тот весьма любезно взялся его проводить и тут же спросил:

— А вы меня не помните, Андрей Николаевич?

— Простите, не могу припомнить!

Инженер, улыбаясь, напомнил о встрече, происшедшей несколько лет назад.

— Я консультировался с вами по поводу одной машины. Вы при мне посмотрели проект и еще сказали: «Вот тут она у вас сломается!» Я с вами поспорил, не согласился, — и, знаете, самолет мы построили.

— Ну и что же? — спросил Туполев.

— Представьте себе, сломался, проклятый, в этом самом месте.

Об этой удивительной способности Туполева мгновенно оценивать и каждую деталь в отдельности и всю конструкцию в целом такого исключительно тонкого и сложного инженерного сооружения, как современный самолет, профессор Г. X. Озеров рассказывает еще такой характерный эпизод. В 1926 году в Севастополе он производил испытания первого нашего торпедоносного катера, построенного по проекту Туполева. При испытаниях катера получились обескураживающие результаты: катер недодавал против запроектированной скорости около пятнадцати километров в час.

Все попытки инженеров, производивших испытания, разгадать причину такого снижения скорости не привели ни к чему. Тогда профессор Озеров дал тревожную телеграмму Туполеву с просьбой выехать в Севастополь.

Андрей Николаевич немедленно явился на место испытаний, осмотрел катер и со спокойной своей улыбкой распорядился снять винт. Когда это было исполнено, он взял молоток, поколотил им винтовую поверхность и, оценив на глаз результаты операции, велел поставить винт на место.

Катер не только наверстал недостающие 15 километров, но и дал лишних 10 километров в час против запроектированной скорости.

После этого торпедоносцы пошли в серийное производство.

 

9. Инженер высшего ранга

Лет шестьдесят тому назад люди, которые ведали московским городским хозяйством, столкнулись с загадочным и непонятным явлением: то и дело без всякой видимой причины лопались прочные магистральные трубы водопроводной сети. Бедствие принимало такие размеры, что нашлись хозяева, считавшие нужным закрыть водопровод и возвратиться к прежней системе водоснабжения. Старая система, как известно, состояла в доставке воды бочками и ведрами из Москвы-реки и дворовых колодцев.

После некоторых размышлений Управление городским хозяйством создало комиссию для изучения странного явления. В комиссию решено было ввести профессора механики Московского высшего технического училищу Николая Егоровича Жуковского. В приглашении этом не было ничего случайного. Когда водопровод проектировался и строился, к Жуковскому обращались за разрешением разных сложных вопросов и получали от него точные ответы в виде целых докладов и статей. Так, например, он установил, что колебание уровня подпочвенных вод связано с давлением барометра, и создал классический труд «О движении подпочвенных вод». Он даже продемонстрировал на докладе движение струек воды в песках.

Профессор Жуковский не только помог строителям составить себе представление о необходимой мощности водосбора для снабжения водой Москвы и выбрать место для станции. Он неожиданно оказал большую услугу конгрессу врачей в Вене: конгресс изучал вопрос о развитии эпидемий в связи с колебанием уровня подпочвенных вод. Труд московского ученого сыграл видную роль в занятиях и решениях съезда.

Для изучения причин бедствия, постигшего московский водопровод, Жуковский отправился на Алексеевскую водокачку под Москвой. Он указал комиссии, что одна из главных причин аварий магистральных труб — развитие сильного ударного действия воды в трубах, когда их быстро открывают или закрывают. Но надо было проверить свою догадку, исследовать явление так называемого гидравлического удара, распространение которого происходит по законам волн. Все происходящее в теснинах чугунных труб Жуковский представлял себе очень ясно и, пожалуй, даже угадывал основные черты закона, управлявшего водной стихией. Однако чтобы выразить этот закон с помощью формул, доступных общему пониманию, требовалось еще тщательно исследовать явление опытным путем.

По указанию Николая Егоровича на водокачке соорудили опытную сеть водопроводных труб разных диаметров. Сеть заставляли работать при самых разнообразных условиях. Электрические звонки, хронометры, пишущие аппараты сторожили каждое движение воды, каждое колебание труб. Опытная сеть была построена с большим остроумием и предусмотрительностью.

Прежде всего экспериментатор определил длину и скорость волны при гидравлическом ударе. Далее оказалось, что действительно все явления гидравлического удара, как и предполагал Жуковский, объясняются возникновением и развитием в трубах ударной волны, происходящей в несжимаемой жидкости от расширения стенок трубы. Инженеры, строившие водопровод, не обратили внимания на то, что когда задвижка или кран быстро закрываются, то вода останавливается, давление внезапно возрастает и это новое состояние с возросшим давлением передается по трубам по закону распространения волнообразного движения. Обстоятельство это строители упустили из виду, очевидно, потому, что имели дело с недостаточно длинными трубами: в коротких трубах, ввиду громадной скорости распространения ударной волны, поднятие давления кажется происходящим вдоль всей трубы одновременно.

Жуковский установил затем, что опасное возрастание гидравлического удара получается при переходе ударной волны из труб большого диаметра в трубы малого диаметра и что сила ударного давления удваивается, достигнув концов больших труб. Такое удвоение, нарастая, в конце концов, при особо неблагоприятных условиях, вызывает разрыв трубы.

Установив причину аварий, исследователю оставалось только предложить меры к их предотвращению. Жуковский предложил ввести краны с приспособлением для медленного закрывания. Когда их ввели, аварии, донимавшие московский водопровод, прекратились.

Но этим дело не кончилось. Водопроводные аварии и медленно завинчивающиеся краны для Жуковского были только внешней, практической стороной дела. Истинная наука начиналась дальше этих границ, а Жуковский был великий ученый. Он заглянул гораздо глубже в сущность стихии и, возвратившись в практический мир, предложил нечто похожее уже на колдовство. Он, видите ли, нашел способ определять место аварии, не выходя из водокачки, не дожидаясь, чтобы вода в месте разрушения трубы выступила на поверхность мостовой. Секрет заключался в том, чтобы создать искусственный гидравлический удар на водокачке и затем взглянуть на ударную диаграмму; пользуясь теоретическим построением Жуковского, оказалось возможным точно определять место, где происходит утечка воды.

Когда старых рабочих-водопроводчиков прислали впервые на спокойную улицу с сухой и чистой мостовой и сказали им: «Ройте, тут лопнула труба!» — они посмотрели на инженера так, как будто тот сошел с ума или решил пошутить. Сняв верхний покров мостовой, люди молча приступили к работе. Они видели в этом неуважение к их труду, казавшемуся заведомо напрасным и бесполезным. Молодой инженер ждал, закусив губы. Люди шумно швыряли землю, но ждать пришлось недолго. За песчаным слоем последовала глина, напитанная доотказа водою, и вслед за тем захлюпала жидкая грязь: место разрыва трубы было определено по диаграмме с точностью до одного метра!

Так была решена профессором Жуковским задача о величине гидравлического удара и о скорости его волны.

Когда Жуковский 26 сентября 1897 года делал доклад об этом решении в Политехническом обществе, деловой вечер обратился в триумф отечественной теоретической науки и ее блестящего представителя. Слушателям было ясно, что они присутствовали на докладе мирового значения. И действительно, работа Жуковского «О гидравлическом ударе в водопроводных трубах», переведенная почти на все языки, стала теоретической основой для совершенствования всех гидравлических машин. Московский профессор рассеял туман, окутывавший многие вопросы, связанные с работой таких машин. Гидротехники получили возможность производить точные расчеты не только в водопроводном деле. Прежде всего были созданы правильные конструкции гидравлических таранов; тараны работали до тех пор очень плохо, так как наука не имела исходных положений для расчета длины трубы, подводящей воду. Как обеспечить наивыгоднейшее использование в таране гидравлического удара, никто не знал.

Попав в сферу влияния научных идей русского ученого, гидравлический таран начал жить заново. Без всяких дополнительных сооружений, без насосов, плотин и моторов тараны сейчас в наших колхозах подают из ложбин и овражков с текучей водой высоко наверх в коровники и конюшни живую струю.

Таковы теоретические и практические результаты решения одной из задач, изученных знаменитым ученым. За долгую свою жизнь Жуковский решил несколько сотен таких задач. И все эти задачи были труднейшими из предложенных мировой науке и технике практическими работниками самых разнообразных областей жизни.

Метод решения этих задач у Жуковского никогда не менялся. Он начинал с теоретического построения, основанного на глубоком понимании физической сущности явления, и, опираясь на свой разносторонний инженерный опыт, кончал практическим предложением.

Таким именно образом, например, подверг он дальнейшей разработке «Гидродинамическую теорию» Н. П. Петрова. В первой своей статье по этому вопросу, озаглавленной «О гидродинамической теории трения хорошо смазанных тел», Жуковский указывает на затруднения, с которыми приходится практикам встречаться, принимая теорию Петрова.

«В основу своей теории, — говорит Жуковский, — автор берет задачу о движении жидкого слоя между двумя вращающимися концентрическими поверхностями круглых цилиндров в предположении, что гидродинамическое давление вдоль всего слоя постоянно, во всех же приложениях он имеет дело с подшипниками, в которых упомянутый слой в некоторых местах находится под атмосферным давлением, так что по смыслу рассматриваемого движения жидкости давление вдоль всего слоя должно быть также равным атмосферному давлению. Откуда же берется сила, уравновешивающая давление шипа на подшипник?»[36]

Отвечая на этот вопрос, Жуковский не только находит объяснение, но и дает формулу гидродинамического напора, поднимающего подшипник.

Во второй статье — «О движении вязкой жидкости, заключенной между двумя вращающимися эксцентрическими цилиндрическими поверхностями» — Жуковский исследует вращение шипа в подшипнике в другом случае, когда оба они вращаются в противоположных направлениях с одинаковой угловою скоростью. Наконец в третьей статье, написанной совместно с А. С. Чаплыгиным — «О трении смазочного слоя между шипом и подшипником» — Жуковский и его первый ученик дают полное и окончательное решение интересующей их задачи.

Вопрос, поставленный Н. П. Петровым, был теоретически исчерпан в этих работах. Но этого мало. Для определения вязкости смазочных масел Н. П. Петров устроил весьма точный прибор, требующий, однако, продолжительных наблюдений и вычислений. Положив в основу тот же принцип течения масла в тонких трубках, Жуковский построил свой прибор, который позволяет делать наблюдения очень быстро и с достаточной точностью.

В разные периоды своей ученой деятельности Жуковский занимался и вопросом о прочности велосипедного колеса, и вопросом о наивыгоднейшем угле наклона аэроплана, и вопросом о рациональной форме корабля. С исчерпывающей полнотой, вплоть до демонстрации механических моделей, он отвечал и на вопрос, почему кошки при падении всегда падают на лапы, и на вопрос, почему из фабричных труб дым выходит клубами, и на тысячу других больших и малых вопросов. Он дал ясное объяснение явлений кровообращения в человеческом организме и явлений кавитации гребного винта. Он делал доклады о парении птиц, о движении прямолинейных вихрей, о сопротивлении воздуха при больших скоростях, о движении вагонов по рельсам, о снежных заносах, о ветряных мельницах, о качке кораблей и еще о множестве других разнообразных явлений, которые служили ему только поводом для теоретических построений огромного и широчайшего значения.

Самое большое практическое значение среди всего, что сделал Жуковский, получили его работы по вопросам авиации и воздухоплавания.

Этими работами, доставившими ему мировую славу, он воздвиг себе нерукотворный памятник и завоевал почетное имя «отца русской авиации».

Но мы должны все-таки указать, что из девяти томов сочинений Жуковского вопросам авиации посвящен только один.

Уже в раннюю пору своей научной работы Николай Егорович не сомневался в возможности осуществления динамического полета.

— Птицы летают, почему же человек не может летать? — говорил он.

Жуковский начал свою ученую деятельность как гидродинамик; он много занимался вопросами чистой математики, теоретической и прикладной механики, всегда отзываясь на запросы живой практики. Но время от времени он выступал с докладами и по вопросам воздухоплавания и авиации. После доклада «К теории летания», состоявшегося в 1890 году, и знаменитой работы «О парении птиц», вышедшей в 1892 году, появляется его статья «О наивыгоднейшем наклоне аэропланов».

В первой из этих работ Жуковский решает вопрос о происхождении силы тяги у тела, которое как бы внутренними силами перемещается в воздухе. Он доказывает, что сила тяги не может получиться, если не учитывать трения и если считать, что при таком движении происходит плавное обтекание тела, без образования срывов воздушных струй. Не решая окончательно вопроса о том, трению или срыву струй обязана своими образованиями сила тяги, Жуковский склоняется к мнению, что сила тяги возникает вследствие трения.

Рисунок Н. Е. Жуковского, доказывающий возможность совершения мертвой петли планером. Из работы «О парении птиц», 1892 год.

За несколько лет до того, как поднялся в воздух первый планер, Жуковский в статье «О парении птиц» дал объяснения тому, каким образом птицы могут парить в воздухе с неподвижно распростертыми крыльями, и теоретически доказал, что можно построить аппараты для искусственного парения — планеры, которые будут устойчивыми в воздухе и даже смогут совершать «мертвые петли». Много позже первую в мире мертвую петлю, возможность которой доказал Жуковский, осуществил русский летчик Нестеров.

Доказав в статье «О парении птиц» возможность создания устойчивых в воздухе летательных аппаратов, Жуковский в новой работе — «О наивыгоднейшем наклоне аэропланов» — решает задачу о нахождении наивыгоднейшего угла наклона, что имеет решающее значение при проектировании самолета. Таким образом, к тому времени, когда жизнь предъявила к теоретической авиации свои требования и когда состоялись первые полеты, Жуковский, внимательно следивший за всеми новостями в этом деле, оказался во всеоружии тех знаний, которые нужны были для создания теоретических основ авиации.

Как только были совершены первые робкие полеты на аппаратах тяжелее воздуха, тотчас же перед наукой стал вопрос, выдвинутый практической авиацией: откуда берется подъемная сила у крыла и, главное, каким теоретическим способом можно ее вычислить?

Насколько Жуковский был готов ответить на этот основной вопрос, видно из того, что уже в 1906 году он дал в своей работе «О присоединенных вихрях» и правильный ответ на вопрос и формулу, позволяющую произвести расчет сил, действующих на крыло.

Статья эта появилась в результате сделанного Жуковским замечательного открытия. Он открыл, что, кроме всех известных типов течений газа или жидкости, есть еще один тип, при котором образуется особенная сила, получившая название «сила Жуковского». Благодаря этому открытию стали понятными все явления, происходящие в воздухе близ летящего тела, была создана полная теория крыла моноплана, началось строительство современных самолетов, имеющих толстое крыло с острой задней кромкой, и авиация получила то развитие и то значение, которые теперь всем известны.

Жуковский показал, что механизм образования подъемной силы у хорошо обтекаемой «дужки», какою является крыло, не сводится к сопротивлению. Наличие подъемной силы обусловлено тут не сопротивлением, как у змея, а разностью скоростей под крылом и над крылом, или, как говорят, «циркуляцией» воздушных струй вокруг крыла.

Это открытие Жуковского и до сих пор остается предметом величавшего внимания аэродинамиков во всем мире.

А. А. Микулин, вспоминая о Н. Е. Жуковском в двадцатую годовщину его смерти, писал в заключение:

Листок из записной книжки первого русского военного летчика Нестерова. Схема «петли Нестерова» (мертвой петли), сделанной Нестеровым 27 августа (9 сентября) 1913 года. Автограф летчика.

«Имя Н. Е. Жуковского известно во всем мире. Помню, однажды в 1935 году мы приехали с комиссией осматривать лабораторию Кембриджского университета в Англии. В большой аэродинамической трубе гудел ветер, английские инженеры и профессора вели наблюдения за приборами и вели записи в протоколах. По окончании эксперимента мы спросили, что они изучают? С уважением к великому имени нам ответили: „Дужку Жуковского!“»[37]

Ученик и ближайший сотрудник Жуковского академик Л. С. Лейбензон вспоминает, что впервые мысль о роли циркуляционных потоков в образовании давления, которое испытывают обтекаемые воздухом крылообразные тела, возникла у Жуковского осенью 1904 года, при наблюдении полетов воздушного змея. За этим наблюдением последовала догадка, проверке которой Жуковский посвятил два года. После многих опытов и размышлений Жуковский установил тот закон, который получил во всем мире его имя.

Закон этот гласит:

«Подъемная сила равна по величине произведению плотности воздуха, циркуляции и скорости потока, а направление ее получается поворотом скорости потока на прямой угол в сторону, обратную циркуляции».

До открытия Жуковского единственным источником подъемной силы приходилось считать, при отсутствии трения, образование срывов при отрыве струй от поверхности обтекаемого тела. Жуковский указал другой возможный источник образования силы — присутствие добавочного циркуляционного движения вокруг обтекаемого тела. Он открыл, таким образом, совершенно новый тип течений — течений, плавно обтекающих тело, но с присоединенным «циркуляционным» вихревым потоком.

Понадобилось, однако, еще много времени, труда, опытов и размышлений для того, чтобы ответить на вопрос, откуда берется этот добавочный циркуляционный поток и как определить величину циркуляции вокруг крыла.

Только в 1910 году удалось Н. Е. Жуковскому ответить с предельной ясностью на этот вопрос. Известный под названием «основной гипотезы Жуковского» ответ этот практически сводится к тому, что циркуляция образуется при наличии у обтекаемого тела острых кромок. Так как при плавном обтекании, согласно открытому Жуковским закону, подъемная Сила возникает только благодаря добавочному циркуляционному потоку, то для крыла необходима острая кромка. Таким образом, теоретически удалось выяснить, что наивыгоднейшей формой крыльев в авиации будут крылья с острой кромкой.

Такие крылья и стали применяться конструкторами.

После всех этих открытий Жуковского в авиации стали пользоваться исключительно течениями с циркуляцией, так как при прочих равных условиях подъемная сила, возникающая благодаря добавочному циркуляционному потоку, намного больше, чем подъемная сила, возникающая при срыве струй.

При малых углах атаки крыло самолета как раз и находится в воздушном потоке с циркуляцией.

После всех этих теоретических открытий оказалось возможным не только создать полную циркуляционную теорию крыла, но и чисто теоретическим путем рассчитать его подъемную силу.

Метод расчета, как мы увидим дальше, разработал первый ученик Жуковского — Сергей Алексеевич Чаплыгин.

Предоставив своим русским ученикам и иностранным последователям дальнейшую разработку теории крыла, Жуковский сам обратился к более частному случаю винтового пропеллера. Надо заметить, что лопасть винта также представляет собой крыло, с той разницей, что крыло при движении самолета перемещается только поступательно, в то время как лопасть винта совершает гораздо более сложное движение, одновременно вращаясь около оси винта и перемещаясь вместе с самолетом.

Фотографии одного исследователя, работавшего над корабельными гребными винтами, побудили Николая Егоровича заняться головоломной задачей о движении винта. Жуковский заметил, что на фотографиях работающих винтов видны светлые полоски, имеющие вид винтовых линий, сбегающих с концов лопастей. По мнению Жуковского, эти полоски указывали направление осей тех вихрей, которые сбегали с лопастей винта. Высказав эту гениальную догадку, он обратился к проверке своей Мигели и в результате в 1912 году опубликовал знаменитую «Вихревую теорию гребного винта».

Николай Егорович Жуковский

 (1847–1921).

Вихревая теория позволила сразу же вывести формулы для расчета силы тяги винта и мощности двигателя, который необходим для его вращения. Оказалось также возможным теоретически указать наиболее выгодную форму винта. Такие винты получили в честь Н. Е. Жуковского название винтов «НЕЖ».

Вихревая теория гребного винта, конечно, может быть распространена и на крыло. Она рассматривает различные схемы вихрей, образующихся за лопастью, и изучает влияние этих вихрей на распределение скоростей в потоке. В ней рассматривается также сила лобового сопротивления, которая получается за счет образования определенного вида вихрей. Это последнее, так называемое индуктивное, сопротивление, сложенное с сопротивлением от трения и различных побочных вихре-образований, и дает то общее лобовое сопротивление, которое встречает движущееся в воздухе крыло.

Как истинный гений, Жуковский рассыпал вокруг себя идеи, не заботясь о том, кому они будут приписаны. За всю свою жизнь он не запатентовал ни одного своего изобретения, а когда однажды по настоянию своих учеников согласился было это сделать, то сам же лишил себя права на патент, не отменив опубликования изобретения до выдачи привилегии.

«Не отвлекаясь ничем преходящим, лишь в меру неизбежной необходимости отдавая дань потребностям жизни, он все свои гигантские силы посвящал научной работе. Его цельная натура была беззаветно посвящена этому труду», — говорит о нем С. А. Чаплыгин.

Жуковский родился 17 января 1847 года. Он был сыном инженера, одного из строителей Нижегородской шоссейной дороги, впоследствии скромно занимавшегося сельским хозяйством в своем имении, в деревне Орехово Владимирской губернии. Мальчик рос в доме исконно дворянском, хотя далеко не богатом. Все в этом доме делалось на французский лад; не только воспитание, но даже мысли и чувства здесь определялись манерами, перенятыми у французов.

Случилось, однако, так, что учителем старшего брата оказался не только хорошо воспитанный, но и прекрасно образованный человек, да к тому же еще пылкий фантазер. Это был студент А. X. Репман. Он нашел прилежного слушателя в младшем члене большого семейства и легко привил ему любовь к чтению фантастических романов и повестей о путешествиях, о необычайных приключениях на земле, под водой и за облаками.

И вот этот мир, населенный не столько учеными и исследователями, сколько пиратами и разбойниками, мир, где не церемонились поклонами и снимали скальпы с живых людей проворнее, чем хозяйка дома приподнимала крышку с суповой миски, этот мир заворожил мальчика и пробудил его к действию и размышлению.

В Московской 4-й гимназии, куда отвезли юного Жуковского, он был первые три года очень плохим математиком. Математику в 4-й гимназии преподавали Малинин и Буренин — авторы распространеннейших учебников в России. Арифметика не давалась мальчику не то по причине его рассеянности, не то из-за угнетающего действия тогдашней системы ее преподавания, основанной на бессмысленном заучивании правил.

Скорее всего, однако, по самому складу своего ума Жуковский мог воспринимать мир и понимать отношения в нем только геометрически, в виде предельно ясных образов, обнаженных геометрических отношений. Жуковский не любил цифр и расчетов в отвлеченном виде и у Малинина учился плохо. Но у Буренина, преподававшего геометрию, он вдруг оказался лучшим учеником, что, впрочем, суеверная мать Жуковского приписала исключительно благословению митрополита Филарета, к которому она однажды подвела мальчика.

Окончив курс в гимназии, Жуковский поступил на математический факультет Московского университета. Он охотно предпочел бы один из тогдашних политехникумов, но в университете читали лекции известные тогда ученые Давидов, Слуцкий, Цингер, и юноша примирился с судьбой, тем более, что уже с первого курса начал участвовать вместе со своими учителями в занятиях математического кружка. Из этого кружка впоследствии выросло знаменитое Московское математическое общество.

В те годы Жуковский вел жизнь, типичную для многих русских студентов. Он жил в комнатке, названной товарищами «шкафчиком», и когда причесывался, гребенкой задевал потолок. Он бегал по городу, давая уроки отсталым ученикам, и издавал литографским способом лекции, им самим аккуратно записанные и имевшие в его редакции большой успех. Уже в этой работе сказывалось характеризующее Жуковского стремление к ясности, к определенности.

В 1868 году университетский курс был закончен. Жуковского все еще тянуло в политехникум. Он тяготел к практической деятельности и мечтал стать инженером, как его приятель Щукин. Друзья вместе отправились в Петербург и поступили в институт путей сообщения. Но тут профессора занимались не выяснением руководящих научных идей, а простым изложением фактического материала, потребного для повседневной практики. Студентов учили считать и чертить, к чему Жуковский не имел ни охоты, ни способностей. Через год он провалился на экзамене по геодезии и решил, что инженера-практика из него никогда не выйдет, что не в этом дело его жизни. Он оставил институт и неприятный ему холодный Петербург.

Из-за болезненного состояния он должен был провести целый год в Орехове, а осенью 1870 года вернулся в Москву и стал преподавать физику в женской гимназии. Вскоре ему поручили преподавание математики в Московском высшем техническом училище, которого он уже не покидал до самого конца жизни.

Оторванному от университета молодому ученому не легко далась его первая научная работа — «Кинематика жидкого тела», которую он представил на соискание ученой степени магистра. Это был первый вклад Жуковского в гидродинамику. Отвлекаясь от вопросов взаимодействия физических тел и учитывая лишь их внешнюю форму, Жуковский рассматривал жидкость с чисто геометрической стороны, или, как говорят, «кинематически», и пришел к ряду ценнейших заключений.

«Существуют такие умы, которые могут с удовлетворением рассматривать чистые количества, представляющиеся глазу в виде символов, а разуму в форме, которую не может понять никто, кроме математиков, — говорит знаменитый английский ученый Джемс Максвелл. — Другие получают большее удовлетворение, следя за геометрическими формами, которые они чертят на бумаге или строят в пустом пространстве перед собой. Иные же не удовлетворяются до тех пор, пока не перенесутся в созданную ими обстановку всеми своими физическими силами. Для этих людей момент, энергия, масса не являются просто отвлеченным выражением результатов научного исследования. Эти слова имеют для них глубокое значение и волнуют их душу, как воспоминания детства»[38].

Чисто конкретное, образное художественное мышление, каким обладали, скажем, Пушкин или Гоголь, и мышление чисто отвлеченное, мышление Лобачевского или Чаплыгина, так же как и ум геометра, — явления редкостные: они предвещают гения. Однако система конкретного художественного мышления и даже система обычного отвлеченного математического мышления доступнее нашему пониманию, может быть, оттого, что эти системы несравненно более исследованы, а может быть, еще и потому, что они более приближаются к нашим собственным.

Попробуем, однако, понять и геометризм Жуковского, потому что иначе в творческой лаборатории великого ученого нам нечего делать.

Приподняв таинственную завесу, так долго скрывавшую от нас загадочную деятельность нашего сознания, академик И. П. Павлов обнаружил, что люди вообще бывают преимущественно художниками или преимущественно мыслителями, соответственно двум сигнализационным системам: системе непосредственных раздражений, идущих из окружающего мира в наши органы чувств, и системе словесных раздражений, заменяющих непосредственные. Павлов с большой точностью формулирует свое заключение, оставляя бесконечное число градаций между двумя крайними типами чистых художников и чистых мыслителей, которые почти не встречаются в действительности.

К этому можно бы добавить, что преимущественно художники создают искусство, преимущественно мыслители — науку.

Между художниками и мыслителями, на неуловимой грани между художественным и отвлеченным мышлением, я думаю, и стоит геометр, создающий технику. Мы не случайно ведь говорим о науке, технике и искусстве, как о различных областях творчества. Техника действительно стоит в какой-то мере между наукой и искусством, как инженер в какой-то мере объединяет в себе и художника и мыслителя.

Любопытно отметить, что за разработку диссертационной темы Николай Егорович взялся исключительно потому, что до него в этой сложной области не было той ясности и наглядности, к которым он всегда стремился. Жуковский начал заниматься своей темой в Орехове главным образом для того, чтобы составить себе ясное представление об этом вопросе. Но, составив себе ясную картину, он увидел, что перед ним материал для диссертационной работы, и не ошибся.

Совет училища командировал молодого ученого за границу. Из этого путешествия Жуковский вернулся в Москву, не изменив своих давно установившихся взглядов на науку и на самого себя. Он увидел, что для него нет оснований выбирать себе иное занятие, чем та научно-педагогическая деятельность, которая уже стала его жизненным делом.

По возвращении из-за границы Жуковский был избран в училище профессором по кафедре механики. Сочинение «О прочности движения» принесло ему ученую степень доктора прикладной механики.

В 1888 году Жуковский занимает кафедру прикладной механики в Московском университете. Он становится деятельнейшим членом всех научных обществ, устраивается на постоянное жительство в Москве с матерью, братьями и сестрами и, таким образом, определяет наилучшим образом всю свою дальнейшую судьбу.

Отныне история его жизни становится историей научных работ, историей докладов и сочинений, историей решения задач, выдвигаемых запросами практики, историей теоретических построений и лабораторных экспериментов, историей возникновения научной школы Жуковского — русской аэродинамической школы.

О Жуковском можно с полным правом, в свете исторической перспективы, сказать, что он родился как раз вовремя, чтобы первым в мире провозгласить «теоретические основы воздухоплавания» и стать во главе созданной им школы русских аэродинамиков.

В те годы, когда создавалась русская аэродинамическая школа во главе с Н. Е. Жуковским, теоретическая механика оставалась еще прикладным отделом математики. Жуковский одним из первых доказал, что в современной теоретической механике опираться лишь на математический метод невозможно, что для познания мира с точки зрения механики движения так же, как и во всех иных областях естествознания, нужен научно поставленный эксперимент.

Дальнейшее развитие науки подтвердило правильность взгляда Жуковского, хотя в его время находилось очень мало ученых, державшихся такого мнения.

Жуковскому принадлежит честь создания первых лабораторий по механике в Московском университете и в Московском высшем техническом училище, лабораторий со сложной аппаратурой, где производились научно поставленные опыты и измерения.

Среди высших учебных заведений в то время, как и позднее, Московское высшее техническое училище, а коротко — МВТУ, пользовалось особенной славой. И мечтою многих было попасть именно сюда. МВТУ собирало со всей страны наиболее талантливое юношество, стремившееся к практической инженерной работе. Когда же с осени 1909 года Жуковский начал здесь впервые в мире читать свой знаменитый курс лекций по теоретическим основам авиации, или, как тогда говорили, «воздухоплавания», не отличая еще летания на аэростатах от летания на аэропланах, в МВТУ устремилась вся та молодежь, сердце которой лежало к авиации.

«На вступительную лекцию, в которой он описывал успехи авиации, сопровождая лекцию множеством диапозитивов, — рассказывает В. П. Ветчинкин, один из старейших учеников Жуковского, — собралось так много слушателей, что самая большая аудитория Технического училища — новая химическая — не могла вместить всех желающих. Студенты стояли в проходах, на окнах, в дверях и даже слушали за дверью»[39].

Правда, «следующие лекции, в которых читались общие теоремы гидродинамики, быстро отпугнули студентов, и после трех лекций у Николая Егоровича осталось около семидесяти слушателей. Под конец число слушателей сократилось даже до пятнадцати. Но зато, — указывает В. П. Ветчинкин, — многие из этих пятнадцати в настоящее время занимают командные посты в советской авиации».

По «Теоретическим основам воздухоплавания» учились все нынешние Деятели авиации примерно до 1930 года. Этот курс лекций представляет собой исключительное по своей простоте изложение очень трудных аэро-гидродинамических понятий, которые автор сумел сделать доступными для студентов-техников с высокой математической подготовкой.

Аэродинамическая труба квадратного сечения, сооруженная Н. Е. Жуковским в Московском университете в 1902 году.

Впервые лекции были записаны В. П. Ветчинкиным и изданы гектографическим путем.

«Эта книга, привезенная мной во Францию в дар Эйфелю, произвела на него потрясающее впечатление, — рассказывает В. П. Ветчинкин. — Ничего подобного ни по ясности изложения, ни по блестящему совмещению глубокой теории с экспериментом в заграничной литературе не было известно. У инженера тотчас же возникла мысль о переводе курса Николая Егоровича на французский язык».

После первых же лекций Жуковского по теоретическим основам воздухоплавания в МВТУ стихийно возник «Воздухоплавательный кружок». Почетным председателем его был избран Николай Егорович.

Кружок привлек внимание студенчества. Но интерес к нему вышел за стены училища благодаря широкой практической работе, которую начали вести члены кружка. Сообразно различным внутренним склонностям членов кружка работа в нем с самого начала пошла по двум направлениям: теоретическому и практическому.

Непосредственное руководство Жуковского и исключительный подбор молодежи превратили в дальнейшем воздухоплавательный кружок в тот организационный центр, который положил начало советской аэродинамической науке.

Несомненно, что в Жуковском счастливо сочетались глубокий философский ум и искусство экспериментатора, что он соединял в себе теоретика и инженера-практика, мыслителя и организатора. И все же при всем том, если бы не педагогический талант и человеческое обаяние, ему, быть может, не удалось бы создать такую блестящую и большую научную школу.

«При своем ясном, удивительном уме он умел иногда двумя-тремя словами, одним росчерком пера разрешить и внести такой свет в темные, казалось бы, прямо безнадежные вопросы, что после его слова все становилось ясным и выпуклым, — говорит о своем учителе С. А. Чаплыгин. — Для всех тех, кто шел с ним и за ним, были ясны новые, пролагаемые им пути. Эта огромная сила особенно пленяла своей скромностью. Когда его близкие ученики, имевшие счастье личного с ним общения, беседовали с ним по поводу того или иного вопроса, он никогда не пытался воздействовать на них своим авторитетом, с полным интересом вникая во всякие суждения. Бывало, что начинающий на ученом поприще ученик обращался за советом, предполагая посвятить некоторую долю своего внимания задаче, которая его очень интересовала. Иногда задача была слишком трудной и, может быть, даже недоступной. Николай Егорович никогда не позволил себе сказать, что задача неисполнима. Он говорил: „Я пробовал заниматься этим вопросом, но у меня ничего не вышло; попробуйте вы, может быть, у вас выйдет!“ Он глубоко верил, что среди его учеников могут быть и такие, которые окажутся в силах решить вопросы, им не решенные. Эта вера в окружающих его учеников создала ему трогательный облик, который останется всегда незабываемым. Длинный ряд учеников Николая Егоровича живы и работают на ниве науки. Им основана не школа, а школы…»[40].

Педагогическая деятельность Жуковского совсем не была похожа на выполнение обязанностей, дававших ему материальные средства для того, чтобы он мог заниматься научной работой. Нет, то была составная часть научных занятий, и, может быть, поэтому Николай Егорович не отделял своей работы от работы учеников и даже не видел существенной разницы между ними.

Он был не педагогом, а учителем во всей благородной полноте этого слова.

Он испытывал глубочайшее удовлетворение, прививая своим ученикам любовь к науке, и находил способы делать сложнейшие вопросы теории доступными их пониманию. Он изобретал удивительные приборы и модели, чтобы дать наглядное толкование самым отвлеченным задачам.

Иногда он приносил в аудиторию «клочок живой природы», вроде маленькой птички, которую он демонстрировал слушателям, чтобы иллюстрировать вопрос об условиях взлета. Птичка находилась в стеклянной банке и должна была наглядно показать, что, не имея площадки для разбега, подняться в воздух нельзя.

Николай Егорович снял с банки крышку и предоставил птичке выбираться наружу, чтобы доказать непреложность положений теории. Некоторое время птичка действительно не могла взлететь. Но вот, не имея нужной для взлета площадки, птичка стала делать спирали по стенке банки и, ко всеобщему восхищению, взлетела под потолок.

Учитель рассмеялся вместе с учениками.

— Эксперимент дал неожиданный, но поучительный результат: площадку может заменить спираль, что не пришло нам в голову!

Жуковский, очевидно, понимал или чувствовал, каким грубым препятствием для движения творческой мысли является привычное мышление, как трудно даже изощренному уму прервать течение привычных представлений и дать место иным, неожиданным и новым. Оттого-то он и приникал постоянно к живой природе с ее огромным запасом еще не раскрытых тайн, не обнаруженных возможностей.

Круглая аэродинамическая труба в лаборатории Московского высшего технического училища, построенная Н. Е. Жуковским в 1910 году.

Когда он занимался измерением и вычислением времени полета, над зеленым лугом летали стрелы его арбалета, снабженные винтом. Когда он изучал сопротивление воздуха, по проселочным дорогам мелькал взад и вперед его велосипед с большими крыльями. Живая природа открывала тайны аэродинамики этому пророку авиации, предсказавшему мертвую петлю за двадцать лет до того, как ее выполнил Нестеров. В ореховском саду под яблонями чертил на песке свои формулы ученый, когда врачи во время болезни запретили ему работать, а родные заставляли его подолгу гулять.

В этом же саду Жуковский ставил большой эмалированный таз с дырками, исследуя формы вытекающей струи, и думал с проникновенным вдохновением:

«Все дело тут в вихрях, которые срываются с краев отверстия, первоначально они имеют форму отверстия, а затем они стягиваются, деформируются и деформируют струю. Прибавляя к действию вихрей силу инерции движущихся частиц жидкости, можно получить все изменения струи. Вопрос этот вполне ясен…»

Тайны стихий прояснились исследователю при непосредственном их созерцании. И ореховский пруд, окрашенный водорослями, Жуковский обращал в лабораторный прибор для гидродинамических опытов над обтеканием струй.

Близость к Н. Е. Жуковскому была сама по себе уже школой, хотя и чрезвычайно своеобразной.

«В лесу за завтраком у костра начинались обыкновенно разговоры на темы механики, физики, авиации, — рассказывает его племянник, известный авиаконструктор А. А. Микулин, в своих воспоминаниях; — иногда здесь же на земле распластывали убитую птицу и начинали изучать конструкцию ее крыльев. Особенное внимание Николай Егорович обращал на геометрическую пропорцию естественных форм природы. Эта черта „геометрического“ мышления красной нитью проходила через все его математические работы. Он обладал удивительным умением любую сложнейшую функцию представить читателю простейшим геометрическим чертежом. Обсуждали мы с ним и такие, например, вопросы: почему убитая птица не падает на землю камнем, а непременно кувыркается на лету.

Николай Егорович объяснял мне, что каждое тело в пространстве, при наличии сопротивления среды, получив вращательный импульс, стремится вертеться вокруг своих главных осей инерции.

— Ну, а как же происходит вращение шара, — спрашивал я, — ведь у него моменты инерции всех осей равны?

— Вращение шара неустойчиво, — отвечал Николай Егорович. — Малейшая причина может заставить шар постепенно сбиться с вращения вокруг первой оси, и тогда он начнет вертеться вокруг все новых и новых осей. Другое дело, если тело наполнено жидкой массой, тогда вращение его уже устойчиво!

— Понял, понял! — радостно восклицал я, вскакивая на ноги и чуть не опрокидывая котелок с только что сваренным супом из рябчика. — Я знаю, почему Земля крутится только вокруг оси, проходящей через полюсы, и не сбивается на вращение вокруг других осей. Это потому, что она наполнена жидкой массой и имеет форму шара, сплюснутого на полюсах… А жалко, — прибавлял я мечтательно. — Если бы она обладала формой точного шара и не имела внутри жидкой массы, то не было бы закономерного юга и севера и Земля вертелась бы неопределенно: сегодня в Африке жара, экватор, а завтра она попадает на Северный полюс и вся замерзает. И у нас, пожалуй, мог бы постепенно меняться климат.

— Ну, ну… — говорил Жуковский, — ты уж очень упрощаешь законы механики. Поживешь — научишься!»

От теоретических рассуждений Жуковский нередко переходил к практическим занятиям и предлагал племяннику тут же на месте решать задачи. Одну из таких задач приводит А. А. Микулин в том же рассказе:

«Пока я стоял задумавшись, представляя себе в космическом пространстве несущуюся круглую Землю с неорганизованным вращением, Николай Егорович что-то мастерил около дерева.

— А ну-ка, Саша, — говорил он, — поди-ка сюда. Я для тебя приготовил задачу.

Я оглядывался и с удивлением видел, что Николай Егорович прикрепляет большое кольцо от подпруги к длинной, тонкой бечевке, которой был завязан пакет с продуктами.

— Как будет вращаться кольцо в пространстве, если я начну закручивать эту веревку? — спрашивал он, загадочно и добродушно улыбаясь.

— Если применить к этому случаю закон, о котором ты мне только что говорил, то кольцо, разумеется, не должно бы вращаться вокруг оси, проходящей через веревку… С ним должно произойти что-то другое, но что — я не знаю.

— Смотри, что предусмотрела природа, — говорил тогда Николай Егорович и пальцами закручивал бечевку. Кольцо при этом вращалось сперва медленно, потом быстрее, быстрее, вдруг начинало подниматься и, наконец, вращалось устойчиво, располагало свою плоскость параллельно земле, и переходило на вращение вокруг оси своего наибольшего момента инерции»[41].

Лучшего довода против упрощенчества в механике, вероятно, нельзя и придумать: по одной этой сцене можно судить о том, какого учителя имели в Жуковском его ученики.

Так прививал Николай Егорович ученикам умение находить решения задач, изучая природу и ее законы. В этой высокой школе и формировались естествоиспытатели, тонкие знатоки физики, механики, авиации.

Жуковский поставил объектом своего восприятия не внешнюю живописность природы, а внутреннюю сущность ее явлений. Он обладал даром широкого, смелого обобщения, обладал способностью видеть главное.

В причудливой струе, выбивающейся из отверстия в эмалированном тазу, гений угадывал бурную стихию Ниагары. Стрелы игрушечного арбалета предрекали ему мертвые петли аэропланов. В картонной трубе в лаборатории Московского университета Жуковский испытывал свойства воздушных течений, угадывал законы ураганов и капризы снежных заносов.

Огонь уже был похищен Прометеем. С не меньшим мужеством, с великолепной уверенностью Жуковский посадил ветер в деревянную клетку аэродинамической трубы и заставил его обнаружить до конца все свои хитрости и повадки.

Инженер высшего ранга, Жуковский проникал в таинственную природу стихий, как Пушкин — в сокровенную жизнь души человеческой. Стихи Николая Егоровича, — он их писал, — были так же плохи, как расчеты Пушкина, но в научных своих сочинениях он был ясен, прозрачен и точен, как Пушкин в лирике.

Самый огромный ум нуждается для творческого движения мысли в помощи извне, хотя в большинстве случаев даже и незамечаемой. В создании циркуляционной теории эту помощь оказал Жуковскому бумажный змей, в создании вихревой теории гребного винта — фотографии корабельного винта. Большую и постоянную помощь ему, как и многим другим ученым, оказывало наблюдение природы. Вот почему профессор механики в душе оставался до конца жизни селянином, охотником и спортсменом.

Когда, незадолго до его смерти, находившаяся возле него сестра предложила ему что-нибудь почитать вслух, он закрыл глаза и ответил:

— Нет, не надо. Я лучше подумаю о деревне. Хорошо там теперь! Рябина, наверное, не совсем еще осыпалась: то-то раздолье снегирям…

Он любил соревноваться с братьями, а потом с племянниками в искусстве переплывать пруд, то держа в руках ружье, то ставя на голову подсвечник с горящей свечой. Неутомимо бродяжничая по полям и лесам, он чувствовал себя тут, как в просторной и светлой лаборатории.

Заканчивая свою речь над могилой другого русского богатыря, М. В. Остроградского, Николай Егорович говорил:

«При взгляде на это мирное место успокоения, на широкие поля, убегающие в бесконечную даль, невольно возникает мысль о влиянии природы на дух человека. В математике, милостивые государи, есть тоже своя красота, как в живописи и поэзии. Эта красота проявляется иногда в отчетливых, ярко очерченных идеях, где на виду всякая деталь умозаключений, а иногда поражает она нас в широких замыслах, скрывающих в себе кое-что недосказанное, но многообещающее. В творениях Остроградского нас привлекает общность анализа, основная мысль, столь же широкая, как широк простор его родных полей!»[42].

За письменный стол в московской своей квартире Жуковский садился только для того, чтобы сформулировать законы, управляющие движением воды и воздуха. С помощью чертежей, формул и чисел он вводил людей, умеющих читать их, в огромную лабораторию живой природы.

О времени напоминал только бой стенных часов. Казалось, что они бьют ежеминутно, напоминая о прошедшем часе. И вот однажды Николай Егорович снимает их со стены и освобождает механизм от пружины боя часов. Непривычное движение в кабинете тревожит девушку с длинными белокурыми косами и глазами, как у отца.

Она осторожно открывает дверь и вопросительно смотрит. Николай Егорович вешает часы на место и с торжеством показывает дочери пружину:

— А ну, пусть-ка теперь позвонят!

Девушка улыбается и плотно притворяет за собой дверь.

Николай Егорович не сразу возвращается к работе. Несколько минут, а может быть, и час — теперь ничто не тревожит его размышлений — он сидит неподвижно в своем кресле. В минуты раздумья он еще более величав и загадочен, чем на людях. Его бронзовое изваяние должен был бы сделать Микель Анджело, ибо кто, кроме него, может дать представление об этой суровой мужественности, проникнутой огромным внутренним напряжением и страстной целеустремленностью?

Мать Николая Егоровича вела свой род от татарского выходца Стецьки, ушедшего из Казани с Иваном Грозным в Москву и породнившегося здесь с боярами Колычевыми. Памятью об этом далеком предке остались на широком, простом седобородом русском лице Жуковского чуть по-монгольски поставленные глаза с поднятыми и изогнутыми бровями. Всем остальным — крупностью фигуры, физической силой, выносливостью — потомок старого московского рода напоминал своих русских предков.

Охота, купанье, многочасовые прогулки и неприхотливость в быту сохранили ему силу и статность до последних дней.

Высокий, тонкий голос, как у Тургенева, совсем не шел к его богатырской внешности, и как лектор Николай Егорович мог бы казаться в аудитории смешным, особенно когда мелким почерком писал на доске, закрывая к тому же по рассеянности своей мощной фигурой написанное. Но лекции великого учителя не были только чтением, — это были часы творческого труда, и лектор покорял слушателей.

Творческая атмосфера захватывала самого профессора настолько, что иногда, увлекшись попутной идеей, он вдруг погружался у доски в свой геометрический мир, забыв обо всем остальном. Тогда в аудитории наступала мертвая тишина. На доске появлялись формулы, математические знаки, чертежи. Высокий, крупный человек с большой бородой, глубокими глазами и странно изогнутыми, словно удивленными бровями казался среди молчащих студентов явлением необыкновенным, таким же таинственным, как стихии, в загадки которых он проникал: это было олицетворение мысли, гениального, всепокоряющего ума!

Анекдотическая рассеянность Жуковского только внушала К нему уважение: источником ее была сосредоточенность.

Профессор механики не смешил своих слушателей и тогда, когда, вернувшись из женской гимназии в Техническое училище, он вызывал отвечать «госпожу Македонскую». Никто не смеялся и тогда, когда, проговорив целый вечер с молодежью в собственной гостиной или кабинете, хозяин вдруг поднимался, ища свою шляпу, и начинал торопливо прощаться, бормоча:

— Однако я засиделся у вас, господа, пора домой!

Извозчики, постоянно дежурившие у подъезда двухэтажного домика в Мыльниковом переулке, совершенно серьезно говорили о своем седоке:

— Уж такой добрый барин, сказать нельзя! Подвезешь его — заплатит, потом уйдет, вернется со двора, еще раз заплатит. А иной раз, если не успеешь отъехать, увидит в окно, еще и с горничной вышлет. Добрейшей души человек!

Жуковский был мнителен и собственной рассеянности боялся пуще всего на свете. Эта боязнь огорчить кого-нибудь своей рассеянностью побуждала окружающих к предупредительности. И многие из бывших слушателей Военно-Воздушной академии помнят, как тщательно соблюдалась очередь специальных дежурных, на обязанности которых лежало провожать профессора до дому, не показывая при этом вида, что его охраняют от уличных случайностей.

Не надо, однако, выводить отсюда, что этот богатырь терялся среди житейских забот. Человек огромной энергии и трудоспособности, прекрасного здоровья и поэтической жизнерадостности, Жуковский вовсе не нуждался в помощи и не напоминал собой ребенка. Всю свою жизнь он не интересовался никакими вещами, кроме книг и приборов, поражая своих друзей и родных пренебрежением к материальной ценности своего труда. Однако все это ведь только в глазах окружающих казалось беспомощностью. На самом деле то было естественное и нормальное отношение к миру мелких бытовых забот со стороны ума творческого, постоянно занятого мыслью и охранявшего себя от ненужных раздражений.

Конечно, друзья и поклонники Николая Егоровича всячески старались побороть в нем этот своеобразный инстинкт самосохранения, хотя и не желали нисколько ему повредить. Но интеллект гения непреоборим.

Жуковский часто даже не спорил, потому что он не слышал, что ему говорили; а иногда по рассеянности он даже с самого начала считал, что его собеседник держится того же самого мнения, как и он сам.

Акробатические полеты авиаторов в 1913–1914 годах.

Однажды Николай Егорович занимался вопросом о вращении веретена на кольцевых ватерах. После теоретического решения он предложил, как всегда, и практическую конструкцию веретена. Друзья предупреждали его, что по русским законам изобретатель лишается права на патент, если заявке на изобретение будет предшествовать публичный доклад о нем. Жуковский не отменил доклада. Сто лет теоретики и экспериментаторы стремились к созданию наивыгоднейшей формы гребного корабельного винта. Это была, в связи с изобретением паровых турбин и строительством быстроходных судов, неотложнейшая задача. Крупнейший машиностроитель английский инженер Чарльз Парсонс бился над практическим решением. Другие европейские ученые теоретизировали. Жуковский, взявшись за дело, создал свою знаменитую «Вихревую теорию гребного винта» и положил конец спорам. Но он не торопился опубликовать свою работу, так как был занят дальнейшим развитием положенных в ее основу идей.

Ученики и товарищи, знавшие всю остроту положения, настаивали на печатании работы.

— Вы потеряете научное первенство, Николай Егорович! — убеждали они.

— Не потеряю, — отвечал Жуковский спокойно. — За границей все равно ничего не сделают!

Жуковский знал цену русской научной мысли, как и своей собственной. Важно было решить задачу. Когда одна задача была решена, он переходил к следующей. А там, сколько бы ни прожить, останется еще много нерешенных вопросов, неразгаданных тайн.

Жуковский разработал теоретические основы авиации и расчета самолетов в то время, когда строители первых самолетов твердили, что «самолет не машина, его рассчитать нельзя», когда среди широких кругов специалистов господствовало доставшееся от дедов убеждение, что никакие теоретические соображения не приложимы к механике столь непостоянной среды, как воздух, и что авиацию можно основывать только на данных опыта и практики.

Директор аэронавтической школы в Лозанне Рикардо Броцци, например, писал:

«Аэродинамика, бесспорно, есть наука вполне эмпирическая. Все заслуживающие доверия законы являются и должны быть указаниями действительного опыта. Нет ничего более опасного, как применять математический аппарат с целью достичь построения этих законов»[43].

Все это было высказано и напечатано в том самом 1916 году, когда на французском языке появился перевод работы Жуковского «Теоретические основы воздухоплавания», решительно опровергавшей утверждения директора аэронавтической школы.

Так широко шагал Жуковский впереди своего времени.

Жуковский был великий ученый, о его рассеянности рассказывали невероятные вещи, но он вовсе не был «человеком не от мира сего», каким обычно представляют себе ученого-теоретика, в особенности математика. Жуковский был не только ученый, но и хозяйственник и организатор, а главное, он был, по меткому определению своих товарищей, «инженером высшего ранга», «сверхинженером».

Само разнообразие тем, которых он касался на протяжении пятидесяти лет своей научной деятельности, объясняется его живой связанностью с потребностями времени и запросами практики. С этими запросами к нему обращались учреждения, предприятия, товарищи, инженеры, ученики, техники всех отраслей промышленности. Конечно, прибегали к помощи «сверхинженера» в наитруднейших случаях. Но Жуковский как раз и любил больше всего на свете решать головоломные задачи, выдвигаемые практикой. Пусть над ними бесплодно бились специалисты, ища разрешения опытным путем, — «сверхинженер» решал их путем теоретических построений и с тем большим успехом, что владел завидным даром выделять важнейшие стороны вопроса и находить простейший метод решения.

«Математическая истина, — говорил он, — только тогда должна считаться вполне обработанной, когда она может быть объяснена каждому из публики, желающему ее усвоить. Я думаю, что если возможно приближение к этому идеалу, то только со стороны геометрического толкования или моделирования. Геометр всегда будет являться художником, создающим окончательный образ построенного здания!»[44].

Излагая результаты своих работ для широкой публики, Жуковский часто обходился без угнетающих рядовое воображение формул даже там, где другой ученый непременно прибег бы к длинным и сложным вычислениям.

Заслуженное, неоспоримое право на звание «инженера высшего ранга» и «сверхинженера» Жуковскому дает именно свойственный ему геометризм представлений. Всю свою жизнь он шел от живого созерцания через геометрическое представление к отвлеченному заключению и отсюда к практическим выводам.

Искусство научного исследования не сводится к техническому приему, к технической установке, нужной для эксперимента. Тем более оно не сводится к тому, чтобы класть под стекло микроскопа все, что попало, одно за другим в надежде на случай, который приведет к открытию. Такой метод работы может нас тронуть, он вызывает глубокое уважение к терпению, настойчивости и усидчивости изобретателя, но это совсем не научно-исследовательский метод.

Искусство научного исследования всегда содержит в себе три момента: наблюдение, догадку и проверку.

Величие Жуковского как исследователя в том и состоит, что он в равной мере владел способностью наблюдения, искусством построения научной теории и даром экспериментатора. Для решения поставленной задачи трудно выбрать более удачные объекты наблюдения, чем те, на которых останавливалось внимание Жуковского. Трудно быть смелее, оригинальнее и остроумнее Жуковского в теоретических построениях, часто шедших в разрез с общепринятым мнением.

Несомненно, что Жуковский обладал и поэтическим дарованием, но оно увлекало ученого в глубину видимой нами живописной природы. Он проникал в тайны стихий, постигал законы, ими управляющие. Тут формулы и чертежу были только средством для выражения постигаемого. Тайны раскрылись геометру.

И он рассказывал, что решения многих крупнейших и красивейших в математическом смысле задач приходили к нему не за письменным столом в московском кабинете, а в глуши Владимирской губернии, на лугу, в поле, в лесу, под ясным голубым небом.

Всю свою долгую жизнь неизменно каждое лето он приезжал сюда и здесь решал отвлеченные задачи, вроде задачи о механической модели маятника Ресса, не удававшейся ему так долго в Москве. Тут он решил ее, этот великий ученый и необыкновенный художник, решил ее, сидя на пеньке в холодеющем лесу, позолоченном светом заходящего солнца, опершись на свое охотничье ружье и безмолвно созерцая мир; сквозь видимое непостоянство живых форм и красок Жуковский ясно видел их закономерность.

Великий русский инженер не строил машин, но чутье конструкции у него было необычайное.

Я думаю, что Жуковский с не меньшим правом, чем Гельмгольц, мог бы сказать о себе, что он «свою юношескую способность к геометрическому созерцанию развил в своего рода механическое созерцание», что он, «так сказать, чувствовал, как распределяются движения и давления в механическом устройстве, как это находят, впрочем, также у опытных механиков и машиностроителей».

Профессор В. В. Голубев вспоминает такой случай. Однажды Николай Егорович получил письмо от молодого инженера, который обращался к нашему великому механику с просьбой о технической помощи. На заводе, где работал инженер, у одной машины сломался коленчатый вал. Своими средствами изготовить новый вал завод не смог. На передачу заказа другому заводу потребовалось бы много времени. Везти вал для исправления было невозможно из-за распутицы. Инженер просил Жуковского, как это часто тогда делали практики машиностроения, придумать — нельзя ли как-нибудь помочь беде.

Николай Егорович через день ответил инженеру приблизительно в таких словах:

«Я машины не видел, назначение ее мне не ясно, по каталогу, присланному вами, разобраться трудно. Но, судя по приложенной вами схеме, в машине действуют снизу такие-то и такие-то силы, а сверху — такие-то и такие-то. При этих условиях для меня совершенно очевидно, что коленчатый вал выгодно заменить шестернями, которые вы легко можете изготовить у себя на заводе».

Инженер подумал, рассчитал и последовал совету ученого-теоретика. Шестерни были быстро изготовлены, поставлены и оказались, как и думал Николай Егорович, более выгодными, чем вал: машина стала работать лучше, и на заводе все удивлялись тому, что иностранная фирма, выпускавшая машины, не сообразила поставить шестерни вместо коленчатого вала.

Профессор Д. К. Бобылев сказал однажды Жуковскому, что Николай Егорович счастлив тем, что начал свою педагогическую деятельность в Техническом училище и что соприкосновение с технической практикой дало ему обильный материал для научных исследований.

«И он был в этом отношении совершенно прав, — говорит сам Жуковский по этому поводу. — Я с удовольствием вспоминаю беседы с моими дорогими товарищами по Техническому училищу… Они указывали мне на различные тонкие вопросы техники, требующие точного разрешения. От них я научился сближению научного исследования с наблюдаемой действительностью»[45].

Несомненно, однако, что счастье Жуковского заключалось и в том еще, что он был прекрасным геометром. Вот история возникновения одной теоретической работы Николая Егоровича, рассказанная живым свидетелем всего происходившего.

Дело было осенью 1919 или 1920 года. Жуковский собрался поехать в Кучино, где жили некоторые его ученики и сотрудники. Сопровождали его К. А. Ушаков и дочь. Вагон поезда был переполнен пассажирами. Для Николая Егоровича едва нашлось место на скамье. Разговаривать было трудно, поезд гремел, вагоны сильно трясло.

Николай Егорович сидел молча, опустив голову и забыв, как всегда, в руке носовой платок, который он держал кончиками пальцев. Казалось, он ничего не замечал вокруг себя, погруженный в какие-то мысли, никак и ничем не связанные ни с поездом, ни с вагоном.

До Кучина ехали долго, от станции надо было итти еще пешком. Николай Егорович шел тихо, как будто едва набираясь сил для каждого шага вперед, все такой же сгорбленный, с опущенной головой. Только когда стали подходить к дому, Николай Егорович оживился, шаг его приобрел твердость. С неожиданным для его лет проворством, обгоняя спутников, он стал подниматься по лестнице с широкими перилами. Чем выше он поднимался, тем становился бодрей. Поднявшись наверх, он прошел в комнату Н. В. Красовского, откуда тотчас же вернулся на террасу с листом бумаги, пером и чернильницей. Он поставил чернильницу на широкие перила, положил бумагу и начал что-то быстро писать своим мелким, убористым почерком. Тут все окружили его и стали звать в комнаты, где сейчас зажгут свет и он сможет сесть за стол. Жуковский в ответ только бормотал:

— Нет, нет, ничего… Я сейчас, сейчас.

— Холодно, Николай Егорович, здесь.

— Ничего, ничего, — твердил он. — Я сейчас… Видите ли, вся картина колебания паровоза на рессорах мне теперь совершенно ясна. Тут четыре оси: две лежат в вертикальной плоскости симметрии паровоза, а две — в плоскости рессор. Я сейчас…

И он начал писать уравнения движения, пользуясь светом угасающего дня и не обращая внимания на неудобства.

Огромному дарованию Жуковского, проникавшему в стихии воды и воздуха, покорявшему самые грозные стихии природы, были близки и понятны исторические социальные перемены, совершившиеся в результате Великой Октябрьской социалистической революции. Победа революции, как он правильно воспринял, вела к торжеству идеалов высшего гуманизма. Передовой науке, истинным представителем которой оставался Жуковский, было по пути с революцией.

Без шумных деклараций, органически вообще чуждых этому человеку великой скромности, Жуковский поставил на службу новому государственному строю все свои знания, опыт, силы и ум. Семидесятилетний старик, он не укрывался за своим возрастом от невзгод первых лет революции и гражданской войны; он не утаил от революционного народа ни одного дня, ни одного часа. В годы нищеты и разрухи, все такой же величавый и сосредоточенный в себе, ранним утром, пешком по занесенным снегом улицам шел он в училище, потом через весь город в университет, часто, к стыду своих учеников, для того, чтобы прочесть лекцию всего трем-четырем студентам.

В это трудное для страны время Жуковский стоял выше мелких жизненных неурядиц. Он делал свое дело в полном сознании того, что его труд сейчас, как никогда, нужен Родине, вставшей на путь борьбы за новую жизнь.

Мысль В. И. Ленина о необходимости создания научно-исследовательских институтов нашла в нем вдохновенного исполнителя. Вместе с одним из своих учеников, А. Н. Туполевым, он первым пришел в научно-технический комитет Высшего совета народного хозяйства и представил ему проект Института аэродинамики и гидродинамики.

Институт организовался в декабре 1918 года. Николай Егорович отвел в качестве одного из его помещений на первое время столовую своей квартиры.

Первую ассигновку Народного комиссариата финансов новому институту подписывали на кухонной плите в единственной теплой комнате помещений комиссариата.

В институте, начавшем работать в Техническом училище, лабораторию отапливали маленькой кафельной печью. На плиту изобретательные сотрудники ставили бак с водой, чтобы больше было тепла. Пар нес сырость. Николай Егорович посоветовал поверх воды налить машинного масла. Расчет оказался, как всегда, правильным: вода не испарялась, тепло держалось долго.

Быт не беспокоил великого ученого. Библиографический список его ста шестидесяти работ подтверждает это.

В 1918 году по предложению Владимира Ильича Ленина был организован Экспериментальный институт Народного комиссариата путей сообщения. В нем был авиационный отдел, которым руководил Жуковский, состоявший членом совета института.

С этого момента великий русский ученый, частью по поручению НКПС, частью по своей инициативе, включил в круг своих работ ряд глубоких исследований по вопросам железнодорожного транспорта. В сочинении «О движении железнодорожных вагонов и паровоза по рельсам на завороте пути» он исправил ошибку французских инженеров и дал верное решение задачи. В следующем своем обширном исследовании — «Работа русского сквозного и американского несквозного тягового прибора при трогании поезда с места и в начале его движения» — Жуковский дал полную теорию пуска поезда в ход при русской сцепке и при американской. Вопрос этот имел огромное практическое значение ввиду часто повторявшихся случаев разрыва длинных составов.

Жуковский нашел, что лучше всего во избежание опасности разрыва пускать поезд в ход при вполне растянутой стяжке. Сравнивая сквозные и несквозные тяговые приборы, он заключил, что последние более совершенны. Наконец в статье «Сила тяги, бремя в пути и разрывающие усилия в тяговом приборе и сцепке при ломаном, резко переменном профиле» Жуковский указал способ определения надежности сцепки поезда данной длины на рассматриваемом профиле.

Большое практическое значение имеет работа Жуковского «О снежных заносах и заилении рек».

Известно, что во время метели несущийся низом снег, встречая на своем пути преграду, не наносится вплотную к ней, а образует на некотором расстоянии от нее бугор, вблизи же самой преграды — выемку. Жуковский в существенных чертах выяснил причину этого явления еще в 1911 году, посвятив ему статью «О снежных заносах».

В новой работе Жуковского выяснена причина наседания снега в определенные места и строение снежного бугра из ряда последовательных полос. Путем сложного применения математического аппарата Жуковский определил форму траекторий снежинок и выяснил характер снежных отложений перед преградой и за нею.

Таким образом, на основании исследований Жуковского практикам представилась возможность наивыгоднейшего размещения снегозащитных устройств для борьбы со снежными заносами.

Так шел вровень с возрождающимся народным хозяйством великий русский патриот, ученый и инженер до последних дней своей жизни.

Весной 1920 года Жуковский перенес воспаление легких, потом его разбил паралич, последовавший за известием о смерти дочери, позднее, в декабре, брюшной тиф и, наконец, новый удар весной следующего года.

Когда во время этой грандиозной борьбы Жуковского со смертью его навестил один из учеников, учитель спокойно сказал ему:

— Мне бы хотелось еще прочесть специальный курс по гироскопам. Ведь никто не знает их так хорошо, как я!

Декретом Совета Народных Комиссаров в ознаменование пятидесятилетия научной деятельности Жуковского «огромных его заслуг, как отца русской авиации», Николай Егорович был освобожден от обязательного чтения лекций, ему предоставлено было право объявлять курсы более важного научного содержания.

И вот старый профессор мечтал о таком курсе, как о благодарности за высокую оценку его заслуг.

Он не мог писать и до последних дней диктовал одному студенту записки по курсу, который намеревался читать.

17 марта 1921 года Жуковский умер.

Сегодня фронтоны нашей Военно-Воздушной академии и Центрального аэро-гидродинамического института украшены именем Жуковского, и каждый новый успех советской авиации свидетельствует нам о торжестве научных идей великого русского «сверхинженера», о торжестве созданной им школы аэродинамиков.

 

10. «Наука — луч света для практиков»

Приветствуя от лица Академии наук Сергея Алексеевича Чаплыгина в день пятидесятилетия его научной деятельности, Алексей Николаевич Крылов писал в своем «открытом письме» старому ученому:

«В 1929 году было решено образовать в составе Академии отделение технических наук из трех кафедр.

Ваши замечательные труды в области науки и техники сами собою поставили Ваше имя во главе подлежащих баллотировке кандидатов, и Вы были избраны единогласно.

В 1931 году исполнилось сорокалетие Вашей научной деятельности, и Академия постановила издать полное собрание Ваших сочинений. Издание это закончено в 1935 году, и изучение Ваших трудов не требует теперь разыскивания их, как библиографических редкостей.

Работы, вошедшие в первый том, по своим заглавиям могут показаться имеющими общий математический характер и относящимися к теоретической механике, но более внимательный просмотр, не говоря даже об их изучении, убедит, что в этих работах нельзя отличить, где оканчивается математика и где начинается техника или методы, к ней приложимые.

Работы, вошедшие во второй и третий тома, не только чисто технические по своему содержанию, но даже носят и чисто технические названия.

Приведу некоторые примеры: первой работой, вошедшей во второй том, является Ваша докторская диссертация „О газовых струях“; по своему содержанию она представляется чисто математической, но в третьем томе находится статья „Опыт применения уравнений гидродинамики к вопросу о движении снаряда в канале орудия“, а также статья под заглавием „К теории продувки двигателей дизеля“, которая, как и предыдущая, основана на статье „О газовых струях“, напечатанной задолго до того, как были изобретены двухтактные дизели!

Другой пример: в первом томе помещена написанная Вами в 1889 году статья „К вопросу о струях в несжимаемой жидкости“, которая тогда всякому читателю могла представиться как имеющая чисто теоретический, отвлеченный интерес. Но во втором томе помещены статьи „К теории гидрокона“, всецело основанные на теории струйного движения жидкости и безвихревого обтекания твердого тела.

Гидроконом называется направляющий аппарат для водяных турбин; в 1899 году, в тогдашней России об использовании неисчерпаемых запасов энергии наших больших рек турбинами в десятки и сотни тысяч сил, о каменных плотинах, о возможности запрудить Днепр, Волхов, Свирь, Волгу или Ангару никто и не помышлял.

Плотины сооружались не из железобетона такими инженерами, как наши сочлены академики Графтио, Веденеев, Винтер, а из жердей, земли и навоза пришлыми полуграмотными „чертопрудами“ в огромном большинстве случаев для водяных мельниц, много что на 12 поставов, то-есть примерно на сто сил.

Мне случайно пришлось быть на закладке такой плотины на р. Алатырь лет 40 тому назад.

„Чертопруд“… брал „за разум“ по 500 и 1 000 рублей, большие деньги по тогдашнему времени, выпивал при закладке плотины неимоверное количество водки, шкалик которой выливал в реку, после чего бормотал какое-то таинственное заклинание, в котором только и можно было изредка разобрать слова: „хозяин водяной“, „хозяин сей реки“, „отсунь, засунь, присунь“, выдавал на гербовом листе ручательство на любую сумму и на любой срок, а когда в первую же весну плотину прорывало, то найти в просторах необъятной России пришлого „чертопруда“ было столь же трудно, как изловить в реке того „водяного“, которого он заклинал.

При этой закладке владелец мельницы был немец Бер и у него имением управлял тоже немец из Саксонии.

У русских купцов при закладке плотины не „чертопруд“ заклинал „водяного“, а поп служил молебен с водосвятием и с выносом иконы „пресвятыя богородицы рекомой прибавление ума“.

И вот в это же время Вы, Сергей Алексеевич, писали свою статью „О струях в несжимаемой жидкости“ — статью, которая через 25 лет послужила к обоснованию теории и расчета гидроконов, когда академик Графтио сооружал на Волхове первую мощную, на сто шестьдесят тысяч сил, электростанцию.

Уже на существующих теперь мощных электростанциях гидроконы сохраняют громадное количество энергии, а когда будут работать станции на Волге, на Каме, на Ангаре, на гигантских сибирских реках, то трудно и представить себе, сколько энергии сберегут гидроконы.

Ваш путь к решению сложных технических вопросов может считаться классическим: точно высказав вопрос, Вы придаете ему математическую формулировку и приводите к определенному математическому вопросу, для решения которого Вы и применяете чисто математические методы, которыми Вы с таким мастерством владеете.

Получив решение, Вы возвращаетесь к техническому вопросу и применяете к нему полученное решение, давая ему соответствующее истолкование.

Вы мне скажете, что все так делают. На это я отвечу, что всякий умеет держать в руке кисть, но только Репин сумел своею кистью создать „Бурлаков“.

В области аэродинамики и гидродинамики Вы являетесь прямым продолжателем работ Н. Е. Жуковского, Вашего учителя и друга.

Ваша теорема о „дужке“ стала классической, вошла во все курсы аэродинамики и авиации, Ваши исследования подъемной силы и лобового сопротивления крыла служат основою для расчета самолетов. Может быть, Вам не попадалась статья в американском журнале „Соединенные службы“, в которой на основании официальных данных исчислено, что в течение первой мировой войны воюющими державами было изготовлено сто девяносто одна тысяча самолетов.

Конечно, не все они были в строю, многие хранились на складах как запасные.

Мне нечего говорить о том, что делает авиация теперь, ставшая едва ли не первенствующим родом оружия, и сколько сот тысяч раз применялись к практике Ваши теоретические исследования и Ваши теоремы.

Ваше исследование, произведенное в 1904 году совместно с Н. Е. Жуковским, „О трении смазочного слоя между шипом и подшипником“ получило через 20 лет в руках Митчеля практическое развитие и применение, и он заработал миллионы фунтов стерлингов на своих подшипниках.

Пришлось бы перечислить все Ваши работы, настолько каждая из них поучительна, оригинальна, изящна по примененному методу решения и законченна по результатам.

Привлекая Вас к работе в качестве действительного члена вновь учрежденного технического отделения, Академия наук имела в виду и Ваш талант как организатора и научного руководителя крупнейших учреждений.

ЦАГИ служит наилучшим этому подтверждением. Этот научно-исследовательский институт стал особенно знаменитым по разработке оригинальных конструкций тех самолетов, которые совершили всем известные необыкновенные перелеты, превзошедшие по своей продолжительности и по той области, где они совершались, все самые смелые мечтания человечества.

Это суть результаты практической деятельности ЦАГИ и Военно-Воздушной академии имени Н. Е. Жуковского и летных школ, давших наших доблестных Героев Советского Союза, и тех тысяч наших героических летчиков, готовых зауряд выполнить любое задание и совершить любые подвиги»[46].

По этому письму академика А. Н. Крылова можно видеть, что Сергей Алексеевич Чаплыгин имел счастье, не часто выпадающее тем, кто пролагает новые пути в науке или искусстве, дожить до полного признания, когда даже такая далеко заглядывающая вперед его работа, как докторская диссертация «О газовых струях», получила огромное практическое приложение.

Для этого понадобились, однако, не только пятьдесят лет научной деятельности, но и тот огромный простор для практических приложений творчества людей науки, который открылся в нашей стране после Великой Октябрьской социалистической революции.

Сергей Алексеевич родился 5 апреля 1869 года в Ранненбурге, в той самой Рязанской губернии, где когда-то так много было сделано русскими людьми попыток летать по воздуху. Он учился в Воронежской гимназии, а в 1890 году окончил Московский университет. Через четыре года, идя твердо избранным путем, он занял здесь кафедру прикладной математики.

Сергей Алексеевич Чаплыгин

 (1869–1942).

Н. Е. Жуковский очень рано выделил своего ученика в число лиц, подготавливавшихся к профессуре, и не ошибся, заметив в нем необычайные способности.

В своей речи о «Механике в Московском университете за 50 лет», произнесенной Н. Е. Жуковским в торжественном заседании, посвященном сорокалетнему юбилею его научной деятельности, Николай Егорович говорил, переходя к задаче о движении твердого тела по инерции внутри несжимаемой жидкости:

«Эта задача ввиду богатства форм допускаемых движений живо заинтересовала меня, когда в качестве приват-доцента я начал свои лекции в Московском университете чтением специального курса гидродинамики. При напечатании этого курса я высказал некоторые соображения о постановке этой задачи с геометрической точки зрения. За разрешение этой задачи взялся тогда еще начинавший свою ученую деятельность С. А. Чаплыгин и в двух своих прекрасных работах показал, какой силой могут обладать остроумно поставленные геометрические методы исследования. Мой дорогой товарищ С. А. Чаплыгин пополнил исследования своего учителя еще другой работой. Ему удалось метод исследования струй распространить на газовые струи. При современных условиях воздухоплавания исследования С. А. Чаплыгина получают выдающееся значение!»[47].

Одна за другой научные работы Чаплыгина приносили ему ученые степени, премии, медали, известность. Работы Чаплыгина по общим вопросам динамики системы и динамики твердого тела относятся к области чистой математики, и изложение их в доступной форме весьма затруднительно. Работы второй группы, представляющие ценнейший вклад в инженерную науку, в большей или меньшей степени доступны общему пониманию.

— Научный труд — это не мертвая схема, а луч света для практиков! — говаривал Чаплыгин.

Так смотрел на науку Н. Е. Жуковский, так смотрел на науку и его первый ученик.

Всякий неразрешенный практиками вопрос техники возбуждал творческую активность Сергея Алексеевича, чем и объясняется тематическое разнообразие его работ. Вместе с Жуковским он разработал теорию смазки в подшипниках. Расчеты движения поезда и полета снаряда привели Чаплыгина к созданию нового и оригинального метода решения диференциальных уравнений. К методу этому его привела недостаточность старых приемов для решения новых технических задач, но в основу метода был положен новый принцип, имеющий весьма широкую область применения, далеко еще не исчерпанную до наших дней.

Можно было бы указать еще ряд работ Чаплыгина, посвященных различным вопросам инженерной техники. Эти работы показывают, что во многих вопросах Чаплыгин опережал своих современников и для полной оценки их нужно еще время. Но уже сейчас Чаплыгин рисуется нашему взгляду могучей и оригинальной фигурой «инженера высшего ранга», вписавшего вместе с Жуковским одну из наиболее блестящих страниц в историю механических наук.

Чаплыгин еще молодым ученым вошел в круг интересов тогдашних университетских математиков и механиков. Интересы эти сводились главным образом к геометрии и классической механике. В те годы техники и инженеры предъявляли очень малые требования к механике. Большинство сооружений строилось еще старыми способами. Опыт и многообразная практика считались лучшей наукой.

Интересы механиков группировались вокруг вопросов астрономии и физики. Многие из этих вопросов имели большое принципиальное значение, способствуя развитию общих методов механики, но они не имели отношения к технике.

Чаплыгину принадлежит ряд выдающихся исследований в этой так называемой «классической механике». Они показали, что молодой ученый владеет самыми сложными аналитическими методами науки. В первой такой работе Чаплыгина — о движении твердых тел в жидкости — был раскрыт ряд геометрических законов движения. После этого Чаплыгин дал ряд работ по общим уравнениям механики и общим методам их решения, имея конкретные механические приложения. Во всех дальнейших работах Чаплыгина мы не найдем ни одной, которая не была бы применена им к конкретным задачам.

Никакие математические трудности не останавливали Чаплыгина. В каждом случае он создавал свои оригинальные методы, позволяющие наиболее удачно решить задачу. Этим объясняется, что многие из его работ получили широкое применение в исследованиях других ученых.

Наиболее крупной работой Чаплыгина является его докторская диссертация «О газовых струях». Эта работа примыкает к ряду работ Жуковского и других ученых, которые дали новое направление Московской школе механиков. Теория струи в то время для Жуковского и его учеников представлялась средством для изучения вопросов сопротивления тел при движении их в жидкости.

«Эти первые работы в конце концов привели Жуковского, Чаплыгина и их учеников к проблематике, которая создала новую эпоху в механике — эпоху технической механики, — говорит академик Келдыш. — В центре этой новой проблематики стали вопросы теории полета, но интересы распространились и на задачи баллистики, теории смазки, гидравлики и всех других областей, связанных с интенсивным развитием техники XX столетия. Это новое направление совершенно изменило лицо механики, сделав ее наукой, непосредственно связанной с техникой, непосредственно решающей технические вопросы. В настоящее время вопросы техники стали столь велики, что для решения выдвигаемых ею задач необходимо привлечение наиболее сложных и тонких методов математики и механики. Но вместе с этим сближение механики с техническими вопросами изменило и самые методы механики. Если в классической механике все вопросы решались математическими методами, то технические проблемы потребовали привлечения широкого научного эксперимента, и механика из математической дисциплины превратилась в науку, опирающуюся на наиболее современные достижения математики и на широкий научный эксперимент. С. А. Чаплыгин является одним из сильнейших ее представителей, внесших математическую науку в решение технических задач. Он сам всегда работал средствами математического анализу, но вместе с тем он всегда придавал первостепенное значение развитию экспериментальных методов, использовал в своих исследованиях гипотезы, возникшие из экспериментальных исследований, и придавал основное значение экспериментальной проверке своих работ»[48].

Работа «О газовых струях» является одной из первых работ, знаменующих переход к новой эпохе в механике. В этой работе С. А. Чаплыгин дает решение ряда задач о струйных движениях сжимаемого газа. Основное значение этой работы заключается в том, что в ней даны методы изучения газовых течений со скоростями, близкими к звуковым.

Чаплыгин писал свою знаменитую диссертацию летом 1901 года. В решении такого рода задач в те времена техника особенно не нуждалась. Вопросы сопротивления воздуха, представляющего частный случай газового потока, практиков мало интересовали. Их скорее интересовали бы вопросы сопротивления жидкостей, но и в этой области сделано было очень мало.

Как известно, многие физические законы общи для газов и жидкостей. Но всякий газ, в том числе и воздух, можно сжать движением поршня в цилиндре, как, например, в двигателе дизеля. Жидкости же несжимаемы, и на этом их свойстве основан целый ряд гидравлических машин. Д. И. Менделеев первым пришел к выводу, что данные для сопротивления жидкостей можно применять и к воздушной среде, что «опыты с водою дополняют и дополняются опытами с воздухом». Но он предвидел и то, что с достижением некоторой «критической скорости движения тела в жидкой среде сопротивление всякой жидкости будет возрастать быстрей, чем до этого», то-есть законы сопротивления за пределами этой «критической скорости» окажутся иными, чем раньше.

Бомбардировщик конструкции Петлякова.

Еще до своей диссертации Чаплыгин показал в статье «О некоторых случаях движения твердого тела в жидкости», что воздух можно считать несжимаемым, как жидкость, лишь до тех пор, пока скорость движущегося тела будет значительно меньше скорости распространения звука в атмосфере, то-есть меньше примерно тысячи двухсот километров в час. При скоростях, близких к звуковым, законы сопротивления в газовой среде будут резко отличаться от законов сопротивления в жидкой среде, так как сжимаемость воздуха будет влиять на обтекание и скажется на срыве струй.

После такого вывода Чаплыгин естественно обратился к исследованию тазовых струй, к разработке метода решения задач на сопротивление тела в потоке сжимаемого газа. В своей диссертации он дал гениальное по простоте решение. Оно состоит в том, что если известно решение некоторой задачи теории струй для случая несжимаемой жидкости, то решение аналогичной задачи для газа получится в виде такого же ряда, все члены которого получат некоторые дополнительные множители.

Сейчас, когда в авиации достигнуты звуковые и сверхзвуковые скорости, а обтекание происходит при «критическом» режиме и часть воздуха движется со скоростью, большей скорости звука, нет надобности объяснять колоссальное значение работы Чаплыгина. Но кто мог оценить эту работу сорок лет назад, когда самолеты еще не поднимались в воздух и не было ни одной области техники, которая могла бы воспользоваться гениальным решением молодого ученого?

Докторскую степень Чаплыгину присудили, но из лиц, присутствовавших на защите диссертации, кажется, только один К. А. Тимирязев почувствовал всю глубину мысли докторанта. Человек, одаренный необыкновенной чуткостью в делах науки, первым назвавший И. П. Павлова «великим русским физиологом», Тимирязев, поздравляя Чаплыгина, сказал ему:

— Я не понимаю всех деталей вашего исследования, которое лежит далеко от моей специальности, но я вижу, что оно представляет вклад в науку исключительной глубины и ценности!

Чутье не обмануло Тимирязева. Через сорок лет столь отвлеченная для своего времени работа становится основой при разрешении задач скоростного полета. Эти задачи на наших глазах начал решать достойный преемник Жуковского и Чаплыгина академик С. А. Христианович. Он полностью решил задачу для самых важных случаев — крыла и тела вращения — и создал теорию скоростного полета, развив идеи, заложенные в работе Чаплыгина.

Говоря о людях, «которые могут полностью понять любое, выраженное в символической форме, сложное соотношение или закон, как соотношение между абстрактными величинами», Джемс Максвелл добавляет: «Такие люди иногда равнодушны к дальнейшему утверждению, что в природе действительно существуют величины, удовлетворяющие этим соотношениям. Мысленная картина конкретной реальности скорее мешает, чем помогает их рассуждениям».

Именно таким человеком и был Чаплыгин.

— Удивляюсь, как это люди могут выдумывать такие вещи, — сказал он однажды, осматривая остроумный прибор, показывавший не только непосредственные данные испытаний в аэродинамической трубе, но и готовый коэффициент к теоретическому расчету сопротивления.

Удивляясь искусству практиков механики, Чаплыгин в то же время почти каждой своей работой освещал неясные стороны загадочных явлений, с которыми они сталкивались. Он не только, совместно с Жуковским, создал циркуляционную теорию и вывел формулы для подъемной силы, но указал и многочисленные типы крыльев, для которых задача вычисления подъемной силы решается до конца.

Совместная работа Жуковского и Чаплыгина в деле, имевшем такое колоссальное значение для мировой авиации, чрезвычайно интересна и сама по себе. Приведем один эпизод, характеризующий творческую сущность двух ученых, необыкновенно дополняющих один другого.

В конце 1909 года Жуковский делал доклад «О причинах образования подъемной силы крыла самолета» на очередном съезде естествоиспытателей. На докладе присутствовал и Чаплыгин.

Жуковский объяснил, как возникает подъемная сила крыла, и вывел формулу, позволяющую рассчитывать силы, действующие на крыло. Но в эту формулу входила «циркуляция скорости» — величина, определить которую, по мнению докладчика, можно было только путем сложных и громоздких экспериментов.

Слушая своего учителя с полузакрытыми, по обыкновению, глазами, Чаплыгин неожиданно пришел к мысли, что эту величину можно вычислить и без экспериментов, не вставая из-за стола, чисто аналитическим путем. Жуковский заинтересовался предложением. Чаплыгин изложил ему ход своей мысли.

Рассуждения его сводились к следующему.

Исследователями, наблюдавшими скорость частиц воздуха, обтекающих крыло при его движении сверху и снизу, было замечено, что скорости на верхней поверхности крыла больше, а на нижней поверхности — меньше скорости движения крыла. Происходит это потому, что давление воздуха на верхней поверхности крыла при его движении меньше атмосферного, а на нижней — больше.

Разность давлений сверху и снизу крыла при его движении и дает в сумме подъемную силу, равную по величине весу самолета. Следовательно, увеличивая скорость частиц воздуха на верхней поверхности крыла и уменьшая ее на нижней, можно увеличить подъемную силу. Теоретически это можно сделать, присоединяя к равномерному потоку добавочный, циркулирующий вокруг крыла так называемый «циркуляционный» поток. В действительности это и происходит, если добавочный циркуляционный поток выбран конструктором так, что частицы воздуха плавно стекают с верхней поверхности у задней кромки крыла.

При наличии такого условия Чаплыгину уже не стоило труда вывести правило подсчета циркуляции воздуха математическим путем. Подстановка вычисленной величины в формулу Жуковского дала возможность вычислять подъемную силу крыла, не прибегая к длительным, сложным и громоздким опытам.

Таким образом, благодаря Чаплыгину вместе с теоремой Жуковского о величине подъемной силы явился и законченный метод определения подъемной силы крыла заданного профиля. Этот метод вошел в мировую практику, и строители самолетов пользуются им до сегодняшнего дня.

Чаплыгин доложил свое исследование в Математическом обществе, а затем опубликовал его в виде мемуара «О давлении плоскопараллельного потока на преграждающие тела».

Идея, положенная Чаплыгиным в основу решения задачи об определении величины циркуляции, восходит к некоторым соображениям, приведенным в его докторской диссертации «О газовых струях», — именно: к положению, что при реальном течении скорости не могут быть ни в какой точке бесконечно большими. До работы Чаплыгина теоретическая наука считала, что скорость потока, обтекающего острые углы контуров, бесконечно велика.

Умозрительные заключения Чаплыгина неизменно совпадали с реальной действительностью и потому указывали путь к практическим приложениям.

В 1914 году Чаплыгин опубликовал «Теорию решетчатого крыла», а в 1921 году — «Схематическую теорию разрезного крыла». Эти работы в конце концов привели к изменению крыла. Крылья на первых аэропланах, как известно, представляли собой «несущие плоскости», неподвижно скрепленные с самолетом и не имевшие ничего общего с тем сложным и гибким механизмом, каким является крыло птицы.

Развивая общую теорию «разрезного крыла», Чаплыгин, в частности, показывает, что если крыло имеет в профиле форму разрезанной на части дуги круга, то подъемная сила крыла при таких раздвинутых «перьях» больше, чем при сдвинутых, и крыло выигрывает в своей устойчивости. Так Чаплыгин объяснил действия предкрылков, закрылков и щитков, имеющих сегодня огромное значение: благодаря им скоростной самолет может уменьшить посадочную скорость, увеличивая подъемную силу «раздвиганием перьев». В результате этих работ Чаплыгина крыло нынешнего самолета с его добавочными подвижными «перьями» — предкрылками, закрылками, элеронами, щитками — представляет собой сложный механизм, не только близкий к крылу птицы, но, может быть, и превосходящий его по гибкости.

Характеризуя значение работ С. А. Чаплыгина, надо иметь в виду, что большинство из них широко публиковалось в русской научной печати, открыто докладывалось в научных обществах и поэтому становилось доступным ученым всего мира. Немудрено, что многие из его идей были заимствованы зарубежными исследователями, которые отнюдь не ссылались при этом на русские источники.

Так, например, в докладе на Третьем воздухоплавательном съезде в Москве в 1914 году Чаплыгин вывел формулу лобового сопротивления. Между тем эта теория стала общеизвестной в 1918 году под названием «индуктивной теории», якобы разработанной независимо от русского аэродинамика.

Впрочем, бывало и иначе: знаменитая докторская диссертация Чаплыгина «О газовых струях» стала по-настоящему известна за границей только в 1936 году. На Международной конференции по газовой динамике в Риме идеи русского ученого слушались как новость. Они легли в основу дальнейшей разработки проблем скоростного полета.

Сергей Алексеевич любил истории о рассеянности и причудах ученых людей и мог рассказать множество таких анекдотов. Но сам он не только не страдал рассеянностью, а, наоборот, поражал окружающих феноменальной памятью на все вплоть до телефонных номеров. Кажется, всего только раз в жизни смутился он, берясь за трубку телефона.

— Года полтора тому назад я как-то звонил по этому телефону, — сказал он, припоминая номер, — а вот точно не помню последней цифры — сорок шесть или сорок семь.

Чаплыгин являл собой тип активного организатора, администратора и хозяйственника. Он был первым директором Московских высших женских курсов; и исключительно благодаря его энергии были открыты два новых факультета с прекрасным оборудованием и высокой постановкой преподавания. Преобразование курсов во Второй московский университет произошло также благодаря Чаплыгину. Он был и первым ректором этого университета. У Чаплыгина была огромная память и необычайная зоркость; при исключительной способности широко мыслить и угадывать любые отношения эти свойства были использованы Чаплыгиным не только в сфере научной деятельности.

Хозяйственный, административный, организаторский практицизм Сергея Алексеевича носил иногда прямо-таки анекдотический характер. Здание Высших женских курсов в дореволюционные времена он строил так: предоставленный для постройки земельный участок заложил в банке, а на полученную ссуду выстроил два первых этажа здания. Затем это недостроенное здание снова заложил, а на полученные по закладной деньги достроил его. Отделку же помещений произвел, заложив самые закладные бумаги.

Будучи председателем коллегии ЦАГИ, он ввел в обычай, чтобы на заседаниях коллегии рассматривались мельчайшие хозяйственные дела, вплоть до утверждения счетов, подлежащих оплате.

На одном из заседаний коллегии фигурировал счет за «продувку» в аэродинамической трубе петуха. Сергей Алексеевич сказал:

— Платить не станем!

Незадолго до того без всяких возражений был оплачен совершенно аналогичный счет за «продувку» вороны. Один из членов коллегии заметил:

— Если мы платили за ворону, Сергей Алексеевич, то почему же не платить за петуха?!

— Петух не летает! — ответил Чаплыгин.

Петух, действительно, плохой летун, но кто, кроме Чаплыгина, был бы способен заметить это соотношение между бухгалтерией и аэродинамикой?

Математика была для Чаплыгина средством познания, более совершенным, чем все другие.

Чаплыгин был блестящим математиком с огромной памятью и интуицией. Он любил мир точных соотношений и переносил эту точность во все практические приложения науки. Иллюстрируя какие-нибудь математические построения высокой точности, он спокойно приводил такой пример, где точность практически оказывается ненужной, даже смешной. Так, например, он вычислял срок прихода поезда по графику с точностью до одной миллионной доли секунды.

В его присутствии никто не мог сделать ни одной ошибки в математическом построении. Он все знал и все помнил.

Характерный случай произошел однажды в Московском математическом обществе на докладе Жуковского. Жуковский, чтобы не тратить времени на писание чисел и формул, имел обыкновение показывать на экране вместо доски заранее заготовленные формулы и вычисления. Так было и на этот раз.

Когда на экране появился какой-то новый расчет, Чаплыгин заметил угрюмо:

— Николай Егорович, у вас коэффициент не тот!

— Как не тот? — всполошился Николай Егорович, подбегая к экрану. — Разве не тот?.. Да, действительно, не тот, — согласился он, когда заметил ошибку, и, забывая, что перед ним не доска, а экран, послюнил пальцы и стал стирать световую формулу.

Математика для Чаплыгина была искусством строгих логических решений. Оставаясь полным хозяином в своей области, он не мешался в чужие. Он прокладывал путь практике — задачу приложения полученных результатов он предоставлял другим.

Жуковского нередко можно было увидеть в лаборатории за каким-нибудь опытом. Чаплыгин пытался раз, еще студентом, провести какой-то физический опыт, но сделал все так плохо, что потом уже никогда не брался экспериментировать.

Жуковский бесконечно любил живую природу. Чаплыгин был к ней равнодушен. Если он приезжал в дом отдыха, то целыми днями просиживал за шахматами, и часто даже один, если не было партнера.

Бомбардировщик конструкции Илюшина.

Чаплыгин был более всего удивителен для окружающих тем, что совмещал в своей личности философа и хозяйственника, мыслителя и администратора. С одинаковой глубиной и зоркостью он постигал и сложные закономерности вселенной и организацию экспериментальных работ в аэродинамической лаборатории его имени.

Нет почти ни одной области инженерного дела, в которой бы сегодня не применялся математический аппарат, но трудность теоретических решений заключается не в развитии математической теории и тем более не в счетной работе, которую в наши дни выполняют и автоматы. Основная трудность заключается в выборе предпосылок для математической обработки, в установлении функциональных зависимостей между ними и, наконец, в истолковании полученных математическим путем результатов.

Математик прежде всего находит общую форму изучаемых явлений, пренебрегая ненужными для исследования сторонами, а затем производит логический анализ, тщательное и глубокое исследование этой формы. Скажем, исследуя движение планет, математик пренебрегает размерами небесных тел, заменяя их «материальными точками».

Найдя такую общую форму изучаемого явления, математик затем переходит к установлению функциональных связей между переменными величинами, например связи между колебаниями массивной системы железнодорожного моста и весом движущегося по нему с некоторой скоростью поезда.

Вот в установлении всякого рода функциональных связей и был величайшим мастером Сергей Алексеевич Чаплыгин. Он умел устанавливать эти связи между любыми величинами с проникновением гения, кажется никогда не ошибаясь.

Великим мастером он был и в истолковании полученных математическим путем результатов.

Область применения математического анализа в физических науках принципиально не ограничена. При математическом анализе физических явлений исследователь, однако, каждый раз должен строить схематическую, упрощенную «модель явления». Она дает лишь приблизительную картину действительности. Теоретическая аэродинамика, например, решая математическим методом свои задачи, исходит из модели «идеальной жидкости», модели Эйлера. Жидкость предполагается в виде всюду однородного, сплошного тела, она не имеет вязкости, и трения в ней не существует. В такой идеальной жидкости, конечно, движущееся тело не должно испытывать никакого сопротивления. На самом же деле в реальной жидкости, как и в воздухе, всякое тело при движении испытывает сопротивление. Таким образом, «модель явления», с которой оперирует аналитик, не является копией действительности, что и ограничивает применение каждого математического метода. Ибо при учете достаточного количества сторон действительных явлений «модели» результаты получаются настолько сложные, что существующие математические методы недостаточны для их обработки.

Но Чаплыгину казалось, что истинная природа может быть описана только при помощи математических построений. Если воображаемая природа Чаплыгина очень близко подходила к реальной природе, его открытия и заключения приобретали огромное значение.

Если реальная природа отступала в своем поведении от законов, математически устанавливаемых Чаплыгиным, он считал свои построения неправильными, но оставался в уверенности, что мир постигать может только математика.

Чаще всего, однако, реальная природа вела себя именно так, как по математическому построению «сверхинженера» она должна была действовать.

— Природа любит простоту, — говорил он. — Если у нее верно спрашиваешь, она ответит просто.

И если в результате его построения получалась громоздкая, сложная формула, он браковал работу и начинал ее сызнова.

Сергей Алексеевич мог «полностью понимать любое, выраженное в символической форме сложное соотношение или закон, как соотношение между абстрактными величинами». Когда он, переходя от одного математического соотношения к другому, писал, как обычно: «Отсюда ясно, что…», даже изощренные математики не всегда могли восстановить тот логический путь, который представлялся ему не требующим пояснений.

Чаплыгин сидел на научных докладах, как бы дремля, с полузакрытыми глазами, но в ту минуту, когда вы готовы были бы поклясться, что ом давно уже потерял нить рассуждений докладчика, ученый вдруг приоткрывал глаза и говорил:

— Иван Николаевич, а почему у вас тут плюс?

— Как почему? — отвечал докладчик, готовый пуститься в длинные рассуждения, чуть ли не с самого начала. — Изволите видеть, я взял…

— Да нет, вы проверьте, Иван Николаевич, — прерывал его Чаплыгин, — тут не плюс!

И неизменно оказывалось, что Чаплыгин, контролировавший речь докладчика, замечал малейшую ошибку в сложнейшем выражении, для которого едва хватало большой доски аудитории.

Чаплыгин начал с разработки математических идей своего учителя, высказанных им попутно в курсе гидродинамики, и до конца жизни оставался «инженером высшего ранга», «лучом света для практиков», но не инженером-конструктором, которым он удивлялся не менее, чем удивлялись они ему.

Ученый теоретик и мыслитель, он обладал в то же время незаменимым даром каждого организатора угадывать людей.

Однажды ему принесли полученную по почте из Макеевки рукопись никому не известного молодого инженера. На протяжении нескольких страничек автор ее с юношескими апломбом и легкостью решал все вопросы гидравлики, гидродинамики и аэродинамики. К всеобщему удивлению, старый ученый послал автору любезное приглашение работать в институте.

Тот принял это приглашение и приехал в Москву.

Читая между строк незрелого сочинения, С. А. Чаплыгин угадал в его авторе своеобразную возможность внести в изолированную область авиации оплодотворяющий опыт смежных областей. Инженер-механик и энергетик В. И. Поликовский пришел работать в авиацию с несколько иным кругом привычных представлений, с несколько иным ходом мысли, чем специалисты аэродинамической школы. И в этом ином мышлении Поликовского заключалась творческая сила. Иной строй мысли дал ему возможность решить с большим искусством, и притом самым неожиданным образом, ряд задач в области научной и практической авиации.

Центральный аэро-гидродинамический институт имени Жуковского в большой мере обязан своей всемирной известностью организаторскому таланту Чаплыгина. Он построил здания института, организовал его экспериментальное хозяйство и придал его отделам единое авиационное направление. После того как закончился период организации, Чаплыгин отошел от руководства и посвятил свой труд и свое время теоретической работе в аэродинамической лаборатории ЦАГИ, на двери которой значилось:

«Аэродинамическая лаборатория имени С. А. Чаплыгина».

И в течение пятнадцати лет каждое утро, в урочный час, будь то зима или лето, дождь или снег, тепло или холод, он открывал эту дверь и проходил в свой кабинет, оставив в вестибюле, если была зима, пальто, шапку и высокие просторные калоши, каких уже никто не носил. В самом присутствии этого человека, в простом появлении его крупной, спокойной фигуры заключалась дисциплинирующая властность. Ему было уже много лет, его волосы были белы, пухлые веки, брови и складки лба как бы с трудом выносили тяжесть работы ума, и самая голова уходила в плечи, словно от утомления. Но глубокая мудрость его проникала во все хозяйство лаборатории, в каждый эксперимент, в каждую мысль сотрудника.

Трудно перечислить, да и вряд ли можно сделать доступными общему пониманию работы экспериментально-аэродинамического отдела, выполненные в аэродинамической лаборатории учениками и учениками учеников Жуковского под руководством С. А. Чаплыгина.

Созданные советской властью условия для неограниченного развития науки он в полной мере использовал для дела, которое его воодушевляло. Подобно своему великому учителю, с щедростью гения бросал он семена в благодатную почву, и сеятели были достойны своей земли: мы знаем теперь и мировое значение и мощь русской авиации.

Награжденный званием Героя Социалистического Труда, Сергей Алексеевич до последних дней своей жизни работал в полную меру своих сил. Он умер 8 сентября 1942 года в Новосибирске.

За несколько дней до того он спокойно и обстоятельно обсуждал различные практические мероприятия по ускорению строительства аэродинамической лаборатории.

В березовой роще, перед входом в лабораторию, и был похоронен первый ученик Жуковского.