Из элементарного кирпичика, затерянного среди миллиардов миллиардов многих иных таких же кирпичиков, молекула за какие-то пятнадцать лет превратилась в нечто вполне самостоятельное. Теперь она может воплотиться в научный прибор или в сложную установку, а то и машину, и эти новые роли молекулы становятся все сложнее и многочисленнее, ей под силу все более трудные дела, и со дня на день должна прилететь весточка об успешной монументальной сборке молекулы-машины. Раз уж нам удалось понять, как собираются белки, мембраны и рибосомы в живой клетке, то неужели мы не сумеем воспроизвести структуру и организацию хотя бы самых простейших, но и самых крошечных форм жизни? А вдруг, когда мы соберем все составляющие вместе, получится искусственная клетка и эта клетка окажется живой?

Насколько нам известно сегодня, самые маленькие из всех живых организмов, населяющих нашу планету, — бактерии. А самые маленькие бактерии — меньше 200 нм. Вот это малютки! Для сравнения: обычные бактерии часто разрастаются до 1000 нм, а средний размер клеток человеческого тела — около 20 000 нм. Вирусы, правда, еще меньше (200–300 нм), но их не считают живыми организмами, потому что они не умеют ни жить самостоятельно, ни репродуцировать себя (то есть сами по себе вирусы не способны размножаться).

Предполагается, что могут быть открыты бактерии еще меньшие, чем все известные малютки: они должны быть не длиннее 100 нм, а то и 20 нм! Если эти крошечные «нанобактерии» и в самом деле будут обнаружены, то они окажутся куда меньше всего того, что мы привыкли называть жизнью. В самом деле, они настолько малы, что их, кажется, и быть не может. Ведь для того, чтобы питаться и размножаться, то есть, иначе говоря, быть живым и, следовательно, жить, организм заведомо должен содержать в себе всё, что необходимо для выживания: непременно ДНК, рибосомы — чтобы вырабатывать белки, митохондрии, ну и цитоплазму — кисель, где все это плавает, упакованное в плазматическую мембрану, которую защищает жесткая стенка (без нее, правда, как-то обходится микоплазма — мельчайший из известных живых организмов). Теоретики подсчитали, что живой организм никак не может быть меньше 180 нм.

А вот новые бактерии должны быть еще меньше. Они состоят, согласно общепринятым воззрениям, или из самых маленьких сборщиков макромолекул, еще способных жить (это нисходящий подход, то есть миниатюризация), или из одной монументальной макромолекулярной машины — машины естественной, то есть созданной самой природой, но научившейся жить (тут: восходящий подход, монументализация). Само существование таких организмов оспаривается. Люк Монтанье, открывший вирус СПИДа, окрестил их аббревиатурой НБО — «неопознанные бактериальные объекты». Следы этих пока неопознанных бактериальных объектов обнаружены во многих и разных местах планеты: на скалах и в осадочных породах морского дна, а также в организмах млекопитающих (коров и людей).

МЕТЕОРИТ — КРАЕУГОЛЬНЫЙ КАМЕНЬ, ВАЛЯВШИЙСЯ В ЛУЖЕ

До 1996 года были известны только такие бактерии, величина которых намного превышала теоретический предел. Ничто ничему не противоречило, все шло как надо. Все шло как надо и в жизни некоего геолога из университета Миссисипи: его звали Роберт Фоук, и он, работая в 1990 году, близ горячих ключей в окрестностях Витербо, недалеко от Рима, наткнулся на какие-то непонятные объекты. Они представляли собой совсем крошечные (25-500 нм) кружки и овалы, выстраивавшиеся в цепочки или группировавшиеся как попало. Геолог понял, что это не минералы, и окрестил непонятные следы «наннобактериями» — с двумя «н», потому что в начале XX века эту приставку писали с двумя «н», и так до сих пор делают биологи и палеонтологи (см. Приложение II). Тогда на Роберта Фоука просто не обратили внимания: какой-то геолог — да что он может понимать в биологии? Кто же не знает, что такой крошечной жизни нет и не может быть! Подумаешь — открытие… Этот Роберт Фоук, если он и в самом деле что-то углядел, так то наверняка остатки заурядных бактерий. Ну, может быть, какие-то конкреции, вкрапления минералов, а что они такие чудные… Ну так они всякими бывают.

Но Роберт Фоук упорно стоял на своем. Он был тверд как сталь. В 1992 году Фоук устроил конференцию в Американском обществе геологии. На этот раз кое-кто к нему прислушался. В зале сидел Крис Романек, геохимик, работавший в НАСА, и он что-то быстро записывал вслед за докладчиком. Похоже, рассказ геолога заворожил геохимика, и тот, решив лично заняться изучением диковинных следов непонятных организмов, захотел проверить на наличие таковых имеющиеся у него образцы породы. Он переговорил с Дэвидом Маккеем, тоже работавшим в НАСА, но в Хьюстоне, в Космическом центре Джонсона, и, вооружившись электронным микроскопом высокого разрешения, — внимание! — обнаружил структуры такие же или очень похожие на то, о чем рассказывал Роберт Фоук!

Весть об этом открытии наделала в мире много шуму — очень уж необычными казались исследованные образцы, точнее, их происхождение. Они были отобраны с метеорита, прилетевшего с Марса. Само падение этого метеорита, окрещенного аббревиатурой ALH84001 (открыт в 1984 году, в Антарктиде, у горного хребта Аллан-Хиллз), прошло незамеченным, как, впрочем, и его обнаружение. Но, когда двенадцать лет спустя Дэвид Маккей и Крис Романек нашли в нем структуры, «похожие размерами и формой» на наннобактерии, обнаруженные Робертом Фоуком, незамедлительно вспыхнули жаркие споры. Мало того, что как будто бы подтверждалось существование наннобактерий (уже дело громадной важности), но, более того, эти организмы, похоже, попали на Землю с Марса: выходило, что на Марсе есть — или была — жизнь!

Весь мир затаил дыхание. Нашествие зелененьких человечков? Как сказать.

Внеземные существа оказались крошечными бактериями, куда меньшими, чем все то, что под силу нашему воображению. Правда, кое-кто орал во все горло: «Ну да, открытие! Как же это открыватели умудрились подгадать со своим открытием к голосованию в конгрессе?» Законодатели тогда как раз решали, какую долю бюджета стоит потратить на корабли, отправлявшиеся к Марсу. И пошло-поехало: да в самом ли деле эти продолговатые бороздки оставила после себя некая жизнь? Да и с Марса ли камушки-то? Мало ли чего сыщется в той Антарктиде.

Во Франции между тем нашлись исследователи, вознамерившиеся приглядеться поближе к метеориту, который упал в 1936 году в пустыню в Тунисе, близ Татавина; затем его доставили в Национальный музей естественной истории в Париже, куда в 1990-х попали и другие обломки этого же и иных пришельцев из космоса. Татавинский метеорит уж точно был не с Марса, однако его химический состав оказался почти таким же, как у ALH84001. И тут ученых ожидал сюрприз: в осколках метеорита нашлись продолговатые палочки длиной в несколько десятков нанометров, но — второй сюрприз — они были не на том кусочке метеорита, который был подобран через несколько часов после его падения. Получалось, что «наннобактерии» завелись на тех фрагментах метеорита, которые лежали в пустыне и после 1936 года, а на обломке, который почти сразу же попал в музей и хранился там в герметичном контейнере, охраняющем неземной камень от земных загрязнений, их не было! Стало быть, происхождение «наннобактерий» — вполне земное, да и то, что увидали на ALH84001, тоже, скорее всего, возникло на Земле, и, значит, вряд ли тут наследила внеземная жизнь.

И все же остается одно возражение: продолговатые следы на метеоритах как-то несовместимы с жизнью и жизнедеятельностью — какими мы их сегодня знаем. Чуть позже похожие формы размерами от 50 до 500 нм нашли в Австралии, когда обследовали образцы, извлеченные со дна морского, где они лежали на трехкилометровой глубине. Геолог Филиппа Юинз, стоявшая у истоков этого открытия, окрестила их «нанобами» («нано» — биологические организмы; «бы» — от «микробы», биологические микроорганизмы). Занявшись их изучением, она сумела показать, что нанобы состоят из углерода, кислорода и азота, а эти химические элементы неотделимы от жизни. Более того, Юинс доказала, что нанобы самопроизвольно развиваются как культура при комнатной температуре. И еще у них есть мембраны и к тому же они… позитивно прореагировали в трех тестах на присутствие ДНК. «Если нанобы — не биологические организмы, то трудно предложить вместо них что-то другое, что бы не противоречило нашим результатам», — сделала заключение Филиппа Юинз. Больше она ничего не сообщила мировому научному сообществу — что весьма странно, поскольку открытие ее действительно очень важно.

НАНОПРИШЕЛЬЦЫ? ДА ОНИ ВЕЗДЕСУЩИ!

Работающий в Университете Куопио, в Финляндии, микробиолог Олави Каяндер в своей работе часто сталкивался с необходимостью готовить всякие бульоны из клеточных культур. Однажды вся его стряпня пошла насмарку: клетки погибли. Чтобы понять, что произошло, ученый проанализировал сыворотку плода теленка, которая была добавлена в культуру в качестве питательной среды. Загрязнений в сыворотке он не нашел, зато обнаружил какие-то неведомые организмы, размер которых был не меньше 50 и не больше 200 нм. Микробиолог решил, что это — наннобактерии, которые, как оказалось, встречались не только в геологических породах, но и присутствовали в живых организмах. Но маловеры не унимались и твердо стояли на своем. Мол, образцы еще раньше, до попадания в бульон, были заражены другими бактериями из-за изъянов в органическом материале или просто потому, что уже кишели самыми заурядными бактериями. А что такие маленькие, так это — стресс. Человек, если его напугать, съеживается, вот и эти тоже ужались и сократились.

Карим Бензерара из Института минералогии и физики плотных сред (CNRS) решил покончить с этими дрязгами, разгадав тайну наннобактерий. Присоединившись к команде исследователей Татавинского метеорита, Бензерара начал изучать его обломки с помощью самых совершенных приборов — мощного просвечивающего электронного микроскопа и синхротрона (ускорителя элементарных частиц). И выяснил, что каждая палочка, обнаруженная в Татавинском метеорите, на самом деле всего лишь кристалл кальцита (известкового шпата). И уж конечно не живой микроорганизм! Значит, есть чисто минеральный процесс, приводящий к образованию именно таких форм. И этот процесс даже удалось воспроизвести в лаборатории. Так что, похоже, нанесен роковой удар по наннобактериям геологического происхождения (то есть тем, что были найдены в метеоритах, скалах и в осадочных породах морского дна).

Затем Карим Бензерара решил применить свои приемы к «наннобактериям человеческого происхождения», которые нашли в сосудистых тканях. Изучение образцов на синхротроне выявило наличие таких нагромождений атомов углерода, которые свойственны белкам, но в данном случае они оказались сопряженными с нанокристаллами фосфата кальция. Следует ли считать эти данные доказательством некой новой формы жизни, обнаруживающейся в сосудистых тканях через углеродистые конкреции? В самом деле, белки ведь могли попасть в эти конкреции и случайно. В своих исследованиях Карим Бензерара держится гипотезы, согласно которой «наннобактерии человеческого происхождения» тоже могут иметь чисто кристаллическое происхождение. Подразумевается, что эти «организмы» способны возникать из образования ядер и роста кристаллов фосфата кальция — а эти процессы управляются белками. Так что Карим Бензерара уверен: несмотря на то что механизм синтеза «человеческих наннобактерий» пока что не очень понятен и неизвестна даже его природа, которая может быть как неорганической, так и органической, однако ничего похожего на жизнь тут нет и быть не может.

Но, если бы, наоборот, удалось показать, что эти минерало-органические объекты — последствие жизнедеятельности живых существ, случилась бы настоящая революция. Тогда на новые — в смысле пока неизвестные — бактерии можно было бы свалить вину за недуги, которые (пока) неведомо откуда берутся: артериосклероз, камни в почках, псаммомы — опухоли, часто встречающиеся при раке яичников, и т. д. Кроме того, те же бактерии могут быть причастны к образованию костей, зубов, зубной эмали и зубного камня. В общем и целом они могут быть связаны с механизмами отложения и осаждения минералов — веществ, органическими не считающимися. Более того, если эти «наннобактерии» и в самом деле существуют, то они представляют собой новую, неведомую прежде форму жизни, во многом непохожую на те живые существа, которые нам известны сегодня. Вполне возможно, что это уцелевшие архаические бактерии или протобактерии — то есть примерно такие же организмы, с которых начиналась жизнь на нашей планете. Словом, нечто вроде «недостающего звена», этакого связующего промежутка между молекулами и теми живыми бактериями, которые нам известны сегодня.

НЕДОСТАЮЩЕЕ ЗВЕНО

Согласно наиболее вероятной гипотезе, жизнь появилась в процессе перехода от вещества косного, инертного к веществу живому. Якобы молекулы становились все сложнее и сложнее и организационно — все совершеннее. Напрашивается вопрос: после чего — после какого уровня сложности и организации — начинается жизнь? Этот вопрос терзает ученых еще с античных времен. В V веке до н. э. греческие философы считали все вещества живыми. Лукреций думал, что жизнь возникает из смеси частиц, «зерен» души с «зернами» телесными. В XVIII веке молекулы считались живыми существами — только самыми маленькими из всех существующих. Бюффон (1707–1788) назвал первые обнаруженные после изобретения микроскопа живые клетки «органическими молекулами». А чего ради считать их живыми? Но вдруг это не так? Сплошной туман — ничего не ясно. Когда в 1827 году ботаник Роберт Броун наблюдал под микроскопом непрерывное и беспорядочное движение зернышек пыльцы на поверхности воды (знаменитое броуновское движение), он решил, что ему посчастливилось открыть те «первобытные молекулы», которые отвечают за жизнь.

Жизнь, похоже, казалась тогда не менее таинственной, чем теперь, когда непонятностей ничуть не меньше. «Есть такое дерево, <…> часто наблюдаемое в Шотландии. С этого дерева опадают листья: падая в воду, листья превращаются в рыб, те же, что упали на землю, становятся птицами», читаем мы в трактате по ботанике, написанном в XVII веке. Эта теория самопроизвольного зарождения жизни бытовала в самых разнообразных вариантах и дожила до Пастера, который в 1858–1874 годах успел досыта наслушаться всякого разного от злобных приверженцев «разумных классических воззрений». Пастер сумел положить конец всем спорам, когда на конференции в Сорбонне убедительно показал, что так называемое самозарождение жизни на самом деле возникает из-за заражения микробами и в конечном счете из-за некачественной — или никакой — стерилизации.

Но и это выступление Пастера не покончило с витализмом — так называют веру в некую особенную силу, которая то ли порождает жизнь, то ли порождается жизнью, причем главная особенность этой силы в том, что она непохожа на силы, действующие в физических и химических явлениях. Первый ощутимый удар по витализму датируется 1828 годом, когда в лаборатории было синтезировано вещество, как нельзя более тесно связанное с жизнью: немецкий химик Фридрих Вёлер получил мочевину, используя только классические методы физики и химии и не испытывая нужды ни в какой «жизненной силе». По мере того как химические реакции, идущие внутри клетки, становились все более понятными, ученые постепенно убеждались в том, что в живой и неживой природе правят одни и те же законы. «Жизнь есть продукт организации молекул» — к такому выводу пришел французский биолог Франсуа Жакоб, удостоенный в 1965 году Нобелевской премии. После Пастера все уяснили, что живое происходит из живого, а после Дарвина — что одни виды произошли от других видов. Так что все мы — люди, овощи, улитки — происходим от какой-то первобытной протобактерии… а то и, если, конечно, что-то этакое существует или когда-то существовало, от наннобактерии! Важно, что сия мысль все-таки сумела пробить себе дорогу, а именно: возникновение жизни есть результат некой химической эволюции. Сумеем ли мы воспроизвести нечто подобное в лаборатории? Одно несомненно: ученые не смогут оставить в покое тайну жизни, которая будоражит человечество уже многие века.

МОЛЕКУЛЯРНАЯ ФАБРИКА ЖИЗНИ

XX век был веком «поделок» из атомов и всяческих манипуляций с ними. Век XXI обещает стать столетием «поделок» из живого и махинаций с жизнью. Сегодня так называемая «синтетическая» биология, едва научившись по-младенчески лепетать, замахивается на воспроизводство жизни — на творение живого в лаборатории. И ученые, работающие над этим, своих намерений не скрывают. Но что такое жизнь? Определение очень даже пригодится: когда придет день и в какой-то лаборатории в пробирке что-то этакое зашевелится, придется проверять соответствие нового творения ученых некой четкой дефиниции. Но определения — материя деликатная. Большинство знающих людей сходятся на такой дефиниции: жизнь есть способность организованных структур к самовоспроизведению.

Словосочетание «синтетическая биология» появилось в 1912 году на обложке научного сочинения, автором которого был французский врач Стефан Ледюк. Он интересовался проявлениями жизни и задумал воспроизвести их в своей лаборатории. Воспользовавшись солями металлов в растворах на основе углеродных, фосфорных или кремниевых соединений натрия, медик умудрился вырастить великолепные структуры, похожие на водоросли, колышущиеся на морской волне, — и его создания казались живыми.

Прошли годы, и этот термин вновь появился — он воскрес в 1978 году под пером автора редакционной статьи в журнале Gene («Ген»), провозглашавшего пришествие «эры биологии синтеза, когда биологи не станут довольствоваться описанием существующих генов, но постараются построить новые».

Считая, что жизнь сводится к расстановке сложных молекул, которые (заняв верное положение) и образуют биологические системы, поборники синтетической биологии не сомневаются, что в один прекрасный день им удастся создать живое. А пока они стараются изучить механизмы, действующие в клетке: выяснить, как внутри нее циркулирует информация, как работают внутриклеточные регуляторы, как взаимодействуют между собой гены и белки, как клетка общается с соседями и окружением и т. п., чтобы потом воспроизвести познанные механизмы. Они думают и об изобретении неведомых самой природе функций, и о «программировании» клетки на выполнение новых, то есть прежде не выполнявшихся ею, задач. Так, одну бактерию видоизменили так, что она, обнаружив какие-то — вполне определенные — молекулы близ себя, начала светиться, фосфоресцируя зеленым светом; ни о чем подобном эта бактерия конечно же и не помышляла, пока исследователь не подтолкнул ее на эту дорожку.

Не бывает жизни без информации — передаваемой, принимаемой или передающейся. Информация записывается в цепочках молекул ДНК (дезоксирибонуклеиновой кислоты) почти во всех живых организмах. Но все-таки не во всех. Да и было так, похоже, не всегда. Есть биологи, считающие, что сначала информация хранилась в молекулах РНК (рибонуклеиновой кислоты) — почти у всех вирусов РНК есть, и без ДНК они по большей части легко обходятся. Вообще-то между ДНК и РНК разница невелика, но РНК может еще и миллионнократно ускорять химические реакции — словно какой-то фермент. Раз уж РНК — и носитель, и хранитель информации, и катализатор, то естественно думать, что сначала появилась РНК, а уж потом ДНК, более устойчивая и более специализированная, — в сущности, ДНК занимается только информацией.

А как же в ней записываются те или иные сведения? Грубо говоря, ДНК содержит полное описание клетки. Цепочки ДНК — это своего рода приказы или команды, получаемые макромолекулами, присоединяющимися к ДНК. Они передают полученные команды «производственным машинам», вырабатывающим белки, необходимые для выживания клетки. Алфавит для записи информации состоит всего из четырех букв — нуклеотидов А, Ц, Г и Т, именуемых основаниями. Учредители синтетической биологии умеют синтезировать эти основания и приводить их в порядок. Итак, сначала они изготавливают искусственные ветви ДНК. Потом исследуют то, что получилось, проверяя, действительно ли искусственная ДНК функционирует так же, как естественная. Они вводят эти искусственные участки ДНК в бактерии и наблюдают за тем, что после этого происходит, надеясь понять жизнь через подражание ей, а потом, быть может, эту самую жизнь удастся воссоздать или сотворить заново. Таким образом уже были получены более 10 000 искусственных участков, а затем более 32 000 тех оснований, которые кодируют некоторые белки в бактерии Escherichia Coli. Кроме того, предпринимаются попытки синтезировать искусственные основания, непохожие на те (А, Ц, Г и Т), которыми пользуется известный нам мир живого. Так, в 2002 году японцы создали ДНК с шестью основаниями: к четырем естественным (А, Ц, Г и Т) они добавили два рукотворных — S и Y. Эксперименты показали, что бактерии способны включать в себя эти незнакомые им основания. А нельзя ли ожидать также и появления неведомых природе генетических кодов, новых белков или каких-то прежде неизвестных функций? Иными словами, а вдруг ученые, эти энтузиасты, создадут иные формы жизни? Пока что, однако, ни один диковинный кролик из колпака волшебника не выскочил.

Не так давно исследователи синтезировали вирус полиомиелита. Ну вот, вирус уже есть — значит, пора бы синтезировать бактерию, правда? «Технология производства» могла бы оставаться той же. Однако в геноме Escherichia Coli, бактерии из зауряднейших и самых распространенных, 4,7 млн оснований! Размах несколько иной, чем в случае вируса полиомиелита, для изготовления которого потребовалось синтезировать «лишь» 7200 оснований. Не диво, что биологи заинтересовались бактериями попроще и поменьше, чем Е. Coli. К примеру, американский биолог Крейг Вентер, участвовавший в расшифровке генома человека, работает с крошечной бактерией Mycoplasma genutalium: у малютки — 517 генов, что означает наличие каких-то 500 000 оснований! Некоторые гены кажутся бесполезными, или, точнее, неиспользуемыми. Весь вопрос в том, как бы поточнее определить, какие именно «гены» не нужны, да и угадать, сколько все-таки их нужно для жизни — речь о минимуме, понятно. По оценкам биологов, он примерно равен 250, что не кажется чем-то совсем уж недостижимым. Но никто не посмеет утверждать, что стоит подогнать друг к другу нужные основания, и возникнет жизнь.

Жизнь, она не так проста. Положим, удалось выстроить генетическую программу — но ведь нужна еще и «коробочка» (вместилище). Приверженцы синтетической биологии уже кое-что придумали и даже опробовали. Например, они научились делать искусственные мешочки, делящиеся самостоятельно, под воздействием механического давления извне. Еще они синтезировали белки, способные проникать в мембрану и создавать канал, соединяющий то, что внутри мембраны, с внешним миром — по этому каналу могут перемещаться питательные вещества или отходы метаболизма. Как и с оболочками (вместилищами), так и с их содержимым дела продвигаются, и довольно быстро, но на сегодняшний день ничего похожего на самовоспроизводящуюся жизнь не создано. Не помогут ли нанотехнологии решению и этой задачи?

УРОКИ ГОСУДАРЫНИ ПРИРОДЫ

Синтетическая биология не пользуется нанотехнологиями, но применяет генетические методы. А ведь новаторский нанотехнологический инструментарий как нельзя лучше пригоден для изучения сокровенных тайн клетки. Совершенствование туннельного микроскопа привело к созданию микроскопа ближнего поля, пользуясь которым исследователь может как бы «сорвать» мембрану и заглянуть внутрь клетки. Из наноматериалов мастерят нанозонды, и эти крошечные приборчики приклеивают затем к белкам или к маленьким вирусам, что позволяет проследить их перемещения внутри клетки. Если такие маркеры еще и светятся, флюоресцируют, то за движениями белковых молекул или вирусов можно наблюдать с помощью конфокального оптического микроскопа, in vivo.

Но верно и обратное: биология иной раз способна принести большую пользу нанотехнологиям: творения Владычицы Природы научают определенным приемам и наводят на интересные мысли, подсказывая, например, как создать тот или иной нанообъект, или наталкивая на изобретение чего-то неведомого и самой природе. Например, изучение макромолекулярных конфигураций на поверхности мембраны, выступающих в роли «запоров» или «замков», открывающихся только для определенных протеинов (стало быть, эти белки — «ключи» к замкам), помогает создавать молекулярные установки типа «ключ — замок». Наночастицы можно будет оснастить «ключами», а сами они смогут приклеиваться к заданным участкам больных клеток, доставляя в эти места лекарства. В том же духе изучение обнаруживаемых в природе режимов и механизмов самосборки, заживления или регенерации помогает создавать наноматериалы, способные самостоятельно (без вмешательства человека) собирать (строить) и ремонтировать себя.

Более полные знания биологии клетки могут оказаться полезными и разработчикам все более и более усложняющихся молекул-машин. Вспомним грезы 1980-х об использовании естественного биохимического завода — а это любая бактерия — для производства (синтеза) тех или иных частей или деталей молекулы-машины. В сущности, это монументализация, только доведенная до предела и осуществляющаяся в лоне бактерии. Правда, ничего похожего на поиски искусственной жизни здесь нет, так как планы сборки будут отличаться от тех, по которым собираются макромолекулы и органические вещества самой бактерии, пусть даже молекулярные веса или иные параметры окажутся равными или близкими.

Но если удастся строить все более и более сложные молекулы-машины, то не окажутся ли вдруг какие-то из них живыми и не выяснится ли это в каком-нибудь опыте, не обязательно преднамеренном? Положим, что молекула-машина наделена теми же функциями, что и бактерия (умеет то же, что и микроорганизм), — должны ли мы счесть такую искусственную молекулу живой? Где именно в том скоплении миллионов макромолекул, которое называется клеткой, прячется дыхание жизни? Ответ на этот вопрос ускользает от естественнонаучного подхода, несмотря на многовековые усилия. Самые последние по времени гипотезы толкуют про механизмы познания и самоорганизации молекул, но они ничуть не объясняют природу той искорки или крупицы жизни, делающей самую ничтожную бактерию такой непохожей на самое замысловатое нагромождение атомов и молекул, которое только удается создать человеку.