Инженер-капитан 1 ранга В. ГЕРАСИМОВ, кандидат технических наук

Механика составляет древнейшую часть физики. Основы механики твердых тел и гидростатика разрабатывались еще Архимедом. Динамика жидких и газообразных тел куда моложе. Она зародилась как наука лишь в XVIII веке и действительно больших успехов добилась только в нашем столетии. Зато теперь ни один проект корабля, самолета, ракеты не может быть создан без учета законов гидро- или аэродинамики.

Этим-то ветвям могучего древа физики мы в значительной степени и обязаны тем, что живем в век больших скоростей. Взять, к примеру, авиацию. Она уже давно перешагнула звуковой барьер. А космические аппараты и ракеты преодолевают за один час десятки тысяч километров.

В кораблестроении пока еще результаты намного скромнее. Да это и понятно: ведь вода в 800 раз плотнее воздуха. Значит, во столько же раз больше и сила сопротивления, которая воздействует на движущееся в ней тело. Но и на воде можно получить высокие результаты, если подчинить всю конструкцию судна идее достижения рекордной скорости. За рубежом, например, был создан катер, который за час проходит более 440 км. Однако плавать он способен лишь в штилевую погоду, а его полезная нагрузка практически равна нулю.

Именно эти особенности таких судов и делают их непригодными для всех иных целей, кроме спортивных и исследовательских. Ведь грузоподъемность, например, имеет огромное военное значение. И здесь корабли, вообще говоря, находятся вне конкуренции. Так, если для ракет полезная нагрузка исчисляется несколькими тоннами, а для самолетов десятками тонн, грузоподъемность современных транспортных судов достигает многих десятков тысяч тонн.

Быстроходность, грузоподъемность и мореходность корабля неразрывно связаны друг с другом. Не удивительно, что получить желаемые тактико-технические данные конструкторы могут только в результате компромиссных решений. И не случайно, что современные эскадренные миноносцы капиталистических флотов имеют скорость 65–70 км/час, т. е. на 10–12 км/час меньшую, чем лучшие итальянские эсминцы 30-х годов. Эта уступка была сделана для того, чтобы улучшить мореходность, взрывостойкость, повысить прочность новых кораблей, оснастить их радиоэлектронной техникой, ракетным оружием.

Понятно, что это — временная уступка. Инженеры и ученые усиленно работают сейчас над тем, чтобы не только вернуть надводным кораблям потерянную скорость, но и повысить ее.

А вот скорости хода подводных лодок зарубежных стран за последние 20 лет уже возросли в два-три раза и достигают 50–55 км/час. Отдельные же опытные лодки способны развивать скорости свыше 60 км/час. Это значит, что современные корабли морских глубин по своим скоростным качествам вплотную приблизились к эскадренным миноносцам и фрегатам, составляющим ядро надводных сил противолодочной обороны.

Высокая скорость подводного хода составляет одно из ценнейших качеств подводной лодки. Она повышает вероятность перехвата целей, сокращает время, затрачиваемое на переход в район позиций, открывает возможности активных боевых действий, облегчает отрыв от кораблей противолодочной обороны. Но очевидно, не в меньшей степени значительная скорость хода нужна и надводным кораблям — основным соперникам и противникам подводных лодок.

Как же ученые и инженеры борются за скорость кораблей?

Существуют два главных направления улучшения скоростных качеств всякого корабля. Первое из них — повышение мощности его главных механизмов, второе — совершенствование гидродинамики корабля и прежде всего снижение его сопротивления.

Учитывая реальные возможности этих направлений, американские специалисты считают вероятным, принципиально возможным повышение скоростей хода атомных подводных лодок как максимум до 50 узлов (90 км/час). Полагают, что лодки со столь высокими скоростными качествами будут более всего походить на торпеды. На них уже не останется таких выступающих частей, как ограждение рубки или выходящие за обводы корпуса обтекатели гидроакустических станций, а их наружная обшивка приблизится по гладкости к полированной поверхности. Но даже при этих условиях будет необходимо еще и значительное повышение мощности энергетической установки.

Конечно, 90 км/час — это огромная скорость для водной среды. Но в иностранной печати можно встретить заявления, что в дальнейшем и она не будет считаться достаточной. Например, американский специалист-подводник Ч. Момсен считает, что лодки будущего должны обладать скоростью подводного хода 110 км/час и более. А в выступлениях других специалистов встречаются и такие цифры, как 130–165 и даже 185 км/час (100 узлов).

Какими же путями можно обеспечить подводным лодкам столь высокие скоростные качества? Ведь одним повышением мощности механизмов здесь не обойтись. Это подтверждается расчетами американских инженеров, которые показывают, что, например, для-достижения скорости в 110 км/час удельный вес ядерных энергетических установок должен быть не более 4 кг/л.с. Но в настоящее время по этим расчетам он выше в 12–15 раз, и лишь в перспективе ожидается его снижение вдвое-втрое. Следовательно, для выхода за рубеж 90 км/час нужно изыскивать принципиально новые способы снижения сопротивления.

Еще труднее решается проблема больших скоростей для надводных кораблей и судов. В отличие от глубоко погруженных подводных лодок, сопротивление движению которых обусловлено в основном силами трения воды о их обшивку, у надводных кораблей есть еще и так называемое волновое сопротивление. Дело в том, что с повышением скорости резко возрастает интенсивность вызванного движущимся кораблем волнообразования. Образовавшаяся система волн неотступно следует за кораблем, приводя к такому распределению сил давления воды по корпусу, которое сильно увеличивает его сопротивление. Вот почему даже возрастание мощности машин вдвое-втрое могло бы дать лишь 10—20-процентное приращение скорости корабля.

Таким образом, кораблестроители оказываются вынужденными искать «обходные маневры» и призывать в союзники не только гидродинамику, но и физику в широком смысле слова, чтобы «обмануть» природу и создать еще более быстроходные корабли.

Известно, что некоторые инженерно-физические задачи нередко лучше всего решаются в живой природе. Вот почему в поисках путей преодоления «барьера трения», стоящего на пути повышения скоростей подводных лодок, зарубежные гидродинамики принялись разгадывать некоторые «биологические секреты». И это не удивительно. Ведь считается, что отдельные разновидности дельфинов могут развивать скорость до 45 км/час, а меч-рыба — до 90 км/час. Но дело не только в абсолютных величинах скоростей. Ученые уже давно установили, что сопротивление дельфина, рассчитанное обычным для кораблестроения способом, оказывается примерно в 8—10 раз больше того, которое способна преодолевать мышечная система животного.

Это удивительное несовпадение, получившее название «парадокса Грея», объясняется по-разному. Некоторые ученые считают, что кожный покров дельфина благодаря своей гладкости и эластичности, обусловленным свойствами не только самой кожи, но и толстого жирового подслоя, гасит, или, как еще говорят, демпфирует возмущения в потоке воды, которые могли бы срывать ламинарный режим течения вблизи тела дельфина и переводить его в турбулентный. При ламинарном движении жидкости отдельные струйки — слои воды — текут параллельно, обтекая препятствие равномерными слоями (в отличие от турбулентного — вихревого, хаотичного движения). Известно, что при ламинарном, или слоистом, обтекании тела, когда слои жидкости не перемешиваются друг с другом, сопротивление трения пропорционально скорости в степени 1,5. При турбулентном режиме течения жидкость вокруг движущегося тела интенсивно перемешивается (рис. 8 — вверху), и сопротивление пропорционально почти что квадрату скорости. Правда, ламинарное течение неустойчиво, и для его поддержания необходимы особо благоприятные условия. Но ученые считают вполне вероятным, что при обтекании кожи дельфина такие условия как раз существуют.

Немецкий инженер М. Крамер, живущий сейчас в США, даже разработал специальное эластичное покрытие для торпед и подводных лодок, имитирующее основные свойства кожи дельфина. Оно делается из специальной резины и имеет внутренние полости, которые заполняются кремнийорганической жидкостью, заменяющей дельфиний жир. При опытах с относительно небольшими моделями подводных снарядов Крамеру удалось снизить их сопротивление на 50–60 %.

Но у идеи Крамера нашлись противники. Они утверждают, что для большого снижения сопротивления кожа дельфина должна быть не пассивным, а активным демпфирующим покрытием. Это значит, что ее эластичность сама по себе еще недостаточное условие для эффективной работы. Необходим и какой-то физиологический механизм регулирования податливости кожи. Так, профессор Пикар считает, что нервные окончания в кожном покрове морских животных улавливают изменения давлений, предшествующие переходу течения из ламинарного режима в турбулентный, и передают соответствующие сигналы в центральную нервную систему, которая регулирует надлежащим образом демпфирующую работу кожи. Такого же мнения придерживается американец Бетчов, считающий покрытие Крамера с пассивным демпфированием бесперспективным.

Рис. 8. Обтекание тела жидкостью. Турбулентное (вверху), оно может стать ламинарным, если при движении тела часть жидкости будет удаляться от пограничного слоя (внизу)

Встречаются также попытки отнести малое сопротивление дельфина за счет особого действия какой-то смазки типа рыбьей слизи, якобы выделяемой его кожным покровом. Но они оказались необоснованными. Ни дельфины, ни многие другие быстроходные представители подводного мира не имеют такой смазки. Более того, установлено, что слизистое покрытие характерно прежде всего для относительно тихоходных рыб, живущих в заиленных водоемах.

Есть и такие специалисты-гидродинамики, которые объясняют «парадокс Грея» тем, что большая часть тела дельфина участвует в создании той движущей силы, которая обеспечивает плавание его в воде с необходимой скоростью. Они принимают во внимание, что тело животного выполняет в одно и то же время функции «корпуса» и «движителя». А потому, по их мнению, неверно рассчитывать сопротивление дельфина таким же порядком, как сопротивление корпуса корабля.

Для повышения же скоростей подводных лодок они предлагают снабдить их многокамерной резиновой оболочкой поверх обычного корпуса и поочередно подавать в секции этой обшивки воздух с одновременной откачкой его из других секций. Так будет создана бегущая по поверхности корпуса волна, имитирующая изгибные движения тела морского животного, с помощью которых и создается движущая его «сила упора».

Наконец, некоторые биологи сомневаются в достоверности имеющихся данных о максимальной скорости дельфинов и утверждают, что при длительном движении она обычно не превышает 18–20 узлов. Не отрицая того, что в отдельных случаях дельфины могут плыть и быстрее, они считают это возможным лишь за счет весьма кратковременного перенапряжения мышц, к которому способны в определенных обстоятельствах и другие животные.

Различные истолкования одного и того же явления говорят о том, что настоящий ключ к «тайне дельфина» еще не найден. Однако специалисты биологи и гидродинамики уже серьезно принялись за изучение секретов больших скоростей в животном мире.

Возможны и другие способы сохранения ламинарного режима обтекания подводных тел. Они основаны на удалении или отсосе из потока, обтекающего тело, некоторой части жидкости из области, непосредственно прилегающей к обшивке. Эта часть потока называется в гидродинамике «пограничным слоем». Основные физические явления в этой области течения изучает специальная наука — теория пограничного слоя. Именно в пограничном слое в результате возмущающего действия движущегося тела и происходят явления, которые срывают ламинарное течение. Отсос уменьшает толщину слоя и удаляет из него наиболее возмущенные движущимся телом массы жидкости, что способствует сохранению ламинарного обтекания (рис. 8 — внизу).

Сообщалось, что американские специалисты исследуют возможность ламинаризации обтекания скоростных торпед путем отсоса пограничного слоя через пористую обшивку. Правда, есть опасения, что мелкие поры будут засоряться взвешенными в морской воде минеральными частицами и планктоном. Для исследования особенностей отсоса в натурных условиях ведутся исследования на специальном опытовом судне. Ч. Момсен считает принципиально возможным применение такого способа ламинаризации и на подводных лодках. Ожидают, что применение отсоса повысит скорость хода при неизменной мощности механизмов в 1,5 раза.

Но не только отсосом можно уменьшать сопротивление. Ряд поставленных в США опытов говорит и об эффективности введения в пограничный слой так называемых «неньютоновских жидкостей». К их числу относятся водные растворы полимерных веществ, обладающих высоким молекулярным весом. Например, раствор даже относительно слабой концентрации (менее 0,2 %) при введении его в пограничный слой подводного тела способен снизить сопротивление в 2,5 раза, что ведет к значительному увеличению скорости. Такое действие полимеров объясняется тем, что в них действие сил трения подчиняется иным, чем для воды, законам из-за иной структуры и другой ориентации молекул этих веществ. В изучении подобных процессов гидродинамика тесно переплетается с молекулярной физикой.

Некоторые из отмеченных здесь идей уже проходят экспериментальную проверку в натурной водной среде. Например, бюллетень «Интеравиа эйр леттер» сообщал о проходивших в США испытаниях подводных самоходных снарядов «Дельфин-1» и «Дельфин-2». Сопротивление их удалось понизить примерно вдвое за счет применения одной из систем управления пограничным слоем. Так, «Дельфин-2» развивал скорость до 110 км/час (60 узлов).

Испытывалась также торпеда с системой подачи в пограничный слой раствора полимера. По данным журнала «Дейта», при работе этой системы скорость торпеды возросла за три секунды на 45 %.

Проверялись и другие, менее плодотворные идеи. Так, многие зарубежные изобретатели предлагали покрыть подводные части корпуса гидрофобными (водоотталкивающими) веществами. Но проведенные эксперименты не обнаружили снижения сопротивления.

Излюбленная идея изобретателей — применение «воздушной смазки», т. е. создание воздушной прослойки между днищем корабля и водой. Долгое время этот способ уменьшения трения не давал желаемых результатов, и лишь совсем недавно голландским конструкторам удалось заметно снизить сопротивление модели транспортного судна. Ожидается, что новая схема будет вскоре испытана на натурном корабле.

Изобретатели предлагали также нагревать жидкость в пограничном слое, применять для обшивки различные обмазки, выделяющие газовые пузырьки при контакте с водой, и т. п. Однако ни одна из этих идей еще не оправдала себя даже в опытах.

Особые варианты «воздушной смазки» разрабатываются для подводных лодок. Так, американский инженер Эйхенбергер предложил создать подводный снаряд или подводную лодку с резко уменьшенным сопротивлением трения (рис. 9). Этот эффект достигается созданием между обшивкой корпуса и водой тонкой воздушной прослойки с замкнутой циркуляцией воздуха.

Рис. 9. Проект подводной лодки с резко уменьшенным сопротивлением трения:

1— щель для отсоса воды; 2 — щель для подачи воздуха

За головной частью такого снаряда имеется щель (1), служащая для отсоса воды, с тем чтобы, как считает изобретатель, не допустить формирования турбулентного (вихревого) пограничного слоя. Затем следует щель (2), через которую подается воздух для образования воздушной прослойки. Той же цели служат и щели, расположенные на днище тела. Внутри прослойки воздух будет перемещаться вверх, что повлечет за собой неравномерное распределение толщины прослойки по обводу тела. Чтобы помешать перетеканию воздуха, на боковой поверхности тела с каждого борта имеются выступы, не соприкасающиеся с водой.

Из рисунка видно, что тело предлагаемой конструкции опирается на воду лишь носом и кормой, а вся средняя часть обтекается тонким слоем воздуха. Для возможно большего снижения сопротивления Эйхенбергер считает необходимым, чтобы течение воздуха было ламинарным. Насколько трудно решить эту задачу, видно хотя бы из того, что воздушная прослойка для торпеды, удовлетворяющая этому условию, должна иметь толщину не более 0,3 мм. Кроме того, как показали опыты, искусственно вентилируемые полости такого типа при движении пульсируют и деформируются. Значит, потребуются какие-то дополнительные решения для преодоления этих трудностей.

Каков простейший способ снижения волнового сопротивления, мешающего повышению скоростей надводных боевых кораблей? Он заключается в увеличении относительного удлинения корабля. Сильно заостренные корпуса с отношением длины к ширине около 20 вместо обычных 10–12 обладают малым волновым сопротивлением. Но такие корабли никто не строит: у них плохая остойчивость. К тому же они были бы очень тяжелыми, ведь длинные корпуса требуют конструкции повышенной прочности.

Кораблестроители предпочитают «обманывать» природу другим путем. Например, придают подводной части носа корабля бульбообразную форму. Бульб размещается таким образом, чтобы его волновая система, накладываясь на волновую систему всего корабля, уменьшала высоту волн, снижая тем самым волновое сопротивление, т. е. в данном случае умело используется хорошо изученное физикой явление интерференции двух волновых систем (интерференция — взаимное усиление или ослабление волн звуковых, световых, тепловых, электрических при их наложении друг на друга). Такие бульбы нашли применение в ряде стран на больших надводных судах со скоростью около 45–50 км/час. Правда, в этом случае «волновой барьер» не преодолевается, а лишь отодвигается в область более высоких скоростей.

Самыми результативными способами преодоления «волнового барьера» считаются два (рис. 10). Надо либо погрузить корабль под воду, т. е. превратить его в подводную лодку, либо, наоборот, поднять его из воды. Первый способ становится выгодным только при скорости примерно 40 км/час и более. Но преобладающее значение имеют экономические соображения. Ясно, что такие транспорты были бы очень дорогими, поэтому все проекты подобных судов до сих пор остаются лишь на бумаге. Зато широкое применение нашел второй способ, выразившийся в создании быстроходных кораблей на подводных крыльях. Весь корпус такого корабля при плавании полным ходом выходит из воды. Под водой остаются лишь несущие корабль крылья и движители-винты.

Рис. 10. Два пути преодоления «волнового барьера»:

I — корабль погружен в воду; II — корабль поднят из воды

Размеры подводного крыла небольшие (здесь высокая плотность воды идет на пользу делу), а раз оно довольно сильно углублено в воду, то и его волновое сопротивление невелико. Но движение на крыльях становится выгодным при еще большей скорости, чем плавание под водой, и для прихода в зону выгодных для крылатых кораблей ходовых режимов необходимо также повышать мощность механизмов. Сейчас максимальная скорость кораблей на подводных крыльях достигает 80–90 км/час, в будущем ее предполагается довести до

170—200 км/час. Разумеется, создание кораблей с такими скоростными характеристиками без применения новых решений было бы просто невозможным. Однако мощные механизмы и крыльевая система сокращают более чем вдвое относительную полезную грузоподъемность кораблей, иными словами, в значительной степени лишают их важнейшего преимущества перед другими средствами транспорта. С увеличением водоизмещения вес крыльевой системы прогрессивно возрастает. В этом причина, что даже в проектах еще не встречаются крылатые корабли водоизмещением более 300–400 т.

Крылатым кораблям не уступают по скоростным качествам корабли на воздушной подушке, которые полностью отрываются от воды и парят над ней на небольшой высоте. Мощные вентиляторы нагнетают воздух под их корпус, имеющий вид перевернутого блюдца. Это не дает судам опускаться на воду, а их движителями служат воздушные винты. Такие корабли могут одинаково хорошо двигаться как над водой, так и над сушей, что делает их отличным средством для проведения десантных операций. Но и они имеют недостатки — прежде всего малую грузоподъемность, недостаточную мореходность.

Таковы некоторые необычные пути решения проблемы больших скоростей в кораблестроении. Отдельные из них изучены еще относительно слабо и нередко производят впечатление фантастических предложений. Для их практической реализации придется преодолеть огромные трудности как теоретического, так и технологического характера. Возможно, что интерес к некоторым из описанных предложений специально раздувается капиталистическими фирмами в чисто рекламных целях, а потому трудно ожидать, что все эти идеи обязательно будут воплощены в жизнь.

Интересен уже сам факт обращения специалистов-кораблестроителей не только к гидродинамике и физике в более широком смысле, но и к смежным областям науки, в том числе к биологии, в поисках решения этой проблемы. Он свидетельствует о критическом положении, создавшемся за рубежом в этой области. Не исключено, что для разрешения «кризиса скорости» потребуется создать даже такие корабли, которые не будут пассивно обтекаемыми водой телами, а смогут активно воздействовать на окружающие их массы воды и регулировать протекающие в них физические процессы для снижения сопротивления.

Уместно также заметить, что современные советские боевые корабли и транспортные суда не только не уступают лучшим заграничным образцам, но во многом их превосходят. Именно в СССР были созданы первые корабли на воздушной подушке и наиболее совершенные суда на подводных крыльях. Военно-Морской Флот СССР и советский торговый флот имеют новые быстроходные корабли, которые гордо несут флаг нашей Родины по морям и океанам всего мира.