Однажды океанологи, работающие на исследовательском судне «Академик Курчатов», оценили мощность, которую волны затрачивают на его раскачивание. Оказалось, что она достигает 13 600 кВт — вдвое больше мощности ходовых дизелей судна. Вообще, энергия морских волн огромна. Например, подсчитано, средняя мощность волн у берегов Англии достигает 75 кВт на метр длины. Если бы человечество научилось ею пользоваться, то энергии хватило бы на все его потребности. Однако сделать это не так просто. В штиль волн нет вообще, а в шторм ветер вздымает волны буквально до небес, метров на тридцать. Но чаще всего высота морских волн у берега составляет 1–2 метра.

Первая установка, использующая энергию волн, была построена в 1899 году в Ошен-Грове близ Нью-Йорка (рис. 1).

Рис. 1

Она состояла из закрепленных на осях вертикальных пластин. Под ударами волн они колебались, и эти колебания через систему рычагов передавались поршневым насосам, закачивающим морскую воду в бак. Эта вода употреблялась затем для заправки пожарных машин и для прочих технических целей.

Предлагали таким же способом вращать электрогенераторы. Но их КПД хорош при постоянной, достаточно большой скорости, а волны этого дать не могут. Поэтому для получения электричества приходится между генератором и волной ставить промежуточный элемент для накопления энергии. Та же насосная станция в Ошен-Грове могла бы закачивать воду в большой высоко расположенный бак, оттуда она равномерной струей попадала бы на лопатки турбогенератора.

Сейчас энергию волн широко применяют для питания ламп морских и речных бакенов, маяков, метеостанций. В них используется так называемый принцип волнового инерционного насоса. А сама конструкция — это поплавок с длинной трубой (см. рис. 2).

На глубине, превышающей высоту волны в 4–5 раз, вода почти спокойна. Когда есть волнение, поплавок то поднимается на гребень волны, то опускается в ее впадину. При этом конструкция потихонечку прокачивает воду через трубку. Напор такого наноса слаб, но его можно все же использовать.

На рисунке 3 вы видите воздушную турбину волновой энергетической установки И.А.Бабинцева, которой снабжаются морские бакены.

Обычно воздушные турбины требуют строго определенного направления воздушного потока, а волновой насос создает поток переменного направления. Японцы при создании аналогичной установки для «выпрямления» направления потока прибегли к сложной системе клапанов. В установке Бабинцева использована турбина с двумя радами неподвижных лопаток, которые работают подобно диодному выпрямительному мосту, применяемому в электротехнике. В какую бы сторону ни двигался воздушный поток, он всегда бьет по лопаткам только с одной стороны. Воздушная турбина вращается очень быстро, благодаря чему генератор при небольших размерах развивает достаточную мощность, чтобы заряжать аккумуляторную батарею для питания лампы или других устройств.

Принцип волнового насоса используется и иначе. В некоторых местах Черного моря обитателям больших глубин не хватает воздуха. Возникла мысль: поднять с больших глубин воду, лишенную кислорода, на поверхность, чтобы на смену ей поступила свежая вода из верхнего слоя. Это удается успешно делать при помощи волнового насоса с огромной 22-метровой трубой. Ну а вы можете использовать волновой двигатель для модели кораблика (рис. 4).

В простейшем случае ее корпус — это кусок пенопласта, в который вставлена трубка, изогнутая в виде буквы «Г». На конце трубки сделайте из бумаги и скотча коническую насадку. Всякий раз, когда лодочка будет проваливаться между гребней волн, из трубки будут вылетать струйки воды, создающие реактивную тягу.

Мы уже говорили, что энергия качки большого судна может превышать мощность его двигателей. Однако полностью использовать ее для движения судна пока не удается. Изобретатели предлагали для этого устанавливать на суда механизмы, состоящие из многотонных маятников и вращающихся маховиков, рекомендовали сочленениями, которые, изгибаясь от волн, через систему рычагов вращали бы винт. Но дальше отдельных экспериментов дело так и не пошло — все снабжать корпуса судов шарнирными сочленениями, которые, изгибаясь от волн, через систему рычагов вращали бы винт. Но дальше отдельных экспериментов дело так и не пошло — все эти устройства получались непомерно сложными и давали ничтожный эффект.

Очень простую лодку, движимую силой волн, испытал на озере Онтарио в 1969 году канадец А.Гаузе. При легком волнении скорость ее достигала 5 км/ч. Она двигалась в любом направлении независимо от ветра и волн. В открытом море скорость ее оказалась почти вдвое выше. Лодка Гаузе имела длину 10 м. На ее киле последовательно парами располагались плавники (рис. 5).

Каждый из них состоял из жесткой части и гибкой. Под действием волн одна-две из них перемещались вертикально. При этом гибкая часть изгибалась, словно хвостовой плавник рыбы, и создавала горизонтальную тягу, направленную всегда вперед.

На рисунке 6 модель такой лодки.

Корпус ее вырезан из куска упаковочного пенопласта. В нем на клею укреплена фанерная пластина. К ней крепятся изогнутые полоски стали с приклепанными к ним плавниками. Плавники — это кусочки резины или кожи, толщина которых к задней кромке сходит на нет. Волновые суда достаточно хорошо движутся, только когда их длина меньше среднего расстояния между гребнями волн. Поэтому, прежде чем строить модель лодки, понаблюдайте за волнами в том водоеме, где вы будете ее испытывать. Для этого достаточно бросать в воду ветки разной длины и посмотреть, какая из них испытывает самую сильную продольную качку. Такую длину и выберите для-корпуса модели.

А. ВАРГИН

Рисунки автора