Вы помните, наверное, что чем больше напряжение, тем больше в цепи ток. Но так бывает не всегда. Это подметили в свое время, экспериментируя с электрической дугой. Напряжение на дуге увеличивали, а ток при этом падал. И, наоборот, когда напряжение на дуге уменьшали, ток возрастал. Это позволило шведскому инженеру Вольдемару Поульсену в 1892 году построить генератор незатухающих электрических колебаний. Он состоял из пары углей, между которыми горела дуга, и подключенного к ней колебательного контура.

Первый дуговой генератор радиоволн.

Дуговые радиопередатчики строили на мощность до 1000 кВт, но они могли работать лишь на частотах не более 300 кГц. Между тем, радиовещание нуждалось в гораздо более высоких частотах, и на смену дуговым передатчикам пришли ламповые.

В 1922 г. лаборант Тверской радиостанции О.В. Лосев обнаружил, что некоторые «кристаллические детекторы» (слова «диод» тогда еще не существовало), применявшиеся в простейших детекторных приемниках, обладают такой же особенностью, как и электрическая дуга. Когда приложенное к кристаллу напряжение увеличивалось, ток уменьшался, и наоборот, когда оно уменьшалось, ток возрастал.

Старинный детектор.

Хотя детектор в тех приемниках выполнял ту же роль, что полупроводниковый диод в сегодняшних, выглядел он совсем по-другому. На корпусе штепсельной вилки располагалась медная чашечка с полупроводниковым кристаллом из цинкита, галенита или пирита железа. Его впаивали в чашечку оловянным припоем. Так получался один из электродов кристаллического детектора радиосигналов. Второй электрод выполняли в виде пружинки с острием на конце.

Этим острием касались кристалла, стараясь отыскать точку, которая бы обеспечивала наиболее громкий прием. Изучая свойства детектора, О.В.Лосев плавно изменял напряжение на кристалле, замерял протекающий через него ток и по этим величинам строил график. Обнаружив на графике падающий участок, характерный для электрической дуги, он был крайне удивлен и решил рассмотреть в микроскоп область, расположенную вблизи кончика острия детектора. При увеличении около 150 крат он заметил там свечение.

Взяв за основу широко известную в те годы схему дугового передатчика Поульсена, Лосев заменил в нем дугу кристаллом цинкита. Так появился «кристадин» — первый в мире полупроводниковый радиопередатчик.

Кристадин был настолько необычен, что его исполняли как предмет роскоши — из карельской березы и бронзы.

Его принципиальная схема дана на рисунке, где генерирующий кристалл обозначен G1. Специально для настройки кристалла в схеме имеется вспомогательный низкочастотный контур L1, С1. Присоединяя его к кристаллу G1 и подбирая потенциометром R1 режим генерации кристалла G1, добивались в телефоне BF1 чистого звука. После этого к кристаллу вместо контура C1, L1 присоединяли и настраивали высокочастотный контур на выбранный диапазон. Когда в цепь антенны включали телеграфный ключ, можно было вести передачу азбукой Морзе.

Кристадин Лосева — первый в мире полупроводниковый радиопередатчик.

С таким цинкитным кристаллом получали короткие волны с частотой до 16 мГц. Мощность кристадина составляла всего несколько милливатт, но в 1922 г. московский радиолюбитель Н.Н.Николаев при помощи такого передатчика установил связь на расстоянии 20 км.

Сегодня существуют так называемые туннельные диоды. Они тоже обладают отрицательным сопротивлением и способны работать в диапазоне сантиметровых волн. Однако для их изготовления необходимы сверхчистые вещества. Недавно к опытам Лосева вернулся американский физик — историк Нил Штайнер. Он полагает, что кристаллические детекторы, полученные 0. Лосевым, — это те же туннельные диоды.

Как проверить эту гипотезу? Достать цинкитный кристалл с нужными свойствами сегодня нелегко. Но Нил Штайнер нашел выход из положения. Погрев в пламени газовой горелки проволоку из оцинкованной стали, он получил на ней слой кристаллов окиси цинка, а прижав затем эту проволочку к пластине никелированной стали, получил отрицательное сопротивление. (Нетрудно заметить, что здесь действует исследованная Лосевым цепь цинкит — окись цинка — сталь.)

«Кристадин» XXI века. Разработан Н. Штайнером .

Самодельный диод оказался недолговечен, и Штайнер заменил его кристаллом пирита железа, вставленным в латунную чашечку диаметром около 10 мм, наполненную сплавом Вуда с температурой плавления около 80 °C.

С таким кристаллическим устройством Нил Штайнер построил передатчик. При напряжении около 8 В и токе 8 мА в кристалле появляется отрицательное сопротивление и он превращается в туннельный диод. В сочетании с LC-цепью он становится генератором электрических колебаний с частотой до 2 мГц. Для их модуляции последовательно с источником питания можно включить угольный микрофон и получить передатчик, сигнал которого слышен в средневолновом радиоприемнике на расстоянии до 200 м.

А. ИЛЬИН , Ю. ПРОКОПЦЕВ