Том 26. Мечта об идеальной карте. Картография и математика

Ибаньес Рауль

Современный человек пользуется картами практически ежедневно: карты украшают стены школ, они помогают нам ориентироваться на местности, находить кратчайший путь из одного пункта в другой, изучать историю, географию, экономику и ряд других наук.

Карты — важный рабочий инструмент для некоторых специалистов: моряков, летчиков, машинистов, топографов и проч. Но много ли мы знаем о том, как создаются карты? Для чего существует такое количество разнообразных карт и насколько все они точны?

Прочитав эту книгу, вы узнаете множество новых и любопытных фактов о геометрии карт.

 

Предисловие

Главная цель этой книги — рассказать о геометрии карт. Однако сначала следует ответить на вопрос: что же такое карта? В любом словаре написано, что карта — это «чертеж части земной поверхности с преимущественным учетом, согласно правилам картографии, тех или иных специальных признаков (народонаселения, почвы и пр.); чертеж звездного неба».

Впрочем, думаю, читатель согласится со мной, если я скажу, что для ответа на этот вопрос совершенно не обязательно обращаться к словарю. Карты знакомы всем нам. Все мы видим их чуть ли не каждый день. Часто карты украшают стены школ, и, повзрослев, мы с теплотой вспоминаем их. Если вы возьмете в руки банкноты евро, то увидите, что на них изображена карта Европы, которая символизирует единство государств, образующих Европейский Союз. Читая газеты или слушая новости, мы встречаем бесчисленное множество карт. Это могут быть карты мира с информацией о расах, религиях, языках и численности населения, карты, на которых изображены уровни загрязнения или число происшествий, экономические карты разных стран или регионов, карты вооруженных конфликтов. Мы очень часто обращаемся к карте погоды, а в любом документальном фильме о природе, истории или географии, в специализированных или научно-популярных изданиях поясняющие карты помогают нам понять, о чем идет речь, и расставить все по своим местам.

Карты можно увидеть в фантастических книгах (вспомните карту вымышленной местности во «Властелине колец» и «Острове сокровищ»), в приключенческих и военных фильмах (например, в фильме «Касабланка» или «Военные игры»), а герои мультфильма «Похождения императора» в буквальном смысле идут по особой, развлекательной карте. Можно привести немало примеров, которые встречаются в искусстве: начиная от выразительных карт голландского художника эпохи барокко Яна Вермеера и заканчивая «Картой на основе мира Димаксиона» современного американского художника Джаспера Джонса и картами мира, выполненными итальянским художником Алигьеро Боэтти.

Мы запасаемся картами, планируя отпуск: они помогают нам определить маршруты, организовать поездку и, наконец, просто не потеряться. Отправляясь в автопутешествие, мы не можем обойтись без карты автомобильных дорог, а в незнакомом городе нам обязательно понадобится карта улиц. Если вы пройдетесь по своему родному городу, то увидите карты в рекламе некоторых компаний, в витринах туристических агентств, в магазинах детской одежды или в книжных магазинах в начале учебного года.

Карты — очень важный инструмент для представителей множества профессий.

Человечество использует морские и авиационные карты, политические карты, карты городов, автомобильных и железных дорог, топографические, морфологические, научные карты разных видов (ботанические, геологические, климатические, географические, океанографические, сейсмические), экономические и статистические, кадастровые карты, на которых изображены земельные участки и записаны их собственники, и многие, многие другие виды карт. Как видите, с картами прекрасно знаком каждый, мы работаем с ними каждый день и используем для решения самых разных задач.

Лучше всего нам знакома карта мира, изображенная ниже (эта карта выполнена в проекции Меркатора, о которой мы расскажем в главе 9), — мы привыкли к ней с самого детства, и наш разум воспринимает ее почти бессознательно, как данность.

Как мы все «знаем», это хорошая, правильная карта, или, как я услышал в одном разговоре, «настоящая карта». Однако посмотрим на нее снова и попытаемся ответить на несколько простых вопросов: каков кратчайший путь из Мадрида (или, например, Баку) в Вашингтон? Так как кратчайший путь между двумя точками на плоскости — это прямая, то он, по всей видимости, будет пролегать вдоль 40-й параллели северной широты. Но в главе 3 вы увидите, что кратчайший путь между двумя любыми точками сферы лежит на большом круге, проходящем через эти точки, и в нашем примере ее отображением на плоскости будет не 40-я параллель северной широты. Это одна из причин, по которой самолеты, летящие из Мадрида в Вашингтон, следуют не вдоль 40-й параллели, а сначала смещаются ближе к северу, а затем движутся на юг (путь из Баку до Вашингтона будет проходить почти через Северный полюс). Таким образом, наша карта мира не сохраняет кратчайшие расстояния.

Кроме того, в легенде любой карты обычно указывается ее масштаб. Каково расстояние между двумя точками Земли? Казалось бы, чтобы ответить на этот вопрос, нужно взять линейку, измерить расстояние между этими точками на карте и пересчитать полученную величину с учетом масштаба. Но, как мы уже отмечали, в этом случае нужно измерить длину не прямой, соединяющей две точки, а воображаемой кривой (части большой окружности). Причем даже если мы измерим длину кривой, результат по-прежнему будет неверным, так как наша карта не сохраняет неизменными длины кривых и расстояния, а ее масштаб в разных частях отличается. Продолжим наши рассуждения и поставим еще один вопрос: сохраняются ли в проекции Меркатора площади? Как нам хорошо известно, изображение Гренландии на этой карте даже чуть больше, чем изображение Африки. Но в действительности площадь Гренландии равна примерно 2175600 км2, площадь Африки — 29800000 км2.

Следовательно, контуры стран на карте также очень сильно искажены. Наконец, зададимся вопросом: сохраняются ли на картах румбы, направления и углы? Углы между меридианами и параллелями равны 90°, как и на нашей карте. Но если мы посмотрим на карту на следующей странице, то увидим, что это не так — углы не сохраняются. Эта карта выполнена в одной из классических проекций, которая называется ортографической, и показывает Землю так, как будто мы смотрим на нее из бесконечно удаленной точки.

Следовательно, карты не обладают ни одним из ожидаемых свойств: они не сохраняют расстояния, кратчайшие пути, площади и углы. Может быть, нам не хватает каких-то знаний? Так, существует целое множество картографических проекций: кроме упомянутых проекции Меркатора и ортографической проекции, используются равновеликая цилиндрическая проекция Ламберта, равновеликая коническая проекция Альберса, проекция Моллвейде, ортографическая проекция Галла — Петерса, проекция Eckert IV, центральная, стереографическая, равноугольная коническая проекция Ламберта, биполярная косая равноугольная коническая проекция, цилиндрическая равнопромежуточная, азимутальная равнопромежуточная, тройная проекция Винкеля, проекция Ван дер Гринтена, UTM, проекция Бонне, проекции Eckert I–IV, гомолосинусоидальная проекция Гуда, Хаммера, Вернера, Бризмейстера, равновеликая цилиндрическая проекция Бермана, проекция Робинсона и многие другие. Картограф Джон Снайдер в своей книге «Как Земля стала плоской» (Flattening the Earth) описывает свыше 300 картографических проекций. Возникает вопрос: почему существует столько карт? Насколько они точны? Какая — точнее всех? Как нарисовать точную карту Земли? И наконец, какую карту можно считать точной?

В этой книге мы постараемся ответить на эти вопросы, а также подробно рассказать о картах, которые мы видим каждый день. При изучении карт не обойтись без дифференциальной геометрии, которая входит в курсы картографии для таких специальностей, как география, судовождение, океанология и другие. Однако мы стремимся избежать специальных терминов и рассказать о картах с интуитивно понятной, «геометрической» точки зрения, поэтому будем использовать только методы классической геометрии (в частности, геометрии Евклида и тригонометрии). Приближенные равенства, которые мы будем приводить во многих рассуждениях, исчезают при переходе к пределу, однако в этом случае мы применим лишь самые основы дифференциального и интегрального исчисления, относящиеся к дифференциальной геометрии.

 

Глава 1

Форма Земли

Перед тем как приступить к составлению или изучению карт планеты, на которой мы живем и которая поэтому представляет для нас наибольший интерес, следует изучить ее форму и размеры. Так мы научимся определять положение точек на ее поверхности и отметим некоторые геометрические особенности Земли, которые интересовали ученых начиная с глубокой древности. Уже Клавдий Птолемей в «Географии» писал: «…Первое, что следует изучить [для того, чтобы создать карту мира] — это форма, размер и положение Земли относительно ее окрестностей [неба] так, чтобы мы смогли говорить об известной ее части, сколь велика бы она ни была […]. Эти деяния принадлежат к числу благороднейших и прекраснейших умственных занятий — узнаванию посредством математики… [природы] Земли по ее изображению…»

Именно в этом состоит цель геодезии. Слово «геодезия» происходит от греческого «гео» («земля») и «даио» («делю»), оно означает «деление Земли». Геодезия — это наука, изучающая форму и размеры планеты, ее поле тяготения и траекторию движения. В геодезии нельзя обойтись без геометрии — само сходство этих слов говорит о важной связи между ними: «геометрия» происходит от греческого «гео» («земля») и «метриа» («измерять»), то есть означает «измерение Земли».

* * *

КЛАВДИЙ ПТОЛЕМЕЙ (ОК. 90-170 ГОДЫ)

О жизни этого астронома, математика и географа известно немногое. Мы знаем, что он был римским гражданином греческого или египетского происхождения, жил и работал в Александрии. Он был автором двух трактатов, оказавших огромное влияние на европейскую и мусульманскую науку: «Альмагеста» (от арабского «Великое построение») и «Географии». В «Альмагесте», в котором прослеживается влияние Гиппарха, Птолемей собрал и расширил знания греков об астрономии, а также описал соответствующие математические методы. В этом трактате он подробно изложил математическую теорию, описывающую движение Солнца, Луны и планет.

Его модель мира была геоцентрической и описывала движение сферических небесных тел с помощью эпициклов, сочетавших в себе несколько видов кругового движения. Кроме того, в «Альмагесте» приводился каталог звезд. Более популярным языком Птолемей изложил свои идеи в труде «Планетные гипотезы». Его «География» представляет собой сборник знаний о географии мира того времени. В трактате описаны способы создания карт мира («ойкумены») и римских провинций с помощью координатной сетки. Карты Птолемея (дошедшие до нас благодаря репродукциям XV века) обладали важным достоинством: они были созданы с применением геометрических проекций. Тем не менее эти карты были очень неточными, ведь в те годы знания о землях за пределами Римской империи и даже о некоторых римских провинциях были ошибочными. Кроме того, размеры Земли, вычисленные Птолемеем, были намного меньше реальных. В своих книгах «Аналемма» и «Планисфера» Птолемей объясняет соответственно ортографическую и стереографическую проекции. Также ему принадлежат трактаты «Гармоника» — о музыке, «Оптика» и «Четверокнижие», посвященные астрологии.

Восстановленный вариант одной из карт мира, приведенных в «Географии»  Птолемея . Эта карта также дана в «Космографии» Йоханнеса Армсшейна и Николаса Германуса (1482).

* * *

Три первые главы этой книги посвящены изучению Земли, ее форм и размеров, географических координат и больших кругов.

Круглая или плоская?

Сегодня вопрос о том, какую форму имеет Земля, может показаться даже несколько оскорбительным: как все мы знаем, наша планета круглая, подобно мячу, и сплюснута у полюсов (то есть, говоря математическим языком, ее форма ближе к эллипсоиду). Также в школе нас учили: люди были убеждены в том, что земля плоская, пока Христофор Колумб не доказал современникам, что она имеет форму шара.

Спутниковые снимки Земли доказывают, что наша планета круглая, а не плоская.

В нашем сознании настолько укоренилась мысль о том, что Земля круглая, что мы и не думаем спорить с этим. Но каковы прямые доказательства того, что Земля на самом деле круглая? Одним из них могут служить многочисленные спутниковые снимки, на которых видно, что наша планета имеет форму шара. Но даже если отбросить маловероятную теорию заговора, согласно которой эти изображения — подделка, все же проверить подлинность спутниковых снимков мы не можем. Как писал древнегреческий философ Аристотель (384 год до н. э. — 322 год до н. э.) в своем трактате «О небе», нам нужны «явления, доступные ощущениям».

Многие народы, населявшие Землю еще примерно 2300 лет назад — египтяне, вавилоняне, китайцы и даже греки, — считали, что Земля совершенно плоская.

Первые описания формы Земли в Древней Греции принадлежат Гомеру (IX век до н. э.), собравшему воедино знания о географии и космологии своего времени. Греки считали, что Земля — это плоский диск, висящий в воздухе, на котором располагается известная в то время суша, окруженная великим океаном, и его воды переливаются через края Земли. Это представление о мире разделяли последователи ионийской школы философии, в частности Анаксимандр (ок. 610 года до н. э. — ок. 546 года до н. э.) , ученик Фалеса Милетского, который был автором первой известной нам карты мира.

Реконструкция карты  Гекатея , созданной на основе карты Анаксимандра . Это древнейшее из дошедших до нас изображений ойкумены — мира, известного древним.

* * *

ЗЕМЛЯ В КОСМОЛОГИЧЕСКИХ МИФАХ

Все древние народы (вавилоняне, египтяне, китайцы, греки, американские индейцы и другие) в своих мифах о происхождении мира представляли Землю более или менее плоской. По их верованиям, Земля покоилась в океане, висела в воздухе или находилась на спине огромного мифологического существа.

Для вавилонян Земля была плоским диском, который плавал на поверхности океана и был покрыт небесным сводом — металлической полусферой, на которой располагались звезды. Над небесным сводом находились высшие воды, которые иногда просачивались сквозь него, и тогда на Земле шел дождь. В африканских мифах Земля покоилась на змее, плавающей в океане.

Индусы считали, что Землю поддерживают четыре слона, стоящие на огромной черепахе, которая также плавает в океане. Египтяне и китайцы считали, что земля имеет прямоугольную форму и плавает в воде, а небесный свод покоится на двух горных цепях или четырех горах, находящихся в углах мира.

В мифах индейцев майя и других американских культурах мир изображался в виде плоского прямоугольного листа, над которым находилось небо, образованное тринадцатью наложенными друг на друга горизонтальными плоскостями. На вершине этой пирамидальной структуры восседало главное божество. Под землей находился подземный мир, состоявший из девяти горизонтальных слоев, расположенных в форме перевернутой пирамиды. Вертикально расположенные плоские миры, параллельные друг другу, описываются и в буддийской космологии.

* * *

Древнегреческому математику и философу Пифагору (ок. 570 года до н. э. — ок. 500 года до н. э.) , пусть и не безоговорочно, приписывают авторство гипотезы о шарообразной форме Земли. Неизвестно, на чем была основана его гипотеза: на физических наблюдениях или философских рассуждениях (философы считали шар самой совершенной из фигур, следовательно, наша планета, населенная людьми и сотворенная богами, должна была иметь форму шара). Платон в своем диалоге «Федон, или О бессмертии души» также упоминает, что земля имеет форму шара. Но раньше всех эту гипотезу излагает Аристотель в трактате «О небе», приводя при этом некоторые физические и логические аргументы в ее пользу. Он же первым заговорил о радиусе Земли: «Все математики, которые пытаются вычислить размер окружности Земли, говорят, что он равен 400000 стадиев».

Впрочем, размеры земного шара мы обсудим в следующей главе.

Прямые доказательства сферической формы Земли

Так как приведенные Аристотелем аргументы в пользу того, что Земля имеет форму шара, верны и сегодня, мы можем с их помощью ответить на вопрос, заданный в начале главы: каковы же прямые доказательства того, что Земля круглая? Посмотрев на небо, мы, подобно древним грекам, обнаружим первое доказательство этому: небесные тела — Солнце, Луна и планеты — имеют круглую форму. Тень, которую отбрасывает Земля на Луну во время лунного затмения, также круглая.

Лунные затмения предоставляют еще одно доказательство, пусть и не столь очевидное: они наблюдаются во всех частях Земли в один и тот же день, но в разное время. Чем дальше на восток находится наблюдатель, тем позже он увидит затмение. Так, максимальная фаза полного лунного затмения, произошедшего ночью с 20 на 21 февраля 2008 года, наблюдалась в 3 часа 26 минут по мировому времени (то есть по времени Гринвичского меридиана). Следовательно, полное лунное затмение в Испании, Франции, Алжире и Ливии наблюдалось 21 февраля в 4:26, в Англии, Мавритании и Сенегале — в 3:26, в Гренландии, на Атлантическом побережье Бразилии и в Аргентине — в 0:26, на Атлантическом побережье США, в Колумбии и Эквадоре — в 22:46 днем раньше, а в Мексике и центральной части США — в 21:26. Если бы Земля была плоской, лунные затмения наблюдались бы во всех ее частях в одно и то же время, ведь в этом случае время во всех ее частях было бы одинаковым. Это связано с тем, что время на Земле определяется в зависимости от положения солнца на небе. Полдень, то есть период, когда Солнце находится выше всего над горизонтом, в разных частях Земли наступает в разное время, так как Земля круглая, но если бы наша планета была плоской, полдень везде наступал бы одновременно.

На небе можно увидеть еще одно, очень убедительное доказательство: когда путешественник движется на север, звезды и созвездия смещаются на юг и постепенно скрываются за горизонтом. При этом на севере постепенно появляются другие звезды, которые путешественник никогда не смог бы увидеть в начальной точке своего вояжа. Так, если мы находимся в Южном полушарии, Полярная звезда будет нам не видна. Но когда мы начнем двигаться на север и пересечем экватор, она появится над горизонтом и постепенно будет подниматься все выше и выше. Когда мы достигнем Северного полюса, Полярная звезда окажется точно у нас над головой.

В плоском мире этого бы не произошло — во всех его уголках на небе были бы видны одни и те же созвездия.

Путешественник, который находится в Южном полушарии, не сможет увидеть Полярную звезду (а). Если он начнет двигаться на север, то в момент пересечения экватора (b). Полярная звезда взойдет над горизонтом. Если путешественник продолжит двигаться на север, то увидит, как Полярная звезда поднимается все выше и выше. Так, над Северным тропиком, широта которого равна 23,5°, Полярная звезда расположена под углом 23,5° к горизонту (с). На Северном полюсе путешественник увидит Полярную звезду точно над головой (d).

Если мы опустим взгляд и сфокусируем его на горизонте, то также увидим доказательства того, что Земля круглая (лучше всего при этом находиться на побережье или на корабле в открытом море). Мы увидим, что линия горизонта искривляется к краям — в плоском мире она не была бы так искривлена.

Но вот вам и самое убедительное и неоспоримое доказательство того, что Земля круглая. Допустим, что мы стоим на пляже и смотрим, как парусник движется от нас в сторону горизонта. Если бы Земля была плоской, парус становился бы все меньше и меньше, пока не стал бы совершенно неразличимым. Но в действительности так не происходит: когда корабль уплывает вдаль, сначала из виду пропадает его корпус, затем — палуба, паруса и, наконец, вершина самой высокой мачты с маленьким флагом, развевающимся на ветру. Причина этому — кривизна земного шара. Мы наблюдаем подобную картину, когда смотрим, как путник скрывается за холмом: сначала из вида пропадают его ноги, затем — туловище и, наконец, голова. Более того, именно благодаря этому эффекту горизонт выглядит как тонкая линия между морем и небом — если бы Земля была плоской, зона между морем и небом была бы нечеткой, и различить линию горизонта было бы нельзя.

* * *

НА КАКОМ РАССТОЯНИИ НАХОДИТСЯ ГОРИЗОНТ?

Когда мы перестаем видеть флаг на вершине мачты корабля, уходящего в море? Ответить на этот и другие подобные вопросы поможет знаменитая теорема Пифагора: «В прямоугольном треугольнике с катетами а и b и гипотенузой с выполняется равенство с 2  = а 2 + Ь 2 ».

Сначала узнаем, на каком расстоянии от нас находится горизонт. Для этого предположим, что глаза наблюдателя, который смотрит на линию, разделяющую небо и море, находятся на высоте h = 1,70 м. Так как свет распространяется прямолинейно, то линия зрения, обращенная к горизонту, будет касательной к Земле. Учитывая, что, согласно простой теореме геометрии, «касательная к окружности перпендикулярна ее радиусу, проведенному в точку касания» (см. рис. на следующей странице), имеем прямоугольный треугольник, катетами которого будут линия зрения, направленная к горизонту (обозначим длину этого катета через d ), и радиус Земли R (будем рассматривать радиус на экваторе, равный 6378137 м). Гипотенузой треугольника будет отрезок, соединяющий глаза наблюдателя с центром Земли. Длина гипотенузы равна R + h . По теореме Пифагора получим, что расстояние до горизонта равно почти 5 км:

Прямоугольный треугольник, катетами которого являются линия зрения, направленная к горизонту (длина этого катета равна d ), и радиус Земли  R , а гипотенузой — отрезок, соединяющий глаза наблюдателя с центром Земли. Длина этого отрезка равна R +  h .

Если мы проведем аналогичные рассуждения, рассмотрев наблюдательную площадку на вершине мачты корабля (примем ее высоту равной h  = 15 м), получим, что для моряка на мачте горизонт находится в 13832,73 м. Сложив полученные результаты, имеем: в момент, когда мачта корабля скрывается из вида, корабль находится от нас на расстоянии 18489,52 м, то есть более 18 км.

* * *

Средневековая мысль

Несмотря на все вышесказанное, на Западе распространено мнение, согласно которому весь средневековый мир верил, что Земля плоская, и только Христофор Колумб (1451–1506) убедил современников в обратном. Этот миф, по всей видимости, происходит из книги «История жизни и путешествий Христофора Колумба» американского писателя Вашингтона Ирвинга (1783–1859) .

Вере в то, что Земля плоская, предположительно способствовало дословное толкование Библии. Например, в Книге пророка Даниила (глава 4, стих 8) говорится: «Большое было это дерево и крепкое, и высота его достигала до неба, и оно видимо было до краев всей земли», в Книге Даниила, глава 2, стих 35: «Камень, разбивший истукана, сделался великою горою и наполнил всю землю». Если бы Земля не была плоской, это было бы невозможно. В Первой Книге Царств (глава 2, стих 8) и Книге Иова (глава 9, стих 6) говорится о столбах, на которых стоит Земля. Кроме того, дословное толкование Библии определило и форму средневековых карт: они были прямоугольными, согласно словам Исаии (глава 11, стих 12) или Откровению Иоанна Богослова (глава 20, стих 7): «… на четырех углах Земли», или круглыми и даже овальными, согласно изречению «над кругом Земли» (Книга пророка Исаии, глава 40, стих 22). В центре карт, согласно Книге пророка Иезекииля (глава 5, стих 5), как правило, изображался Иерусалим. Эти представления вкупе с общей космологической системой, пришедшей на смену идеям Птолемея и его предшественников, обрели популярность с выходом знаменитой «Христианской топографии», написанной греческим монахом Козьмой Индикоплевстом (VI век). Плоская форма «круга земного» (Orbis Terrarum) стала частью официальной догмы, которую отстаивали многие христианские богословы и власти предержащие. Простолюдины были убеждены в том, что эта догма истинна, так как иные знания были им недоступны. Козьма Индикоплевст, следуя буквальному толкованию Библии, описывал мир как огромную Скинию, где находится плоская прямоугольная Земля, окруженная океаном.

Карта мира Козьмы Индикоплевста . Север изображен вверху, а Земля имеет форму четырехугольника, окруженного Океаном. В левой части изображено Средиземное море, в которое впадает река Нил, берущая начало в Океане. Справа вверху находится Каспийское море, внизу — Персидский и Арабский залив (Красное море). В Персидский залив впадают реки Тигр и Евфрат.

В Средневековье были распространены так называемые «карты Т и О», названные по первым буквам Orbis Terrarum — «круг земной». На этих картах был изображен известный мир, окруженный океаном в форме буквы О. Буква Т обозначала Средиземное море, делившее Землю на три части: Азию — вверху, Европу — слева и Африку — справа. Некоторые карты были очень простыми, другие — более сложными, как, например, карта Херефорда (вверху), выполненная Ричардом из Халдингэма , или карта Эбсторфа авторства Гервасия Тильберийского . Обе эти карты были созданы в XIII веке.

Однако образованные люди никогда не отказывались от веры в то, что Земля круглая. Так, указания на это можно найти в книге одного из отцов католической церкви Аврелия Августина (354–430) : он был убежден, что Земля круглая, однако сомневался, что противоположная сторона Земли обитаема. Эта же концепция излагается в энциклопедическом труде Исидора Севильского (ок. 560–636) — «Этимологиях», где были собраны все знания того времени («Этимологии» были одной из самых используемых энциклопедий в школах и университетах), и в его же книге «О природе вещей». Аналогичные описания встречаются в «Божественной комедии» итальянского поэта Данте Алигьери (1265–1321) и в «Трактате о сфере» английского астронома Иоанна Сакробоско (1195–1256)  — важнейшем учебнике в истории, по которому астрономия преподавалась на протяжении пяти столетий. В своем трактате Сакробоско изложил идеи из «Альмагеста» Птолемея, дополнив их новыми знаниями и устранив некоторые термины, чтобы сделать труды Птолемея по географии и космологии более понятными для современников.

От эллипсоидной модели к геоидной

До XVII века считалось, что Земля — идеальная сфера. Английский физик и математик  Исаак Ньютон (1643–1727) вывел из своего закона всемирного тяготения такое следствие: Земля должна быть слегка сплюснута у полюсов и немного шире у экватора. Центробежная сила, возникающая при вращении Земли, имеет наибольшую величину у экватора и убывает по мере приближения к полюсам, где равна нулю. Поскольку эта сила компенсирует действие силы тяжести, на экваторе сила тяжести будет меньше. Как следствие, более точной моделью нашей планеты является эллипсоид вращения.

Однако теорию Ньютона, согласно которой Земля была слегка сплюснута у полюсов, разделяли не все ученые того времени. Так, результаты измерений, которые провели итальянский математик и астроном Джованни Доменико Кассини (1625–1712) , глава Парижской обсерватории, и его сын, Жак Кассини (1677–1756) , в разных точках одного и того же меридиана, заставили их думать, что Земля вытянута у полюсов и сплюснута у экватора. Эти расхождения вызвали жаркие споры, которые вылились в противостояние английской и французской науки и разделили Парижскую академию наук на два непримиримых лагеря. Чтобы положить конец разногласиям, примерно в 1735 году академия приняла решение отправить две экспедиции в разные точки земного шара для измерения дуги, соответствующей одному градусу широты у полюса и у экватора.  Мопертюи (1698–1759) и Клеро  (1713–1765) отправились в Лапландию, Годен (1704–1760),  ла Кондамин (1701–1774) и Бугер  (1698–1758) , при содействии испанцев Хорхе Хуана (1713–1773)  и Антонио де Ульоа (1716–1795) , — в Перу. Результаты измерений в конечном итоге подтвердили правоту Ньютона. Вольтер, сторонник Ньютона, сказал о Мопертюи: «Он расплющил Землю и Кассини».

Более поздние измерения позволили определить эллипсоид, максимально точно описывающий форму земной поверхности. Последними результатами, полученными с помощью спутниковых технологий, стали эллипсоид GRS (от англ. Geodetic Reference System — «геодезическая справочная система») 1980 года, используемый Международным геодезическим и геофизическим союзом, и WGS (от англ. World Geodetic System — «всемирная геодезическая система») 1984 года, ставший мировым стандартом. В системе GPS (от англ. Global Positioning System — «система глобального позиционирования») эта модель используется для вычисления широты, долготы и высоты.

* * *

ВОЗДЕЙСТВИЕ СИЛЫ ТЯЖЕСТИ

Запуск космических ракет всегда производится на широтах, близких к экватору. Корабли NASA стартуют с мыса Канаверал в штате Флорида, ракеты Европейского космического агентства (ESA) — из космодрома близ города Куру во Французской Гвиане. Россия и Япония не имеют территорий на этой широте, поэтому производят запуски севернее или применяют промежуточные решения, например арендуя площадки у других стран или используя плавучие космодромы в Тихом океане. Вызвано это тем, что сила тяготения вблизи экватора меньше, так как радиус Земли в этих широтах больше, а сила тяготения обратно пропорциональна квадрату расстояния до центра Земли. Кроме того, по мере приближения к экватору возрастает и центробежная сила вращения Земли, так что при запуске с космодрома, расположенного вблизи экватора, ракетам для выхода на орбиту требуется меньше топлива.

Воздействие силы тяготения проявляется и в спорте. Так как сила тяжести у экватора ниже, метатели и прыгуны в высоту показывают более высокие результаты вблизи экватора, а не на севере Европы. А вот в соревнованиях по горным лыжам, где главную роль играет скорость, благодаря большей силе тяготения на севере Европы рекорды ставятся чаще, чем в странах, находящихся ближе к экватору.

* * *

Картографы в зависимости от решаемой задачи используют сферическую модель Земли либо одну из эллипсоидных моделей. Сфера используется в качестве модели при составлении карт в мелком масштабе, то есть карт стран, континентов или крупных регионов. В этом случае различия между упомянутыми моделями будут незаметны, однако при использовании эллипсоида сложность картографических уравнений намного выше. А вот в картах крупного масштаба, на которых изображаются более мелкие территории, например в топографических или навигационных, различия между моделями будут существенными, при этом использование сферической модели влечет значительные ошибки в расстояниях, площадях и углах, поэтому при составлении таких карт картографы используют эллипсоид.

Утверждая, что земная поверхность имеет форму эллипсоида, мы хотим сказать, что форму эллипсоида имеет воображаемая поверхность, обозначающая средний уровень моря во всех точках земного шара, включая районы, находящиеся над поверхностью воды (как если бы существовал воображаемый канал, соединяющий их с морем). Тем не менее геодезические измерения показывают, что описанная нами поверхность — не эллипсоид, так как уровень моря в разных областях отличается ввиду локальных отклонений силы тяготения, вызванных неоднородностью земной коры и другими факторами. Чтобы учесть эти отклонения, была создана новая модель — геоид (этот термин происходит от греческого «гео» — «Земля» и «оид» — форма»). Геоид — это трехмерная фигура, приближенно описывающая средний уровень моря. Ее можно представить как поверхность спокойного моря, в каждой точке которой сила тяготения (или направление отвеса) перпендикулярна поверхности. Если использовать совсем уж научные термины, то геоид — это эквипотенциальная поверхность земного поля тяготения, которая используется в альтиметрии для определения высот различных участков земной поверхности.

В этой книге мы будем считать, что Земля имеет форму сферы, то есть будем использовать сферическую модель.

Математическая модель, описывающая земную поверхность.

 

Глава 2

Размеры Земли

Одновременно с проблемой определения формы нашей планеты возник вопрос о ее размерах. Когда стало понятно, что Земля имеет форму сферы, потребовалось определить ее радиус, так как длина окружности (когда речь идет о сфере, имеется в виду длина любого из ее больших кругов) равна 2πr.

Оценки Евдокса и Архимеда

И вновь ответ на вопрос дали древние греки. Как мы рассказали в предыдущей главе, Аристотель в своем трактате «О небе» отмечал, что математики вычислили длину окружности земли — 400000 стадиев. По-видимому, здесь он цитирует греческого математика и астронома Евдокса Книдского (ок. 400 года до н. э. — ок. 347 года до н. э.) , который считается создателем математической астрономии.

Следующая оценка размеров нашей планеты содержится в книге «Исчисление песчинок», написанной величайшим греческим математиком Архимедом  (ок. 287 года до н. э. — ок. 212 года до н. э) . В этой книге он оценивает число песчинок во Вселенной, предварительно вычислив ее размеры. На одном из промежуточных этапов Архимед отмечает, что «периметр Земли равен 3000000 стадиев и не больше», хотя признает, что некоторые оценивают размеры Земли в 300 000 стадиев. Эта цифра казалась Архимеду заниженной — он, как и Платон, считал, что наша планета имеет огромные размеры.

Измерения  Эратосфена

Самое известное измерение размеров Земли в древности принадлежит Эратосфену Киренскому (276 год до н. э. — 194 год до н. э.) . Чтобы узнать размеры Земли, Эратосфен измерил угол и длину дуги меридиана Александрии. Он определил, что длина всего меридиана равна 252 тысячи стадиев — как вы увидите далее, это очень точный результат. Метод Эратосфена известен нам благодаря греческому астроному Клеомеду (ок. 10 — ок. 70) , а также таким классическим авторам, как Герои, Страбон, Плиний и Витрувий.

Эратосфен учел, что Земля имеет форму сферы, а лучи Солнца, достигающие ее поверхности, можно считать параллельными, так как Солнце находится от нас на огромном расстоянии. Ученый провел измерения в Александрии и Сиене (современный Асуан), которые находятся на одном меридиане, определив тем самым дли¬ ну дуги этого меридиана.

Эратосфен определил, что расстояние между Александрией и Сиеной равно 5 тысяч стадиев. Для этого он обратился к погонщикам караванов, которые рассказали ему, что верблюд проходит в день примерно 100 стадиев, а путь от Александрии до Сиены занимает 50 дней. Весьма вероятно, что Эратосфен опирался не только на слова погонщиков верблюдов, а, как хороший ученый, сопоставил их с данными, приведенными в книгах Александрийской библиотеки.

* * *

ЭРАТОСФЕН КИРЕНСКИЙ (276 ГОД ДО Н.Э. — 194 ГОД ДО Н. Э.)

Эратосфен был разносторонним ученым: он занимался географией, математикой, астрономией, философией, хронологией, грамматикой, был литературным критиком и даже писал стихи, за что товарищи наградили его титулом пентатл — «пятиборец», имея в виду пентатлон — состязания в пяти дисциплинах. Было у него и другое прозвище — Бета, то есть «второй». Его можно понимать как намек на то, что Эратосфен, который занимался многими науками, ни в одной из них не достиг совершенства, хотя, отметим, все равно был одним из великих мудрецов Античности. В 30 лет он был назначен главой Александрийской библиотеки и занимал этот пост на протяжении 45 лет, до самой смерти.

* * *

Кроме того, Эратосфен учел, что через Сиену проходит Северный тропик, то есть в полдень в день летнего солнцестояния (примерно 21 июня) солнечные лучи падают на город вертикально. Любой житель и гость Сиены мог подтвердить, что в этот день лучи солнца освещали глубокие колодцы до самого дна.

Схематичное изображение Александрии, Сиены и солнечных лучей, освещающих эти города в день летнего солнцестояния. Эратосфен при измерении размеров Земли использовал похожую схему.

Чтобы измерить угол, определяемый дугой меридиана, Эратосфен также использовал гномон — простой инструмент, представляющий собой вертикальный столб, перпендикулярный горизонтальному основанию. Рассказывают, что в качестве гномона ученый использовал большой обелиск.

С помощью гномона Эратосфен измерил угол наклона Солнца относительно вертикали в полдень в день летнего равноденствия. По его подсчетам, этот угол составил 1/50 окружности, то есть 360°/50 = 7,2°. А поскольку в полдень этого же дня лучи Солнца падают на Сиену вертикально, угол дуги меридиана между Александрией и Сиеной равен α, то есть 7,2°.

* * *

ПОЛЕЗНЫЕ СВОЙСТВА ГНОМОНА

Зафиксировав гномон в одном положении, мы можем наблюдать движение его тени по мере того, как солнце движется по небу. Так, можно определить, когда наступает полдень — в этот момент Солнце находится в наивысшей точке над горизонтом, а тень гномона будет самой короткой. Гномон можно использовать и в качестве простого компаса, так как в полдень его тень указывает направление «север — юг».

В полдень, когда длина тени гномона наименьшая, он указывает направление «север — юг». В течение дня тень гномона описывает гиперболу, симметричную относительно направления «север — юг», за исключением 20 марта и 22 сентября, — в эти дни тень гномона движется по прямой, указывающей направление «запад — восток».

Если мы будем наблюдать за гномоном, расположенным на одном и том же месте, в течение года, то сможем также определить дни летнего и зимнего солнцестояния. Если в каждый день года мы будем отмечать конец тени в полдень, то увидим, что зимой, когда Солнце находится ниже всего над горизонтом, тени будут длиннее, чем в остальные времена года. День зимнего солнцестояния — это день, когда тень гномона будет самой длинной. День года, когда тень гномона будет самой короткой, — это день летнего солнцестояния.

Гномон также можно использовать для определения угловой высоты Солнца. Чтобы измерить угол, определяющий высоту Солнца (см. рисунок ниже), нужно всего лишь измерить длину гномона и его тени. Говоря современным языком, соотношение между длиной гномона и его тени будет равно тангенсу искомого угла. Аналогично можно определить угол между гномоном и лучами Солнца, указывающий, насколько Солнце отстоит от вертикали. Этот угол будет дополнительным к первому, то есть сумма этих углов будет равна 90°.

Гномон и его тень позволяют определить угловую высоту Солнца.

* * *

Путем несложных рассуждений можно прийти к выводу: если дуга меридиана имеет длину в 5000 стадиев и ей соответствует угол в 7,2°, то длина полной окружности, то есть 360°, будет равна

В полдень, в день летнего солнцестояния, лучи Солнца освещают Сиену вертикально, достигая дна самых глубоких колодцев. В этот же день и час лучи Солнца освещают Александрию под углом 7,2° относительно вертикали.

По-видимому, Эратосфен провел несколько измерений и в итоге получил окончательный результат в 252 тысячи стадиев. Его метод, который можно использовать и в наши дни, очень прост и эффективен. К сожалению, мы не можем точно перевести стадии в привычные нам метры: во времена Эратосфена не существовало единой системы мер, поэтому в точности неизвестно, какой была длина стадия, использованного ученым. Если мы рассмотрим египетский стадий, равный 157,5 м, то результат Эратосфена составит 39690 км. Эта цифра очень близка к 40030,2 км — именно столько составляет длина окружности Земли в сферической модели (полученной на основе эллипсоида WGS 84).

Хотя почти все оценки, которые привел Эратосфен, были слегка неточными, ошибки наблюдений и измерений компенсировали друг друга, и полученный результат был очень близок к реальному. Александрия и Сиена не располагаются в точности на одном меридиане, определить точное расстояние между ними в то время было невозможно, а гномон позволял лишь приближенно измерить угол между лучами Солнца и вертикалью.

Измерения  Посидония и ошибка  Колумба

Еще один важный результат, связанный с измерением земной окружности в древнем мире, принадлежит греческому философу-стоику Посидонию  (ок. 130 года до н. э. — 30 год до н. э.), одному из великих географов своего времени. Его результаты также дошли до нас благодаря трудам различных классических авторов. Как и Эратосфен, Посидоний измерил дугу меридиана, на этот раз — между Родосом и Александрией. В своей обсерватории на Родосе философ обнаружил, что звезда Канопус, вторая по яркости на звездном небе, находится в точности над горизонтом, а при наблюдении из Александрии угловая высота этой звезды равна 1/48 земной окружности (см. следующую иллюстрацию). Согласно Клеомеду, Посидоний посчитал, что длина дуги меридиана между Родосом и Александрией равна 5 тысячам стадиев, таким образом, длина окружности Земли составляет 48·5000 = 240000 стадиев. Однако греческий географ и историк Страбон (63 год до н. э. — 24 год н. э.) приводит более позднюю оценку Посидония: 180 тысяч стадиев, то есть 28350 км (если использовать египетские стадии). Этот результат ученый получил, уточнив расстояние между Родосом и Александрией: оно составило 3750 стадиев. Таким образом, Земля стала меньше.

Схема измерений размеров Земли, проведенных Посидонием . Если при наблюдении из Родоса звезда Канопус находится точно над горизонтом, то для наблюдателя в Александрии она располагается на небосводе под углом  θ к горизонту, равным углу между Родосом и Александрией.

Метод Посидония для оценки размеров Земли также был остроумным, простым и геометрически безупречным, однако философ не учел преломление света в земной атмосфере, из-за которого при наблюдении небесных тел вблизи горизонта мы видим их выше, чем они располагаются на самом деле. Если бы лучи света не преломлялись, Канопус находился бы ближе к горизонту и, как следствие, реальная величина угла была бы меньше вычисленной Посидонием.

Клавдий Птолемей, как и Страбон, и другие, считал результат Посидония корректным и привел его в своей «Географии». Таким образом, представление о малых размерах Земли было популярным среди географов и картографов до XV века. Именно поэтому итальянский математик и картограф Паоло Тосканелли (1397–1482) , составивший мореходную карту Атлантического океана, считал, что можно проплыть из Европы в Азию, а Христофор Колумб верил, что существует неизвестный путь доставки специй в Европу через Атлантический океан.

Реконструкция карты Тосканелли , на которой изображены более или менее реалистичные очертания Американского континента.

Метод триангуляции

Позднее для измерения меридианов Земли, а следовательно, для вычисления ее размеров использовалась триангуляция. Этот метод заключается в разделении местности на треугольники, максимально точном измерении углов триангуляции и длины одной из сторон исходного треугольника, называемого базовым, и последующем вычислении длин остальных сторон с помощью тригонометрии. Измерить длины сторон треугольников напрямую из-за неровностей рельефа довольно сложно, особенно если речь идет о больших расстояниях. Однако измерить с большой точностью углы вполне возможно.

Вверху — общая триангуляция Франции, проведенная в период с 1818 по 1845 год.

В истории об измерении размеров Земли с помощью метода триангуляции нам встретятся труды французского астронома Жана Пикара (1620–1682) (вычисленную им длину земного меридиана использовал Ньютон для подтверждения своего закона всемирного тяготения) и Жана-Доминика Кассини — первого директора Парижской обсерватории, который сделал ее ведущим мировым центром астрономии и картографии и попытался составить точную карту Франции. Вы также узнаете об экспедициях в Лапландию и Перу, организованных Парижской академией наук с целью определить, какова форма нашей планеты у полюсов — приплюснутая или вытянутая; об измерении меридиана между Дюнкерком и Барселоной, которое провели французские ученые Жан-Батист-Жозеф Деламбр (1749–1822) и Пьер Мешен (1744–1804) , что привело к определению метра как единицы длины.

Карта побережий Франции (1682), составленная по результатам научных измерений (с помощью триангуляции), проведенных Пикаром , де Ла Гиром и  Кассини . На этой карте вы можете видеть береговую линию Франции до измерений (более широкую) и после (более точную). Увидев эту разницу, Людовик XIV сказал Кассини: «Ваше путешествие стоило мне части моего королевства!»

* * *

МЕТР

Единицей длины в Международной системе единиц является метр, который сегодня определяется как расстояние, которое проходит свет в вакууме за 1/299 792458 секунды (примерно 3,34 наносекунды, то есть 3,34 миллиардных (10 -9 ) частей секунды).

В разное время метр определялся по-разному, однако началом его использования в качестве универсальной единицы длины мы обязаны Великой французской революции. В 1790 году для унификации единиц мер была создана Комиссия по мерам и весам. Было поставлено два условия: единицы измерения должны быть универсальными, то есть применяться повсеместно, и они не должны быть выбраны произвольно. В соответствии с этими условиями новая единица длины, метр, была определена как одна десятимиллионная часть расстояния от Северного полюса до экватора, измеренного вдоль меридиана. В самый разгар революционных потрясений было организовано две экспедиции для измерения длины парижского меридиана между Дюнкерком и Барселоной. Экспедицию, которая направилась в Дюнкерк, возглавил Деламбр, барселонскую экспедицию — Мешен. В ходе измерений с помощью триангуляции, которые длились 7 лет, ученые пережили всевозможные тяготы и многочисленные приключения. Этим событиям посвящен очень интересный роман Дэниса Гейджа «Измерение мира» (« The Measure of the World »).

 

Глава 3

Меридианы, параллели и большие круги

В нашем рассказе о картографии не обойтись без географических координат — широты и долготы, которые позволяют однозначно определить положение любой точки земной поверхности. Познакомьтесь с координатной сеткой, образованной двумя почтенными семействами сферических кривых — параллелями и меридианами, которые являются кривыми постоянной широты и долготы. Мы настолько привыкли к тому, что кратчайшим путем между двумя точками является прямая, что сложно представить, что на поверхности сферы это не так. Однако это действительно не так, хотя бы потому, что на поверхности сферы нельзя провести прямую. Следующий вопрос кажется очевидным: какие кривые играют на сфере ту же роль, что и прямые на плоскости? Точнее, каков кратчайший путь между двумя точками сферической поверхности? Ответом на этот вопрос будет еще одно интересное семейство сферических кривых — большие круги.

Широта и параллели

Чтобы определить географические координаты, нужно учесть вращение Земли вокруг воображаемой оси, проходящей через ее центр. Северный и Южный полюс — это точки пересечения оси с земной поверхностью, а также единственные точки, которые при вращении Земли остаются неподвижными. Если мы рассмотрим сферическую модель нашей планеты, то параллели будут окружностями, полученными сечением сферы плоскостями, перпендикулярными ее оси вращения (см. следующий рисунок). Существует особая параллель, экватор, которая находится на полпути между Северным и Южным полюсом. Экватор определяется сечением земного шара плоскостью, перпендикулярной его оси вращения и проходящей через центр нашей планеты. Экватор — это самая длинная параллель.

Схема, на которой изображены пять главных параллелей и широта точки Р .

Широта произвольной точки земной поверхности определяется как угол наклона относительно плоскости экватора, то есть угол между отрезком, соединяющим центр земли с рассматриваемой точкой, и плоскостью экватора (на предыдущей схеме этот угол обозначен буквой φ). Например, город Бильбао расположен на 43°15′52″ северной широты, то есть в 43 градусах 15 минутах и 52 секундах к северу от экватора. Широта принимает значения от 90° ю. ш. (в Южном полушарии) до 90° с.ш. (в Северном полушарии). Следовательно, параллели — это кривые, образованные точками с одинаковой широтой.

Данное нами определение широты верно для сферической модели Земли, которую мы рассматриваем в этой книге. Для эллипсоидной модели требуется более общее определение геодезической широты, которая понимается как угол между плоскостью экватора и перпендикуляром к прямой, касательной к меридиану эллипсоида, проходящему через данную точку (см. следующий рисунок).

Понятие геодезической широты обобщает понятие широты для эллипсоидной модели земной поверхности.

* * *

ПРОИСХОЖДЕНИЕ ГЕОГРАФИЧЕСКИХ КООРДИНАТ

Карту известной части мира, на которой можно увидеть неправильную сетку меридианов и параллелей, составил еще Эратосфен, однако систему меридианов и параллелей, разделенных равными интервалами, первым предложил греческий астроном Гиппарх Никейский (ок. 180 года до н. э. — ок. 120 года до н. э.) . В своих картах он разделил обитаемый мир одиннадцатью параллелями и предложил определять широту, одновременно наблюдая лунные затмения. Кроме того, Гиппарх первым в Древней Греции, вслед за вавилонянами, стал делить окружность на 360°, каждый градус — на 60 минут, каждую минуту — на 60 секунд.

Карта  Эратосфена с неравномерной сеткой меридианов и параллелей.

ОСОБЫЕ ПАРАЛЛЕЛИ

Земля, и в частности ее центр, вращаются вокруг Солнца по эллиптической орбите, форма которой очень близка к окружности. Орбита Земли лежит в плоскости, называемой плоскостью эклиптики, относительно которой земная ось наклонена на 23°30′. В один из дней года (примерно 21 июня), когда земная ось указывает на Солнце, Северное полушарие находится ближе всего к Солнцу, и этот день, который называется днем летнего солнцестояния, становится самым длинным в году. В Южном полушарии этот же день будет самым коротким. В полдень дня летнего солнцестояния Солнце находится точно над параллелью, расположенной на 23°30′ северной широты, которая называется Северным тропиком. В день зимнего солнцестояния (22 декабря) земная ось, напротив, указывает в противоположную от Солнца сторону, и в Северном полушарии этот день — самый короткий в году.

Схема движения Земли, на которой отмечены дни равноденствия и солнцестояния.

Южный тропик — параллель, расположенная на 23°30′ южной широты. Солнце находится точно над этой параллелью ровно в полдень в день зимнего солнцестояния. В дни весеннего и осеннего равноденствия земная ось указывает соответственно либо вправо, либо влево от Солнца, и в полдень солнечные лучи падают на экватор. Так как в день летнего солнцестояния солнечные лучи падают перпендикулярно Северному тропику (23°30′ северной широты), то в тех частях нашей планеты, которые отстоят от Северного тропика больше чем на 90°, то есть находятся южнее 66°30′ южной широты, в этот день все 24 часа будет темно. К северу от 66°30′ северной широты в этот день все 24 часа светит Солнце. В день зимнего солнцестояния все происходит с точностью до наоборот.

В день зимнего солнцестояния к северу от параллели 66°30′ северной широты (Северного полярного круга) ночь длится 24 часа.

* * *

Математическое определение широты корректно и понятно, но как определить широту в открытом море или на суше, вдали от цивилизации? Сейчас для этого используется технология GPS, однако раньше людям приходилось прибегать к более естественным решениям. Чтобы определить широту, нужно учесть, что угол φ равен разности между углом, под которым Солнце находится в полдень, в точке, широту которой мы хотим определить, и углом, под которым расположено Солнце относительно экватора в полдень того же дня. Эти углы можно определить, например, с помощью гномона.

Широта φ точки  Р на поверхности Земли равна разности между углом α р , под которым солнечные лучи освещают точку  Р в полдень, и углом α Е между солнечными лучами и экватором в полдень того же дня.

Если мы из города, широта которого известна, отправимся в другой город, то мы сможем определить широту последнего, сравнив углы, под которыми солнечные лучи освещают Землю в полдень одного и того же дня. Ночью для определения широты можно использовать Полярную звезду (она указывает направление на Северный полюс с погрешностью ровно в 1° и почти не меняет своего положения на небе) или любую другую яркую звезду. В течение многих веков широту определяли с помощью таблиц-альманахов, в которых указывалось положение Солнца и других небесных тел в различные дни и часы, а также с помощью инструментов, позволявших измерять угловую высоту небесных тел: астролябии, квадранта или поперечного жезла (позднее на смену ему пришел секстант). Все эти способы можно использовать и сейчас.

Долгота и меридианы

Если широта указывает положение в направлении «север — юг», то долгота — в направлении «запад — восток». Сначала рассмотрим окружности, получаемые сечением земной сферы плоскостями, содержащими ось вращения земли (см. следующий рисунок). Меридианами будут полуокружности, заключенные между полюсами. Над всеми точками одного меридиана астрономический, или солнечный полдень наступает в одно и то же время. Слово «меридиан» происходит от латинского meridianus, что означает «полуденный».

На схеме слева изображены меридианы — большие круги земной сферы, проходящие через полюса. На схеме справа показано, как определяется долгота произвольной точки Р .

Первое важное отличие меридианов от параллелей заключается в том, что не существует какого-то особого меридиана, который можно было бы считать нулевым. Эратосфен считал нулевым меридиан Александрии, Птолемей — меридиан островов Фортуны (Канарских островов и острова Мадейра), который был западной границей известного в то время мира. По патриотическим и религиозным причинам в качестве нулевого меридиана в разное время выбирались меридианы Мекки, Иерусалима, Парижа, Рима, Мадрида, Копенгагена, Кабо-Верде и другие, что вызывало большую путаницу. Наконец в XVIII веке, после того как в 1767 году был опубликован самый полный на тот момент морской астрономический альманах, Гринвичская королевская обсерватория в Англии стала всеобщей точкой отсчета.

В результате в 1884 году на международной конференции в Вашингтоне (США) в качестве нулевого меридиана был выбран именно меридиан Гринвича. Долгота точки земной поверхности — это угол поворота относительно Гринвичского меридиана, то есть угол между меридианом рассматриваемой точки, точнее плоскостью этого меридиана и плоскостью, в которой лежит нулевой меридиан (этот угол на рисунке выше обозначен буквой θ). Долгота Бильбао равна 2°55′43″ западной долготы, то есть Бильбао отстоит от Гринвичского меридиана на 2° 55 минут и 43 секунды на запад. Долгота принимает значения от —180° до 180°, то есть от 180° восточной долготы до 180° западной долготы.

За 24 часа Земля совершает полный оборот вокруг своей оси, то есть поворот на 360°. Таким образом, каждый час Земля поворачивается на 15°. Рассмотрим пример. Житель Бильбао пообщался со своим другом из Рима и оказалось, что солнечный полдень в Риме (Рим находится на востоке от Бильбао) наступает примерно на час позже. Следовательно, разница в долготе между этими городами будет равна примерно 15° (точная долгота Рима равна 12°30′ восточной долготы). Иными словами, чтобы определить долготу точки, нужно знать разницу во времени между этой точкой и Гринвичским меридианом. Как мы уже говорили, эту разницу проще всего определить в полдень.

Задача об определении долготы

Аналогично задаче об определении широты можно поставить задачу об определении долготы произвольной точки Земли. И вновь для того, чтобы найти решение, необходимо взглянуть на небо, хотя определить долготу будет намного сложнее: в течение дня, то есть по мере того как Земля вращается вокруг своей оси, одни небесные тела на востоке скрываются, другие, на западе, появляются. Следовательно, определить положение «запад — восток» по звездам сложнее. Поиски решения задачи о долготе продолжались четыре столетия. Великие морские державы, например Испания, Нидерланды, Англия и Франция, предлагали внушительные премии (не будем забывать, насколько важным было мореходство для этих стран в XV веке), а великие ученые, такие как Галилео Галилей, Жан-Доминик Кассини, Христиан Гюйгенс, Исаак Ньютон и Эдмунд Галлей, активно участвовали в поисках решения. Крупнейшей премией, возможно, была премия, учрежденная в 1714 году британским парламентом и составлявшая 20 тысяч фунтов.

* * *

ПЕРВОЕ ПУТЕШЕСТВИЕ КОЛУМБА

3 августа 1492 года Христофор Колумб отправился в путешествие по Атлантическому океану в поисках Азии. Сначала флотилия Колумба из 90 моряков на трех судах — «Пинта», «Нинья» и «Санта-Мария» (размеры последней составляли около 22 м в длину и 7,5 м в ширину) — направилась в сторону Канарских островов. От Канарских островов 6 сентября корабли отплыли на запад, следуя примерно вдоль прямой линии (для простоты курс был проложен вдоль одной параллели) между 26-й и 30-й параллелями. По оценкам Колумба, через 25–30 дней экспедиция должна была достичь Японии. 12 октября (21 октября по современному календарю) Колумб высадился на острове Сан-Сальвадор (туземцы называли его Гуанахани) и начал обследовать окрестности, посчитав, что достиг островов у берегов Японии.

* * *

Как предполагал еще Гиппарх, для определения долготы можно было использовать некое астрономическое явление, которое позволило бы оценить разницу во времени между двумя точками. Предположим, что в Бильбао солнечное затмение наблюдалось в полдень, но моряк, находящийся на корабле в Атлантическом океане, для которого затмение произошло в то же самое время, наблюдал его спустя четыре часа после того, как для него наступил полдень. Следовательно, разница в долготе между Бильбао и кораблем составляет 60°, то есть долгота корабля примерно равна 63° западной долготы. Однако солнечные и лунные затмения происходят крайне редко (в среднем примерно четыре раза в год), следовательно, их нельзя постоянно использовать для определения долготы.

Можно было решить задачу о долготе, зная относительное положение разных небесных тел. Так, астроном Иоганнес Вернер (1468–1522) предложил составить карту положений звезд, чтобы предсказать, когда Луна будет находиться рядом с теми или иными небесными телами в разные годы. Этот метод очень помог бы мореплавателям, однако он был небезупречен: положения звезд были известны неточно, не существовало инструментов для измерения расстояний между звездами и Луной, а траектория движения спутника Земли была изучена не до конца, поэтому точно предсказать положение Луны на небе также было очень сложно.

Галилео Галилей (1564–1642)  в качестве астрономических часов предложил использовать затмения лун Юпитера, которые наблюдались тысячу раз в год, и предсказать их было очень легко. Однако эта идея также была принята не слишком тепло. Кроме того, точные наблюдения Юпитера в те годы были проблематичны.

Ученые предлагали все новые и новые методы. Одни из них были безрассудными, другие — более серьезными, например предлагалось использовать компас и учитывать изменения земного магнетизма в разных точках нашей планеты. Позднее ученые вновь обратились к методу определения долготы по положению Луны и расстояниям от нее до звезд. Это стало возможным благодаря усовершенствованию навигационных измерительных инструментов, в частности квадрантов и секстантов, развитию астрономии и публикации подробного альманаха по данным наблюдений в новой Гринвичской королевской обсерватории. Кроме того, с помощью теории тяготения Ньютона была получена более точная информация о движении Луны.

Секстант — важный инструмент морской навигации. Он позволяет измерять углы между двумя звездами или двумя точками побережья, а также высоту звезд на небосводе.

Наиболее удачное решение задачи об определении долготы предложил английский часовщик Джон Гаррисон (1693–1776) , который сконструировал морской хронометр высокой точности, позволявший, находясь в любой точке мира, вычислять время в порту отплытия и, соответственно, долготу. Мореплаватель в открытом море должен был всего лишь определить по солнцу, когда наступит полдень, посмотреть, какое время показывает хронометр (а он показывал время в порту отплытия), рассчитать разницу во времени между портом и кораблем, умножить число часов на 15° и получить разницу в долготе относительно порта отплытия. Такое механическое решение задачи о долготе не обрадовало ни ученых того времени, ни членов Комитета по долготе, учрежденного английским парламентом. Чиновники всячески оттягивали выплату часовщику Джону Гаррисону причитающейся ему премии, надеясь, что свое решение предложат астрономы. Однако в конечном итоге всем пришлось признать, что морские хронометры Гаррисона позволяли определить долготу с требуемой точностью.

В результате всего изложенного можно сказать, что любая точка земной сферы однозначно задается параллелью и меридианом, проходящими через нее, или, что аналогично, широтой и долготой, которые называются географическими координатами.

Хронометр Джона Гаррисона Н5. С помощью хронометра Н4, сконструированного этим английским часовщиком, удалось решить задачу об определении долготы. Н4 выглядел как карманные часы большого размера и имел примерно 13 см в диаметре. Его эффективность была доказана во время путешествия корабля «Дептфорд» на Ямайку. По прибытии в Порт-Ройал два месяца спустя хронометр Н4 отстал всего на 5 секунд. Обратный путь выдался невероятно трудным, и общее расхождение за все время путешествия возросло до 1 минуты 54 секунд. Несмотря на это ошибка при вычислении долготы по-прежнему была меньше, чем требовал Декрет по долготе. Джон Гэррисон все-таки получил причитавшиеся ему 20 тысяч фунтов премии, хотя и спустя много лет.

* * *

ГИБЕЛЬ «ТИТАНИКА»

Каждый из нас видел хотя бы один художественный или документальный фильм, посвященный гибели «Титаника». Возможно, именно поэтому мы хорошо знаем историю этого роскошного корабля, который был создан с использованием новейших технологий своего времени. «Титаник» был гордостью владельцев, ему было суждено стать флагманом трансатлантических путешествий начала XX века. Тем не менее ночью 14 апреля 1912 года корабль столкнулся с айсбергом и затонул. Спасти уцелевших пассажиров удалось благодаря тому, что были известны географические координаты места крушения. С «Титаника» по радио был отправлен сигнал SOS: «Столкнулись с айсбергом. Тонем. «Титаник». 41°16′ северной широты, 50°14′ западной долготы. Срочно пришлите помощь». Корабль «Карпатия», находившийся ближе всего к месту катастрофы, получил сообщение и быстро направился в точку с указанными географическими координатами. «Карпатия» прибыла вовремя, удалось спасти более 700 человек (большинство из них составляли женщины и дети), находившихся в шлюпках.

* * *

Большие круги, геодезические линии сферы

Расстояние между двумя точками произвольной поверхности можно определить как длину кратчайшей из кривых, соединяющих эти две точки (именно так поступают геометры). По сути этим расстоянием будет длина кратчайшего пути между двумя рассматриваемыми точками, при условии что такой путь вообще существует. В геометрии кривые, указывающие кратчайший путь на поверхности, называются геодезическими линиями. Впрочем, это понятие несколько шире и включает кривые, определяющие «локальный» кратчайший путь. Что это означает? Это означает, что мы можем выбрать две точки поверхности, соединенные геодезической линией, так, что она не укажет наименьшее расстояние между ними. Однако если мы выберем две произвольные промежуточные точки геодезической линии, близкие друг к другу, то кратчайшим путем между ними всегда будет соединяющая их часть геодезической линии, как показано на рисунке.

Геодезические линии указывают кратчайшее расстояние между соседними точками, однако в общем случае это не так. Например, часть меридиана, соединяющего Лондон и город Гао в Мали и проходящего через Северный полюс, Атлантический океан и Южный полюс, — это геодезическая линия, но она не соответствует кратчайшему пути из Лондона в Гао. Однако эта геодезическая линия соответствует кратчайшему пути между близлежащими точками, например между Гао и городом Аккра в Гане или между Лондоном и Северным полюсом.

Как всем хорошо известно, геодезическими линиями плоскости являются прямые. Тем не менее минимальное расстояние между точками на сфере указывают большие круги — кривые, получаемые сечением сферы плоскостями, проходящими через ее центр. Примерами больших кругов сферы являются меридианы. Единственная параллель, которая является большим кругом, — это экватор.

На иллюстрации показаны большие круги Земли.

Проведем эксперимент. Допустим, что мы хотим провести прямую, проходящую через две точки плоской поверхности. Для этого мы можем соединить эти точки простой веревкой и сильно натянуть ее. Веревка примет форму прямой, соединяющей две точки. Теперь рассмотрим земной шар. Чтобы определить кратчайший путь между двумя точками земного шара, например между Барселоной и Аделаидой, соединим указанные точки веревкой и натянем ее. Мы получим кривую наименьшей длины, соединяющую два указанных города (то есть геодезическую линию), которая будет частью большого круга, проходящего через эти города, как показано на иллюстрации.

Натянутая веревка соответствует кратчайшему пути между двумя точками.

На интуитивном уровне можно сформулировать следующее доказательство. Допустим, даны две точки на сфере, и мы хотим найти кривую, которая определяет кратчайший путь между ними. Кажется логичным предположить, что мы можем ограничиться рассмотрением окружностей сферы, которые проходят через эти точки и образуются сечением сферы плоскостями, проходящими через две данные точки. Кроме того, в силу свойств симметрии, четко видно, что дуга окружности, полученной сечением сферы плоскостью, проходящей через центр сферы, соответствует кратчайшему пути между точками, что показано на предыдущем рисунке. В итоге большие круги являются геодезическими линиями сферы, или кривыми, указывающими наименьшее расстояние.

Дуга большого круга, заключенная между между двумя точками, имеет наименьшую длину среди всех дуг окружностей, соединяющих данные точки.

* * *

ГЕОДЕЗИЧЕСКИЕ КУПОЛА

Одно из самых впечатляющих сооружений сферической формы, созданных в XX веке, — это геодезические купола Ричарда Бакминстера Фуллера (1895–1983). Мы могли бы многое сказать об этом гениальном изобретателе, архитекторе, инженере, математике, поэте и космологе, провидце, который опередил свое время и смог поставить науку и технику на службу обществу. Величайшим его творением, несомненно, являются геодезические купола.

Американский павильон на Всемирной выставке 1967 года в Монреале, построенный по проекту Ричарда Бакминстера Фуллера . Позднее в павильоне разместился музей воды и окружающей среды

(фотография: Филипп Хайнсторфер ).

Геодезический купол — это сферическая структура, образованная сеткой больших кругов (геодезических линий). Треугольники, из которых состоит сетка, придают структуре жесткость. Для построения классического геодезического купола рассматривается икосаэдр, вписанный в сферу, как показано на иллюстрации. Затем каждая грань икосаэдра делится на треугольники, которые проецируются на сферу, образуя сетку геодезических линий.

Преимущества геодезического купола следующие.

1. Он покрывает обширное пространство и не требует поддерживающих конструкций в середине.

2. Для геодезического купола характерно оптимальное соотношение объема к площади поверхности, иными словами, он покрывает пространство максимального объема при наименьшей площади поверхности.

3. Пространство внутри купола нетрудно обогревать, так как потери тепла зависят от соотношения между объемом и площадью поверхности, которое является оптимальным.

4. Геодезические купола благодаря своей структуре и распределению нагрузки обладают высокой жесткостью.

5. Геодезические купола имеют малый вес и просты в сборке.

* * *

Кривизна больших кругов

Прямые также можно определить как кривые, обладающие нулевой кривизной. Можно ли дать похожее определение большим кругам сферы? Кажется очевидным, что окружность, будучи плоской кривой, имеет одинаковую кривизну во всех точках, и эта кривизна ненулевая. Кроме того, чем больше радиус окружности, тем более вытянутой она будет, и тем меньше будет ее кривизна (см. иллюстрацию на следующей странице). Геометрически кривизна окружности радиуса r равна 1/r. Следовательно, чем больше радиус окружности, тем меньше ее кривизна. Изменение кривизны окружности в зависимости от ее радиуса можно почувствовать, если проехать на велосипеде по кругу: в зависимости от радиуса круга нужно будет поворачивать руль на больший или меньший угол. Когда мы не поворачиваем руль, велосипед движется по «прямой», то есть по большому кругу, имеющему наименьшую кривизну. Следовательно, большие круги имеют наименьшую кривизну, а их радиус будет наибольшим.

Чем больше радиус окружности r , тем меньше ее кривизна k .

В действительности геометры определили новую величину, которую можно назвать кривизной кривой на заданной поверхности. Это так называемая геодезическая кривизна, которая указывает степень кривизны кривой на поверхности, которой она принадлежит. В качестве окружающего пространства рассматривается именно эта поверхность, а не трехмерное пространство.

Геодезическая кривизна геодезических линий, в частности больших кругов сферы, равна нулю, что является обобщением кривизны прямой на плоскости.

 

Глава 4

В поисках правильной карты Земли

Картография — это наука, изучающая графическое изображение Земли и ее частей, а также других небесных тел. В картографии главным образом рассматриваются карты, а также рельефные модели и глобусы. В эру компьютеров и интернета карты и глобусы могут быть очень сложными, интерактивными, созданными с помощью новых способов изображения земной поверхности.

Карты выполняют две основные функции: они используются для хранения и представления полезной географической информации, а также помогают понять пространственные соотношения и осознать всю сложность мира, в котором мы живем.

Картография делится на три основные части. Первая — это сбор, анализ и обработка географической информации, которая затем используется при составлении карт. Источниками географической информации обычно служат: наблюдения в поле (традиционный источник информации на протяжении всей истории картографии, применяющийся до сих пор), данные аэрофотосъемки и космической съемки со спутников (фотографии, данные, полученные с помощью радаров и датчиков), уже существующие карты и базы данных, а также статистические данные.

Вторая часть картографии — математическая картография. Она занимается изучением проекций, то есть геометрических и математических преобразований, позволяющих изобразить искривленную земную поверхность на плоскости. Именно проекции определяют, какую форму будут иметь страны и континенты на картах. Термин «математическая картография» имеет очень широкое значение. Если говорить коротко, то математическая картография занимается формированием и изучением математических основ составления карт, а также охватывает теоретические и практические вопросы в смежных научных дисциплинах: уже упомянутой картографии, геодезии, географии, навигации и других науках. Один из важнейших инструментов математической картографии — дифференциальная геометрия.

Основной задачей картографии является изучение проекций. В этой главе мы подробнее расскажем о проекциях, лежащих в основе карт. Мы приведем их классификацию по форме построения, геометрическим свойствам, изучим характерные особенности, в частности искажения, возникающие при использовании разных проекций, а также рассмотрим основные результаты математической картографии и их применение при составлении реальных карт.

Третья и последняя часть картографии — это дизайн и составление карт. Традиционно карты имеют бумажную основу. В прошлом они рисовались вручную, позднее, с изобретением книгопечатания, стали изготавливаться печатным способом, и качество карт неуклонно возрастало. Сегодня благодаря новым технологиям стало возможным публиковать цифровые карты и карты других форматов. Любой, кто работает с такой картой, может не просто пассивно получать информацию, но и взаимодействовать с ней и даже принимать участие в ее создании.

Еще две важные части картографии — это история картографии, а также изучение способов применения карт. Изучение истории карт помогает лучше разобраться в них, осознать их роль в истории человечества и понять, как выглядел мир в разные времена для разных народов. Не следует забывать, что зная прошлое, мы сможем понять будущее и сделать его лучше. Наконец, изучение способов применения карт позволяет сделать их намного эффективнее, создавать новые методы, новые проекции, которые помогут решить текущие задачи.

Что такое «правильная» карта

В ходе истории картографы и математики работали над созданием совершенной карты, стремясь найти такую проекцию земной поверхности на плоскость, которая позволила бы составить наиболее точную карту нашей планеты. В этой главе мы вновь рассмотрим вопросы, перечисленные в предисловии. Их можно свести к одному, главному вопросу: как составить правильную карту Земли? Однако вначале следует выяснить, какую карту можно считать «правильной».

* * *

КАРТЫ ДЛЯ РАЗГАДКИ ЗАГАДОК

Иногда представление статистических данных на карте помогает совершить открытие. Карта позволяет увидеть закономерности, не столь заметные при ином способе представления данных. Простой пример этого — карта эпидемии холеры, составленная Джоном Сноу в 1854 году. В середине XIX века причины возникновения холеры и других инфекционных заболеваний были неизвестны. Возбудителями подобных заболеваний считались «миазмы» — вредоносные субстанции, передающиеся по воздуху. За несколько лет Лондон пережил множество вспышек холеры, унесших тысячи жизней. Английский математик  Джон Сноу (1813–1858) считал: «людей убивает вода». В конце лета 1854 года в районе Сохо разразилась эпидемия холеры. За первые несколько дней скончалось более 100 человек, за 10 дней — свыше 500, к концу эпидемии — 616. Сноу, который был свидетелем эпидемии 1831 года, жил в Сохо. Он заподозрил, что источником инфекции могла быть колонка с питьевой водой. Жители района брали воду из уличных колонок, вода в которые поступала из загрязненной Темзы. Сноу составил карту, на которой отметил местоположение колонок с водой и дома, где жили жертвы холеры. Он заподозрил, что причиной эпидемии была колонка на улице Броуд, вокруг которой, как было видно на карте, проживали заболевшие, которые действительно брали воду именно в этой колонке. В итоге Сноу удалось добиться закрытия колонки, и лишь спустя несколько лет было обнаружено, что причиной заболевания являются бактерии.

Карта очага эпидемии холеры, составленная Джоном Сноу , на которой отмечены случаи заболевания холерой в Лондоне в 1854 году. Точки указывают место жительства заболевших, крестами отмечены колонки с питьевой водой. Точки сконцентрированы вблизи колонки на улице Броуд.

* * *

Мы можем использовать карты в разных целях: для поиска кратчайшего пути до точки назначения, определения расстояний, измерения длин рек, газопроводов или линий связи; для определения зоны поражения боевой ракеты, области утечки газа или радиационного заражения. С помощью карт можно определить направление ветра, задать курс при путешествии в открытом море, на земле или в воздухе, вычислить площадь определенной территории, проанализировать географическую информацию, представленную на карте (уровень жизни, плотность населения, экономические данные или данные об уровне производства товаров и т. д.). Для решения последней задачи важно, чтобы карта сохраняла площадь и, если возможно, форму, то есть общий вид рассматриваемых территорий. Карты позволяют изучать особенности рельефа местности, например бассейны рек, горные хребты, долины и побережья; при этом очень важно, чтобы на карте сохранялись их реальные очертания. По сути, при работе с картой нас интересуют вопросы измерения расстояний, длин кривых, поиск кратчайших путей (геодезических линий), определение направлений, углов, площадей и форм. Следовательно, при построении математических проекций земной поверхности на плоскости мы хотим, чтобы проекции сохраняли указанные параметры.

Остановимся на мгновение и подумаем о проблеме составления карты земной поверхности на бытовом уровне, не обращаясь к методам дифференциальной геометрии, необходимым, чтобы ответить на вопрос со всей точностью. Несложно увидеть две основные трудности, возникающие при составлении карт. Одна из них заключается в том, что, в зависимости от задачи, карты должны иметь разные размеры и на них должны быть изображены участки земли разной площади. Вторая трудность — различие между геометрической формой самой Земли и карты, на которой она изображается: Земля имеет форму сферы, а карта плоская.

Двойная задача: выбор масштаба и картографической проекции

Из всего сказанного следует, что математические проекции, используемые при составлении карт, становятся понятны, если рассмотреть построение карт как двухэтапный процесс. Сначала земная сфера проецируется на сферический глобус, уменьшенный (в масштабе) до выбранного нами размера. Эта часть проекции заключается в простом уменьшении изображения земной поверхности. Затем уменьшенное изображение проецируется на плоскость, в результате чего появляется нужная нам карта.

* * *

ТОПОЛОГИЧЕСКИЕ КАРТЫ

Если мы нарисуем карту нашего дома, квартала или района, на ней не будет сохранен ни один из привычных параметров. Точно такими же были первые карты, созданные человеком, например вавилонская карта VI века до н. э., изображенная на глиняной табличке. Это так называемые топологические карты, на которых основное значение имеют отношения вида «близко — далеко», «вместе — раздельно», а также порядок и непрерывность. На топологических картах обычно изображают взаимосвязи между элементами местности. Хрестоматийным примером таких карт служат схемы метро, так как для тех, кто ими пользуется, важнее не расстояние между станциями, а их число и схемы пересадок.

К топологическим картам относятся так называемые фэнтези-карты вымышленных миров, например карта Средиземья из «Властелина колец» Дж. Р. Р. Толкиена (1954) или «живописные карты», которые можно увидеть, например, в парках аттракционов. К этому же виду относятся карты нейронных сетей и другие карты, используемые в информатике, а также карты, связанные с графами.

* * *

Описанная выше сферическая модель Земли — это идеальная модель земной поверхности, которая отличается от нее только размером, но не формой. Масштаб указывает разницу в размерах между Землей и сферой. Определить его можно, разделив радиус сферы на радиус Земли. Рассмотрим глобус радиусом 25 см. Радиус Земли будем считать равным 6371 км (если использовать размеры эллипсоида WGS84). В этом случае масштаб равен

Этот масштаб, который обычно записывается как 1:25484000, означает, что каждый сантиметр глобуса соответствует 25484000 см, то есть 254,84 км земной поверхности.

На многих древних картах масштаб указывался с помощью изображения компаса, как можно видеть на этой карте Магелланова пролива (1606), выполненной  Йодокусом Хондиусом . На карте изображены и другие типичные элементы карт того времени, в частности роза ветров и фантастические животные.

Как влияет это уменьшение в размерах на метрические параметры карт, о которых мы говорили выше? Расстояния и длины кривых уменьшаются линейно в соответствии с масштабом, то есть каждый сантиметр глобуса соответствует 254,84 км земной поверхности. Следовательно, если мы хотим измерить расстояние от Барселоны до Аделаиды, нужно всего лишь измерить это расстояние на сферической модели Земли и умножить результат в сантиметрах на 254,84. Площади участков земной поверхности и масштаб карты связаны квадратичной зависимостью: каждый квадратный сантиметр на глобусе будет соответствовать 254,842 = 64943,4256 км2.

Большие круги, указывающие кратчайшие пути, станут большими кругами на сферической модели, поэтому геодезические линии также останутся неизменными. Сохранятся также углы и направления. Как видим, преобразование, которое заключается в уменьшении размеров Земли, не изменяет метрические параметры, масштаб во всех точках сферической модели остается постоянным.

Математически это можно выразить следующим образом. Будем считать, что Земля и ее сферическая модель имеют общий центр, который мы примем за начало нашего трехмерного пространства . Следовательно, наше математическое преобразование будет отображением Земли (S 1 ), которая является сферой радиуса 6371 км, на сферическую модель (S 2 ) радиусом 25 см φ: S 1  —> S 2 , определяемым как φ(х) = е·х. На языке геометрии это отображение называется гомотетией (при е > 1 исходные фигуры увеличиваются, при е < 1, как в нашем случае, — уменьшаются). Это простое преобразование, которое однозначно определяется свойством пропорционального уменьшения размеров фигур.

Теперь, когда вопрос об изменении размеров решен, осталось решить проблему изменения формы. Как вы увидите, она намного сложнее, и именно здесь в действительности скрывается святой Грааль картографии — идеальная карта. Чтобы решить эту проблему, нужно изучить математические проекции сферы на плоскость и рассмотреть, как они изменяют различные метрические свойства. Это центральная тема математической картографии и настоящей главы. Как мы упоминали в предисловии, существует множество математических преобразований сферы в плоскость и, как следствие, множество разных проекций, на основе которых можно составить столь же большое число самых разных карт. Далее для простоты мы будем понимать картографические проекции как отображения сферы единичного радиуса на плоскость  Кроме того, с математической точки зрения проекции должны обладать некоторыми естественными свойствами: в частности, они должны быть непрерывными и дифференцируемыми. Это означает, что сфера должна проецироваться на плоскость разумным образом, то есть без складок, разрезов и наложений.

Как мы уже отмечали, важно знать, как изменяются основные метрические свойства при использовании тех или иных проекций. Поэтому начнем наши поиски точной карты земной сферы с того, что докажем следующее утверждение: в проекции, сохраняющей расстояния между точками (такие отображения называются изометрическими), также сохраняются кратчайшие пути (геодезические линии), углы и площади. Кроме того, сохранение расстояний эквивалентно сохранению длин кривых. Предыдущие утверждения — не более чем частный случай анализа дифференцируемых отображений между регулярными поверхностями применительно к их метрическим свойствам (доказательство этого утверждения методами дифференциальной геометрии можно найти в любом классическом учебнике по этой дисциплине).

Проекция, сохраняющая расстояния, сохраняет и кратчайшие пути

Далее мы докажем, что любая проекция сферы на плоскость, сохраняющая расстояния (это означает, что расстояние между двумя произвольными точками сферы будет равно расстоянию между отображениями этих точек на плоскости), также сохраняет кратчайшие пути, иными словами, отображением больших кругов сферы будут прямые на плоскости.

Докажем это утверждение методом от противного, который заключается в том, что мы считаем утверждение, которое хотим доказать, ложным, и путем логических рассуждений приходим к противоречию, затрагивающему исходную гипотезу. Следовательно, утверждение, которое мы хотим доказать, будет истинным. В нашем случае предположим, что проекцией больших кругов не всегда будет прямая.

Если бы рассматриваемая проекция в самом деле не сохраняла кратчайшие пути, то существовали бы две точки сферы А и В и точка С, лежащая на кратчайшем пути между ними (то есть на большом круге, проходящем через А и В), такая, что ее отображение на плоскость С' не лежало бы на кратчайшем пути (прямой), соединяющем отображения точек А и В — А' и В' соответственно.