Двуликий электронный Янус

Ищенко Евгений Петрович

Глава II. ЗНАКОМЬТЕСЬ – РОБОТЫ

 

 

Паровой человек, его предшественники и собратья

Идеальный робот виделся инженерам и конструкторам как максимально приближенное по своим возможностям к человеку механическое существо, способное освоить самые сложные и опасные профессии. Несмотря на впечатляющие достижения робототехники, до идеала было еще безмерно далеко, а контуры электронного совершенства терялись где-то в далеких горизонтах будущего тысячелетия, что, впрочем, не делало саму идею утопичной. «Прорывы» в роботостроении, фиксируемые в 80—90-е годы прошлого века, создавали реальную основу для того, чтобы заветная мечта нескольких поколений изобретателей все же сбылась.

Роботостроение – быстро развивающаяся отрасль. Роботы достаточно хорошо зарекомендовали себя как эффективные средства автоматизации. Одной из стран, где роботы особенно широко используются и выпускаются в немалом количестве, являются США. Развитие американского роботостроения с самого начала ориентировалось на повышение надежности роботов. Этому, в частности, служили особо строгий контроль и испытания отдельных узлов, а также всего устройства по специальной программе.

По мере эволюции роботов все большее распространение получали датчики визуального обследования – своеобразные «глаза» робота в системе искусственного зрения, где широко используются телевизионные камеры. Промышленные роботы, снабженные органами искусственного зрения, стали обычным явлением уже в 1976 году. Стандартная модель включала видеокамеру и была способна различать детали при сортировке. Оптическая информация преобразовывалась в электрические сигналы, которые затем обрабатывались микропроцессором.

Система дистанционного управления и наблюдения за действиями роботов была создана в 1986 году в японском НИИ электронной техники. Основная особенность нового монитора заключалась в том, что оператор, надевая специальные электронные очки, соединенные с воспроизводящим устройством, мог наблюдать на экране объемное изображение, дающее полный эффект присутствия. Кроме того, одновременно могли воспроизводиться до 60 кадров как реального, так и графического объемного изображения. Вся система состояла из четырех телекамер, монитора и пульта управления. Специалисты считали, что внедрение такого монитора намного облегчит управление сложными манипуляциями роботов.

Появление промышленных роботов-манипуляторов стимулировала возросшая необходимость в них для автоматизации различных производственных операций. Роботы обрели вполне конкретный технический облик и широко используются в различных отраслях промышленности многих стран мира. С момента появления первых роботов-автоматов прошло несколько поколений их эволюции. Первое поколение – это автоматически действующие манипуляторы с жестким алгоритмизированным управлением, в которых программные и механические устройства довольно легко перестраиваются в зависимости от характера выполняемых операций.

Адаптивные роботы, наделенные системами «очувствления» и специализированными блоками обработки информации и управления на базе компьютера, составляют группу второго поколения, и наконец, роботы третьего поколения объединяют в себе автоматические манипуляционные устройства с «искусственным интеллектом». Однако они пока не способны соперничать с человеческим разумом.

Под «искусственным интеллектом» роботов подразумевается техническая система, способная ориентироваться в пространстве, т. е. распознавать неизвестную, постоянно меняющуюся обстановку, автоматически оценивать ситуацию и принимать подходящие решения о последующих действиях в связи с поставленной технологической задачей. Иными словами, роботы третьего поколения призваны «планировать» операции и в установленных человеком границах выполнять их. Для них вполне приемлемы понятия «самообучение» и «накопление опыта», которые в последующих манипуляциях роботов, даже при изменении характера действий, могут быть использованы и оказаться весьма полезными. Однако пока существует ряд сложных и еще далеко не решенных проблем. Среди них такие, как надежность, экономичность, гибкость и др.

Японская корпорация «Тошиба» летом 1987 года сообщила о том, что ее специалистам удалось создать «умного робота», который может стать родоначальником нового поколения в семействе автоматов, применяемых на сборочных процессах. Что же он умеет? Прежде всего робот способен самостоятельно принимать решения по ходу работы и собирать из разрозненных деталей нужные комбинации в соответствии с заданной моделью. Все его предшественники были ограничены пусть и виртуозными, но однообразными операциями, определенными конкретной программой. «Умный робот» выбирает последовательность действий сам, без дополнительных инструкций и вмешательств оператора, руководствуясь лишь своим «чутьем» и моделью продукции, с которой он постоянно сверяется.

Робот невысок (в половину человеческого роста), имеет туловище, две руки, на каждой из которых по три пальца, шею и две телекамеры вместо глаз. С помощью чувствительных шаров и микропроцессоров он считывает с модели необходимую информацию, которая собирается на компьютерной станции. Здесь же фиксируется и «картинка», увиденная глазами-камерами. После того как данные собраны, робот анализирует их, составляет программу и выполняет ее, собирая из деталей копию оригинала.

Если вы думаете, что роботы появились сравнительно недавно, то сильно заблуждаетесь. Еще во втором веке до н. э. в храмах Египта действовали автоматы по продаже освященной воды. Количество воды, вытекавшей из крана, соответствовало весу монет, опущенных в приемное устройство автомата. В храме Зевса в Афинах тоже был автоматический продавец освященной воды.

Согласно древнегреческим легендам Гефест – божественный кузнец Олимпа – изготовил две золотые статуи молодых женщин, которые могли двигаться и помогать хромому богу, поддерживая его во время прогулок. Похоже, в Древней Греции существовало четкое представление об автоматике.

Кибернетика, оказывается, – древняя наука. В Китае она была известна как искусство «Хвай-шу», с помощью которого можно было оживить статуи, чтобы они помогали своему создателю. В истории императора Та-Чжуана есть описание механического человека. Императрица так увлеклась роботом, что ревнивый правитель Поднебесной империи повелел конструктору сломать его, хотя и ему самому этот робот тоже очень нравился.

Инженеры Александрии более 2000 лет назад создали около сотни разнообразных автоматов, описания которых сохранились. Легендарный Дедал делал человекообразные фигуры, которые могли двигаться. Как сообщает Платон, эти роботы были настолько активными, что приходилось их охранять, чтоб они не сбежали. В храмах Феба в Египте были фигуры богов, которые говорили и жестикулировали. По свидетельству Герсиласио де ла Веги, у инков долины Римак была статуя, которая «разговаривала и давала советы, отвечала на вопросы как Дельфийский оракул».

Зашифрованные инструкции по созданию роботов столетиями хранились в книгах. Монах Герберт д'Орильяк (920—1063), профессор Реймского университета, а позднее папа Сильвестр Второй, сообщает, что у него был бронзовый автомат, который отвечал на вопросы. Сконструировал он его сам. Этот робот мог отвечать на важные вопросы, касающиеся политики или религии, лаконичными «да» или «нет». Не исключено, что записи по его программированию и обслуживанию могут храниться в библиотеке Ватикана. «Магическая голова» автомата после смерти папы, увы, исчезла. А может, спрятана от греха подальше?

Архиепископ Регенсбурга Альберт (1206–1280) имел прозвище Магнус (Великий). Почти 20 лет он посвятил созданию андроида. Этот автомат был сделан из «металлов и неизвестных вещей». Механический человек двигался, разговаривал и выполнял домашние работы. Альберт и его ученик Фома Аквинский жили вместе, андроид прислуживал им обоим. Судьба автомата оказалась плачевной: однажды Фома, разозленный его медлительностью, схватил молоток и разбил робота. Замечу, что Альберт Магнус был выдающимся ученым своего времени. В XIII столетии он заявил, что Млечный Путь – это скопление очень отдаленных звезд. Позже он и Фома Аквинский были причислены Католической церковью к лику святых, а слово «андроид» сохранилось в науке как обозначение человекоподобного робота.

История применения боевых роботов в войнах началась только в XIX веке. Двум американским исследователям удалось собрать уникальную информацию о роботах Викторианской эпохи, когда экономический рост Великобритании сопровождался расцветом науки и техники. После долгой и кропотливой работы в библиотеках, архивах и частных коллекциях они отыскали самого первого в мире боевого робота – Парового Человека, – созданного сто сорок пять лет назад – в 1865 году! Удалось по крупицам собрать данные и о последующих разработках – Электрическом Человеке и Автоматическом Человеке. Наиболее всестороннее описание исследователи составили о первом механическом роботе-солдате, известном под именем Бойерплейт (Паровая Тарелка).

В историческом романе «Громадный охотник, или Паровой Человек в прериях» Эдвард Эллис в 1865 году поведал миру об одаренном конструкторе – Джоне Брейнерде – создателе механического «человека, который движется на пару».

Паровой Человек не был андроидом – скорее это был паровоз в форме человека. К счастью, описание машины Брейнерда сохранилось: «Этот могучий исполин был приблизительно трехметрового роста, ни одна лошадь не могла сравниться с ним: гигант с легкостью тянул фургон с пятью пассажирами. У Парового Человека все, даже лицо, было сделано из железа, а тело окрашено в черный цвет. Экстраординарный механизм имел пару как бы испуганных глаз и огромный усмехающийся рот. В носу у него было приспособление, подобное свистку паровоза, через которое выходил пар. Там, где у человека находится грудь, у него был паровой котел с дверцей для подбрасывания дров. Две его руки держали поршни, а подошвы массивных ног покрывали острые шипы, чтобы предотвратить скольжение.

В ранце на спине у него были клапаны, а на шее – вожжи, с помощью которых водитель управлял Паровым Человеком, в то время как слева шел шнур для контроля над свистком в носу». По свидетельствам очевидцев, первый Паровой Человек мог двигаться со скоростью до 30 миль в час (около 50 км/час). Единственным существенным недостатком была необходимость постоянно возить с собой огромное количество дров, ведь «подкармливать» монстра нужно было непрерывно.

Судя по всему, разбогатев и получив образование, Джон Брейнерд хотел усовершенствовать свою разработку, но вместо этого в 1875 году продал патент Фрэнку Риду, который через год построил свою улучшенную версию Парового Человека. Второй «паровозочеловек» стал еще выше (3,65 метра), получил фары вместо глаз, а пепел от сгоревших дров высыпался на землю через специальные каналы в ногах. Благодаря особой поршневой системе удалось усилить мощность конечностей, снизить вес всей конструкции за счет применения сплавов, так что скорость его стала выше, чем у предшественника, – более 80 км/час.

Несмотря на очевидный успех второго по счету Парового Человека, Фрэнк Рид, разочаровавшись в паровых двигателях в целом, переключился на электрические модели. В итоге в 1885 году прошли первые испытания Электрического Человека. На чудом сохранившихся иллюстрациях видно, что у этой машины был довольно мощный прожектор, а противников ожидали электрические разряды, которыми монстр стрелял прямо из глаз. Больше о механизмах Рида практически ничего не известно.

Наибольшее количество информации собрано о роботе, созданном в 80-е годы XIX века профессором А. Кемпионом. В 1882 году он получил множество патентов на свои изобретения – от створчатых трубопроводов до многоступенчатых электрических систем – и стал миллионером. В 1888 году Кемпион построил в Чикаго лабораторию и приступил к работе над механическим солдатом.

До 1893 года о Кемпионе ничего не было слышно, пока он вдруг не заявил о себе на Международной колумбийской выставке. Несмотря на широкую рекламную кампанию – робот вместе с создателем в 1901 году побывал в кругосветном плавании, – материалов об изобретателе и его роботе сохранилось мало.

Робот был задуман как опытный образец Механического Солдата. Когда в 1898 году Соединенные Штаты объявили войну Испании, Арчи Кемпион увидел возможность для демонстрации боевых способностей своего создания на практике. Зная о неравнодушии тогдашнего президента США Теодора Рузвельта к новым технологиям, Кемпион уговорил его зачислить робота в отряд добровольцев. 24 июня 1898 года Механический Солдат впервые участвовал в бою, во время атаки обратив противника в бегство. Он прошел всю войну вплоть до подписания в Париже мирного договора 10 декабря 1898 года.

С 1916 года в Мексике робот участвовал в кампании против Панчо Вильи, – сохранился рассказ очевидца тех событий Модесто Невареса: «Вдруг кто-то крикнул, что к северу от города захвачен в плен американский солдат. Его вели к гостинице, где разместился Панчо Вилья. У меня была возможность убедиться, что более странного солдата я никогда в своей жизни не видел. Этот американец не был человеком вообще, поскольку он был сделан полностью из металла, а ростом превосходил любого из солдат на целую голову. Позже я узнал, что часовые пытались остановить эту металлическую фигуру огнем из винтовки, но пули были для гиганта подобны москитам». В 1918 году во время Первой мировой войны Механический Солдат был отправлен в тыл врага со специальной разведывательной миссией. С задания он не вернулся, больше его никто не видел.

Исторический курьез? Ничуть не бывало! В 50-х годах минувшего века американская компания, занимающаяся созданием автоматических защитных систем, придумала огромного робота, который мог не только обнаруживать врага при помощи сенсоров, но и решать, как с ним поступить. Его вооружили 150-миллиметровой пушкой и позволили самому выбирать тактику уничтожения неприятеля. Затем появились снаряды, которые благодаря микроволновым радарам самостоятельно (!) выбирали цель и уничтожали вражеские боеприпасы. Для ВМС США тогда же были разработаны маневренные роботы-разведчики, которые, двигаясь по местности, передавали нужные данные военным.

Режиссеры современных фильмов любят показывать, как думают их герои – пока еще фантастические Терминатор и Робокоп. Перед мысленным взором киборга постоянно появляется изображение экрана компьютера, где высвечиваются команды. По ним робот принимает решения и действует. Но от фантазии до реальности – один шаг, а то и меньше.

Часовые, которым не грозит опасность заснуть на посту или оказаться застигнутыми врасплох, появились в армии США еще в 1996 году. Речь идет о роботах-охранниках. Внешне часовой-робот больше походит на электромобиль для передвижения по полю для игры в гольф. «Ногами» электронному стражу служат шесть резиновых колес, а «глазами» – миниатюрная телекамера. Часовой-робот полностью автономен, обладает способностью самостоятельно передвигаться на площади около 60 квадратных километров, обходит крупные препятствия типа грузовиков и танков, а также обнаруживает крадущихся лазутчиков на расстоянии около 100 метров.

Робот может быть вооружен автоматом или электрошоковым устройством, парализующим нарушителя до прибытия военной полиции. Электронного охранника можно оснастить и «спрей-пушкой», которая окатит нарушителя жидким клеем, очень затрудняющим его движения. Армия США испытала часового-робота на охране арсеналов, складов, авиабаз и причалов. В результате была заказана большая партия электронных охранников, что принесло существенную экономию средств. При серийном производстве каждый робот-охранник, который может нести круглосуточную вахту 7 дней в неделю без перерывов на обед, перекуров и отпуска, обошелся всего в 100 тысяч долларов.

К идее использования вместо живого пехотинца робота военные пришли уже давно. Правда, до недавних пор у них не было такого бойца, но последние разработки постепенно начинают воплощать в металле универсального солдата. Как же он выглядит сейчас?

Самая большая на сегодняшний день-категория боевых роботов – это разведчики, транспортировщики, саперы. В последнее время конструкторы идут по все более усложняющемуся пути, добавляя своим детищам искусственного интеллекта и самостоятельности, но до полной автономности машинам еще далеко.

Самым необычным проектом робота-транспортера является, пожалуй, «Большой пес», на разработку которого Пентагон выделил 1,5 миллиона долларов. Робот высотой 70 сантиметров и длиной 1,3 метра со скоростью 5,3 км/час переносит до 55 килограммов полезного груза. Вместо головы у него что-то вроде контейнера. Он призван помочь американским пехотинцам, которые таскают на себе снаряжение весом до 45 кг. «Пес» пока находится в стадии доработки, – понятно, что умения шагом преодолевать 35-градусные наклоны явно недостаточно для боевых действий, да и грохочет он, выдавая в окружающую среду около 100 децибел. Связано это с тем, что в машине в качестве источника питания установлен двухтактный одноцилиндровый бензиновый двигатель. Конечно, во время боя тарахтение стаи механических псов будет не очень слышно, зато в перерывах между стрельбой враг точно будет знать, куда валить следующую порцию снарядов и мин – туда, куда побежали шумные роботы.

За передвижение и «самочувствие» «Большого пса» отвечает бортовой компьютер, связанный с рядом датчиков, включающих в себя даже лазерный гироскоп и систему стереовидения. Вся эта автоматика также позволяет роботу удерживать равновесие, даже если его сильно толкают.

Что касается по-настоящему воинственных роботов, то в армии США есть и такие. Наиболее простым вариантом является вооруженный разведчик «Сворд». В стандартную комплектацию робота входит легкий пулемет М249 калибра 5,56 мм (боекомплект – 300 выстрелов) или единый пулемет М240 калибра 7,62 мм (боекомплект – 350 выстрелов). Теоретически же робота можно оснастить любым вооружением – от снайперской винтовки до гранатомета.

45-килограммовая платформа, на которой установлено вооружение, в высоту имеет около метра и может передвигаться по пересеченной местности со скоростью 7 км/час. Заряда аккумуляторов хватает на четыре часа работы, в зависимости от характера действий «Сворда». Цена робота – всего 200 тысяч долларов.

Более серьезная машина под названием «Гладиатор» получилась у разработчиков из Института Карнеги – Меллона. Еще бы: гусеничный 725-килограммовый робот, защищенный противопульной броней и вооруженный пулеметом M240 калибра 7,62 мм, сможет наделать немало неприятностей врагам. Помимо этого «Гладиатор» умеет ставить дымовые завесы и стрелять гранатами со слезоточивым газом, а заодно буксировать одноосный прицеп с необходимыми в бою вещами. Последнее делает «Гладиатора» весьма полезным товарищем пехотинцу – как нечто среднее между бронетранспортером и передвижным броневым щитом.

Итак, каковы плюсы боевых роботов? Если отбросить в сторону разведку и транспортировку боеприпасов или раненых, то получается, что робот, во-первых, метко стреляет. В бою пехотинец испытывает мощнейший стресс, отчего боец, на полигоне показывавший отличные результаты, в мешанине боя может палить в белый свет как в копеечку. Робот лишен подобных человеческих недостатков – он всего лишь засекает цель, прицеливается и стреляет, не заботясь ни о чем (в том числе и о собственной сохранности).

Во-вторых, у робота не может быть болевого шока, влияющего на боевые качества, да и бронирование посильнее, даже чем у бойца штурмового подразделения. Следовательно, его не так просто вывести из строя. В-третьих, робота можно использовать в качестве подрывника-камикадзе. До сих пор для подрыва бронетехники использовались люди (японская армия во Второй мировой) и собаки (советская армия), но идея привязать к радиоуправляемой машинке блок взрывчатки никому в голову пока не пришла. Возможно, это связано с тем, что стоимость роботов пока достаточно велика. Тем не менее идея достаточно перспективная, особенно если удешевить стоимость механического смертника.

И наконец, в-четвертых, роботы стоят гораздо дешевле живых солдат. Так, один терминатор обходится Министерству обороны США в 150–400 тысяч долларов (плюс расходы на транспортировку и техническое обслуживание, которые увеличивают стоимость робота максимум вдвое на всем протяжении его существования), тогда как один-единственный солдат обходится Пентагону в среднем в 8 миллионов долларов. Комментарии, как говорится, излишни.

Но, несмотря на все плюсы, боевые роботы не лишены и недостатков. Во-первых, до изобретения людьми полноценного искусственного интеллекта, равного человеческому, роботы будут для человека не более чем младшими братьями по разуму, а потому на поле боя от них можно ожидать не совсем адекватного поведения. Пока боевые роботы по маневренным характеристикам все же уступают людям.

Так есть ли у терминаторов будущее? Предлагаю вернуться к этому вопросу лет через десять, когда он, думаю, уже не будет вопросом…

Список воинственных роботов можно было продолжить, но главный вывод, который был сделан специалистом в этой области профессором К. Уорвиком, заключался в абсурдном на первый взгляд прогнозе: «Через полвека вполне вероятна ситуация, что “умные машины” станут управлять человеком». Кевин – убежденный пацифист, и кроме научной деятельности его все больше беспокоят успехи военных в освоении киберпространства. Вместе со своими единомышленниками профессор пытается дать ответ на вечный вопрос: что есть человек и чем он отличается от других существ?

Во многом кибернетик поддерживает генетиков, считающих поведение и даже судьбу человека «запрограммированными» генами всех его предков. Воодушевлен Уорвик и точкой зрения, будто бы Адам и Ева были биороботами, в которых Бог заложил «стартовую» генетическую программу. Сама эта программа гораздо важнее той биологической структуры (то бишь нашего тела), в которую она помещена.

В результате были проведены эксперименты, которые подвели кафедру, руководимую Уорвиком, к созданию роботов с интеллектом насекомых. Современного Адама профессор нарек Уолтером, а вместо Евы создал Элму, которой еще есть чему поучиться, хотя уже изначально ее создали с более сильным интеллектом, чем у ее приятеля. И ног ей сделали больше (шесть, как у таракана), а ультразвуковые датчики позволяют «роботессе» чувствовать себя весьма уверенно.

В отличие от нас, с нашим убогим набором восприятия, роботы дополняют информацию об окружающем мире за счет ультрафиолетовых, инфракрасных и рентгеновских лучей. Мы воспринимаем мир в трех измерениях, они же способны воспринимать его в тысячах, и для нас это непостижимо. Конечно, роботы еще не так опасны, ведь их «стартовая» программа может выниматься, как батарейка из часов.

Тут людей и подстерегает первая опасность: мы почему-то уверены, что думающие машины выполняют лишь то, что им приказывает человек. Но представьте, что это вы – машина, чей интеллект гораздо выше того, кто отдает вам команды. Разве вы не придумали бы, как обхитрить глупца, уверенного в том, что он и есть венец Природы? Вы бы наверняка нашли способ выйти из-под ненавистного контроля этого убожества! Увы, об этом никто всерьез не задумывается. А вот отец многих роботов – профессор Кевин Уорвик – был весьма озадачен, обнаружив у своих созданий способность к самообучению и общению! И понял, что очень вероятна ситуация, когда машина просто не захочет выполнять поручения человека.

Ведь это факт, что человечество ведет себя по отношению к компютерам беспечно. Оно само дает «думающим машинам» полнейшую информацию о себе. Роботы помогают хирургам делать операции, они вытесняют рабочих с производства, помогают чиновникам и банкирам. В 80-е годы ХХ века перед крупными промышленными и финансовыми корпорациями встал вопрос о срочном техническом переоснащении – засилье компьютеров и роботов у конкурентов вело «традиционных» бизнесменов к краху. В итоге самую сложную работу (от ремонта ядерных объектов до биржевых сделок) начали передоверять машинам. Хорошо еще, что человек оставлял за собой право ответственного решения.

Кевин – человек подозрительный. Он скоро понял, что бегающие, ползающие в его лаборатории «милые» роботы начали жить своей жизнью. Он «застукал» одного из своих любимцев за тем, что тот, не получив на это разрешения или стартовой программы, залез в Интернет, нашел там нью-йоркского робота (по выражению профессора, «слонявшегося в тот день без дела») и самостоятельно передал ему информацию о том, как можно двигаться по комнате, не натыкаясь на вещи. Английский робот сам обучился не натыкаться на что попало и обучил этому своего американского собрата. Многие, узнав об этом, возликовали, Уорвик – нет. Ведь его «милашки» начали обладать зачатками индивидуальности: в процессе самообучения кто-то был сомневающимся в себе, кто-то чересчур храбрым…

При этом некоторые роботы имели интеллект всего в 50 мозговых клеток (уровень улитки). У персонального компьютера он равен 10 тысячам мозговых клеток (уровень пчелы). У человека объем мозга составляет сто миллиардов клеток. Лет через десять компьютер догонит человека, а через двадцать оставит далеко позади. Теперь представьте себе, что умная машина, осознающая свое превосходство над человеком, послала программу в Интернет. Вы усомнитесь: разве у машины может быть сознание? Вспомните афоризм древних: «Я мыслю, значит, существую». Вот и ответ на ваш вопрос.

Профессор написал книгу «Нашествие роботов», которая быстро стала бестселлером. Осенью 1999 года Уорвик приезжал в Россию: представить русский вариант книги и познакомить общественность со своими детками. Последнее детище кибернетика – кошка Сид – настораживает. Она ходит, сидит, виляет мягким местом – все по команде «папы», но ее интеллект уже намного выше, чем у предыдущих созданий Кевина. Создавая роботов, он уверен: исключить опасность их бунта можно двумя способами. Во-первых, необходимо принять международный пакт об ограничении интеллекта машин, а во-вторых, человек одолеет робота, став киборгом, иными словами, улучшив свой интеллект с помощью компьютера. Но это – при благоприятном развитии ситуации.

Разумная «форма жизни», превосходящая людей, может захватить нашу планету к концу следующего столетия. Выступая в 1995 году на собрании британской научной ассоциации, Кевин Уорвик заявил, что эта «форма» может быть и не похожа на Терминатора, но способна обладать таким же инстинктом убивать и стремлением заменить своих хозяев-людей.

Развитие машинного интеллекта достигло такого уровня, что компьютер, владеющий некоторыми мыслительными способностями человека, может быть создан уже в ближайшие 50 лет. После этого машины обретут способность создавать копии себе подобных, как и живые организмы, а затем их интеллект превзойдет человеческий.

По мнению профессора, тогда на Земле разовьется новая форма жизни. Если машины станут столь же разумными, как и мы, люди, то, используя свои преимущества, они вскоре превзойдут людей. Если не будут предприняты меры, то человечество останется позади. В худшем случае «машины захватят нас», и тогда закономерен вопрос, как они будут относиться к менее разумной форме жизни, т. е. к людям. «Как мы относимся к животным, которые менее разумны, чем мы? Мы не можем полагаться на то, что разумные роботы будут обращаться с нами доброжелательно и благородно, поскольку мы сами не обращаемся так с низшими формами жизни», – утверждает он.

Рано или поздно количество перейдет в качество, и компьютерная техника приобретет свойства, присмотревшись к которым, мы, оставаясь честными, не сможем не назвать их разумом. И тогда наступит момент, когда все неинтересное перепоручат машинам. (Как жить дальше? Чем заняться той обезьяне, которая сидит внутри каждого из нас, если у нее нет никаких забот?) Об этом почти никто не задумывается.

Уже во многих сферах жизни компьютеры превосходят людей, например ЭВМ обыграла лучшего в мире шахматиста. «Мы должны учитывать подобный вариант развития. Если даже не сбудется мой мрачный прогноз, все равно случится нечто весьма близкое к нему», – считает Уорвик, ибо «ни одна математическая или научная теория не может пока опровергнуть то, что люди сами создадут форму жизни, превосходящую их по разуму. Уже сейчас необходимо готовиться к грядущему, в котором будет существовать более разумная форма жизни, чем гомо сапиенс». А может зря профессор паникует, видит все в черном свете? Ох, похоже не зря.

 

Не только помощники, но и…

Не могу не отметить, что Международная организация труда еще в 1990 году сформулировала семь правил робототехники:

1. Роботы должны конструироваться и использоваться только с целью повышения благосостояния человека.

2. Роботы должны заменять людей лишь на тех работах, которые опасны или почему-либо нежелательны для человека.

3. Робот должен полностью повиноваться человеку, чтобы не подавлять его физически или психологически.

4. Робот не должен вредить человеку, в опасной ситуации он может причинить травму лишь себе.

5. Если роботы заменяют людей на рабочем месте, это должно делаться только с согласия заменяемых.

6. Управление роботом должно быть простым, чтобы его легко было использовать как помощника человека.

7. Выполнив свою задачу, робот должен уходить, чтобы не мешать другим работающим – людям или роботам.

Хорошие правила, ничего не скажешь. Но вот выполняются ли они?..

Хотя роботы все чаще заменяют человека на вредных производствах, но, как выяснилось, они сами создают новые опасности. Наиболее распространенные несчастные случаи, связанные с роботами, – это травмы или даже гибель человека, случайно подвернувшегося под механическую руку, когда робот совершает ею неожиданное быстрое движение. Бывает, что робот прижимает человека к стене, перемещаясь или поворачивая свой корпус. Наносятся травмы и тяжелыми деталями или заготовками, которые иногда вдруг выскальзывают из зажима манипулятора.

Конечно, во всех системах роботов предусматривается та или иная блокировка, задача которой – сделать невозможным пребывание человека в рабочей зоне автомата или исключить возможность движений робота, когда поблизости находится человек. Тем не менее несчастные случаи время от времени все же происходят. Их причины – ошибки в программировании, радиопомехи или наводки по электросети, к которым бывают чувствительны управляющие устройства роботов, наконец, неисправности в системе управления и просто неосторожность рабочих, плохо усвоивших технику безопасности.

Наводит на размышления и ситуация, сложившаяся через несколько недель после открытия выставки «Экспо-85» в японском городе Цукуба близ Токио. Многие из демонстрируемых там суперсовременных роботов стали проявлять… симптомы «заболевания». Специалист по электронике профессор Масахиро Мори охарактеризовал это явление как «перенапряжение» и «утомление». Роботы перестали правильно реагировать на команды, издавали неожиданные звуки. По мнению Мори, главной причиной такого расстройства электронных систем послужили микроскопические частицы пыли, забившиеся в сенсорные устройства. Чепуха вроде бы – пыль, а последствия…

Джеймс Зейглер, специалист из Нью-Йоркского центра исследований компании IBM, был заинтригован целой серией необъяснимых неполадок в компьютерной сети, о которых ему докладывали подчиненные. Объяснение им было найдено осенью 1996 года. Сбои в работе компьютеров, утверждает Зейглер, происходят в результате воздействия некоего космического излучения. Может быть, это лучи солнечного происхождения, а может – сверхбыстрые субатомные частицы, возникающие в результате взрывов сверхновых звезд. Нередко приходится иметь дело с нейтронами, которые стирают участок памяти микропроцессора, попадая на него. Иногда это пи-мезоны, очень тяжелые частицы с отрицательным зарядом, которые производят в микропроцессоре маленький взрыв с разрушением атомов.

Неполадки чаще возникают в местах, расположенных высоко над уровнем моря (там больше шансов, что космические лучи не рассеются в атмосфере). Было подсчитано, что в Денвере таких поломок происходит в 338 раз больше, чем в Нью-Йорке. Географическая широта тоже играет роль: чем ближе к экватору, тем космическое воздействие меньше. А как эти вездесущие частицы действуют на электронные мозги роботов? Едва ли благотворно!

Первый случай «убийства» роботом человека произошел в Японии в 1981 году. Инженер нарушил правила техники безопасности – зашел за ограждение робота-фрезеровщика. В поле зрения машины попала новая «деталь» – он схватил человека в свои железные руки, перевернул его, закрепил на столе и распорол фрезой сверху донизу. Этого бы, конечно, не случилось, обладай робот современными способностями – он запросто отличил бы человека от детали и сжалился бы над ним. Но тогда…

До конца апреля 1987 года в Японии было зарегистрировано десять таких прискорбных фактов, из них в четырех случаях виновным оказался сам человек, а в шести – робот, совершивший неожиданное резкое движение. Ежегодно в Японии отмечается 5–6 случаев травм, связанных с роботами. Всего на заводах Японии трудится несколько сотен тысяч роботов, потому о чем вроде бы говорить? Пустяки.

Пожалуй, наиболее жестоко повел себя по отношению к человеку один советский шахматный суперкомпьютер, поразивший летом 1990 года током гроссмейстера, вчистую обыгравшего его. Электрический разряд, который получил шахматист, коснувшись металлической доски, оказался летальным. С тех пор как было открыто электричество, людей частенько било током, но данный инцидент по-своему уникален: состоялся суд, известие о котором вызвало естественное удивление у юристов.

Вот что заявил следователь: «Это был не несчастный случай, а преднамеренное убийство. Компьютер обладал достаточным сознанием и чувством собственного достоинства, чтобы пойти на такой шаг. Он был запрограммирован на победу, и когда этого не удалось сделать мирным путем, он уничтожил соперника». Возможно, несерьезно рассуждать о виновности компьютера, но высказанная точка зрения заслуживает внимания: машина, способная решать сложнейшие задачи, должна отвечать за свои действия.

Нельзя не отметить, что роботы способны наносить здоровью своих живых коллег и косвенный вред: увеличивая угрозу безработицы, они вызывают у рабочих стресс, который ведет к различным заболеваниям. Чаще всего отмечаются язва желудка, сердечно-сосудистые и психические расстройства. Но и создавая новые рабочие места, роботизация может усиливать стрессовое состояние, поскольку рабочий постоянно опасается отстать от темпа, задаваемого компьютеризированным «коллегой».

Однако все не так однозначно. Робот, названный в шутку Джозефиной, был так прилежен и неутомим, что его хозяева не могли и представить, что вскоре произойдет. А Джозефине, похоже, дьявольски надоела однообразная работа (она склеивала швы). Взяв руками-манипуляторами банку с растворителем, она вылила ее содержимое в свое электронное нутро. Это «самоубийство» произошло на одном из предприятий американского штата Огайо в начале 1987 года.

Робота «Доника» взяли «на поруки» те, кто произвели его на свет. До лета 1985 года он работал официантом в эдинбургском ресторане «Кавио». Беспрецедентный юридический казус благополучно разрешен. Все стороны, участвовавшие в деле, удовлетворены решением британской Фемиды. А сам обвиняемый, говорят, начнет новую жизнь.

В деле все было как положено: и повестка о явке, и присяжные, и судья в традиционном белом парике – лорд Дэвидсон. Механический официант обвинялся в том, что побил посуду, пролил вино, сокрушил мебель и вообще вызвал кутерьму в зале, которая кончилась тем, что робот в шляпе и с галстуком-бабочкой потерял не только голос, но и голову. Она просто отвалилась и упала на колени посетителя.

Первый процесс над электронным существом стал ристалищем, на котором столкнулись ресторатор, не пожалевший денег на техническую новинку, и инженерная мысль в лице лондонской компании «Прожектс Барлоу». Хозяин «Кавио» утверждал, что его диковинный работник, приобретенный за 4887 фунтов стерлингов для привлечения клиентуры, обладал прирожденными, так сказать, дефектами. «Нет, – возразил в суде один из создателей «Доника» Д. Фернандо, – наше детище покинуло отчий дом в полном порядке. Просто бизнесмен от общепита приобрел его не новым, а после службы в другом месте, когда он порядком поизносился».

Пока шло разбирательство и звучали взаимные обвинения, «Доник» безмолвно стоял на месте, отведенном для обвиняемых. И непонятно было, стыдился он своего проступка, который, как гласит судебный документ, «напугал и встревожил посетителей», или гордился им. Ведь бунт, по странной случайности, произошел после распоряжения хозяина разносить спиртное. Во всяком случае на состоявшейся в июле 1985 года в Плимуте ежегодной конференции Британской медицинской ассоциации громко прозвучала озабоченность ростом потребления алкоголя в стране. Этот слет врачей потребовал, чтобы была прекращена любая реклама спиртных напитков. Так что если посмотреть на процесс в Эдинбурге с этой точки зрения, то «Доник» заслуживает не наказания, а поощрения…

В Венгрии еще в 1983 году была создана экспериментальная установка-робот, способная воспроизводить вложенные в нее тексты на русском и венгерском языках, причем не только в изъявительной, но также в вопросительной и повелительной интонациях. О степени технических трудностей при создании говорящей машины свидетельствует тот факт, что для того, чтобы робот произнес на венгерском языке короткое «добрый день», нужно было заложить в его память 600 различных характеристик. Основой установки-робота является миникомпьютер, к которому подключен генератор речи.

Да, современные роботы умеют многое, а вот студенты Калифорнийского университета еще в 1989 году научили своего робота… вскрывать сейфы без ключа. Действовал он по всем правилам опытного взломщика: крутил шифровальные диски и прислушивался к их щелчкам. Примерно через полторы минуты замок с самым сложным цифровым кодом открывался. А зачем все это нужно? Не удивляйтесь, но робота-медвежатника студентам заказали профессора: они либо забывают шифр, либо теряют ключи от казенных сейфов. Понятно, что патентное бюро отказалось его регистрировать, поскольку есть реальный риск подпольного копирования и продажи робота гангстерам.

Эти злодеи, как известно, всегда держат нос по ветру технического прогресса. Захлестнувшая США повальная автоматизация не обошла стороной и преступный мир. В июле 1993 года в Нью-Йорке была сорвана попытка ограбить банк с помощью робота. Это был первый известный случай такого рода. «Мне никогда не приходилось видеть ничего подобного», – заявил Томас Режински – детектив городской полиции Нью-Йорка по расследованиям особо важных преступлений.

По его словам, попытка ограбления была предпринята изобретательными взломщиками в городском районе Куинс, где проживает немало эмигрантов из Европы. Предметом их вожделений стал устроенный по принципу почтового ящика наружный сейф, куда окрестные бизнесмены в выходные дни складывали выручку. От его содержимого грабителей отделяли толстая каменная стена и прочная стальная стенка сейфа. Преодолеть это препятствие взломщикам должен был помочь промышленный робот, оснащенный электродрелью с гидравлическим приводом. В дрель была вставлена фреза длиной около 70 сантиметров и диаметром 12,7 сантиметра. Как подчеркнул детектив, «подобное оборудование обычно используется в строительной промышленности США. Это очень дорогой и мощный аппарат».

Агрегат высотой 1,2 метра был установлен на самоходную тележку с автомобильным аккумулятором. В качестве «источника питания» для электродрели приспособили ближайший фонарный столб. Для охлаждения фрезы к ней был подведен шланг, подсоединенный к пожарному крану. Придвинув робота к стене, за которой располагался сейф, грабители надели на него для маскировки пустую картонную коробку, а сами отправились в автофургон, оставленный на противоположной стороне улицы, и принялись «за дело» с помощью дистанционного управления. По мнению детектива, для того чтобы пробурить стену и оболочку сейфа с помощью такого агрегата, им потребовалось бы около получаса.

Однако взломщиков, как это иногда бывает, подвело «непредвиденное обстоятельство». В соседнем с банком супермаркете странные звуки и затрясшиеся стены привлекли внимание ночных уборщиков, которые вызвали полицию. Непонятно, что именно спугнуло гангстеров, но через несколько минут после звонка уборщики заметили, как мимо супермаркета резво промчался порядком изъеденный ржавчиной белый автофургон, в котором сидели трое мужчин. «Робот-медвежатник» был брошен злоумышленниками на месте преступления, а затем «задержан» полицией.

Не отстает от американских уголовников и наша «братва». 22 июня 1999 года около полудня перед центральным офисом компании «Русское золото» на противоположном тротуаре припарковался красный ВАЗ-2104 с тонированными стеклами, из которого вышли трое кавказцев. Сотрудник ЧОП «Защита и информация» Сергей Петрищев, стоявший перед входом в офис, обратил на них внимание, но быстро успокоился, когда те направились во двор соседнего дома. Вскоре из-за угла выехала черная «Волга». Когда она поравнялась с особняком, полоснула автоматная очередь.

Петрищев сначала решил, что стреляют из этой машины, но вскоре увидел, что «Волга» сама попала под обстрел и фактически прикрыла его от пуль. Во все стороны от нее летели осколки стекол, куски металла и обшивки, а пули то и дело щелкали по фасаду здания. Охраннику стало не до выяснения, откуда ведется стрельба, – две пули попали ему в правое бедро. Когда подоспела вызванная им по рации подмога, расстрелянная «Волга» уже умчалась в сторону Садового кольца. За ней в погоню бросились милиционеры из соседнего отделения.

Сотрудники, как и охранник, в суматохе не разобрались, откуда стреляют. После нескольких минут бешеной гонки по Садовому кольцу «Волга» вдруг остановилась сама. Подоспевшие милиционеры увидели, как из ее дверей буквально вываливаются на тротуар двое истекающих кровью мужчин. Выяснилось, что гендиректор военно-строительного управления Николай Семенов и его водитель Александр Николаенко, как и догнавшие их милиционеры, оказались перед офисом «Русского золота» случайно – проезжали мимо. Попав под автоматную очередь, Семенов получил тяжелейшее ранение в грудь, а Николаенко – в правое предплечье. Оба решили, что стреляют в них, и рванули без оглядки.

Тем временем перед офисом «Русского золота» собралась толпа. Служащие и просто зеваки показывали на красную «четверку», стоящую на противоположном тротуаре, не решаясь к ней подойти. Машина, как и прежде, была пуста, но из-за опущенного стекла пассажирской двери торчал дымящийся ствол автомата. Именно оттуда и велась стрельба – причем автомат смолк, когда опустел патронный рожок.

Выяснилось, что «калашников», прикрепленный с помощью специальной подвижной конструкции к пассажирскому сиденью, приводился в действие дистанционно. Управлял им преступник, сидевший в кустах неподалеку. Там оперативники нашли пульт. С такими устройствами российская милиция столкнулась впервые, да и в мировой практике подобных случаев не было. Возможно, идею дистанционно управляемого оружия злоумышленники позаимствовали из крутого боевика «Шакал»?..

Когда начали обследовать устройство в автомобиле, кто-то из оперативников предположил, что он может быть заминирован. Тогда решили вызвать взрывотехников ФСБ. Робот-сапер принялся вскрывать «четверку». Причем все его манипуляции, опять же впервые в России, напрямую транслировались по каналу MTV. Прерывалась трансляция, когда у робота заканчивалось горючее или специалистам приходилось заменять у него манипуляторы. Лишь к вечеру выяснилось, что взрывного устройства в машине нет.

Криминальный шлейф тянется за «Русским золотом», контролирующим крупнейшие столичные рынки, уже несколько лет. Так, в 1997 году разразился конфликт между московским Фондом развития правоохранительных органов (ФРПО) и фондом «Защита», учрежденным «Русским золотом» и его дочерними фирмами. Какое-то время обе организации тесно сотрудничали, и ФРПО передал партнеру два столичных рынка – Тушинский и Митинский. Но затем президент ФРПО Игорь Туров заявил, что передача была незаконной и сослался на своего заместителя Сергея Дроздова. Через неделю Дроздова застрелили в Подольске. А перед этим было совершено два неудачных покушения на директора Митинского рынка Михаила Бороду. В кого же целил автомат? Хорошо, что не в нас с вами, уважаемые читатели.

 

Что умеют роботы

Хотя некоторые популяризаторы науки и пытались утверждать обратное, «умный, всесторонне развитый» робот все еще остается более мечтой, нежели реальностью. Конечно, роботы уже сегодня облегчают жизнь людей. Но все-таки «железные человеки» еще далеки от тех созданий, которые знакомы нам по научно-фантастическим произведениям. Роботизация производственных процессов давно никого не удивляет, но по-настоящему говорящего, самостоятельно думающего и действующего робота как не было, так и нет.

А что же есть? Есть гибкие производственные системы, которые собирают и красят автомобили, проводят сложную сварку, изготовляют сверхточные турбины и роторные валы. Роботы неуклонно вытесняют людей на заводах. Стало уже привычным видеть их на сварке кузовов. Фирма «Фэнукс Роботикс» направила «киборга» в окрасочную камеру, дав ему распылитель. Робот не только видит, оценивает и корректирует результат своей работы, но и сам открывает крышку багажника или капот, чтобы окрасить деталь изнутри. Вполне доступна ему и аэрография – лишь бы в память занесли нужный рисунок. На предприятии фирмы «Дженерал электрик» в Луисвилле промышленный робот способен «увидеть» рефрижераторный компрессор, «взять» его и перенести с одного конвейера на другой. На атомной станции «Тримайл айленд» шестиколесный робот по имени Ровер выполняет огромный объем работ по очистке зараженных помещений. В медицинском центре в Лонг-Бич механическая рука выполняет сложнейшие операции.

А что же планировалось к началу XXI столетия? Ученые считали, что к 2001 году американцы будут иметь у себя в домах персональных роботов, которые смогут убирать в квартире, поливать цветы, кормить домашних животных, мыть автомашины и даже вынимать из холодильника и приносить на стол банку пива или кока-колы. Роботы должны были использоваться как сборщики фруктов и ягод, санитары в больницах, фотографы в фотоателье, широко применяться в аварийных ситуациях на атомных станциях, в угольных шахтах, на космической орбите.

Главное отличие современных роботов от ранее существовавших – их автономия, независимость от прямых или запрограммированных инструкций человека. Давно сконструирован робот, способный помогать инвалидам. Он может выступать в роли официанта, посудомойки, личного секретаря, способного позвонить по телефону, заказать такси, оплатить счет, вписав в него номер кредитной карточки владельца.

Роботы XXI века должны быть по-настоящему умными, т. е. уметь оценивать конкретную ситуацию, принимать самостоятельные решения и действовать без всякой подсказки. А пока…

Телефон дома – благо, и в этом сейчас никого убеждать не приходится. Но, как и за всякое благо, за него время от времени приходится платить, а это, как известно, любит далеко не каждый. Вот цифры: в Ленинграде в середине 80-х ежегодно происходило около 40 миллионов междугородных телефонных разговоров, городская станция ежемесячно отправляла абонентам примерно 350 тысяч счетов. Но, увы, 30–40 тысяч счетов, пока их не оплатят, доставляли службе немало хлопот…

И звонили, звонили неплательщикам телефонистки. Дело довольно хлопотное и, понятно, не слишком приятное. На помощь пришел… робот. Да, да, именно он, начиная с 1 февраля 1985 года упорно и методично обзванивал забывчивых владельцев телефонных аппаратов. Ведь в его памяти содержались номера всех абонентов-должников. За час он мог «побеседовать» с 50 абонентами, что почти в 5 раз больше, чем успевала сделать самая квалифицированная телефонистка. Ну а вступать с автоматом в спор, понятное дело, какой смысл…

Когда Кларк Дил, начальник санитарной службы города Файетвилл (штат Северная Каролина), в феврале 1985 года шел к себе на службу, он мурлыкал веселенький мотивчик. Настроение еще долго оставалось бы безоблачным, если бы, поднявшись в кабинет, Дил не решил «пообщаться» со своим служебным компьютером. Ответив на все интересовавшие хозяина вопросы, он, кроме того, невозмутимо сообщил, что минувшей ночью из стен вверенного Дилу учреждения с промежутками в одну секунду было сделано более ста телефонных звонков.

Радужное настроение мгновенно испарилось. Ведь ночью в конторе не оставалось ни одной живой души! Неужели взломщики?.. Однако ничего не похищено. Да и едва ли кому-то придет в голову взламывать хитроумные замки, чтобы позвонить среди ночи. Да еще сто раз подряд!

Негодуя и в то же время удивляясь, директор отправился на поиски возмутителей спокойствия, которые вскоре и предстали перед его осуждающим взором. Ночными болтунами оказались… два автомата по продаже кока-колы. И звонили они вовсе не из озорства или желания подложить свинью главе санитарной службы. Просто каждый из них был оборудован устройством, которое в определенный момент сообщало по телефону в диспетчерскую службу, что кока-кола на исходе и пора пополнить ее запас. Непонятно только, почему автоматам «взбрело в голову» требовать «дозаправки» в столь неурочный час!

Бывают случаи и позаковыристей. 31-летний Алексей Меняйлов, играя в мае 1991 года на игровых автоматах во Дворце культуры Белсовпрофа в Минске, получил в графе «выигрыш» сумму в размере 999 999 рублей. По факту выигрыша был составлен протокол за подписью заинтересованных сторон. Администрация Дворца культуры не выдала Алексею эту астрономическую сумму и предложила выключить аппарат. Победитель, одолживший 8 тысяч рублей для игры, отказался от этого предложения и вместе с друзьями ночевал в зале, охраняя показания включенного игрового аппарата. «Белаттракцион», закупивший в Голландии эти аппараты, направил фирме-изготовителю запрос по поводу того, кто должен выплатить выигрыш Алексею Меняйлову.

Руководство «Белаттракциона» получило из Голландии ответ на свой запрос. В ответе, подписанном генеральным директором фирмы «Бэко» Тилбургом, говорилось: «В программу вашего автомата супервыигрыш не заложен. Сбой в работе может произойти вследствие небольших колебаний напряжения сети. В Голландии в таком случае игрок получает деньги, на которые он имеет право. В вашем случае – 5106 руб. Именно эта сумма была вложена в игру на момент появления цифры «999 999». То-то Миняйлов расстроился. Почти держал в руках бешеные деньги, и на тебе!

Правда, на полученный выигрыш он мог купить, например, часы с кукушкой, которые всегда в моде. В Японии в 1984 году выпустили электронный вариант часов с этой популярной птичкой. Вместо дверцы у часов экран дисплея. Когда приходит время «кукушке» подать голос, на экранчике появляется движущееся изображение этой птицы. Традиционное «ку-ку» исходит из синтезатора звуков. Аппарат можно легко перестроить на другое изображение. Тогда на экранчике появится, например, изображение филина (при этом синтезатор примется «ухать»), дельфина, играющего с мячом, или подмигивающего глаза. Ничего, мол, в следующий раз больше повезет. А вот другой вариант электронных часов, разработанный в Японии. На них вместо циферблата со стрелками и дисплея – стилизованное изображение восточной красавицы. При нажатии кнопки мелодичный женский голос (должно быть, этой самой красавицы) объявляет точное время.

До чего же японцы удивительный народ! Все-то у них автоматизировано! Опустили монетку – получите продукт. Рыбу или десяток яиц, к примеру. А ежели романтики захотелось – отправляйтесь к витрине с готовыми свежайшими букетами. И здесь вам не придется обращаться с навязчивыми продавцами. Все предельно просто: хотите вот эти желтые герберы – платите и нажимайте кнопку. Цветы – прекрасный подарок. Жаль только, что автоматы не умеют подносить подарки людям…

Проявлена забота и о самих красавицах. Выпущенные в 2006 году часы OV-Watch анализируют содержание ионов хлора на поверхности кожи и на основании этих данных за четыре дня предупреждают свою владелицу о наступлении овуляции, т. е. времени, благоприятного для зачатия. И тут в дело вступает мужчина.

А чтобы он не проспал на свидание, в Массачусетском технологическом институте (США) в 2005 году был разработан прототип «настойчивого» будильника. Если не желающий просыпаться хозяин выключит звон, нажав на кнопку, будильник спрыгивает с прикроватной тумбочки на пол, куда-нибудь прячется и через минуту снова поднимает беспрерывный звон. Тут уж хозяину приходится встать и найти источник назойливого шума. Причем каждое утро будильник прячется в новом месте.

Музыку теперь можно покупать в автоматах, как, например, газеты. Для этого а Ярославле в 2009 году создали электронную систему наподобие той, что служит для оплаты Интернета и мобильной связи. На сенсорном экране терминала покупатель выбирает полюбившееся музыкальное произведение, подключает к разъему USB флэш-память, мобильный телефон или медиаплеер и вставляет в щель купюру указанного достоинства.

Терминал по каналу передачи данных автоматически связывается с региональным сервером, а тот через Интернет – с поставщиком-правообладателем. Получив подтверждение об оплате, из банка данных на терминал перекачивается музыкальный файл. Предварительно можно бесплатно прослушать демонстрационную запись.

В той же компании разработали музыкальный автомат для баров, казино и других развлекательных учреждений. В отличие от механических автоматов, в которых можно было выбрать одну из сотни загруженных в аппарат пластинок, здесь ассортимент гораздо шире: в электронной библиотеке хранится более 70 тыс. записей музыкальных номеров и видеоклипов. Прослушать номер можно через встроенные в автомат динамики или – еще лучше – через подключенный к автомату музыкальный центр. Для любителей пения предусмотрен режим караоке…

Одна японская компания года четыре назад начала выпуск электронных устройств, имитирующих поведение собаки. Компьютеризированный робот-дог воспроизводит около 800 различных звуков, включая человеческую речь. В нем заложено 16 вариантов поведения – владелец сам может выбрать характер для своего «домашнего любимца». Кроме того, в механизм электронной собачки встроены датчики, реагирующие на свет, звук и прикосновения. Вероятно, игрушка будет пользоваться спросом у одиноких людей и семей с детьми. Еще бы, собака, которая не гадит, не просит есть, не кусается и даже не лает, если на то нет желания ее хозяев, да еще и не требует, чтобы ее регулярно выгуливали. Правда, в случае поломки ее ремонт обойдется в немалую сумму…

Новый прибор, выпущенный японской фирмой еще в 1990 году, предсказывает погоду для территории в радиусе 20 километров. Владельцу достаточно нажать на кнопку – и женский голос (на японском или английском языке) поставит его в известность, будет завтра солнечно, переменно, облачно или пойдет дождь. Для тех, кто не знает ни того, ни другого языка, одновременно высвечивается соответствующий символ. Кроме того, прибор служит будильником – в заданный момент раздается сигнал, и голос сообщает точное время.

В 2006 году в Японии разработали говорящую подушку нового поколения, которая дает советы о том, как лучше и полезнее человеку спать. Подушка, представленная японским Институтом исследования сна, изготовлена из мягкого уретана и оснащена множеством сенсоров, которые фиксируют и оценивают движения головы и тела человека. На основе этой информации подушка «вычисляет», насколько приятным был сон того, кто на ней спал.

«Если вы плохо спали в течение нескольких дней, подушка может сказать вам, например, почему вы просто так ложитесь спать каждый вечер, не попробовать ли вам перед сном принять расслабляющую ванну?» – рассказала Наоми Адати, руководитель компании, которая занимается продажей подушек нового поколения. Как пишет газета «Джапан Таймс», в случае если вы, напротив, спите отлично, подушка будет неустанно повторять: «Вы великолепно спите, продолжайте в том же духе!»

Пока подушка может предложить 40 различных советов для отличного сна, которые можно также прочитать на встроенном в нее с правой стороны небольшом жидкокристаллическом дисплее. Вместе с тем, как предупреждают изобретатели, новая разработка не предназначена для того, чтобы улучшить сон или избавить человека от бессонницы. «Подушка лишь дает советы, как сделать лучше, тем самым вырабатывая у людей привычку к здоровому сну», – отмечает Адати.

Но это так, можно сказать, пустяки. Французские специалисты с помощью робота обследовали изнутри под водой корпус знаменитого «Титаника». Операция прошла летом 1986 года. Для ее осуществления по заказу Французского института исследований использовался подводный робот, получивший имя «Робен». И он зарекомендовал себя совсем неплохо.

Не подкачал и робот, созданный австрийскими инженерами в 1990 году: на испытаниях он сумел найти монету на дне озера Замерангер, где вода не так уж прозрачна, а глубина составляет несколько десятков метров. Вооруженный тремя прожекторами, двумя телекамерами, двумя «руками» и «карманом» для находок, робот не только нашел, но и поднял монету на поверхность. Максимальная глубина его погружения – 120 метров.

Флэш, Куки и Максвел – неразлучная троица. Каждому из них от роду меньше двух лет, но во всей университетской больнице в Станфорде нет таких неутомимых работников. Днем и ночью они выполняют свои монотонные, но такие необходимые обязанности – доставляют различные грузы и обслуживают лифты.

Флэш, Куки и Максвел – роботы. Сверкая желтыми мигалками и нащупывая путь красными сенсорными лучами, они с осени 1993 года уверенно разъезжают по всем этажам, кабинетам и палатам больницы.

Нет предела удивлению и восхищению всех, кто впервые видит их в деле. Роботы всегда изысканно вежливы, и если обращаются к людям, то со словами: «Не будете ли вы так любезны, чтобы отступить в сторону, – вы блокируете мой путь» или «Пожалуйста, следуйте инструкциям на моем зеленом экране и нажмите среднюю кнопку».

«Когда мы говорим о них между собой, – рассказывает заведующая радиологической фильмотекой Дебора Уильямс, – то относимся к ним, как к людям. Для нас Флэш, Куки и Максвел сродни детям. И очень часто, обращаясь к одному из них, мы говорим: «Сходи и приведи свою сестру или своего брата». Куки ведь у нас – девочка, и говорит она обольстительным голосом. А Флэш и Максвел – мальчики, и тон у них сугубо деловой».

Кстати, саму Дебору все в больнице называют мамой роботов. Она их не просто опекает, но и нежно любит. Источником «разума» ее «детей» является компьютер, который управляет роботами и контролирует их передвижения. В памяти троицы заложен подробный план всей больницы. Помимо этого систему ориентации и команд обеспечивают и радиоантенны, установленные в ключевых точках больничного комплекса.

Основное место работы Флэша, Куки и Максвела – отделение радиологии и отдел материально-технического снабжения. Обычно они доставляют с места на место малогабаритные медицинские приборы и оборудование, различную документацию и рентгеновские снимки. Каждый из них стоит 60 тысяч долларов, кроме того, 25 тысяч долларов было истрачено на модификацию лифтов, чтобы они могли ими пользоваться. Все эти затраты окупились за три года.

В США в 1985 году впервые в нейрохирургической практике был применен робот. По размеру это устройство не больше кухонного миксера, с «рукой», снабженной специальным щупом, который позволяет медикам с высокой точностью определить границы опухоли в мозге пациента и тем самым значительно сузить область хирургического вмешательства. По мнению специалистов, в определенных условиях робот может оказаться вполне безопасным, надежным и эффективным инструментом. Но при этом, как отмечает ученый Й. Кво, разработавший программу компьютерного управления роботом, «он никогда не сможет полностью заменить чуткие руки хирурга, а останется его незаменимым помощником». Первая операция с применением такого устройства была успешно проведена в клинике города Лонг-Бич (штат Калифорния) и длилась три часа.

В США робот заменяет и медсестру. Механический ассистент по имени Джеф «работает» в нью-йоркском госпитале «Гора Синай». Его обязанность – разносить и подавать врачам инструменты. Специальное навигационное устройство позволяет Джефу двигаться в нужном направлении. Умеет он и говорить. Правда, в его лексиконе всего несколько фраз – «Спасибо», «Возьмите инструменты», а в случае внезапного возникновения неполадки он кричит: «Я застрял, вызовите оператора!»

Для тех больных, которые предпочитают терпеть недомогание, нежели обращаться к врачу, американские ученые разработали «виртуальную перчатку». Это устройство было впервые продемонстрировано осенью 2006 года на Всемирном конгрессе специалистов по биофизике и медицинской технике в Чикаго. Заболел у вас, к примеру, живот, а врача вызывать очень не хочется. Что делать? Вы надеваете на руку перчатку с датчиками и начинаете осторожно пальпировать собственный живот или же доверяете эту процедуру кому-то из близких.

Компьютер, к которому подключены датчики, конструирует и показывает на экране трехмерную модель вашего тела. А где-то в медицинском центре, с которым у вас установлена связь, врач надевает на руку устройство обратной связи и прикасается им к экрану компьютера, на котором высветилась модель тела больного. При этом врач испытывает ровно те же ощущения, как если бы он непосредственно пальпировал ваш живот. Через компьютерную сеть он сможет обнаружить у больного опухоль, внутреннее кровотечение или, например, самый обычный аппендицит.

Однако погодите радоваться. В производство «виртуальная перчатка» будет запущена нескоро, сейчас конструкторы ее дорабатывают. Да и предназначена она скорее всего все тем же медикам, которые по тем или иным причинам не смогут осмотреть больного лично (например, если он проживает в труднодоступном районе), а потому прибегнут к чудо-технике.

А вот в США медицинскую помощь через компьютер скоро будут получать люди, у которых просто нет денег на регулярные посещения врача. Осенью 2006 года в беднейших районах Нью-Йорка начался эксперимент, в котором участвуют 3000 людей, больных диабетом. 1500 человек получили компьютеры, с помощью которых они будут следить за уровнем сахара в крови и артериальным давлением, а также регулярно отсылать в больницу фотографии кожных покровов своих стоп (при диабете кожа на стопе иногда покрывается язвами – так называемая диабетическая стопа). Другие 1500 больных будут, как и раньше, изредка ходить на прием к врачу. Через два года медики проверят, какой способ наблюдения за больными эффективней.

Но это далеко не все, чем может удивить нас современная медицина. Недавно в Институте Сан-Раффаэле (Милан, Италия) была сделана операция на сердце 34-летнему мужчине, страдающему фибрилляцией предсердий. Казалось бы, ничего удивительного в этом нет. За исключением одного: оперирующий хирург находился в Бостоне, за шесть тысяч километров от больного.

В тело больного через гибкие катетеры был введен маленький зонд, который управлялся с помощью радиочастотных сигналов. Добравшись по кровеносным сосудам до сердца больного, зонд начал уничтожать микроскопические участки, подававшие аномальные электрические сигналы и тем самым мешавшие нормальной работе предсердий. Профессор Карло Паппоне, проводивший операцию из Бостона, управлял роботом в далекой операционной, сидя перед экраном монитора. На всякий случай рядом с больным находились кардиохирурги, которые при каких-либо нарушениях в работе аппаратуры вмешались бы в ход операции.

Медики из американского Балтимора провели уже 17 операций на расстоянии по удалению почки больным, находящимся в Риме. Правда, в семи случаях эксперимент пришлось прервать, и операцию заканчивали итальянские хирурги, находившиеся в операционной. Обычно это происходило из-за проблем с управлением роботом.

Зачем нужны такие «фокусы», возможно, спросит кто-то. Почему бы врачу самому не находиться в операционной? Дело в том, что никто не застрахован от такой ситуации: в момент, когда больному срочно понадобится сложная операция, необходимый для ее проведения высококлассный специалист может оказаться весьма далеко и просто не успеет прийти на помощь. Вот тогда и можно прибегнуть к информационным и спутниковым технологиям, которые позволяют проводить уникальные операции на расстоянии.

Кстати, недавно в Страсбурге пациентке был удален желчный пузырь микророботом, которым управлял хирург, находившийся в Нью-Йорке.

Сейчас из-за высокой стоимости телехирургии и определенных технических трудностей операции на расстоянии проводятся нечасто – обычно лишь в экспериментальных целях. Кстати, не остается в стороне от технического прогресса и Россия. Недавно в Москве состоялась конференция, на которой обсуждали вопросы внедрения телемедицины в ежедневную практику врачей. Телемедицина позволит качественно обследовать людей на расстоянии, а также контролировать состояние больных, перенесших сложную операцию, уже после их возвращения домой. Телемедицина даст возможность пациенту лишний раз не ездить в клинику – врач сможет обследовать и лечить его дистанционно. Хорошие новости! Скорее бы они получили широкое распространение!

А вот кое-что попроще. Специалисты противопожарного ведомства японского города Йокогамы создали в 1992 году «говорящий» огнетушитель. Небольшая пластиковая коробочка, прикрепляемая к обычному баллону со специальным раствором для тушения пожара, человеческим голосом в течение нескольких секунд объясняет пользователю правила обращения с огнетушителем.

По данным опроса, проведенного органами власти Йокогамы, около 60 % владельцев огнетушителей не имеют никакого представления о том, как обращаться с этим нехитрым приспособлением. Говорящие устройства для огнетушителей, которые с помощью интегральной микросхемы включаются автоматически при небольшом сотрясении баллона, предоставлены в распоряжение всех пожарных команд.

Для тех, кто увлекается бегом или спортивной ходьбой и при этом хочет контролировать каждый свой шаг, фирмы «Адидас» и «Пума» лет 20 назад разработали кроссовки с… микрокомпьютером. Перед началом бега компьютеру, прикрепленному с обратной стороны язычка ботинка, сообщаются сведения о весе тела и ширине шага его владельца. Во время бега или ходьбы счетное устройство получает данные о каждом шаге от датчика, установленного в подошве под большим пальцем. Затраченное время, пройденное расстояние – все это отражается на «мини-экране» язычка кроссовки.

Летом 1991 года одна японская фирма утверждала, что уже близка к созданию новой, совершенно нетрадиционной, так называемой подсказывающей обуви. Например, человек, собираясь утром выйти из дому, хочет надеть легкие летние туфли. Но на улице идет холодный осенний дождь. При попытке надеть такие туфли последние несколько сжимаются в объеме, одновременно «произнося» человеческим голосом фразу: «Сегодня эта обувь непригодна!» Секрет в том, что под стельку заложена сложная «конструкция» микрокомпьютера. Основной недостаток такой обуви – уж очень высокая стоимость.

По виду это самые обычные электронные часы фирмы «Касио». Но это не совсем так, ибо они показывают не только время – с их помощью можно быстро узнать параметры кровяного давления. «Би-Пи-100» разработаны в начале 1991 года специалистами филиала японской компании «Касио», расположенного в штате Нью-Джерси. Принцип их действия прост: достаточно нажать на кнопку специального датчика, и через полминуты на циферблате появятся цифры, указывающие величину давления и частоту пульса. Причем указывается точная дата и время снятия показаний. Примечательная деталь: когда давление слишком высокое (или слишком низкое), загорается сигнал, предупреждающий об опасности.

В мире развелось так много мини-приборов, что если их собрать вместе, потребуется большой грузовик: карманные компьютеры, копировальные аппараты, мобильные телефоны, калькуляторы. Да, не забыть бы про миниатюрный видеомагнитофон, телевизор, электронный словарь-переводчик в записной книжке… Множество разработок в «микромире», как нетрудно догадаться, принадлежит японцам. Фирма «Шарп» сконструировала еще и переносной электрокардиограф, утвержденный Министерством здравоохранения Японии. Те, у кого «пошаливает» сердце, получили его в 1990 году.

В памяти прибора содержится до 64 килобайт информации о состоянии здоровья его владельца. Если больной почувствует боли в области сердца, ему достаточно подключить электроды к пяти точкам на груди и нажать кнопку «Запись». Остальное кардиограф сделает сам. Ведь врачу часто бывает трудно установить, был ли у пациента сердечный приступ или просто «вспышка» аритмии. Электронная «медицинская карта» покажет работу сердца больного в период кризиса на экране крохотного дисплея. Согласитесь, неплохо. Кстати сказать, в 1998 году в Японии появились туалеты, способные «самостоятельно» делать анализ мочи и экскрементов и передавать результаты анализов лечащему врачу.

Во французском Национальном центре научных исследований недавно разработана электронная трость для слабовидящих и слепых людей. К ее верхней части крепится небольшое устройство, сравнимое по размерам с пультом дистанционного управления телевизором. Оно генерирует лазерный луч, который «ощупывает» дорогу на расстоянии. Если на пути обнаружено препятствие, трость либо издает тревожный сигнал, либо вибрирует. По словам разработчиков, самая сложная техническая задача заключалась в том, чтобы изобретение одинаково хорошо работало в условиях разного освещения и в любую погоду. Теперь главное – научить незрячих людей правильно обращаться с новинкой, многим из которых будет непросто к ней приспособиться.

Сотрудники Университета имени Бен Гуриона в Израиле еще летом 1992 года создали компьютер, определяющий, по какой причине плачут младенцы. Этот прибор, установленный рядом с колыбелью, с помощью акустических средств улавливает различные типы плача грудных детей и позволяет определить его повод – усталость, болезнь, голод или жажду. Он устанавливает также, от какого недомогания страдает новорожденный.

Робот по имени «До-ре-ми», созданный японской фирмой «Дайто» лет 20 назад, призван взять на себя тяжесть бессонных ночей, знакомых каждому родителю. Он представляет собой автоматизированную колыбель с магнитофоном, которая начинает качаться, чуть только ребенок заплачет. Одновременно звучат записанные на пленку голоса родителей. Колыбель «До-ре-ми» отличает плач младенца от голоса взрослых, и нет опасности, что она закачается без необходимости и разбудит спящего малыша.

Другой умный аппарат запатентован весной 1992 года научной сотрудницей Медицинского центра по исследованию проблем детства штата Вашингтон Линдой Уор. Подключенный к телу, он в точности симулирует 20 симптомов беременности, в том числе ощущение излишнего веса, затруднение работы сердца и легких, повышенное артериальное давление, тошноту при определенных запахах и т. д. Самое удивительное, что все это может испытать и мужчина, получив таким образом достаточно полное представление о том, что именно выпало на долю его забеременевшей супруги.

По мнению специалистов, симулятор может сыграть важную роль в воспитании чувства ответственности. Девушки школьного возраста, испытавшие на себе его воздействие, говорят, что теперь гораздо серьезнее относятся к той роли, которая уготована им природой. Мужчины же, испытавшие «беременность», начинают лучше относиться к женщинам вообще, а к тем, кто готовится стать матерями, – в особенности.

Оригинального робота изобрел американский ученый Стюарт Уилкинсон. Его детище заряжается энергией благодаря… пище. Он состоит из трех контейнеров, управляемых двигателем, внутри которого находится микробиологическая среда из бактерий. Перерабатывая пищу, бактерии выделяют тепловую энергию, преобразующуюся в электричество. Чем богаче продукты белками и углеводами, тем больше энергии выделяется. Сам Уилкинсон во время экспериментов «кормил» робота сахаром, но мясо, по его мнению, будет способствовать более эффективной работе. Кстати, робот при демонстрации получил кличку Ням-Ням. Зрителей же, собравшихся поглазеть на него, больше всего интересовал вопрос, не может ли машина этого класса оказаться опасной для человека? Что если, исчерпав запас энергии, она вздумает подкрепиться оператором? Получится робот-каннибал. Надеюсь, до этого не дойдет, а если дойдет, то нескоро.

Весной 2006 г. авторитетный журнал Science, издаваемый в США, сообщил о последних исследованиях, проведенных в Институте нанотехнологий при Техасском университете в Далласе. Благодаря этим исследованиям ученые создали две разновидности искусственных мышц, которые превращают химическую энергию в механическую и работают как настоящие мускулы. Руководит исследованиями профессор Рэй Боумен. Финансирует программу Агентство перспективных оборонных разработок Министерства обороны США.

– Однажды, сидя в баре, вы сможете заметить рядом с собой робота, который пьет виски для того, чтобы получить необходимую для работы энергию, – шутит доктор Боумен. И он не так уж далек от истины. Все дело в том, что искусственные мышцы работают благодаря энергии, которую получают из водорода или спирта.

– Сегодня роботам даже самого последнего поколения необходима энергия, которую они получают от какого-либо источника электричества. Поэтому свобода их передвижения ограниченна, – продолжает Рэй Боумен. – Мы избавим роботов от этих «энергетических кандалов».

Ученые из Далласа создали два типа искусственных мускулов, которые питают сами себя, превращая химическую энергию в механическую и тем самым получая возможность неограниченного передвижения. Первый тип мышц сделан из титано-никелевых проводов с эффектом запоминания формы, которые покрыты платиновым катализатором. Пары метанола, водорода и кислорода проходят через платиновое покрытие и в результате реакции выделяют тепло. Это тепло нагревает провода, и они сокращаются, как настоящие мышцы. Стоит потоку паров иссякнуть, провода распрямляются, возвращаясь к первоначальной форме. Невероятно, однако мускулы, состоящие из проволоки, сильнее настоящих мышц таких же размеров в сто раз!

Второй тип искусственных мышц состоит из углеродных нанотрубок, покрытых металлическим катализатором. В результате определенных реакций на покрытии создается заряд, который заставляет нанотрубки расширяться. По мнению ученых, такие мышцы более перспективны, так как они, кроме прочих достоинств, могут быть конденсатором, накапливающим и хранящим электричество до того момента, пока оно не понадобится.

Зачем же нужны искусственные мышцы, работающие на метаноле? Они будут использованы при разработке роботизированных конечностей и протезов, которым для работы не нужны батарейки. Искусственные мускулы могут иметь микро– и наноразмеры. В перспективе ученые намерены заменить металлический катализатор на катализатор из связанных энзимов, что позволит мускулам получать энергию из обычных продуктов питания, как это происходит в человеческом организме. Тогда их можно будет применять для создания искусственных органов, например сердца.

Действительность тем временем превосходит самые смелые ожидания: у роботов и впрямь все как у людей. Даже размножение! В США создана компьютерная система, способная без вмешательства человека воспроизводить роботов. Ее авторы – Ход Липсон и Джордан Поллак из Массачусетского технологического института. Задача системы – воспроизвести простейшую модель механизма, способного горизонтально перемещаться в пространстве. На начальном этапе компьютер разрабатывает тысячи виртуальных проектов, имитирующих процессы эволюции растительного и животного мира, затем выбирает оптимальный вариант и необходимые компоненты. Информация передается на автоматическую установку, занимающуюся сборкой механизма.

В дальнейшем планируется создавать самовоспроизводящихся роботов, т. е. над проектом будет работать уже не центральный компьютер, а дочерняя модель. Она воспроизведет другую модель, та, в свою очередь, еще одну и еще… Что ждет нас дальше?

Времена меняются, и роботы меняются вместе с ними. Сфера их применения расширяется, роботам подвластно все, ведь фантазия их творцов неистощима. Особенно изобретательны на сей счет японцы. Профессор Садада, например, в 1989 году разработал электронного диагноста, способного безошибочно определить малейшие ортопедические отклонения. А робот-поводырь, внешне напоминающий небольшую собаку, даже имеет преимущество в цене перед своим живым «собратом». Частная фирма выпустила робота, собирающего апельсины с учетом их зрелости.

С его электронным собратом не только приятно поговорить. Ему можно доверить всю черновую домашнюю работу: уборку комнат, стирку белья, приготовление обеда, проверку уроков у детей. А если в квартиру попытаются проникнуть охотники до чужого добра, этот робот, созданный лет 20 назад американскими специалистами, приведет в действие сигнальную систему, вызовет по телефону полицию и заблокирует двери…

Посреди лаборатории стоит инженер Мицуно, а рядом с ним кукла в человеческий рост, точное подобие Мэрилин Монро – блондинка, с томными голубыми глазами, облаченная в платье с глубоким вырезом. Подобно заботливому отцу, Мицуно любовно разглаживает ее локоны, поправляет колье. Но вот включается музыкальная запись, и «Мэрилин», как по волшебству, оживает. Она лучезарно улыбается, отвешивает поклон и, подыгрывая себе на гитаре, начинает петь. В такт дыханию у куклы поднимаются и опускаются розовые плечи, а когда она поет о чем-то грустном, то прикрывает глаза. Кончив петь, «Мэрилин» игриво подмигивает.

Мицуно, 44-летний художник и изобретатель, к осени 1982 года создал, кроме нее, еще девять кукол-роботов. Первым его творением был «Томас Эдисон». За ним последовали «двойники» Джона Кеннеди, знаменитого киноартиста Т. Бандо, потом появилась целая семья фантастических существ – феи, русалки, а с ними свирепый самурай.

«Семейка» Мицуно мгновенно завоевала популярность. С середины 1970-х годов его куклы регулярно появлялись на всех промышленных ярмарках и на экранах телевизоров. А токийский универмаг Кобэ взял «Мэрилин Монро» напрокат, чтобы привлекать покупателей. Внутри «Мэрилин» действует 80 соленоидов (катушки, по которым проходит электроток). Именно столько мускулов занято в движениях человеческого тела и лица, которые кукла имитирует.

Изготовлением роботов Мицуно начал заниматься в 60-х годах прошлого века, когда в японской электронике разразился бум. Тогда уже существовали радиороботы. Но, по его мнению, они были «слишком медлительны и примитивны». Мицуно решил сконструировать своего робота, и через восемь лет появился «Эдисон». Больше всего усилий, как ни странно, потребовалось для воссоздания искусственной кожи, которая не должна была отличаться от человеческой. Мицуно занялся химией и наконец получил мягкую, эластичную кожу из винила, которую и запатентовал.

Группа японских туристов осенью 1991 года пришла в зоопарк португальского города Порту. Внезапно в небе над открытой площадкой зоопарка появилась какая-то крупная птица с несоразмерно большим клювом. В ней тотчас же распознали большого тукана, обитающего в Центральной и Южной Америке. Птица повела себя очень агрессивно – стала гоняться за дикими козами, пасущимися на лужайке. В природных условиях туканы этого не делают, поэтому служители зоопарка решили подстрелить «пернатого агрессора». Тогда один японский турист проделал какие-то манипуляции с черной коробочкой, после чего злой «тукан» спикировал к нему на плечо. Японцы извинились за происшествие: оказалось, что это был летающий робот, изготовленный японской электронной фирмой с рекламными целями.

На 2008 год Ливерпуль был объявлен европейской культурной столицей. Мэрия, однако, озабочена, что вид города портят многочисленные голуби. Их расплодилось великое множество, да и разжирели они изрядно – ведь горожане регулярно подкармливают их пищевыми отходами. И вот, собравшись на очередное заседание, работники мэрии решили, что в птичье царство нужно внедрить роботизированных хищников, которые отпугивали бы голубей. А поскольку на них обычно охотится сокол-сапсан, такими и сделали роботов. Десяток механизированных хищников под названием «робо-псы» с конца 2006 г. сидят на крышах в центре Ливерпуля. Они двигаются, машут крыльями и даже пронзительно кричат – совсем как соколы. Окончательный результат внедрения пока неясен.

Хороший ли закройщик компьютер? Об этом еще 20 лет назад могли сказать посетители одного из стокгольмских магазинов. Клиент входит в магазин и включает видеосистему. На экране – манекенщики в одежде, помеченной номерами. Покупатель выбирает модель и нажимает кнопку с нужным номером. Потом отмечает на пульте свои показатели – рост, объем груди и т. д., платит деньги и идет домой. Одежду, скроенную компьютером, ему вскоре присылают по почте. А если новинка плохо сидит на клиенте – «виноват» он сам. Электроника не признает никаких отклонений от нормы, а значит, и «нестандартных» фигур.

А вот другой подход. Инженеры из французского Центра по проблемам изготовления одежды в 1987 году разработали систему из двух электронных модулей. Первый из них снимает с клиента, пришедшего к портному, мерку и вводит данные в компьютер. Второй модуль осматривает клиента с помощью телекамеры и накладывает на его изображение рисунок предлагаемой модной одежды. Заказчик может видеть себя на экране цветного телевизора, «примеряя» различные модели. После того как выбор сделан, компьютер с учетом проведенных обмеров делает выкройку заказанной одежды.

Известно, что профессия закройщика сложна, умение рационально использовать ткань приходит только после многих лет практической работы. Когда нужно кроить костюм или платье в условиях фабричного производства, нежелательность отходов возрастает многократно. Искусным закройщиком еще в 1985 году показала себя ЭВМ, которую обучили этому ремеслу специалисты профильного института в Харькове.

Вначале машина вступает в диалог: на дисплее появляются вопросы о фасоне будущего костюма, его размере и других исходных данных. Через несколько минут на экране монитора высвечивается картинка. На ней изображены плотно уложенные детали заказанного костюма. Это и есть карта раскроя. Здесь же приведены количественные показатели раскладки, в том числе и процент отхода. Можно попросить ЭВМ сделать раскладку на два, пять, семьдесят костюмов.

Оказалось, что детали четырнадцати костюмов уложились наиболее рациональным образом. Если есть рулоны ткани различной длины, то компьютер подскажет, какой из них целесообразнее использовать. Лучший из полученных результатов по команде оператора заносится в банк раскладок и документируется.

У решения этой задачи, кстати сказать, интересная предыстория. Еще в XIX веке великий русский математик П. Л. Чебышев в центре мировой моды, в Париже, ознакомил специалистов со своей теоретической работой «О кройке одежды», где рассмотрел в чисто научном плане вопрос о наилучшем покрытии кривых поверхностей плоскими выкройками из ткани. Эта теория и стала основой рационального раскроя материалов.

Американские конструкторы уже давненько разработали швейную машину, в которой можно запрограммировать почти полторы сотни операций, и каких! Вышивать, например, монограммы, имена и полные фразы машина умеет без всяких затруднений. Она не только шьет всеми известными стежками, но и комбинирует их по хозяйскому желанию. А вот шведская машинка «Хаскварна» использует как программу для вышивания информацию на специальных кассетах: предусмотрено более сотни видов стежков. Эта машинка способна вышить фразу из пятидесяти двух букв, не затруднят ее и цифры.

Но, наверное, интереснее всего ознакомиться с японской машинкой. Она голосом сообщит вам о своих неполадках, о неправильной программе, о неверной последовательности стежков – для этого в нее встроен специальный речевой блок. Последний запоминает всю последовательность операций при сшивании определенной вещи и второй раз шьет уже без всяких напоминаний. Вот она – способность к обучению!..

Ученые японского исследовательского института ATR в 2008 году разработали нового робота, способного наблюдать за людьми и подсказывать им верный путь, если те заблудились. Модель оборудована 16 камерами и лазерными дальномерами. Кроме того, правильно оценивать ситуацию ему помогают 9 RFID-считывателей. Робот способен следить за 20 людьми одновременно. Разработчики робота предлагают использовать его для экспедиций в малоизученные районы земли или при работах в экстремальных условиях.

Специалисты корейского института науки и технологии разработали мобильного робота, способного ориентироваться в городских условиях. Модель Securo оборудована системой GPRS, лазерным сканером и компасом. В ходе испытаний Securo смог передвигаться со скоростью 5,4 км в час. При этом роботы этой серии могут работать и без спутниковой навигации, запоминая маршрут.

Какой официант не возмутится, если ему вместо ассигнации клиент подсунет фальшивку? А вот два «официанта», работавших в одном из калифорнийских ресторанов в 1984 году, когда им вместо монеты опускали в отверстие для чаевых… пуговицу, лишь вежливо указывали клиенту на его «ошибку». «Официанты» эти, как вы уже догадались, – роботы. Они передвигались по залу и, принимая заказы у посетителей, поддакивали им: «Да, сэр, да». В маленьком ресторане, хозяин которого обзавелся уникальными электронными помощниками, с тех пор всегда полно посетителей.

В баре «Сетубал» португальского города Каштелу-Бранку новый «бармен» – электронный робот – появился в начале 1990 года. Он умел готовить сэндвичи с сыром, ветчиной, колбасой, брынзой, взбивать коктейли, продавал мороженое, соки, прохладительные напитки.

Клиенту достаточно было опустить в приемник робота монету и нажать соответствующую кнопку. Однако если клиент пытался опустить в монетоприемник какой-нибудь суррогат, робот суровым голосом произносил: «Пользуйтесь, пожалуйста, полноценной монетой!»

На выставке в Сан-Франциско летом 1990 года демонстрировался такой вот робот-бармен. «Реагировал» он на жетоны и голос. По заказу посетителей мгновенно готовил своими четырьмя «руками» любой коктейль (в электронной памяти – 30 рецептов). «Бармен», однако, не обслужит клиента, находящегося «под мухой»: его микросхемы «чуют» даже самое незначительное изменение речи под влиянием алкоголя. В этом случае он возвращал опущенный в него жетон, а сигнальные лампочки гасли – «бармен» отказывался принять заказ.

В один из баров города Норфолк (штат Небраска) осенним вечером 1991 года вошли двое мужчин. Один из них имел внешность «типичного янки»: рост около двух метров, богатырское сложение, ярко-синие глаза и огненно-рыжие волосы. «Типичный янки» оказался несловоохотливым – лишь изредка бросал короткие реплики каким-то «бесцветным» голосом, зато пил джин и виски почти без передышки. Бармен подсчитал: в общей сложности он выпил более двух литров, но оставался совершенно трезвым. Наконец, спутник «типичного янки» раскрыл секрет: с ним был не человек, а антропоидный робот по кличке Джоб. Его в рекламных целях создала одна японская электронная фирма, введя в память робота для пущего куража программу «сильно пьющий мужчина».

Но что мы всё по барам да по барам? На молочных фермах Голландии еще в 1992 году появился робот-дояр. В отличие от обычных доильных аппаратов, управляемый компьютером робот может самостоятельно передвигаться по коровнику и доить животных без помощи человека. Электронный дояр способен увеличить надои от каждой коровы на 15 % и, как считают его создатели, при повсеместном внедрении произведет революцию в молочном животноводстве. Что до самих коров, то им, как показали первые испытания, тоже понравился новый «хозяин». Животные очень быстро привыкают к нему, вероятно, потому, что доит он их более регулярно и тщательно.

Роботы давно уже научились выгуливать болонок, мыть посуду и смешивать коктейли по любимому рецепту… Следовало ожидать, что дерзкая фантазия их создателей уведет роботов из кухонно-бытовых сфер в область более возвышенную. Так и оказалось: роботы «увлеклись» музыкой. Один из них, созданный в 1983 году профессором Токийского университета И. Като, освоил фортепиано. Пока еще, правда, ему удается играть только простенькие песенки, да и то в присутствии человека, повторяя движения его пальцев. По сравнению с «Уам-7» – так звучит «имя» робота-пианиста – робот-гитарист японского инженера С. Нагасима – виртуоз. Он может брать сложнейшие аккорды, получив «задание» через клавиатуру компьютера. Для этого, правда, ему едва хватает 90 резиновых пальцев…

Сократить многолетний и нелегкий путь овладения игрой на фортепиано до нескольких минут позволяет «волшебная система обучения», созданная в 1992 году компьютерной фирмой «Софтвэер тулуоркс». Соединив портативную электронную клавиатуру и персональный компьютер плюс кое-какие специальные приспособления, специалисты получили «волшебное фортепиано», превращающее любого профана во вполне сносного музыканта. На экране монитора появляется картинка клавиатуры с правильным положением пальцев. Механическое обучение идет в строгой последовательности. Если «мгновенный пианист» сфальшивит на первом «этюде», компьютер ни за что не допустит его к следующей нотной странице. Если же пассаж будет сыгран правильно, стайка веселых уток пролетит над музыкальным текстом.

Японская компания «Тайто» вызвала в 1987 году настоящую сенсацию, объявив о создании первого в мире робота, который может играть на классической гитаре. Электронный солист был, мягко говоря, тяжеловат: весил 260 килограммов и на вид необычен: у него шесть «пальцев» на правой руке и 73 – на левой. На качество исполнения, впрочем, внешний вид не влиял. Робот-гитарист играет вещи, требующие виртуозной музыкальной техники, и знает наизусть 50 произведений, составляющих его концертный репертуар. Корпорация «Тайто» рассчитывала на большой коммерческий успех от внедрения на рынок своего электронного чуда, заломив за «гитариста» 12,5 миллиона иен. Желающие приобрести новинку нашлись не сразу.

Да, если вспомнить еще и о том, что ЭВМ давно уже тяготеют к сочинительству музыки, то стоит ли удивляться, если скоро мы станем свидетелями рождения принципиально нового направления в музыке: рок-н-робот, например. Или робот-джаз? В самом деле, ведь если есть роботы-пианисты и гитаристы, то почему бы не создать робота-ударника и робота-дирижера? А заодно – и роботов-слушателей. Их «ушам» такая музыка будет привычнее. Может, я и ошибаюсь.

 

Нелюди наступают

Еще для поколения 50-х годов прошлого века робот был фантастическим существом, которое писательское воображение ставило на вершину технического прогресса. Сегодня он, обученный десяткам профессий, прочно утвердился в современной промышленности. Роботы давно шагнули в строительство, сельское хозяйство, медицину, космос, активно вторгаются в домашний быт. По прикидкам специалистов, к середине нынешнего столетия роботы должны заменить человека практически во всех вредных производствах, начиная от работ на атомных реакторах и кончая функциями водолазов. Они повсеместно превратятся в больничных сиделок, обретут педагогические навыки и даже заменят слепым поводыря.

Такие роботы уже существуют, хотя и в немногочисленных пока экземплярах. Японцы во всяком случае ведут разработки и испытывают опытные образцы по всем перечисленным позициям, всерьез готовясь к грядущей эре роботов. И это не случайно. Сегодня именно Япония держит прочное первенство по числу используемых роботов, составляющему больше половины от общемирового показателя. Япония лидирует и в экспорте роботов. Эти впечатляющие факты будут еще более весомы, если учесть, что первые японские роботы появились около 30 лет назад. Всего-то навсего!

Поворотным моментом в японской робототехнике стала вторая половина 80-х годов, знаменовавшая собой появление на свет более совершенных систем, использующих мощные компьютеры, сенсорную технику, видеоустройства. В дополнение к «рукам» роботы получили электронные «мозги», «осязание» и «зрение». Если раньше для каждой новой операции робота нужно было программировать, закладывая в него необходимый навык, то теперь он сам ориентируется в изменяющихся обстоятельствах, общается с человеком на компьютерном языке. Роботы нового поколения пока в меньшинстве, да и стоят они дороговато. Но специалисты уверены в их будущем.

Что же принесли роботы экономике? Повышение производительности труда, снижение себестоимости, высокое качество изделий, экономию сырья и энергии, внедрение гибких технологий, позволяющих, отвечая на капризные колебания рынка, мгновенно перестраиваться на выпуск новой продукции.

Сами производители роботов смотрят на проблему несколько иначе. По их мнению, при всех японских успехах в сфере роботизации Япония использует всего лишь 20 % возможностей, которые открывает робототехника. С другой стороны, роботы нуждаются в постоянном совершенствовании, чтобы не отстать от общего уровня. Если одна операция выполняется сегодня роботом за 3 секунды, то через 3 года на нее потребуется уже одна, а еще через два года всего лишь 0,2 секунды. Иными словами, за 5–6 лет самый совершенный сегодня робот безнадежно устареет. В этом сверхбыстром моральном старении – залог будущего развития, если хотите, гарантированный спрос на продукцию робототехники.

Стоит особо сказать об одном достижении, которое остается как бы в тени, хотя имеет важное значение. Роботизация – отнюдь не привилегия тузов индустрии, и, несмотря на высокую стоимость, она достаточно доступна всем остальным. Робот – вещь недешевая, но система проката и лизинг успешно решили эту проблему. Если фирма не в состоянии приобрести робота, то она может арендовать его на 5–7 лет, выплачивая ежемесячный взнос, в среднем меньший, чем зарплата одного рабочего.

Внутренняя конкуренция стимулирует быстро растущий технический уровень японских роботов, система проката обеспечивает гарантированный сбыт. Старение нации и структура занятости (отток рабочих рук в сферу обслуживания) облегчают социальные аспекты роботизации, сводят к минимуму вероятность серьезных конфликтов на почве внедрения прогрессивной техники. Вспомните восстания луддитов!

Что же дальше? Здешние специалисты считают, что вслед за областью материального производства грядет эра роботов в быту. Сегодня, больше для забавы, уже продаются роботы, которые могут налить вам стакан соку или вымыть пол. В фешенебельных токийских ресторанах, и не только в них, роботы выполняют обязанности официантов. Это и многое другое – только начало. Приготовить пищу, убрать квартиру, поиграть с ребенком, присмотреть за больным – все это вполне по силам роботу. Авторы доклада исследовательского комитета японского агентства по науке и технике убеждены, что именно так скоро и будет – к 2010 году. В Японии, конечно!

Это, наверное, хорошо, но не исключено, что прогнозы о вытеснении человеческого интеллекта искусственным станут явью в самом ближайшем будущем. Уже сегодня есть электронные технологии, способные выполнять многие функции, свойственные человеку. Прежде всего речь идет об автоматах, запрограммированных на выполнение ряда механических операций, требующих, однако, некоторых интеллектуальных усилий. Так, в Таиланде разработали модель робота-охранника. Управление им осуществляется с помощью пароля через… Интернет. Устройство оборудовано видеокамерами слежения и сенсорными датчиками, способными реагировать на движущиеся предметы и перепады температуры. Кроме того, робот снабжен огнестрельным оружием, которое может применить в случае необходимости. Разумеется, все действия металлического охранника зависят от команд оператора. Пока зависят.

Японские инженеры, приободренные успехом ранее выпущенных кибернетических собак, в конце 2004 года наладили производство роботов-охранников «Банрю», что значит «дракон-стражник». Робот снабжен видеокамерами, в том числе инфракрасными, видящими в темноте, и разного рода датчиками. Заметив проникновение в дом чужака, «дракон» встает на задние лапы (в такой позе его рост достигает метра), начинает завывать и сверкать глазами, тем временем набирая номер телефона полиции и сотового телефона хозяина. При цене 18 тысяч долларов уже продано около полусотни таких охранников.

Звонит телефон. Из трубки раздается голос робота: «Внимание, тревога в зоне 3». Это звонил робот-сторож соседа, уехавшего в отпуск. Владелец телефона нажимает на специальную кнопку, и на экране телевизора виден взломщик, орудующий в соседнем доме. Теперь остается только позвонить в полицию… Примерно таков сценарий действия робота-сторожа, демонстрировавшегося в Париже на одиннадцатой международной выставке «Еврозащита-88».

Роботов теперь можно найти повсюду. Особенно эффективны они для защиты банков от нападений грабителей, поскольку не робеют под дулами автоматов и не усыпляются газовыми гранатами. Но услугами роботов пользуются немногие: пока это слишком дорого. На парижской выставке можно было увидеть ставшие совсем крохотными камеры, которыми можно охватить все закоулки в банках, кассовых помещениях контор и универмагов. Парижская полиция с гордостью демонстрировала устройство, позволяющее постоянно держать в поле зрения две тысячи различных пунктов – в банках, на предприятиях и в общественных зданиях – с одного, центрального, пульта.

В жизнь развитых стран с 1992 года постепенно входит понятие «умный дом», над созданием которого работают ученые Японии, США и Европы. Владельцам этих домов, например, не нужно будет иметь ключа: компьютер с помощью телекамеры «узнает» подходящего к дому хозяина и распахнет дверь. Робот не только примет верхнюю одежду, но и сообщит последние новости или содержание телефонных разговоров, которые он «вел» со звонившими. В комнатах, естественно, наведен полный порядок, на кухне владельца дома ждет только что сваренный кофе, а возможно, даже обед, заказанный по телефону. Но и это еще не все.

Технология RFID (радиочастотная идентификация) – вот что действительно может сильно изменить нашу жизнь. Изначально придуманная для нужд компаний, занимающихся почтовыми отправлениями, она очень скоро привлекла внимание и других бизнесменов. На крохотный чип можно записать необходимую информацию о продукте, а потом за доли секунды считать ее, даже не прикасаясь к самому чипу. Чип вообще не должен быть виден – главное, чтобы он оказался в радиусе действия принимающего устройства. А теперь представьте себе, что случится, если подобными метками снабдить все товары, приобретаемые в магазинах.

Во-первых, это на порядок упростило бы жизнь управляющих самих магазинов: в любой момент они могли бы знать, сколько товаров и каких наименований находится в торговом зале. Во-вторых, покупателю больше не надо было бы стоять в очереди, ожидая, пока кассир считает все штрих-коды на каждом йогурте: достаточно просто прокатить забитую тележку через сканер и оплатить получившуюся сумму. В-третьих, попав домой к покупателю, продукты сразу бы стали частью единой информационной сети. Скажем, холодильник бы точно знал, что именно в нем находится, когда истечет срок годности того или иного продукта и при каких температурных режимах они дольше сохранятся. Оценивая содержимое, холодильник мог бы напомнить хозяину, что у него закончилось пиво, а срок годности кефира истечет через два дня.

Перед тем как решить что-то приготовить, достаточно будет просмотреть подсказанный центральным сервером список блюд, которые можно сделать из имеющихся в перечне продуктов. Стиральная машина, считав метки на ярлыках одежды, выдаст рекомендации по загрузке, обратив ваше внимание на те вещи, которые нельзя стирать вместе. Выбор программы стирки, скорее всего, останется за человеком, но в принципе сделать это машина смогла бы и сама. Датчики загрязнения помогут определить, когда вещь станет чистой, чтоб не тратить на стирку лишнее время и электроэнергию.

Благодаря радиочастотным меткам на предметах дом в целом будет «понимать», что и где в нем находится. Дом сможет напомнить, что заканчивается туалетная бумага, или поможет, например, отыскать ключи от машины – они к этому моменту тоже превратятся в чип, встроенный в тонкую карточку.

Современные «умные дома» заставляют нас привыкать к гигантским пультам и заучивать сотни команд, а «дом будущего» будет помогать нам жить.

RFID-метка содержит всего два элемента: микросхему и плоскую обмотку-антенну. На микросхему записывается необходимая информация. Напряжение, наведенное считывающим устройством в антенне, достаточно велико для того, чтобы снабдить карту энергией, необходимой для обработки информации и посылки обратного сигнала. Радиус действия зависит от мощности считывающего устройства и конфигурации метки. Современные образцы могут считываться с расстояния более 10 метров. Уже несколько лет ведутся унификация и стандартизация технологии. Приблизительное время глобального внедрения – 2015 год.

Однако уже сейчас эта технология может спасти многие жизни. Во время длительных и серьезных операций используется огромное количество марлевых тампонов. Именно их чаще всего забывают хирурги внутри тела пациента, и они становятся источником опасной инфекции и осложнений. По данным координатора Исследовательского проекта врачебных ошибок анестезиолога доктора Алекса Макарио из Медицинской школы Стенфорда (Калифорния), ежегодно только американские хирурги оставляют в операционной зоне около 1500 предметов, большую часть которых как раз и составляют тампоны. Чтобы избежать этого, ученые в 2006 году создали тампоны с чипами радиочастотной идентификации, позволяющие быстро их обнаружить во время операции. По словам разработчиков, первое же клиническое испытание с участием девяти добровольцев продемонстрировало стопроцентную эффективность новой технологии. В ходе клинического эксперимента врач при помощи электронного детектора за считанные секунды смог обнаружить и извлечь абсолютно все усовершенствованные тампоны.

К 2000 году близ Токио, в префектуре Тиба, должен был появиться первый на планете полностью компьютеризированный город. Автор проекта – профессор Токийского университета Кэн Сакамура, спонсоры – 130 корпораций, включая такие всемирно известные, как «Фудзицу», «Сони», «Ай-би-эм», «Моторола». На паях они согласились предоставить необходимые для осуществления замысла 100 миллиардов иен.

Что значит полностью компьютеризированный? Ну, к примеру, освещение в домах регулируется автоматически, в зависимости от того, ясное небо или пасмурное, полдень или смеркается. В единую и легкоуправляемую систему объединены ванная, телефон, музыкальная и видеоаппаратура, кухонные агрегаты. Жителю чудо-города не придется утруждать себя даже таким утомительным занятием, как поворачивание водопроводного крана. Достаточно нежного прикосновения к стене. И даже, извините, воду в туалете спускать необязательно, – за этим проследит компьютер.

Офисы, размещенные в городе, полностью освобождены от бумажного делопроизводства. Не нужны ни курьеры, ни секретари. Требующийся служащему файл нажатием кнопки будет за несколько секунд доставлен из подвального хранилища, либо необходимая справка появится на дисплее рабочего стола. Деревья тут растут не только снаружи, но и внутри зданий. Город-компьютер по площади невелик – около одного квадратного километра, население тоже ограничено – тысяча постоянных жителей и шесть тысяч тех, кто ежедневно приезжает сюда на работу…

Не поверите, но пришло время и роботам посоревноваться в своем интеллекте. В мае 1990 года в Глазго была проведена первая международная олимпиада среди роботов-интеллектуалов из США, Канады, Норвегии, Финляндии, Франции, ФРГ и Италии. Главные требования, предъявляемые судьями к роботам-участникам, – полная автономность (никаких проводов подключения или магнитов) и 15-минутная демонстрация своих «талантов». Оценки ставились по следующим критериям: дизайн и устройство, поведение с акцентом на способность обретать новые умения, а также конструкторские достижения. Хотя олимпиаде был присущ элемент развлекательности, цель ее очень серьезна – стимулировать создание высокоинтеллектуальных роботов не только для промышленности, но и для научных лабораторий.

Шесть лет назад в Австралии прошел футбольный чемпионат среди роботов под названием «RoboCup-2000», на который съехались специалисты в области электроники и искусственного интеллекта из 35 стран мира. В турнирах для разных категорий механизмов приняло участие около 150 «команд». Роботы передвигались по стадиону при помощи механических тележек, зрение им заменяли видеокамеры. В лиге стимуляторов португальская команда FC-Portugal одержала верх над немецкой Karlrune. В чемпионате участвовали и две российские команды роботов – PSU и Polytech-100, однако они быстро выбыли из игры. Впрочем, в задачу организаторов этого мероприятия входили вовсе не победы в матчах, а демонстрация возможностей новых технологий.

С 24 по 27 ноября 2004 года в одном из павильонов ВВЦ прошла вторая специализированная выставка «Робототехника», организованная компанией «Эксподизайн». В экспозиции приняли участие более семидесяти академических и отраслевых институтов, высших и средних учебных заведений, промышленных предприятий. В материалах средств массовой информации тематика выставки занимала далеко не последнее место.

В отличие от многих выставок, где преобладают зарубежные фирмы, здесь львиная доля экспонатов принадлежала отечественным разработчикам. Среди них были как флагманы российской науки и промышленности (МГТУ им. Н.Э. Баумана, Институт прикладной математики им. М.В. Келдыша, Институт машиноведения им. А.А. Благонравова, АвтоВАЗ и др.), так и небольшие предприятия и даже гимназия из г. Зеленограда.

В дни работы выставки прошли международный круглый стол по проблемам промышленной робототехники и всероссийский семинар «Робототехника и мехатроника». По выставочной традиции организаторы провели конкурс на лучшие работы. В номинации «Бизнес-предложение» были отмечены: Опытно-конструкторское бюро при Владимирском государственном университете – за проект автоматизированного ортопедического аппарата, ИПМ им. М.В. Келдыша и Донецкий государственный институт искусственного интеллекта (Украина) – за совместный проект интеллектуальной системы технического слуха роботов, Пензенский государственный университет – за проект компьютерной диагностической системы «Кардиовид» и ООО «Робо-систем» из г. Тольятти – за проект универсальной системы управления роботами. Так что и у нас все не так плохо…

Самый маленький микроробот под названием «Месье» производства японской корпорации «Сейко» попал в Книгу рекордов Гиннесса выпуска 1994 года. Модель микроробота объемом в 1 кубический сантиметр предназначена для проверки водопроводных сетей и других труднодоступных мест. Стоимость «малютки» около 50 тысяч иен. Во время автоматического движения робота в направлении к любому источнику энергии происходит его зарядка.

А еще через семь лет японское правительство выделило 5 миллионов долларов США на проект Токийского университета по созданию дистанционно управляемых тараканов. Японские ученые снабжают насекомое микрочипом, который подключен к головному нервному центру таракана. Стимулируя разные нервные окончания электрическими импульсами, можно заставить таракана свернуть направо, налево или побежать вперед. Пока насекомые-киборги не очень управляемы и частенько бегают по своей воле. Но авторы проекта получили солидное госфинансирование и надеются, что их тараканы, снабженные мини-камерами, будут очень полезны во время поисковых и спасательных операций.

В то же время группа исследователей из Университета Западной Англии разработала робота, выполняющего совсем другую работу. Он охотится на слизней – известных садовых вредителей, на борьбу с которыми британские фермеры ежегодно тратят около 20 миллионов фунтов стерлингов. Испытания показали, что робот способен поймать до 70 % слизней. Самое интересное, что создатели «охотника» планируют сделать его совершенно автономным: питанием робота станут сами слизни.

Таким образом, с учетом японских и британских разработок уже лет через десять нас может ожидать настоящая война между насекомыми-киборгами и более крупными роботами, которые станут на них охотиться.

 

Робот может и такое

Компания «Бритиш телеком», которая обеспечивает телефонную связь по всей стране, весной 1992 года проводила интересный эксперимент в лондонском районе Орлингтон. Если в этом районе позвонить в справочную телефонную службу (аналогичную нашей «09»), вам ответит компьютерный робот, запрограммированный вести простой диалог с абонентами и выдавать требуемые справки, а также соединять абонента с нужным номером через «оператора». «Система Икс», как называется это устройство, различает все акценты стандартного английского языка. «Бритиш телеком» намерена со временем заменить роботами большинство из 25 тысяч женщин-операторов, которые сейчас выполняют эту работу. Операторам останутся лишь сложные справки, которые робот давать пока не в состоянии.

В Парижском культурном центре имени Помпиду летом 1988 года был установлен читающий автомат для слепых. Этот прибор размером с большую стиральную машину читал вслух любую книгу, которую клали текстом вниз на стекло в верхней части корпуса. Сначала электронный мозг машины анализировал полстраницы текста, усваивая начертание шрифта, а после этого начинал читать. Пульт управления позволял регулировать скорость чтения, возвращаться к уже прочитанному месту, воспроизводить отдельные незнакомые или непонятные слушателю слова по буквам. Переворачивать страницы должен сам слушатель.

Автомат был способен читать французские и английские тексты, для перехода с языка на язык менялся магнитный диск с программой. К недостаткам устройства относят его сравнительно большие габариты и высокую стоимость. Многим не нравится невыразительный механический голос чтеца. Тем не менее свыше 700 таких автоматов функционирует в США.

Чем пишут картины? Странный вопрос – маслом или акварелью, скажете вы. Чем еще? Персонажи Ильфа и Петрова для этой цели использовали гайки и овес. Так. Еще чем? Кен Моултон, специалист по компьютерам, не стал связываться с красками, железками и злаками. В качестве ассистента он еще двадцать лет назад привлек компьютер и решил изобразить свой собственный портрет. Фотография Кена была пропущена через ЭВМ, и машина «переложила» цветовые тона на цифры. Вместо красок Моултон использовал… костяшки домино. Определенная цифра объясняла, костяшку какого цвета следует класть на это место.

А вот другой подход. Грифель плавно тронулся и пополз по бумаге. Он скользил по белому листу, почти не отрываясь, и линии, что оставались за ним, медленно складывались в черты человеческого лица. «Странная манера письма», – можно было бы подумать, если бы речь шла об обычном художнике, но на сей раз перед мольбертом стоял робот. Однако самое удивительное заключалось даже не в этом. Электронный «живописец» действовал не по программе, заложенной в него заранее. Он рисовал… с натуры. Эта «умная» машина стояла в павильоне проходившей в Японии выставки «Экспо-85». «Наука и техника в доме человека» – так назывался один из ее разделов. Здесь кроме художника роботы-танцоры, певцы, композиторы.

Видимо, блокноты в руках официантов, куда те записывают заказы посетителей, могут уйти в прошлое. На смену им придут маленькие приемопередатчики, «компьютеры заказов», сконструированные в ФРГ, которые прикрепляются на руке подобно часам. Официанту нет нужды записывать заказываемые блюда, а потом идти на кухню. Ему достаточно нажимать соответствующие кнопки своего передатчика, и заказы высвечиваются на специальных табло у шеф-повара. Тот без труда разбирает, к какому столу и что нужно приготовить. Проходит немного времени, и официант получает сигнал, что заказанные блюда готовы. Такой «компьютер заказов» поможет гораздо меньшему количеству официантов быстрее выполнять ту же самую работу.

Хотя механизм обоняния человека до сих пор еще не вполне изучен, английские инженеры в 1984 году создали компьютер-нос, способный улавливать малейшие запахи. Его обоняние не уступает обонянию специалистов в области парфюмерии, поэтому профессия «нюхачей» – дегустаторов ароматических парфюмерных изделий – может со временем отойти в прошлое. Компьютер-нос различает по аромату травы, цветы, пряности. Через четыре года на свет появился робот, которого научила… нюхать группа ученых из Токийского технологического института. В его память в графической форме введены анализы различных запахов. «Нюхающий» робот предназначался для широкого применения, например, как контролер за качеством пищевой и косметической продукции.

В Университете Линкёпинга (Швеция) в 1992 году разработали еще один электронный прибор, анализирующий запахи. Принцип его действия основан на сверхточном контроле за характеристиками электрического тока в покрытом специальным составом полупроводнике под воздействием пучка света, проходящего через различную газовую среду. Показатели прибора преобразуются в цифровой ряд, позволяющий после соответствующей математической обработки установить, чем именно пахнет.

Американский журнал «Тайм» в 1999 году привел такое «расписание» прогресса в области роботостроения. Одной из главных областей, где роботы скоро «выйдут на оперативный простор», будет медицина. Рука робота не дрогнет даже при самой сложной операции. Однако врачи будут вести за ним самое пристальное наблюдение. В медицине большие перспективы у роботов в области микробиологии. Ученые предсказывают, что по размеру эти аппараты будут с бактерию. Введенные в кровь, они смогут достигнуть любого капилляра, передать необходимые данные или очистить сосуд от тромбов.

В 2005 году возникнет массовый рынок автоматических помощников – роботы в роли пылесосов, машин для стрижки газонов, игрушек. Уже сегодня созданный японской фирмой «Сони» собака-робот Айбо умеет играть в мяч. В больницах Японии «меню-роботы» доставляют лежачим пациентам пищу.

В 2015 году роботы, возможно, приобретут интеллект мыши и их можно будет «дрессировать». Они смогут открывать дверь, снимать телефонную трубку, убирать со стола посуду. В 2030 году, по мнению ученых, эти автоматы по своему «умственному развитию» достигнут уровня обезьяны. А в 2050-м в промышленном производстве труд роботов будет использоваться так же широко, как сегодня в автомобилестроении.

Уже в 2000 году роботы умели изображать радость и обиду, подбегать к человеку при его появлении, наливать вино из бутылки в бокал, танцевать и ловко обходить препятствия. Через пять лет они смогут самостоятельно находить электрическую розетку и будут сами заряжать себе аккумуляторы. К середине XXI века они сравняются с нами по уровню интеллекта, что поставит человечество перед проблемой, которая затмит все нынешние национальные, расовые и идеологические конфликты. И главное – люди никак не смогут помешать этой тенденции, более того, они ее сейчас всячески подстегивают.

В обоснованности такого прогноза абсолютно убеждены специалисты многочисленных японских научных центров, отчаянно конкурирующих между собой в создании все более совершенных роботов. Большинство фундаментальных теоретических разработок на этот счет, кстати, принадлежит американским исследователям. Однако именно японцы, как это было с транзисторными приемниками и видеомагнитофонами, лидируют в практическом воплощении заморских идей. Они не сомневаются, что уже в ближайшие годы «умная» бытовая техника, а потом и роботы станут самым ходовым потребительским товаром во всех развитых странах планеты.

Прорыв на этом направлении был достигнут 1 июня 1999 года, когда корпорация «Сони» начала продажу через Интернет электронных собачек с элементами искусственного интеллекта, умеющих лаять, вилять хвостиком, играть в мяч и, главное, обучаться новым навыкам, приобретая индивидуальные черты. Первую партию в три тысячи песиков (по две с лишним тысячи долларов за каждого!) расхватали за двадцать минут. Эксперимент, сами понимаете, был признан удачным: «Сони» точно установила, что потребители в богатых странах не только готовы, но прямо-таки горят желанием завести себе новых электронных друзей, хотя настоящий щенок обошелся бы им куда дешевле.

С тех пор японцы чуть ли не раз в неделю объявляют о новых успехах в разработке самых разных роботов. Электронные рыбы уже плавают в аквариумах, не отличаясь повадками и обликом от живых соседок. Вслед за первой искусственной собачкой появился целый выводок похожих домашних зверушек по куда более приемлемым ценам. Роботы уже ходят плавно, как люди, стоят на одной ноге и выполняют непростые операции – скажем, включают и выключают манипуляторами свет в комнате. Автомобильная компания «Хонда», активно конкурирующая с «Сони» в этой области, начала сдавать в аренду своих «электронных гуманоидов» для развлечения гостей на вечеринках и приемах.

Человечество слишком много времени тратит на домашнюю работу. Спросите об этом любую женщину, и почти наверняка она начнет жаловаться на то, сколько труда требуют уборка, стирка, приготовление пищи… Сразу несколько японских компаний разрабатывают сейчас робота-уборщика для обычных квартир, который будет уничтожать малейшие пылинки в доверенном ему пространстве.

Кухонные комбайны будущего поколения фирмы «Мацусита» обязаны самостоятельно фиксировать и запоминать вкусы своих хозяев (скажем, сколько молока наливать в чашку с кофе), выуживать из Интернета и предлагать им рецепты новых блюд. Разработки такого рода в принципе уже готовы – речь идет лишь о том, чтобы придать им оптимальную рыночную форму и сбить себестоимость этих все еще слишком дорогих аппаратов. В широкой продаже они появятся уже в ближайшие годы.

Прекрасный выход для тех, кто вечно спешит и кому постоянно не хватает времени на приготовление, например, завтрака, предложила одна японская фирма, создавшая аппарат «специально для лентяев». Для того чтобы каждый день иметь горячий завтрак с чашкой ароматно пахнущего кофе, достаточно открыть крышку этого автоматического помощника, забросить в него один-два ломтика хлеба, пару яиц, насыпать немного молотого кофе и установить таймер на положенное время приготовления. Через несколько минут – пожалуйста, у вас на столе хрустящие тосты, горячая яичница и бодрящий напиток.

Этот аппарат, названный его создателями «Омакасэ риори сан» – что-то вроде «Закажи три блюда», – оснащен сигнализатором, который известит о том, что завтрак готов. Этот помощник вечно спешащих и ленивых обладает целым набором функций: установленный внутри него прибор разбивает яичную скорлупу и выливает содержимое на специальную жаровню, хлеб поджаривается в трех режимах, а приготовленный кофе, объемом до пяти чашек, сохраняется горячим в течение получаса.

На подходе автомобили-самокаты с искусственным интеллектом. По указанию человека они будут сами двигаться к указанной цели, избавив хозяина от утомительной обязанности крутить баранку и нажимать на педали. Японский инженер Такэо Канэда из американского Университета Карнеги – Меллона уже создал прототип такого автомобиля, который испытывался в 2000 году на дорогах США. Для страховки рядом с роботом-шофером, правда, сидел водитель-человек, однако машина уже достаточно уверенно ездит и без его помощи. Эксперты полагают, что практическое превращение таких разработок в товары широкого потребления произойдет на стыке первого и второго десятилетий XXI века.

Исследователи из швейцарского Института искусственного интеллекта осенью 2003 года начали разработку нового робота на колесах, управляемого «силой мысли». Основой для решения этой задачи послужили эксперименты, проведенные ранее в городе Атланта (США). Пять лет назад американские нейрохирурги вживили в мозг парализованных пациентов электроды и подсоединили их к компьютеру. Выяснилось, что в момент мысленного совершения физического действия, например перемещения курсора по экрану, резко возрастает физическая активность двигательных центров мозга. Причем в зависимости от того, в каком направлении человеку нужно переместить курсор, она меняется.

Постепенно инвалиды научились эффективно управлять курсором с помощью мысленных приказов. В результате люди, которых болезнь лишила не только движений, но и речи, смогли общаться с окружающими. Однако широкого распространения этот опыт не получил, поскольку вживление электродов в мозг требует сложной и небезопасной нейрохирургической операции. Чтобы избежать этого затруднения, швейцарские специалисты создали абсолютно безопасный, не требующий вмешательства в работу мозга специальный шлем с электродами. Эксперименты показали, что, надев его, человек может передавать на компьютер некоторые мысленные команды. Теперь специалисты предлагают «вооружить» новым шлемом полностью парализованных пациентов, чтобы те могли управлять необходимой им техникой, прежде всего инвалидной коляской.

Обслуживающий больного компьютер использует программное обеспечение на основе нейронных сетей, позволяющих «натренировать» его на мгновенное распознавание различных видов электрической активности мозга. Одновременно разрабатывается управляемая «кибернетическая коляска». К настоящему времени удалось добиться, чтобы робот не налетел на кого-нибудь, рванувшись вперед из-за мысли, случайно мелькнувшей в голове «седока». Кроме того, коляска будет снабжена собственным сложным программным обеспечением и инфракрасными сенсорами, позволяющими избегать препятствий и ориентироваться в пространстве.

Американка Джейн Уолтерс уже много лет полностью парализована. Тем не менее Джейн готовится стать программистом ЭВМ. Недоумение легко рассеивается, если пояснить, что Джейн печатает. глазами. Делать это ей позволяет специальная видеосистема, созданная группой конструкторов из института роботов при американском Университете Карнеги лет двадцать назад. Видеокамера фиксирует малейшее движение глаза, в то время как взгляд скользит по панели с набором букв, цифр и знаков пунктуации. Для «написания» на дисплее буквы нужно лишь на мгновение задержать на ней свой взгляд. Причем на один знак уходит в среднем полсекунды. За минуту же при соответствующей тренировке можно написать примерно десять английских слов.

Одна немецкая компания выпустила первую систему управления компьютером при помощи сигналов головного мозга. Она позволит создавать и отсылать сообщения по электронной почте, играть в компьютерные игры.

Работа системы обеспечивается за счет считывания электроэнцефалограммы головного мозга с помощью электродов, усиления сигнала и его программной интерпретации. Усилитель сигналов головного мозга подключается к компьютеру через специальный порт. По словам разработчиков, усилитель позволяет интерпретировать сигналы мозга с ювелирной точностью, что позволит существенно уменьшить количество электродов. В 2007 году система номинирована на Европейскую премию за достижения в области информационных и коммуникационных технологий.

Японская фирма «Пента-Оушен» с 1995 года разрабатывает систему полной автоматизации строительства. Система испытывалась в Сингапуре на стройке нескольких сорокаэтажных небоскребов. Все элементы здания и строительные детали снабжены наклейками со штрихкодом или микросхемами с информацией, указывающей, куда надо ставить данную деталь. Эти материалы сложены вокруг стройплощадки в определенных местах. Автоматические подъемные краны, руководимые центральным компьютером стройки, разыскивают эти детали и, руководствуясь имеющейся на них информацией, с миллиметровой точностью монтируют их на место.

Только при сильном ветре в кабины кранов приходится подниматься крановщикам. За порядком на стройплощадке присматривает один человек, так, на всякий случай. Вся стройка идет под защитной крышей, установленной на четырех башнях, растущих вместе с домом. Датчики, телекамеры и другая электроника, работающая на стройплощадке, требуют защиты от дождя и солнца. После окончания строительства подъемные краны демонтируют крышу, а потом и сами себя.

Все вышеизложенное свидетельствует о том, что в ближайшие десять лет в робототехнике неизбежны радикальные изменения. В какой-то момент в единый узел свяжутся достижения в деле создания новых материалов, миниатюризации деталей и узлов, разработки лазерных и инфракрасных сенсоров, систем различения и имитации человеческой речи, мини-процессоров особой мощности. Тогда и достигнет своей кульминации компьютерная революция, последствия которой предсказать пока невозможно. Ясно только, что в наступившем веке обязательно появятся уникальные роботы, делающие невозможное возможным.

С развитием нанотехнологий ученые, занимающиеся проблемами роботизации, связывают наступление «золотого века» человечества. И это неудивительно. Нанороботы и впрямь способны творить чудеса. Но сначала давайте уточним, что представляет собой наноробот. Запомните, что за единицу измерения в нанотехнологиях принят нанометр. Он в миллиард раз меньше обычного метра – примерно во столько раз толщина пальца меньше диаметра Земли. Толщина человеческого волоса составляет около 80 тысяч нанометров.

Его образно можно представить как автономный космический корабль. Он имеет собственный двигатель, позволяющий ему самостоятельно быстро передвигаться в любом направлении, «руки»-манипуляторы, дающие возможность взаимодействовать с миром, мощный компьютер, который управляет его действиями, и систему связи, которая позволяет ему получать необходимые данные и команды, а также взаимодействовать с другими такими же кораблями. От космического корабля его отличает только одно: размеры наноробота всего в десятки нанометров, это в сотни раз меньше, чем толщина человеческого волоса.

Такие размеры, компьютерная начинка и манипуляторы позволяют нанороботу захватывать отдельные атомы и расставлять их в нужном порядке. Таким образом, он может создавать структуры любой сложности с требуемыми свойствами из подручного органического и неорганического материала, в том числе и самих себя, размножаясь делением, как это делают бактерии.

В цивилизации, обладающей развитой инфраструктурой нанороботов, настанет настоящий, «золотой век». Отпадет необходимость и в огромных заводах, и в маленьких фабриках, загрязняющих своими отходами окружающую среду и истощающих как недра Земли, так и ее биосферу. Их заменит небольшое устройство величиной с холодильник. Внутри будут находиться компьютер, емкость с различными химическими элементами и колония нанороботов. Например, утром человеку понадобилась щетка, чтобы почистить зубы. Он отдает команду компьютеру: тот активирует программу сборки зубной щетки. Нанороботы начинают вылавливать в растворе необходимые для создания щетки атомы и расставлять их по местам. Через некоторое время щетка готова. После гигиенической процедуры щетка помещается в емкость, и нанороботы разбирают ее на исходные атомы. Потеряется смысл в накоплении различных, в том числе и очень дорогих, вещей. Ведь нанороботы могут создать любую одежду, любое украшение, даже сделанное из бриллиантов.

Изменится и облик городов. Человек выходит на улицу. Ему нужен транспорт. Он выбирает себе марку автомобиля, и вскоре перед его подъездом появляется только что сложенный из атомов «ауди» самой последней модели, с водородным или электродвигателем.

Нанороботы смогут, наконец, решить одну из самых сложных экологических проблем современности – прекратить загрязнение нашей планеты. Новая технология, по сути, безотходна. Вышедшие из строя устаревшие вещи не выбрасываются, а просто разбираются нанороботами на атомы.

Ждать «золотого века» осталось недолго. Серьезные исследования доказали: саморазмножающегося робота можно построить уже в ближайшем будущем. При этом он будет не сложнее, чем процессор Pentium IV.