Логическая игра

Кэрролл Льюис

Сборник логических задач автора известных сказок «Алиса в Стране Чудес» и «Сквозь зеркало и что там увидела Алиса» Льюиса Кэрролла в яркой и занимательной игровой форме знакомит читателя с оригинальным графическим методом решения силлогизмов и соритов.

В приложение включены некоторые игры, фокусы и головоломки Льюиса Кэрролла и его письма к детям.

Для школьников 8—10-х классов и всех любителей занимательных задач.

 

Льюис Кэрролл

Логическая игра

Перевод с английского Ю. А. ДАНИЛОВА

Библиотечка «Квант», выпуск 73

МОСКВА «НАУКА»

ГЛАВНАЯ РЕДАКЦИЯ ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ

1991

 

ПРЕДИСЛОВИЕ

Если вы встретите человека, утверждающего, будто он знает сказки Льюиса Кэрролла «Алиса в Стране Чудес» и «Сквозь зеркало и что там увидела Алиса» (часто называемую для краткости просто «Зазеркалье»), не верьте ему, хотя, вне всякого сомнения, он читал обе сказки Кэрролла и, быть может, даже не один раз. Ваш собеседник либо искренне заблуждается, либо употребляет обычные слова в необычном, «пиквикском» смысле. «Алису» нельзя знать, даже если выучить её наизусть, хотя прочитать её, разумеется, может каждый. Дело в том, что «Алису» невозможно понять до конца, её можно понять лишь в большей или меньшей степени.

И объясняется это не только тем, что «Алиса» — сказка очень английская и перевести её на любой другой язык очень трудно. Заглянув в помещённый в конце этого сборника список литературы, вы увидите, как давно и как упорно работают наши отечественные переводчики над созданием русской «Алисы», не уступающей оригиналу ни в яркости образов, ни в тонкости мысли (а мысль Кэрролла — материя настолько тонкая и хрупкая, что она совершенно не выносит неосторожного прикосновения и обращается в бессмыслицу, стоит лишь забыть или не передать какой-нибудь даже казалось бы второстепенный оттенок).

Маленькая «Алиса» принадлежит к числу тех сказок, которые встречают нас ещё в детстве и сопровождают или по крайней мере могут сопровождать всю жизнь. Они написаны для детей, но особенно читаемы взрослыми. Что же касается «Алисы», то при внимательном чтении в ней открываются такие глубины, что некоторые (в том числе философ и логик Бертран Рассел) даже предлагают издавать обе сказки Льюиса Кэрролла с грифом «Только для взрослых».

Всех, кто хотя бы один раз заглянул в сказки об Алисе, в которых действуют необыкновенные герои, живут странные существа, происходят преудивительные события, поражает особая жизненность персонажей, внутренняя (хотя порой странная и противоречащая здравому смыслу) логика их поступков. Не следует, однако, забывать о том, что «Алиса» — не просто сказки. Это скорее репортаж, отчёт, заметки, написанные по свежим следам путешествия в необычный мир — Страну Чудес и Зазеркалье, где господствует своя логика и действуют свои законы. И весь этот огромный мир создал, населил и подарил нам Льюис Кэрролл.

Вряд ли найдётся ещё один человек, который был бы так знаменит и так неизвестен, как Льюис Кэрролл. «Знаменитый автор „Алисы“ и вдруг „неизвестен“! Чепуха! Парадокс!» — скажете вы… и ошибётесь. Если говорить словами Алисы, есть чепуха, по сравнению с которой эта чепуха — толковый словарь, а если говорить о парадоксах, то с именем Льюиса Кэрролла их связано столько, что трудно представить, как вообще мог существовать в обычном мире такой необычный человек.

Начать с того, что человека по имени Льюис Кэрролл, строго говоря, никогда не было. То есть он был, но…

Представьте себе, что вас зовут Чарлз Лютвидж Доджсон и вы хотите выбрать себе литературный псевдоним. Что бы вы сделали? Не знаю. А вот что сделал автор (тогда ещё будущий) «Алисы»: он разобрал оба своих имени по буквам, как дети разбирают игрушечную машину, чтобы посмотреть, «что там внутри», и из обломков составил не один, а целых два псевдонима. Другой бы на этом успокоился и считал бы, что сделал и без того много, но… Кэрролл никогда не стал бы Кэрроллом, если бы он поступал, как другие.

Он перевёл на латынь свое имя «Чарлз» — получилось «Каролус», перевел на латынь своё второе имя «Лютвидж» — получилось «Людовикус», переставил латинские имена — получилось «Людовикус Каролус» и перевел их снова на родной английский язык. Так появился Льюис Кэрролл, неблагодарный Льюис Кэрролл, вскоре затмивший своего создателя и носителя, скромного, давно забытого преподавателя математики Чарлза Лютвиджа Доджсона из колледжа Крайст Черч в Оксфорде.

Можно ли ожидать от человека почтительного отношения к словам, если даже свое собственное имя он способен разобрать «по косточкам»? Разумеется, нельзя, но… К словам Льюис Кэрролл относился чрезвычайно почтительно, считал, что слово означает больше, чем полагает написавший его автор. И несмотря на все почтение, он переделывал слова (для их же пользы) так, чтобы им было удобнее. Кэрролл любил играть в слова и словами. Он нанизывал слова в цепочки и, меняя в каждом звене лишь по одной букве, ухитрялся превращать «муху» в «слона», наводить «дуло» в «цель» и проделывать многие другие удивительные вещи. Игра для Кэрролла — естественное состояние. «Человек разумный» для него всегда означал «человек играющий». Не поэтому ли он, чопорный и замкнутый среди взрослых и со взрослыми, так легко находил общий язык с детьми?

Свои серьёзные сочинения Кэрролл подписывал «настоящей» фамилией — Доджсон. В отличие от Льюиса Кэрролла, постоянно пребывавшего в Стране Чудес и в Зазеркалье, Доджсон был вынужден вести самый прозаический образ жизни в Оксфорде, читать лекции, проводить занятия. («Подумать только! И в это время он сочинял „Алису“!» — скажет через много лет один из студентов Чарлза Лютвиджа Доджсона, изнывавший от скуки на его занятиях. Скажет и ошибётся: «Алису» сочинил не Доджсон, а его дальний родственник и близкий друг Льюис Кэрролл). Правда, иногда все волшебно преображалось: в гости к педантичному Доджсону приезжал, приходил, прилетал фантазёр и выдумщик Льюис Кэрролл. Желая хотя бы чем-то помочь своему другу, он вставал за его рабочую конторку, и тогда… Тогда среди сухих задач и примеров появлялись такие задачи, какие приведены в настоящем сборнике.

Рука Льюиса Кэрролла явственно ощущается и в таком сочинении Ч. Л. Доджсона, как «Евклид и его современные соперники». Прочитав название, вы можете подумать, что в этом небольшом трактате Доджсона речь идёт о создателях неевклидовой геометрии и их предшественниках, и… ошибётесь.

Ч. Л. Доджсон жил и умер в полной уверенности, что евклидова геометрия — единственно возможная, и в своём трактате разделался с авторами современных ему учебников по элементарной геометрии, дерзнувшими заменить «Начала» Евклида, примерно так же как некогда он разделался со своим именем. Впрочем, заслуживает ли иной участи тот, кто смеет посягать на авторитет несравненного «мистера Юклида», по чьим «Началам» до недавнего времени учились многие поколения англичан?

Математический багаж Чарлза Лютвиджа Доджсона, накопленный им за годы учения в школе и в Оксфордском университете, не был велик: он почти полностью исчерпывался элементарной геометрией по Евклиду, зачатками линейной алгебры и элементарными сведениями из математического анализа. Но с детских лет чутко реагируя на всякое нарушение логики в повседневной жизни, на алогизмы в общепринятых рассуждениях, Льюис Кэрролл разработал свою собственную систему логики, не безупречную, но безусловно новаторскую. Как бы объяснил суть своей теории сам Кэрролл, достоверно не известно. Зато хорошо известен результат: те самые «сумасшедшие», чисто кэрролловские задачи, которые до сих пор восхищают всех — от знатоков, искушённых в логике, до тех, кто глубоко убеждён, что обыденный здравый смысл превыше хитросплетений науки.

Искусство правильно мыслить, мог рассуждать Кэрролл, во многом схоже с искусством судовождения. Не велика хитрость идти по видимым ориентирам — выводить правильное заключение из суждений, не противоречащих здравому смыслу. В этом случае правильный ответ можно получить, даже если рассуждать неверно: выручит интуиция, опыт. Иное дело, если суждение противоречит здравому смыслу. Здесь мы уподобляемся мореходу, ведущему своё судно вдали от берега по счислению. Искусство правильно (логично) рассуждать, по Кэрроллу, как раз и означает умение получать правильные заключения из суждений не то, чтобы неверных, но по крайней мере несколько необычных.

Например, из странных посылок

«Ни одно ископаемое животное не может быть несчастно в любви.

Устрица может быть несчастна в любви»

следует вполне здравое, и, что самое главное, правильное, заключение

«Устрица — не ископаемое животное».

(Говоря о правильности заключения, мы имеем в виду, что оно получено по правилам логического вывода, а не то, что оно согласуется со здравым смыслом.)

Правила логического вывода в задачах Кэрролла, подобно улыбке Чеширского Кота, остаются после того, как здравый смысл исчезает из посылок. Правильно обращаться с «неправильными» суждениями, чтобы научиться заведомо правильно оперировать с правильными суждениями — вот заветная цель логических построений Кэрролла.

Кэрролл одним из первых разработал символический и графический методы решения логических задач, ввёл таблицы истинности и придумал многое другое, что входит в арсенал, или, лучше сказать, составляет вооружение (в арсенале может храниться и устаревшее оружие) современного логика. Эти методы и задачи представлены в «Логической игре», которая открывает настоящий сборник.

Человек парадоксального склада ума, Кэрролл достиг вершины своего научного творчества в двух парадоксах: «Что черепаха сказала Ахиллу» и «Аллен, Браун и Карр», озадачивших и продолжающих озадачивать многих и поныне.

Увидев у своего дядюшки Скеффингтона один из первых любительских фотоаппаратов, Кэрролл не на шутку увлёкся фотографией и достиг на этом поприще немалых успехов, став одним из лучших фотолюбителей своего времени. Эта сторона его жизни представлена в сборнике рассказом «Фотограф на съёмках».

Письма Льюиса Кэрролла к его большим друзьям — маленьким детям — особый, поистине уникальный жанр, не имеющий аналогий и параллелей. Каких только писем нет в его огромном эпистолярном наследии: тут и письма-ворчалки (если воспользоваться терминологией Винни-Пуха), и письма-дразнилки, и письма-сказки, и «зеркальные» письма, и письма, написанные от конца к началу. Прочитайте, и вы убедитесь в этом сами!

Льюис Кэрролл не мог бы сказать о себе словами Байрона: «Проснулся и узнал, что знаменит». Известность пришла к нему не сразу, но, придя, не оставляла его никогда. Самому Кэрроллу слава не доставляла особого удовольствия, причиняя много хлопот. Приходилось спасаться от «охотников за львами», любителей автографов и т. п. Делал это Кэрролл чисто по-кэрролловски, отрицая знакомство… с самим собой («мистер Доджсон не претендует на авторство книг, не подписанных его именем»).

Льюис Кэрролл оставил нам целый мир, сложный и захватывающе интересный. Открыв настоящий сборник, вы сделаете первый шаг, вступая на неведомую вам территорию (наследие Кэрролла далеко не исчерпывается «Алисой»!). Вас ждут интересные открытия. Счастливого пути!

Ю. Данилов

 

I. ЛОГИЧЕСКАЯ ИГРА

 

Введение

Чтобы играть в эту игру, необходимо иметь девять фишек: четыре фишки одного цвета и пять — другого. Например, четыре красных и пять черных.

Кроме девяти фишек необходимо также иметь по крайней мере одного игрока. Мне не известна ни одна игра, в которой число участников было бы меньше. В то же время я знаю несколько игр, в которых число игроков больше, чем в нашей игре. Например, чтобы играть в крокет, необходимо собрать команду из двадцати двух игроков. Разумеется, найти одного игрока гораздо легче, чем найти двадцать два игрока. Вместе с тем нельзя не заметить, что хотя одного игрока для нашей игры вполне достаточно, намного интереснее играть в неё вдвоём и помогать друг другу исправлять допущенные ошибки.

Наша игра обладает ещё одним преимуществом. Она не только служит неисчерпаемым источником развлечения (число умозаключений, которые можно вывести, играя в нашу игру, бесконечно), но и позволяет игроку узнавать нечто новое (правда, в весьма умеренных дозах). Впрочем, особого вреда от этого нет, поскольку удовольствия она доставляет неизмеримо больше.

Цвета фишек

Стало вдруг светлым-светло:

Солнце КРАСНОЕ взошло.

А у ночи ЧЁРНЫЙ цвет:

Солнца на небе уж нет.

 

Глава 1. Старые истины на новый лад

 

§ 1. Суждения

«Некоторые свежие булочки вкусные».

«Ни одна свежая булочка не вкусная».

«Все свежие булочки вкусные».

Перед вами три суждения — только такие три типа суждений мы и будем использовать в этой игре. Первое, что необходимо сделать, — это научиться изображать их на нашей диаграмме.

Начнём с рассуждения «Некоторые свежие булочки вкусные», но прежде сделаем одно замечание. Оно необычайно важно и понять его сразу не так-то просто, поэтому читать его надо очень внимательно.

В окружающем нас мире имеется много предметов (таких, как «берёзки», «бараны», «бациллы», «быки» и т. д.). Предметы эти обладают множеством признаков (таких, как, например, «белые», «бестолковые», «болезнетворные», «бодливые» и т. п.; в действительности любое свойство, которое «признано» за предметом, или, как ещё говорят, «принадлежит ему», может служить его признаком). Если нам нужно назвать предмет, мы употребляем существительное. Если же нужно назвать какой-нибудь признак, мы употребляем прилагательное. Наверное, найдутся люди, которым захочется спросить: «Может ли существовать предмет, не обладающий никакими признаками?» Это очень трудный вопрос, и я даже не буду пытаться ответить на него. Мы просто гордо отвернёмся и будем хранить презрительное молчание, делая вид, будто он не достоин нашего внимания. Но если вопрос поставлен иначе и люди хотят знать, могут ли существовать признаки, не принадлежащие никаким предметам, то мы сразу же сможем ответить: «Нет, как не могут грудные младенцы самостоятельно совершать поездки по железной дороге!» Ведь не приходилось же вам никогда видеть, как «блестящее» плавает в воздухе или рассыпано по полу, без того, чтобы хоть какой-нибудь предмет не был блестящим?

К чем я веду весь этот длинный (и довольно бессвязный) разговор? А вот к чему. Между именами двух предметов или между именами двух предметов или между именами двух признаков можно вставить слово «есть» или «суть» (или подразумевать, что такое слово вставлено), и при этом результат получится вполне осмысленным. Например, «некоторые свиньи суть жирные животные» или «розовый — это светло-красный». Но если вы вставите слово «есть» или «суть» между именем предмета и именем признака (например, «некоторые свиньи суть розовые»), то ничего хорошего из этого не получится (ибо как может предмет быть признаком?), если тот, с кем вы говорите, не знает заранее, что вы имеете в виду. Мне кажется, что добиться взаимопонимания было бы проще всего, если бы мы условились повторять существительное в конце предложения. В этом случае предложение, если его записать полностью, имело бы вид: «Некоторые свиньи суть розовые (свиньи)». Никаких противоречий при этом не возникает. Итак, чтобы суждение «Некоторые свежие булочки вкусные» имело смысл, необходимо предположить, что оно записано в развёрнутом виде: «Некоторые свежие булочки суть вкусные (булочки)».

Полное суждение содержит два термина: один из них — «некоторые булочки», другой — «вкусные булочки». Термин «некоторые булочки», о котором идёт речь, называется субъектом суждения, термин «вкусные булочки» — предикатом суждения. Наше суждение частное, поскольку в нем говорится не о в всем субъекте, а лишь о его части. Суждения «Ни одна свежая булочка не вкусная» и «Все свежие булочки вкусные» называются общими, поскольку в каждом из них речь идёт обо всем предикате: в первом из них отрицается а во втором утверждается «вкуснота» всего класса «свежих булочек». Наконец, если вы захотите узнать, что же такое суждение, то мы можем предложить вам следующее определение: «Суждение — это предложение, утверждающее, что некоторые или все предметы, принадлежащие определённому классу, называемому субъектом, одновременно являются предметами, принадлежащими другому классу, называемому предикатом» (или что ни один предмет, принадлежащий классу «субъект», не является предметом, принадлежащим классу «предикат»).

Эти девять слов — суждение, признак, термин, суждения, субъект, предикат, частное и общее суждение — окажутся необычайно полезными, если кому-нибудь из ваших приятелей придёт в голову поинтересоваться, не приходилось ли вам когда-нибудь изучать логику. Не забудьте употребить в своём ответе все девять слов, и ваш приятель удалится совершенно потрясённым, «став не только мудрее, но и печальнее». Взгляните теперь на меньшую диаграмму (с. 9). Предположим, что она нарисована на подносе, который вмещает все булочки в мире (разумеется, размеры его должны быть достаточно велики). Пусть все свежие булочки находятся на верхней половине диаграммы (помеченной буквой x), а все остальные (т. е. не свежие) — на нижней (помеченной буквой x'). На нижней половине окажутся чёрствые булочки, окаменевшие булочки, допотопные булочки (если таковые существуют — лично мне их видеть не приходилось) и т. д. Сделаем ещё одно предположение: будем считать, что все вкусные булочки находятся на левой половине диаграммы (помеченной буквой y), а все прочие (т. е. не вкусные) булочки — на правой половине (помеченной буквой y'). Таким образом, x временно означает «свежие», x' — «несвежие», y — «вкусные» и y' — «невкусные».

Как вы думаете, какие булочки находятся в клетке 5?

Вы видите, что эта клетка расположена в верхней половине диаграммы. Следовательно, если в ней есть хоть какие-нибудь булочки, то они должны быть свежими. В то же время клетка 5 расположена в левой половине диаграммы; следовательно, принадлежащие ей булочки должны быть вкусными. Таким образом, если мы воспользуемся буквенными обозначениями, «быть xy».

Обратите внимание, что буквы x и y написаны на двух сторонах клетки 5. Как вы увидите в дальнейшем, это позволяет необычайно просто узнавать, какими признаками обладают предметы, находящиеся в любой из клеток. Возьмём, например, клетку 7. Если в ней есть булочки, то они должны быть x'y, т. е. «несвежие и вкусные».

Примем теперь ещё одно соглашение: будем считать, что клетка «занята», т. е. в ней находятся некоторые булочки, если на ней стоит красная фишка. Слово «некоторые» в логике означает «одна или несколько», поэтому одной-единственной булочки в клетке совершенно достаточно для того, чтобы мы могли сказать: «В этой клетке находятся некоторые булочки». Условимся также считать, что чёрная фишка, стоящая в какой-нибудь клетке, означает, что эта клетка «пуста», т. е. в ней нет ни одной булочки.

Поскольку субъектом нашего суждения служат «свежие булочки», мы временно будем рассматривать только верхнюю половину подноса, где находятся все булочки, обладающие признаком x, т. е. «свежие».

Предположим, что, сосредоточив внимание на верхней половине диаграммы, мы обнаружили, что она размечена следующим образом:  т. е. красная фишка стоит на клетке 5. Что можно сказать в этом случае о классе «свежих булочек»?

А то, что некоторые из них находятся в клетке xy, т. е. помимо признака x, общего для двух верхних клеток, обладают ещё и признаком y (т. е. «свежие»). Иначе говоря, мы получили суждение «Некоторые x-булочки суть y (булочки)», или, если подставить вместо x и y их значения, «Некоторые свежие булочки суть вкусные (булочки)». Кратко то же самое можно выразить так: «Некоторые свежие булочки вкусные». Наконец-то мы узнали, как изображается на диаграмме первое из суждений, приведённых в самом начале этого параграфа!

Если вы недостаточно уяснили то, о чем я говорил до сих пор, вам лучше не продолжать чтения, а вернуться назад и перечитать этот параграф ещё несколько раз — до тех пор, пока вы не разберётесь во всем до конца. Зато, как только вы усвоите эту часть, все остальное не вызовет у вас никаких затруднений.

Рассмотрение двух других суждений будет несколько проще, если мы условимся вообще опускать слово «булочки». Я нахожу, что весь класс предметов, для которых предназначается поднос с начерченной на нем диаграммой, удобно называть «Универсум», или «Мир». Чтобы испробовать новый термин, скажем, например: «Рассмотрим Мир булочек». (Звучит хорошо, не правда ли?)

Разумеется, мы можем брать не только булочки, но и другие предметы и высказывать суждения о «Мире ящериц» или даже о «Мире ос-шершней». (Вы, конечно, согласны, что последний «Мир» просто очарователен и жить в нем — одно удовольствие?)

Вернёмся к нашей диаграмме. Мы уже знаем, что   означает «Некоторые x суть y», т. е. «Некоторые свежие суть вкусные».

Разумеется, вы сразу, без всяких объяснений, догадаетесь (я просто уверен в этом), что  означает «Некоторые x суть y'», т. е. «Некоторые свежие суть невкусные».

Поставим теперь на клетку 5 чёрную фишку и спросим себя, что означает 

Мы видим, что клетка xy пуста. Следовательно, нуль в клетке 5 соответствует суждению «Ни один x не есть y», или «Ни одна свежая булочка не вкусная», а это не что иное, как второе из трёх суждений, приведённых в начале параграфа.

Точно так же диаграмма  означает «Ни один x не есть y'», или «Ни одна свежая булочка не невкусная».

А как перевести на обычный язык такую диаграмму

Думаю, что вы и без моей помощи разберётесь, что с её помощью записано двойное суждение: «Некоторые x суть y, и некоторые x суть y'», т. е. «Некоторые свежие (булочки) вкусны, а некоторые свежие (булочки) невкусные».

Может быть, диаграмма  вам покажется более сложной.

Она означает, что «Ни один x не есть y, и ни один x не есть y'», т. е. «Ни одна свежая (булочка) не вкусная, и ни одна свежая (булочка) не невкусная». Отсюда следует весьма любопытное заключение: «Ни одна свежая булочка не существует», т. е. «Ни одна булочка не свежая». Оно связано с тем, что разбиение класса «свежих булочек» на «вкусные» и «невкусные» булочки, если взять их вместе, исчерпывают весь класс «свежих булочек». Иначе говоря, все свежие булочки, которые только существуют, должны принадлежать либо множеству «вкусных булочек», либо множеству «невкусных булочек».

Предположим, что вам необходимо изобразить на диаграмме с помощью фишек суждение, противоположное суждению «Ни одна булочка не свежая», т. е. суждение «Некоторые булочки свежие» (или, если воспользоваться уже употреблявшимися буквенными обозначениями, «Некоторые булочки суть x»). Как это сделать?

Подобная задача вряд ли поставит вас в тупик. Ясно, что красную фишку нужно поставить куда-то на x-половину подноса, поскольку известно, что имеется некоторое количество свежих булочек. Поставить красную фишку на левую клетку нельзя, поскольку вы не можете с уверенностью сказать, что эти булочки вкусные. Точно так же нельзя поставить красную фишку и на правую клетку: ведь ни откуда не следует, что эти булочки невкусные.

Что же делать? Мне кажется, что лучший выход из создавшегося затруднительного положения — поставить красную фишку на линию, отделяющую клетку xy от клетки xy'. Эту ситуацию я буду изображать на диаграмме так:

Наши остроумные американские кузины говорят о человеке, который хочет вступить в одну из двух партий, таких, как их партии «демократов» и «республиканцев», но никак не может решить какую именно ему выбрать, что он «сидит на стенке». Это выражение как нельзя лучше подходит к красной фишке, которую вы только что поставили на разделительную линию: ей нравится и клетка 5, и клетка 6, но она не может решиться, в какую из них спрыгнуть. Так и сидит себе, глупышка, верхом на стенке и болтает от нечего делать ногами!

А теперь я хочу предложить вам гораздо более трудную задачу. Как, по-вашему, что означает диаграмма

Ясно, что перед нами какое-то двойное суждение. Оно говорит нам не только, что «Некоторые x суть y», но и что «Ни один x не есть не-y». Следовательно, «все x суть y», т. е. «Все свежие булочки вкусные». Вот мы и узнали, как выглядит последнее из трёх суждений, приведённых в начале этого параграфа.

Итак, общее суждение «Все свежие булочки вкусные» состоит из двух суждений, взятых вместе: «Некоторые свежие булочки вкусные» и «Ни одна свежая булочка не невкусная».

Аналогично диаграмма  означает «Все x суть y'», т. е. «Все свежие булочки невкусные».

А что делать с таким суждением, как «Булочка, которую вы мне дали, вкусная»? Оно частное или общее?

— Ну конечно же, частное, — поспешите ответить вы. — Впрочем, одна-единственная булочка вряд ли стоит того, чтобы называть её «некоторые булочки».

Нет, мой дорогой импульсивный читатель, оно общее. Ведь как ни мало булочек (а я уверяю вас, что меньше их и быть не может), все же они суть (хотя правильнее было бы сказать «они есть») все булочки, которые вы мне дали! Разделив «Мир булочек» на две части (о красной фишке мы пока забудем) — на булочки, которые вы мне дали (для них я отведу верхнюю половину подноса), и булочки, которые вы мне не дали (их мы условимся складывать на нижней половине подноса), — я обнаружу, что на нижней половине подноса булочек полным-полно, а на верхней их очень мало (меньше некуда!). Предположим теперь, что мне нужно рассортировать булочки на каждой половине подноса: отложить налево вкусные булочки, направо — невкусные. Начну я со всех булочек, которые вы мне дали. Сортировать их я буду самым тщательным образом, приговаривая время от времени: «Ну что за щедрый человек! Чем я смогу отплатить ему за его доброту?» Все вкусные булочки, лежащие на верхней половине подноса, я сложу в левую клетку. Думаю, что это не займет у меня слишком много времени!

А вот ещё одно общее суждение: «Барзилаи Беккалегг — честный человек». Означает оно следующее: «Все Барзилаи Беккалегги, которых я в данный момент рассматриваю, честные люди». (Вы, наверное, думаете, что я выдумал столь звучное имя? Ничуть не бывало! Я прочитал его на тележке разносчика где-то в Корнуолле).

Такой тип общих суждений, у которых субъект сводится к одному-единственному предмету, называются единичным суждением.

Выберем теперь «вкусные булочки» в качестве субъекта суждения, т. е. сосредоточим наше внимание на левой половине подноса, где все булочки обладают признаком y, иначе говоря, вкусные.

Предположим, что левая половина размечена следующим образом