Современные яды: Дозы, действие, последствия

Колок Алан

Глава 20

Устойчивость к химикатам

 

 

Современная токсикология охватывает сферы, которые Парацельс не мог себе и представить. Эпигенетика развенчивает идею о том, что только прямое воздействие способно причинить вред, а такие биологические молекулы, как прионы, демонстрируют, что токсичность не всегда можно описать классической кривой зависимости реакции от дозы. Как можно определить дозу вещества, если это вещество само себя реплицирует? Еще одно явление на «токсикологическом поле» – биологическая реакция на токсичность, или устойчивость. Повсеместное использование химикатов для борьбы с вредителями, как это ни парадоксально, заставило их выработать устойчивость к этим веществам. Если уж брать по максимуму – само развитие устойчивости можно считать самореплицирующимся «загрязнителем». Но прежде чем обсудить этот вопрос, имеет смысл рассмотреть, как образуются устойчивые популяции вредителей.

 

Устойчивость к химикатам и естественный отбор

Пестициды и их функциональные «кузены» – антибиотики – представляют собой химическое оружие, направленное на виды живых организмов, популяции которых мы стремимся контролировать. Хотя химическая война с насекомыми, сорняками и прочими вредными для человека видами организмов идет относительно недавно, с точки зрения эволюции наши вредители уже успели выработать устойчивость, причем на удивление быстро. Устойчивость к пестицидам и антибиотикам – результат естественного отбора, однако эта концепция так обманчиво проста, что может показаться неадекватным объяснением для столь быстрого развития защитных механизмов. Но естественный отбор действительно является очень мощным инструментом создания устойчивости к химикатам.

Идея естественного отбора основана на том, что многие виды живых организмов производят больше потомства, чем способно выжить и размножиться. Как хорошо известно всем, у кого есть сестры или братья, среди потомства генетическая вариабельность весьма велика. Хотя подавляющее большинство генетических различий не влияют на общую приспособленность организмов, некоторые черты могут иметь особое значение. Кроме того, особи, обладающие лучшей общей приспособленностью, обычно производят больше потомства, чем менее приспособленные, хотя размножающиеся. Таким образом, гены, обеспечивающие значительное повышение приспособленности, со временем широко распространяются в популяции.

Отдельные особи внутри вида, чтобы выжить и размножиться, должны преодолевать многочисленные трудности, одна из которых – воздействие химических веществ. Некоторые из подвергшихся воздействию особей могут погибнуть, а другие – выживут. Те, кто сможет найти способ противостоять токсическому воздействию пестицидов или антибиотиков с помощью биотрансформации и других механизмов, с большей вероятностью передадут свои гены следующему поколению.

Виды выработали различные стратегии, гарантирующие, что какая-то часть их потомства и, следовательно, генетического материала выживет и сохранится и, в свою очередь, также даст поколение потомков. Одна из них – так называемая К-стратегия, или экономное размножение, при которой родители вкладывают много энергии в свое потомство, но из-за этого не могут производить его в большом числе. Такой сценарий обычно характерен для организмов с большой продолжительностью жизни и медленной сменой поколений. Человек, естественно, попадает в эту категорию, как и многие знакомые нам млекопитающие – домашние (коровы, лошади, собаки и кошки) и дикие (киты, олени, львы, тигры и медведи).

Альтернативой этому варианту служит так называемая r-стратегия, или избыточное размножение, при котором родители производят многочисленное потомство, но вкладывают в каждого потомка относительно мало. Энергия тратится преимущественно на то, чтобы произвести на свет как можно больше новых организмов, так как большая их часть не достигнет зрелости. Представьте себе количество семян, которое созревает в одном одуванчике, или количество мышат, которые рождаются у одной пары мышей за год. Виды, придерживающиеся r-стратегии, обладают рядом общих свойств, в том числе способностью быстро реагировать на изменения среды.

Различия в репродуктивной стратегии очень важны, так как помогают нам понять, как развивается устойчивость к химикатам. При прочих равных условиях чем быстрее у вида происходит смена поколений, тем быстрее идет процесс эволюции. Чем более выражена у вида r-стратегия, тем более вероятно, что его представители вовремя выработают устойчивость. К несчастью, именно те виды, которые являются мишенями химического контроля – например, грызуны, комары, тля, жуки-точильщики и долгоносики, бактерии – очень часто оказываются видами, быстрее всего вырабатывающими устойчивость к химикатам.

 

Насекомые и пестициды

Сельское хозяйство, один из столпов цивилизации, – это цикл культивирования и роста, завершающийся поеданием человеком того, что он вырастил. Но у нашего урожая есть и другие потребители, которым он весьма по душе. Из-за вредителей мы теряем от 10 до 40 % выращиваемого растительного пищевого сырья. Его потребляют грибы и грызуны, но наибольший урон сельскому хозяйству наносят насекомые.

Бороться с насекомыми-вредителями с помощью химических средств пытаются уже не один век, но благодаря достижениям последнего столетия между человеком и насекомыми разгорелась настоящая гонка вооружений. И пока нельзя сказать, что насекомые проигрывают, потому что за это время более чем у 500 видов выработалась устойчивость к одному или более пестицидам.

Устойчивость насекомых к пестицидам отчасти вызвана способом применения химических веществ. Давайте рассмотрим девственное поле, где еще ни разу не распыляли пестициды. Первое использование убивает значительную часть чувствительных к пестицидам насекомых, и благодаря этому урожай повышается. Увеличивая количество пестицидов, можно убивать больше насекомых, и урожай продолжит увеличиваться. Однако зависимость не линейна, так как в определенной точке дальнейшее увеличение количества применяемых пестицидов начинает давать лишь незначительный прирост урожая. На этом этапе дальновидный фермер перестает использовать пестициды, потому что затраты становятся неоправданными.

Пестициды убивают в первую очередь тех особей, которые более чувствительны к ним, а выживают, по логике вещей, те, у которых есть генетические предпосылки для устойчивости. Если в определенном регионе все чувствительные к яду особи исключаются из популяции, более устойчивые особи скрещиваются друг с другом и увеличивают свою численность, изменяя генофонд популяции. Именно по этой причине так важно наличие в сельскохозяйственных регионах природных буферных зон и прочих некультивируемых ландшафтов, которые позволяют вредителям, чувствительным к ядам, размножаться и сохранять свои гены. Так что, как это ни парадоксально, эффективный метод контроля популяций вредителей обеспечивает сохранение в их генофонде генов, обеспечивающих особям чувствительность к химикатам. Если эти гены удаляются из общего пула, то остаются только те, что обеспечивают устойчивость, и вся популяция, к великому огорчению фермера, становится устойчива к пестицидам.

Пестициды подчиняются правилам абсорбции, описанным в главах 4 и 5. Токсичные молекулы движутся к рецептору, пытаясь соединиться с ним, а клеточные механизмы защиты стараются предотвратить это событие. Существует как минимум два основных способа, которые использует для этого клетка, и развитие устойчивости к пестицидам у насекомых может быть связано с обоими. Первая стратегия – изменить рецептор так, чтобы токсичное вещество не могло с ним связаться. Вторая – задействовать внутриклеточные белки так, чтобы превратить пестицид в относительно безопасный метаболит или же снизить чувствительность к нему ткани-мишени.

При любом механизме, по которому идет отбор, развитие устойчивости продолжает давать неожиданные результаты. Например, ученые предполагали, что изменения в физиологии и молекулярной биологии насекомых, обеспечивающие выживаемость особей, должны быть эфемерны, так как селективное преимущество реализуется только при наличии конфронтации с пестицидами. Так действительно бывает часто, но не всегда. Например, у австралийской овечьей мухи (Lucilla cuprina) гены, обеспечивающие устойчивость к малатиону, были обнаружены даже у мух, пойманных до начала применения этого инсектицида, но при этом генов устойчивости к диазинону (другому фосфорорганическому пестициду) обнаружено не было. Возможно, эти мутации дают мухам другие преимущества, однако если генетические предпосылки устойчивости к пестицидам присутствуют у мух даже при отсутствии пестицидов и передаются последующим поколениям, значит, эта мутация не оказывается для насекомых невыгодной в энергетическом смысле.

 

Антибиотики и бактерии

Антибиотик – это лекарство, которое убивает микроорганизмы или подавляет их рост, в то же время не являясь летальным для человека или других животных. Исторически различали две группы антибактериальных средств: синтезируемые лабораторно (например, первые поступившие в продажу сульфамидные препараты) и производимые живыми организмами (например, пенициллин). Сегодня большинство антибиотиков – это производные природных веществ, которые были выделены в чистом виде и сейчас синтезируются промышленно, поэтому граница между природными и искусственными антибиотиками фактически стерлась.

Антибиотики произвели революцию в медицине, так как с их помощью удается контролировать многие инфекционные заболевания. Во время Гражданской войны в США более 70 из каждой тысячи солдат умирали от инфекций. Примерно через 80 лет, во время Второй мировой, уровень смертности от инфекционных заболеваний снизился до менее 1 на 1000. Это исключительное повышение выживаемости во многом объяснялось именно началом широкого применения пенициллина и других антибиотиков.

История пенициллина очень интересна. Его антибактериальные свойства были впервые открыты случайно Александром Флемингом в 1928 г. До 1941 г. к пенициллину относились как к любопытной научной новинке, пока целая сеть лабораторий в США не объединили усилия по исследованиям возможностей его производства. В течение пяти лет производство пенициллина прошло путь от грубой лабораторной методики, дававшей очень низкий выход продукта, до серийного выпуска путем ферментации с применением индустриальных технологий. До 1941 г. в лабораториях получали лишь очень малое количество плохо очищенного пенициллина; к концу Второй мировой войны объем производства вырос до 4 млн стерильных упаковок в месяц.

Уже тогда, когда антибиотики только начинали широко применяться, устойчивость микроорганизмов не сильно отставала от достижений медицины. При долговременном (более 10 дней) использовании какого-то одного антибиотика у бактерий успевал произойти отбор на устойчивость не только к этому, но и к похожим препаратам. Но даже без долговременного применения устойчивость в больничных условиях вырабатывалась в достаточно короткие сроки. Например, в 1930-е гг. в военных госпиталях стали появляться устойчивые к сульфамидам штаммы бактерий, а в гражданских больницах Лондона в 1940-е гг. обнаружился устойчивый к пенициллину стафилококк. Именно быстрая выработка бактериями устойчивости стала одной из движущих сил для изобретения новых антибиотиков. В 1959 г. в ответ на устойчивость бактерий к пенициллину появился метициллин. Ванкомицин, антибиотик с возможным токсичным побочным действием, впервые появился в продаже в 1958 г., но наиболее широко начал применяться в 1980-е гг., после появления устойчивого к метициллину Staphylococcus aureus и устойчивого к пенициллину Streptococcus pneumoniae. Бактерии вырабатывают устойчивость с поразительной скоростью. Так, например, когда в начале 1950-х гг. в качестве альтернативы пенициллину стал применяться эритромицин, менее чем через год от него пришлось отказаться из-за выработки S. aureus очень сильной устойчивости к нему.

Способность бактерий вырабатывать устойчивость к антибиотикам не ограничивается больницами и прочими медицинскими учреждениями, так как антибактериальные средства находят все более широкое применение и в других сферах. Точное количество антимикробных препаратов, используемое в мировом животноводстве для лечения и стимулирования роста скота, неизвестно, поскольку подобная статистика ведется всего в нескольких странах мира. Тем не менее, по оценкам ВОЗ, по крайней мере половина антибиотиков, производимых в мире, используется не в человеческой медицине, а в сельском хозяйстве. Учитывая условия промышленного животноводства, где тысячи животных вынуждены существовать в ограниченном пространстве, добавление антибиотиков в корма очень быстро порождает устойчивость кишечных микроорганизмов скота и тех бактерий, которые обитают в стоках с ферм. К примеру, от начала применения тетрациклина на птицефабриках до обнаружения в экскрементах птиц кишечных бактерий с устойчивостью к целому ряду антибиотиков проходит лишь несколько недель.

Скорость развития устойчивости к антибиотику зависит от плотности его применения – то есть от количества препарата, существующего в данном географическом регионе. Как уже отмечалось, список возглавляют больницы, где скорость выработки микроорганизмами устойчивости к антимикробным лекарствам просто умопомрачительна. Антибиотики обычно устойчивы к биотрансформации и могут сохраняться в среде долгое время после того, как были выведены из организма человека или животного, которые его принимали. Поэтому антибиотики обнаруживаются в сточных водах и там, где осадки из стоков и навоз животных используются для удобрения.

 

Бактериальные плазмиды как загрязнители?

При воздействии антибиотиков бактерии, так же как насекомые, могут вырабатывать устойчивость путем случайных генетических мутаций. Один из примеров – возбудитель туберкулеза (Mycobacterium tuberculosis), у которого очень сильная устойчивость, причем самые устойчивые штаммы развились исключительно путем спонтанных мутаций. Однако в отличие от насекомых у бактерий также существует процесс горизонтального переноса генов, при котором участки нового генетического материала встраиваются в другие бактериальные клетки, которые могут размножаться бесполым путем с помощью деления. Благодаря горизонтальному переносу генов бактерии обладают гораздо большей способностью к рекомбинации генетического материала, чем насекомые или любые другие многоклеточные организмы. Самая распространенная форма горизонтального переноса для развития устойчивости – перенос плазмид, маленьких кольцевых молекул ДНК. При этом ДНК, полученная извне, может рекомбинировать с ДНК хозяина или оставаться внутри клетки в качестве функциональной плазмиды.

Когда определенная бактерия начинает вырабатывать устойчивость к антибиотику, помимо спонтанных мутаций, могут происходить и другие события, что в конечном итоге приводит к развитию устойчивости к разным препаратам. При хроническом воздействии гены устойчивости к антибиотикам, которые присутствовали у бактерий во внешней среде, упаковываются в плазмиды, которые могут быть переданы человеческим патогенам. Подобно самореплицирующимся белкам-прионам (см. главу 19), плазмиды являются самыми вездесущими загрязнителями, связанными с устойчивыми к антибиотикам бактериями. Плазмиды способны к саморепликации (через встраивание в бактериальную клетку) и перемещениям на большие расстояния и с трудом исчезают из популяции бактерий, даже если в среде не остается никаких антибактериальных агентов.

Так же как и у насекомых, у бактерий происхождение генов устойчивости к антибиотикам не связано напрямую с их воздействием. Единственная коллекция бактерий, которая сохранилась с доантибиотической (до 1954 г.) эры, – это коллекция энтеробактерий Мюррея. Устойчивость к антибиотикам у этих образцов минимальна, что подтверждает тот факт, что она существовала до начала широкого применения антибиотиков, но также и то, что случаи их воздействия были крайне редкими. Устойчивость к антибиотикам была также обнаружена у бактерий, собранных в удаленных уголках планеты, где присутствие антибиотиков маловероятно. Например, в образцах, собранных из осадочных пород в двух разных местах на глубине 170 м и 259 м под поверхностью земли, было обнаружено более 150 различных штаммов бактерий, 90 % которых обладали устойчивостью хотя бы к одному антибиотику.

Преобладание устойчивых к антибиотикам генов, прямо связанных с человеком, раскрывает несколько иную историю, чем сохранение устойчивости в образцах из внешней среды. Этот вывод был сделан на основании оценки наличия устойчивости к антибиотикам у бактерий из человеческих популяций, проживающих в достаточно изолированной среде, например в горных деревнях Непала и Боливии. Несмотря на то что добраться до этих деревень можно только пешком за много часов, кишечные бактерии-комменсалы у местного населения проявляют устойчивость к наиболее старым из известных антибиотиков, в частности тетрациклину, пенициллину и ампициллину. Еще более важно то, что, несмотря на удаленность деревень, местные бактерии по устойчивости ближе всего к бактериям самых близких к деревням городских районов вне зависимости от расстояния до них. Самое простое объяснение этому – случающиеся время от времени контакты между жителями деревень и наиболее близких к ним городов, благодаря которым происходит распространение генов устойчивости и несущих их бактерий.

В свете распространения устойчивости к антибиотикам наибольшую тревогу вызывает судьба и транспорт плазмид, содержащих соответствующие гены. Антропогенные химические вещества (антибиотики) привели к широкому распространению биологических агентов (плазмид), которые способны перемещаться в окружающей среде (с бактериальными клетками или самостоятельно) на большие расстояния, попадая таким образом в самые отдаленные уголки, где могут причинять ущерб. Естественно, ученые опасаются, что эти гены могут попадать в клетки подходящих патогенных микроорганизмов и создавать у них устойчивость к антибиотикам даже там, где они ранее не применялись. Переносящие гены устойчивости плазмиды – это не химические вещества, но и не инфекционные агенты, подобные прионам. Так что плазмиды являются еще одним примером того, насколько расширились границы и предмет токсикологии со времен Парацельса и его простой зависимости реакции от дозы.