В случае, если под рукой нет приемника для поиска радиопередатчиков, но необходимо быть уверенным, что вас не подслушивают, можно воспользоваться передатчиком помех для подавления приемных устройств, которые могут снимать информацию с радиозакладок.

Схема № 1. Сначала рассмотрим схему простого и надежного передатчика помех диапазона 100–170 МГц с мощностью излучения около 100 мВт. Этот диапазон выбран не случайно, так как большинство микропередатчиков предназначены для работы именно в этом диапазоне ввиду наличия дешевых и высококачественных приемников.

Выходная мощность передатчика в пределах 100 мВт позволяет получить на входе расположенного рядом приемника соотношение «сигнал/шум», 1/100 или 1/50. Этого более чем достаточно даже для экзотических видов модуляции (ЛЧМ,ФКМ и пр.) для того, чтобы полностью подавить информационный сигнал с радиозакладки. Схема передатчика помех для радиозакладок представлена на рис. 5.1.

Передатчик помех состоит из двух частей:

— модулятора (выполнен в виде мультивибратора на транзисторах VT1, VT2);

— задающего генератора на транзисторе VT3.

Рис . 5. 1. Схема передатчика помех для радиозакладок

В передатчике помех применена частотная манипуляция с частотой манипуляции 8 Гц и девиацией около 80 кГц (для расширения спектра помехи).

Катушка L 1 — бескаркасная, имеет 3–4 витка провода ПЭВ 0.8, диаметр катушки 5 мм, шаг намотки 1,5 мм.

Катушка связи L 2 — бескаркасная, содержит один виток (диаметром 9 мм) провода ПЭВ-2-0,6 вокруг «холодного» конца катушки L1. Передатчик собран в металлической коробке 40x80 мм. Высокочастотная часть собрана навесным монтажом. В качестве антенны применен полуволновый вибратор из медной проволоки диаметром 2–4 мм.

Схема № 2. Принципиальная схема еще одного несложного генератора помех приведена на рис. 5.2. Источником шума является полупроводниковый диод — стабилитрон VD1 типа КС168А, работающий в режиме лавинного пробоя при очень малом токе. Сила тока через стабилитрон VD1 составляет всего лишь около 100 мкА. Шум, как полезный сигнал, снимается с катода стабилитрона VD1 через конденсатор С1 поступает на инвертирующий вход операционного усилителя DA1 типа КР140УД1208. На неинвертирующий вход этого усилителя поступает напряжение смещения, равное половине напряжения питания с делителя напряжения, выполненного на резисторах R2 и R3.

Рис. 5.2. Принципиальная схема несложного генератора помех

Режим работы микросхемы определяется резистором R5, а коэффициент усиления — резистором R4. С нагрузки усилителя, переменного резистора R6, усиленное напряжение шума поступает на усилитель мощности, выполненный на микросхеме DA2 типа К174ХА10. С выхода усилителя шумовой сигнал через конденсатор С4 поступает на малогабаритный широкополосный громкоговоритель В1.

Уровень шума регулируется резистором R6. Стабилитрон VD1 генерирует шум в широком диапазоне частот от единиц герц до десятков мегагерц. Однако на практике он ограничен АЧХ усилителя и громкоговорителя.

Стабилитрон VD1 подбирается по максимальному уровню шума, но так как стабилитроны представляют собой некалиброванный источник шума, то стабилитрон может быть любым, с напряжением стабилизации менее напряжения питания.

Микросхему DA1 можно заменить микросхемой КР1407УД2 или использовать любой операционный усилитель с высокой граничной частотой коэффициента единичного усиления. Вместо усилителя на DA2 можно использовать любой другой УЗЧ. Подробнее схема широко рассмотрена в интернете, например, на .

Схема № 3. Предлагаемая схема генератора помех на ИМС 74LS04 очень проста. Но, тем не менее, она эффективно глушит диапазон примерно в 500 мГц на расстоянии до 30 м. Устройство (рис. 5.3) выполнено на одной микросхеме 74LS04 (можно также использовать K555ЛH1, КР1533ЛН1, КР531ЛН1), и подстроенном конденсаторе емкостью 3—15 пФ.

Рис . 5.3. Схема генератора помех на ИМС 74LS04

В качестве антенны использован кусок провода длинной 20–30 см. В зависимости от емкости конденсатора можно перестроиться на любую полосу частот шириной в 500 МГц.

Схема № 4. Мощный генератор помех (рис. 5.4) основан на распространенной сейчас в Интернете схеме передатчика на 10 Вт, предложенной М. Анисимовым.

Рис . 5.4. Принципиальная схема мощного генератора помех

Катушки имеют следующие параметры:

— L1 — 4 витка ПЭВ-4,0 на оправке 12 мм, отвод от середины;

— L2 — дроссель 20 мкГн, подходит от китайского приемника;

— L3 — 8 витков ПЭВ-1,0 на оправке 8 мм, намотана на оболочке кабеля РК-75;

— L4 — 6 витков того же провода и на той же оправке, расположена между 2-х половин L3.

Следует отметить, что батарейное питание тут не эффективно, ток потребления устройства более 0,5 А, поэтому нужен хороший блок питания. Транзистор должен стоять на хорошем радиаторе, иначе он может просто сгореть. Антенной служит штырь длиной 1 м. Генератор помех начинает работать сразу и настройки не требует.

Описание устройства приводится на .

Схема № 5. Генератор подавления радиопередатчиков рассматривается на . Этот постановщик радиопомех предназначен для работы в системе активной зашиты информации. Постановщик радиопомех во включенном состоянии создает электромагнитные помехи в эфире с интенсивностью, достаточной для маскирования информативных излучений от используемой оргтехники, в том числе от ПК. Генератор также обеспечивает эффективное подавление излучений маломощных передатчиков диапазона 30 МГц— 1000 МГц.

Рис. 5.5. Генератор подавления радиопередатчиков

Данная модификация прибора, кроме того, может применяться для предотвращения активации радиомикрофонов с дистанционным управлением, посредством воздействия на входные цепи приемника дистанционного управления.

Генератор (рис. 5.5) построен по классической схеме шумового генератора радиочастотного диапазона. Однако следует отметить, что тепловой режим работы схемы очень тяжелый. На транзисторы VT1—VT4 необходимы радиаторы не менее 100 кв. см. на каждый, при условии хорошей внутренней вентиляции корпуса. Резисторы R1 и R2 лучше заменить на один 4,7 Ома мощностью 10 Вт.

Схема № 6. Стабилизированный генератор шума рассматривается на . Благодаря простоте схемы и удобству градуировки генераторы шума на прямонакальных диодах получили широкое распространение среди радиолюбителей.

При всех достоинствах схемы существует один недостаток, делающий работу с ними не совсем приятной, а именно — крайнее неудобство установки и поддержания низких уровней шума, соответствующих токам через диод порядка единиц миллиампер.

Проблема возникает из-за резкой нелинейности зависимости тока анода диода от напряжения накала. Это затрудняет регулировку анодного тока с помощью стабилизатора с низким выходным сопротивлением. Применение для этих целей реостата тоже не очень хорошее решение из-за скачков тока при перестройке и большой нелинейности регулировочной характеристики.

Можно ли создать генератор шума, в котором регулировка выходной мощности осуществляется линейно, в любом диапазоне и поддерживается на заданном уровне при изменении сетевого напряжения? Да, и это не сложно.

Идея состоит в том, что нить накала диода питается от стабилизатора, охваченного обратной связью не по своему выходу, а по току анода. Петля обратной связи замыкается через промежуток катод-анод диода. При этом зависимость тока анода от напряжения накала диода, включенного в цепь обратной связи, линеаризуется пропорционально коэффициенту усиления в петле, который можно сделать очень высоким.

Ниже приведена схема, реализующая этот принцип (рис. 5.6 ).

Сам генератор шума выполнен на диоде V1. Показанное на схеме включение диода позволяет избавиться от дросселя в анодной цепи. Это улучшает частотную характеристику прибора на УКВ. Но при этом требуется перенос регулирующего элемента к высокопотенциальному концу анодного источника.

Источник питания нити накала собран на диодном мосте VD1 и конденсаторе С4. Напряжение с этого источника подается на нить накала диода через регулирующий транзистор VT1. Оптрон V01, управляющий транзистором VT1, предназначен для сдвига тока управления «вверх».

Рис . 5.6. Стабилизированный генератор шума

Источник питания анода выполнен на диодном мосте VD2 и конденсаторах С1 и С2. Напряжение, пропорциональное току анода диода, выделяется относительно общего провода на шунте R11. На операционном усилителе DA1 выполнена схема, вырабатывающая напряжение, пропорциональное разности сигналов с шунта R11 и задатчика тока анода — резистора R10.

Выходное напряжение ошибки через транзистор VT2 управляет током оптрона V01, и, следовательно, напряжением на нити накала диода. При этом напряжение на шунте R11 стремится стать равным напряжению на движке резистора R10.

Примечание.

В такой схеме значение тока анода определяется только напряжением на движке задатчика R10 и не зависит от прогрева диода, нестабильности питающей сети и прочих дестабилизирующих фактов.

Номиналы резисторов на приведенной схеме соответствуют диапазону регулировки тока анода от 0 до 10 мА. При необходимости диапазон можно сделать любым. Можно переключать его в необходимых пределах. Для этого нужно всего-навсего изменить сопротивление шунта R11 таким образом, чтобы при максимальном требуемом токе анода падение напряжения на нем соответствовало максимальному напряжению задатчика (т. е. 1 В).

Например, для получения диапазона 0–5 мА сопротивление шунта R11 должно быть 200 Ом. При больших значениях сопротивления шунта во время настройки необходимо учитывать влияние тока через головку IP1 (100 мкА), измеряющую уровень шума на выходе.

Внимание

Следует учесть, что из-за наличия инерционного элемента в цепи обратной связи (нить накала) в схеме возможны автоколебания.

На стабильности выходного тока это абсолютно не сказывается. Однако если автоколебания присутствуют (что можно увидеть осциллографом на выходе DA1), можно при желании попытаться их ликвидировать, уменьшая усиление в петле ОС (уменьшить номинал резистора R6).

Напряжения питания операционного усилителя (любой тип современного ОУ с соответствующими цепями коррекции) должно быть стабилизировано, т. к. с него формируется опорное напряжение задатчика.

При необходимости можно проградуировать ручку задатчика линейно прямо в единицах тока и отказаться от измерительного прибора.

В цепь накала рекомендуется включить полисвич на 1–1,5 А для защиты нити накала при настройке схемы или при выходе из строя компонентов схемы.

Схема № 7. Генератор шума рассматривается на . Существуют специальные приборы, которые позволяют на расстоянии прослушивать разговоры через оконные стекла. При этом используется свойство звуковых волн создавать микровибрацию стекла, которую с помощью узконаправленных оптических приборов можно преобразовать в звук.

Предотвратить прослушивание деловых разговоров через окна позволяет генератор широкополосного акустического шума (рис. 5.7).

Устройство собрано на трех КМОП микросхемах и состоит из задающего генератора на частоту 50 кГц (D1.1, D1.2), формирователя псевдослучайной последовательности импульсов на сдвигающих регистрах (D2, D3) и логике (D1.3, D1.4).

Рис. 5.7. Генератор шума

Звуковыми излучателями (HF1, HF2) являются телефонные капсули ВП-1 или ДЭМ-4М.

Резистор R4 позволяет регулировать громкость звука.

Схема может питаться от любого нестабилизированного источника с напряжением от 4 до 15 В и потребляет ток не более 20 мА.

В качестве источника звука подойдут и любые малогабаритные динамики (с 50-омнЪш сопротивлением), но при этом возрастет потребляемый ток. Транзисторы можно заменить на КТ829А.

При правильной сборке схема настройки не требует. Устройство выполняется в виде переносной коробки и размещается на подоконнике, вблизи от стекла. Включать генератор шума можно при проведении деловых переговоров, в случае необходимости.

Схема № 8. Широкополосный генератор шума рассматривается на . Электрическая схема такого широкополосного генератора шума приведена на рис. 5.8. Собственно источником шума в ней служит стабилитрон VD2, на транзисторе VT1 выполнен широкополосный усилитель шумового напряжения, а на транзисторе VT2 — эмиттерный повторитель для согласования генератора с 50-омной нагрузкой.

В отличие от других схем генератора шума, источник шума на стабилитроне VD2 в этой схеме включен не в цепь базы транзистора VT1, а в цепь эмиттера. База транзистора VT1 по переменному току соединена с общим проводом схемы конденсаторами С1 и С2. Таким образом, транзистор VT1 в усилительном каскаде включен по схеме с общей базой. Поскольку схема с общей базой лишена главного недостатка схемы с общим эмиттером — эффекта Миллера, то такое включение обеспечивает максимальную широкополосность усилителя шумового напряжения для данного типа транзистора.

Рис. 5.8. Широкополосный генератор шума

А такой недостаток схемы с общей базой, как высокое выходное сопротивление, компенсируется затем эмиттерным повторителем на транзисторе VT2. В итоге выходное сопротивление генератора шума составляет около 50 Ом (более точно устанавливается подбором резистора R6).

Режимы работы транзисторов VT1, VT2 и стабилитрона VD2 по постоянному току устанавливаются резисторами R2, R3 и R5:

— напряжение на базе транзистора VT1, равное половине напряжения питания, устанавливается состоящим из двух одинаковых резисторов R1 и R2 делителем напряжения;

— ток через стабилитрон VD2 устанавливается резистором R5.

Нижний по схеме вывод стабилитрона VD2 по переменному току соединен с общим проводом схемы конденсаторами СЗ и С5. Дроссель L1 несколько поднимает усиление по напряжению усилителя на транзисторе VT1 и тем самым в некоторой степени компенсирует падение уровня шумового сигнала на частотах выше 2 МГц. Светодиод VD1 служит для индикации включения питания генератора шума выключателем SA1.

Схема № 9. Цифровой генератор шума представлена на

. Цифровой шум представляет собой временной случайный процесс, близкий по своим свойствам к процессу физических шумов. Поэтому он называется псевдослучайным процессом. Цифровая последовательность двоичных символов в цифровых генераторах шума называется псевдослучайной последовательностью и представляет собой последовательность прямоугольных импульсов псевдослучайной длительности с псевдослучайными интервалами между ними.

Период повторения всей последовательности значительно превышает наибольший интервал между отдельными импульсами последовательности.

Наиболее часто в цифровых генераторах шума применяются последовательности максимальной длины — так называемые М-последовательности, которые формируются при помощи регистров сдвига и сумматоров по модулю 2, использующихся для получения сигнала обратной связи.

Принципиальная схема генератора шума с равномерной спектральной плотностью в рабочем диапазоне частот приведена на рис. 5.9.

Этот генератор шума содержит:

— последовательный восьмиразрядный регистр сдвига, выполненный на микросхеме К561ИР2;

— сумматор по модулю 2 (DD2.1);

— тактовый генератор (DD2.3, DD2.4);

— цепь запуска (DD2.2).

Последние элементы выполнены на микросхеме К561ЛП2. Тактовый генератор выполнен на элементах DD2.3 и DD2.4 по схеме мультивибратора. С выхода генератора последовательность прямоугольных импульсов с частотой следования около 100 кГц поступает на входы «С» регистров сдвига DD1.1 и DDД.2, образующих 8-разрядный регистр сдвига.

Рис. 5.9. Цифровой генератор шума

Запись информации в регистр происходит по входам «D». На вход «D» регистра DD1.1 сигнал поступает с элемента обратной связи — сумматора по модулю 2 на элементе DD2.1. Однако при включении питания возможно состояние регистров, когда на всех выходах присутствуют низкие уровни.

Так как в регистрах М-последовательности запрещено появление нулевой комбинации, то в схему введена специальная цепь запуска генератора, выполненная на элементе DD2.2. При включении питания он формирует на своем выходе уровень логической единицы, который выводит регистр из нулевого состояния. Затем на дальнейшую работу генератора цепь запуска не оказывает никакого влияния. Сформированный псевдослучайный сигнал снимается с 8-го разряда регистра сдвига и поступает для дальнейшего усиления и излучения. Напряжение источника питания может быть от 3 до 15 В.

В устройстве использованы КМОП микросхемы серии 561, их можно заменить микросхемами серий К564, R1561 или К176. В последнем случае напряжение питания должно быть 9 В.

Правильно собранный генератор в налаживании не нуждается. Изменением тактовой частоты генератора можно регулировать диапазон частот шума и интервал между спектральными составляющими.