Под ишемией органа понимают резкое снижение (неполная ишемия) или полное прекращение в нем кровотока. Эти состояния возникают при закупорке сосуда или его ветви тромбом, спазме сосуда (инфаркт миокарда, инсульт, тромбоз периферических сосудов и др.), а также в ситуациях, когда на определенный период сосуды необходимо пережать (операция на «сухом органе») или когда орган необходимо полностью иссечь для его трансплантации. В последнем случае существуют обстоятельства, увеличивающие сроки ишемии и вследствие этого усугубляющие ишемические повреждения в органах. К ним относится необходимость перевозки в другую больницу, отсрочка операции в связи с иммунологическим подбором наиболее «совместимой» пары донор - реципиент и поэтому транспортировка органа в другой город или даже в другую страну; и особенно широко практикуемое в настоящее время взятие органов для пересадки не от живого родственного донора, а от недавно погибшего человека.

Важно отметить, что если орган перенес длительную ишемию, восстановление в нем кровотока, то есть его реоксигенация, может вызвать не улучшение, а дальнейшее ухудшение его структуры и функции. Этот феномен получил название реоксигенационных повреждений, или «кислородного парадокса».

Повреждение органов во время ишемии, а также возможность возникновения реоксигенационных повреждений в постишемическом периоде, делают крайне важным поиск и разработку средств противоишемической защиты, особенно если учесть, что сердечно-сосудистые заболевания, вызывающие ишемию сердца, а также других жизненно важных органов, по частоте, тяжести и количеству летальных исходов на втором месте после онкологических заболеваний.

Противоишемическая защита может быть начата еще до создания ишемии, профилактически, что, естественно, возможно далеко не во всех случаях, а лишь при заранее планируемом оперативном вмешательстве, требующем пережатия сосудов органа, или ряде заболеваний, которые могут осложниться ишемией органа (например, атеросклерозе, состоянии стресса и др.). Поэтому очень важно, чтобы врачи располагали средствами не только профилактики, но и лечения уже поврежденного ишемией органа.

Естественно, что хорошие результаты будут давать лишь те методы, которые оказывают не заместительный или симптоматический эффекты, а обладают патогенетическим действием, то есть влияют на сами механизмы повреждающего действия ишемии. Лишь глубокие теоретические исследования, выяснение механизмов, лежащих в основе губительного действия ишемии на ткань, могут привести к новым подходам и обеспечить эффект воздействия.

Доктором медицинских наук, профессором М. Биленко во время ее работы в руководимой мною лаборатории по пересадке органов и тканей АМН СССР еще в 1972-1980 годах были начаты, а затем после создания под ее руководством лаборатории противоишемических средств в НИИ по биологическим испытаниям химических соединений были продолжены исследования новых и более эффективных путей профилактики и лечения ишемических повреждений в органах.

Наиболее интересны и результативны три таких новых направления:

1) профилактика интенсификации в мембранных структурах органа процессов перекисного окисления липидов с помощью фармакологических ингибиторов этих процессов;

2) поиск средств для «экономии» энергии в органе в постишемическом периоде и переключения ее на восстановительные процессы в органе;

3) стимуляция наиболее функционально важных структур в доишемическом периоде (подготовка к ишемии) и репаративных процессов в постишемическом (лечение ишемии).

Первое направление исследований, а именно поиск путей профилактики повреждений мембран в процессе ишемии и при реоксигенции органа предполагает знание конкретных механизмов возникновения повреждений на мембранном и молекулярном уровне.

Известно, что бесперебойная работа нормального организма обеспечивается функционированием отдельных его составляющих элементов - клеток, скомпонованных в органы и системы. Работу каждой клетки организма можно сравнить со сложнейшим механизмом, разделенным на отсеки, в каждом из которых кипит работа по обеспечению клеток, а в целом органа и организма, жизненно важными элементами - энергией, веществами для питания клетки и для построения новых клеток, а также веществами, необходимыми для выполнения органом его специфической функции, например, гормонами, медиаторами.

Хотя клетки различных органов имеют в строении различия, обусловленные выполнением ими разных функций, принцип построения их мембран, окружающих клетку в виде оболочки и разделяющих ее «перегородками» на отсеки, принципиально одинаков. Все мембраны состоят из двойного слоя молекул липидов, содержащих фосфор (фосфолипидов) с вкраплением в них молекул белков и Сахаров. Мембраны обладают свойствами полупроницаемого барьера - крупные молекулы не могут проникать за такую «ограду», тогда как вода и растворенные в ней ионы могут преодолевать этот барьер.

Все барьерные свойства мембран и лежат в основе нормального функционирования клеток и организма в целом.

Теперь уже известно, что большинство патологических процессов сопровождается нарушением структуры и барьерной функции их мембран. Такое нарушение связано с повреждением как белкового, так и липидного компонентов мембран, но, как сейчас показано, повреждению структуры и организации фосфолипидов при большинстве заболеваний принадлежит доминирующая роль.

Снижение и прекращение кровообращения в органе, возникновение его ишемии, очень рано приводит к нарушению функционирования мембран. Применение метода электронной микроскопии показало, что при этом возникают деформация, разрывы и даже полное исчезновение мембранных структур клетки. Длительная ишемия органов, в частности, инфаркт миокарда, приводит к выходу внутриклеточных ферментов из органа в кровь, что свидетельствует о появлении крупных дефектов в мембранах.

Каким же образом может нарушаться целостность и функциональная полноценность мембран? Работами, проведенными на изолированных биологических и на искусственных мембранах, было установлено, что существенные нарушения структуры и функции мембран могут возникать при усилении в них аномально протекающего окисления, так называемого перекисного окисления. При таком окислении в структуре фосфолипида появляется перекисная группа, которая резко меняет барьерные свойства мембраны, что ведет к нарушению концентрации различных ионов (калия, натрия, кальция и других) вне и внутри клетки, вызывает отек клетки, нарушение ее метаболизма (обмена веществ).

В нормальных физиологических условиях активность перекисного окисления липидов (сокращенно его называют ПОЛ) контролируется целым набором средств: специальными «антиокислительными» ферментами, витаминами Е, А, В, обладающими способностью «тушить» эти процессы. При ряде болезней - облучении, раке, Е-авитаминозе, кислородной интоксикации, перекисный процесс становится неуправляемым и приводит к повреждению мембран.

Основной принципиальный вопрос заключается в том, возможно ли такое протекание или даже усиление такого кислородзависимого процесса, как перекисное окисление липидов, в условиях ишемии, при которой содержание кислорода, доставляемого кровью в орган, значительно снижено. Очень долго возможность участия перекисных процессов в повреждении мембран при ишемии либо казалась сомнительной, либо вообще отрицалась, что существенно задержало исследования в данной области.

М. Биленко и ее сотрудники впервые показали, что перекисный процесс может усиливаться не только в условиях избыточного, но и в условиях сниженного содержания кислорода, возникающего в органах при ишемии, я доказали, что именно усиление переокисления мембран является одной из существенных причин их повреждения во время и после реоксигенации.

О результатах исследований впервые доложила Биленко в ноябре 1973 года на Всесоюзной конференции по острой ишемии органов и мерам борьбы с постишемическими расстройствами. Впоследствии данные были значительно расширены и дополнены.

Предпосылкой для проведения, казалось бы, бесперспективных и парадоксальных, по существовавшим ранее представлениям, исследований явились собственные наблюдения авторов, говорящие о том, что даже при полной и длительной ишемии в органах сохраняется некоторое количество кислорода, которое может оказаться достаточным для перекисных процессов, особенно если одновременно снижается активность антиокислительных систем и накапливаются метаболиты, стимулирующие этот процесс.

Смелое предположение и кропотливая работа были вознаграждены сполна.

Было доказано, что после наложения зажимов на сосуды почек крыс (как делают при обширных операциях на почечных сосудах или самих почках) или полного иссечения и хранения в консерванте изолированных почек собак (как это делают при пересадке почки) в почечной ткани уже через 1 час в 5 раз возрастало содержание перекисей липидов, а также резко падала антиокислительная способность липидов. Восстановление кровотока в таких почках путем снятия зажима с почечных сосудов или пересадки почки донору не приводило к нормализации содержания перекисей и не восстанавливало антиокислительную способность ткани, причем выживаемость животных после разных сроков ишемии почек коррелировала со степенью интенсификации перекисных процессов и возрастала после интибирования перекисных процессов искусственными антиокислителями.

Таким образом, впервые было экспериментально доказано, что процессы перекисного окисления усиливаются во время ишемии органа и продолжают активно протекать после восстановления в нем кровотока и что эти процессы оказывают повреждающее действие на ишемизированный орган.

Полученные результаты послужили началом дальнейшей многолетней работы. Аспирантами Л. Дудник, Д. Велихановой и старшим научным сотрудником П. Комаровым было показано, что аналогичное усиление процессов ПОЛ происходит при ишемии и реоксигенации печени; Л. Шеленковой и Т. Чураковой - при ишемии конечностей; В. Булгаковым - при ишемии и пересадке сердца. Недавно совместно с сотрудником академической группы В. Тельпуховым этот факт с помощью микрохирургической модели ишемии мозга был подтвержден и для головного мозга.

Сопоставление интенсивности протекания перекисных процессов при ишемии различных органов показало, что она соответствует чувствительности органов к ишемии и резче всего выражена в головном мозге, затем в печени, сердце и почках, позже всего - в мышцах конечностей. Помимо доказательства самого факта интенсификации ПОЛ при ишемии и реоксигенации, была проведена серия работ на изолированных из различных органов мембранах, и было показано, что накопление в них липидных перекисей коррелирует со снижением специфических мембранных функций.

Для выявления механизма действия липидных перекисей был разработан оригинальный метод выделения и окисления фосфолипидов из яичных желтков. Эти фосфолипиды близки к мембранным фосфолипидам клеток животных и человека. Добавление таких липидных перекисей к мембранам, выделенным из клеток животных (крыс, кроликов, собак), вызвало существенный рост проницаемости мембран, причем выяснилось, что причиной является образование в мембране каналов, пропускающих ионы (каналов «утечки» ионов),

Важным и новым фактом является также получение данных о том, что липидные перекиси вызывают спазм периферических сосудов и сосудов сердца, а также ослабляют сократительную функцию сердца, то есть происходят изменения, сопутствующие ишемии.

В настоящее время данные об интенсификации перекисных процессов при ишемии различных органов подтверждены многими исследователями в Советском Союзе и за рубежом. Они явились серьезным стимулом для целенаправленного синтеза новых лекарственных препаратов и поиска эффективных средств среди старых препаратов, ранее применявшихся при других видах патологии.

Какими же средствами бороться с повреждениями, возникающими в клетке в результате усиления перекисного окисления мембран? Естественно предположить, что эффективными могут оказаться методы, прицельно действующие на мембраны. Среди лекарственных препаратов или природных веществ требуемым эффектом могут обладать стабилизаторы мембран, укрепляющие их структуру и механически затрудняющие протекание реакций ПОЛ, а также антиокислители, блокирующие процессы перекисного окисления в мембранах.

Таким антиокислительным (его называют антиоксидантным) действием обладают многие вещества, вырабатываемые самой клеткой, и вещества, поступающие в организм с пищей, из них наиболее активен витамин Е. Химики на основе природных антиоксидантов создают новые синтетические препараты, причем оказалось, что многие лекарственные средства, такие, как анальгин, производные пиразолина, фенотиазина, противовоспалительные средства, обладают также антиокислительными свойствами, вероятно частично обусловливающими их эффект. Испытание препаратов с антиоксидантными свойствами в качестве противоишемических средств проведено на моделях ишемии и реперфузии почек, печени, сердца, мозга и мышц конечности. Среди многих испытанных в лаборатории М. Биленко препаратов (α-токоферол, дибунол, дилудин, 6-меркураскан, фенозан, пэгинол) наиболее эффективными при ишемии оказались дибунол и дилудин - синтетические антиоксиданты.

Дибунол как антиоксидант известен уже давно, и возможности его использования при других патологиях широко изучаются. Но оказывается, что введение дибунола до появления ишемии оказывает мощный противоишемический эффект, увеличивая количество выживших животных на семьдесят процентов при ишемии печени и мышц конечности, на 32 процента - при ишемии почек и, как недавно показано В. Тельпуховым, на 40 процентов - при ишемии мозга. Введение дибунола способствует сохранению сократительной функции сердца, снижает тяжесть ишемического шока, сохраняет структурно-функциональную целостность мембранных структур клетки. В настоящее время дибунол апробирован в качестве противоишемического средства для лечения обширных острых инфарктов миокарда. Обнаружено, что при его применении снижаются показатели ишемического повреждения миокарда, уменьшается частота рецидивов болей и нарушений ритма сердца.

Особый интерес представляет использование в качестве антиоксиданта при ишемии α-токоферола (витамина Е), поскольку этот антиоксидант является природным и в организме присутствует во многих органах. Токоферол применяют в клинике при острых инфарктах миокарда: он улучшает параметры сердечной деятельности. При ишемии других органов применение α-токоферола только разрабатывается, но японскими учеными уже получены обнадеживающие результаты при экспериментальной ишемии мозга, когда профилактическое введение α-токоферола улучшало неврологический статус и ресинтез энергии.

К перспективным протекторам (защитникам) от ишемических и реперфузионных повреждений относятся также и соединения из группы убихинонов - природных соединений, близких по строению к токоферолам. Работа по изучению противоишемического эффекта этих соединений начата недавно и проводится в основном японскими исследователями на моделях ишемии миокарда; наличие защитного эффекта убихинонов при ишемии миокарда позволяет надеяться, что эффект будет проявляться и при ишемии других органов.

Таким образом, показано, что препараты с антиоксидантной активностью оказывают выраженный противоишемический эффект, что делает перспективным дальнейшую работу по поиску препаратов, защищающих органы от ишемических и реперфузионных повреждений среди антиоксидантов.

Перспективность второго нового направления исследований, а именно поиск путей «экономии» энергии в ишемизированном органе, станет понятным, если вспомнить роль, которую играет энергия в функционировании клетки. Эту энергию клетка производит из поступающих с пищей субстратов окисления; жиров, белков и углеводов - в специализированных субклеточных частицах - митохондриях, и запасает в виде химического соединения - АТФ, легко и по первому требованию отдающего ее органу. Для образования в митохондриях АТФ нужен кислород, поэтому при резком снижении поступления кислорода этот более чувствительный к дефициту кислорода, чем перекисное окисление, путь синтеза энергии резко снижается или даже прекращается. Ему на смену приходит запасной бескислородный путь синтеза АТФ с помощью гликолиза. Однако такой путь малопродуктивен (в 18 раз слабее, чем кислородное окисление) и поэтому не может обеспечить клетку энергией. Не хватает и ранее запасенного АТФ, в клетке возникает резкий «энергетический кризис».

Несмотря на прекращение во время ишемии функции (почка перестает продуцировать мочу, мышечные волокна сердца - сокращаться, печень - проводить детоксикацию ядов и синтез различных субстратов), органу не хватает энергии на сохранение в клетках стабильного содержания электролитов (калия, натрия, кальция и других), на необходимое и постоянно текущее замещение «постаревших» белковых и жировых молекул, входящих в структуру клетки, новыми молекулами.

Если учесть, что при полной остановке кровообращения прекращается доставка в орган не только кислорода, но и субстратов окисления, а также тот факт, что гликолиз - процесс временный и быстро затухает в результате накопления в ткани образующихся при этом кислых продуктов, то станет очевидным, что орган к концу ишемии испытывает острую потребность в энергии.

Ранее предпринимались попытки «подкормить» оставшийся на резко редуцированном кровообращении орган введением в него субстратов гликолиза, готовой («коммерческой») АТФ, проводилось введение данных веществ в перфузат во время изолированного хранения готовящегося к пересадке органа, однако этот путь был лишь частично успешным. Более успешно создание в таком органе гипотермии, что снижает его потребность в энергии, что, однако, не всегда возможно и недостаточно для сохранения органа.

При восстановлении кровотока в органе (после его пересадки, окончания операции на сосудах или полостях «сухого» органа, в условиях реанимации и др.) возобновляется приток в него кислорода и субстратов, а из органа вымываются накопившиеся там кислые продукты. Однако, несмотря на это, синтез энергии АТФ в первые часы или даже дни постишемического периода восстанавливается резко поврежденными ишемией митохондриями крайне медленно и неполноценно. Вместе с тем приток крови заставляет бездействующий во время ишемии орган включиться в работу - сердце начинает сокращаться, почка - выделять мочу, печень стремится выполнить свою детоксшсационную и синтетическую функции. Энергии снова не хватает, что может привести к дальнейшим структурным повреждениям, декомпенсации органа, его гибели уже в постишемическом периоде.

Вот тут и возникла мысль временно разгрузить ишемизированный орган в раннем постишемическом периоде от его обычной функции, чтобы он смог «накопить» энергию и истратить ее не на внешнюю работу, а на восстановление мембранных, в том числе митахондриальных, структур, ресинтез белков и жиров и другие «внутренние дела». Снизить функцию сердца можно, избавив человека (труднее - экспериментальное животное) от физической нагрузки и поместив его в условия покоя. Снизить функцию печени, пищеварительных желез и кишечника можно диетой, голодом. Но как это сделать для почек, которые, как только в них попадает кровь, начинают ее фильтровать и продуцировать мочу? Так как в клиническую практику вошла пересадка именно почки, и почки ишемизированной, взятой от трупного донора, задача снижения в ней функции в раннем постишемическом периоде стала весьма актуальной.

Биленко высказала мысль использовать хорошо известный клиницистам препарат фуросемид, являющийся мочегонным средством и получивший широкое распространение при сердечных отеках, интоксикации, необходимости усиленного выделения жидкости из организма. Сначала ее предложение многим показалось парадоксальным. Как может препарат одновременно и усиливать выделение мочи почками, и снижать почечную функцию? Оказалось, что может, если под почечной функцией понимать не проходящий без затрат энергии процесс фильтрации жидкости (будущей мочи) в почечных клубочках, а энергозависимый процесс обратного всасывания (реабсорбции) из мочи профильтровавшихся в нее электролитов (главным образом натрия и хлора), на что, как известно, уходит около 50-80 процентов всей синтезируемой почкой энергии. Фуросемид, так же как и ряд других диуретиков (этакриновая кислота, гипотиазид и др.), осуществляет свой мочегонный эффект путем блокирования в почечных канальцах процессов реабсорбции электролитов, которые, в свою очередь, выводят воду. Следовательно, удаление большого количества мочи под влиянием таких диуретиков (точнее - салуретиков) - процесс вторичный. Он возникает как следствие не усиления, а ослабления энергозависимой функции почек, не накладывает на нее дополнительную нагрузку, как думали ранее, а наоборот, создает ей функциональный покой и возможность спокойно «залечить» раны, нанесенные ишемией.

Правильность такой концепции была подтверждена экспериментально И. Гущей на лабораторных животных, у которых в течение двух часов были пережаты микрозажимами сосуды обеих почек. Было показано, что введение фуросемида увеличивает количество выживших крыс до 64-100 процентов вместо 13 в контроле. Одновременно в крови этих крыс снижалось количество выводимых почками шлаков и, что самое главное, в самой почечной ткани (исследования И. Волковой) быстрее восстанавливалось содержание АТФ и улучшалась морфологическая структура органа. Такой лечебный эффект фуросемида имел место в тех случаях, когда были введены достаточно высокие дозы препарата (ГО мг/кг), когда его введение было начато непосредственно до восстановления кровотока в почках (почки должны начать функционировать на фоне высокой концентрации препарата в крови) и в тех случаях, когда препарат продолжали вводить не менее 3-7 дней в постишемическом периоде.

В настоящее время возможность применения фуросемида по новым показаниям - в качестве не разгружающего организм от избыточной воды, а противоишемического средства, исследуется в Институте трансплантации и искусственных органов при пересадке почек больным с необратимой хронической почечной недостаточностью.

Представляет интерес и третье направление поиска - попытка стимулировать наиболее важные функциональные структуры в органах в доишемическом периоде и усиливать репаративные процессы в органах в постйшемическом периоде, хотя оно в отличие от предыдущих направлений касается в основном ишемии печени и находится пока еще в стадии разработки.

Данное направление основано на некоторых уникальных свойствах печени и ее функциональных систем.

Среди множества функциональных систем печени, этой сложнейшей биохимической «фабрики», особую роль играет ферментная система окислительного метаболизма чужеродных для организма веществ, так называемых ксинобиотиков. В ней протекают реакции окисления огромного числа органических соединений, попадающих в организм (большинства лекарств и загрязнителей окружающей среды), а также ряда природных соединений (холестерина, стероидных гормонов, жирных кислот и др.). Эта система обладает удивительным свойством: в ответ на поступление в организм химических соединений содержание ее основных компонентов увеличивается - происходит индукция системы, что обеспечивает ускоренную переработку поступивших соединений. Этот сложный ферментный ансамбль, основным компонентом которого является белок - цитохром Р-450, прочно связанный с внутриклеточными «перегородками» - фосфолипидными мембранами, сильно подвержен ишемическим повреждениям. Очевидно, что поиск способов противоишемической защиты данной системы имеет особое значение, ибо от ее состояния во многом зависит уровень переработки лекарств в организме в один из самых ответственных периодов - интенсивной послеоперационной терапии.

С целью коррекции ишемических повреждений Биленко и ее сотрудниками (П. Комаровым, Д. Велихановой) до создания ишемии проводилось увеличение содержания цитохрома Р-450 путем введения животным известного индуктора этой системы - фенобарбитала. Оказалось, что такое предварительное увеличение содержания цитохрома позволяло сохранить его уровень достаточно высоким в постйшемическом периоде, что в сочетании с антиоксидантом дибунолом позволило значительно повысить выживаемость животных с тяжелой (смертельной) ишемией печени.

Другое уникальное свойство печени заключается в ее способности интенсивно регенерировать в ответ на повреждение, например, на удаление ее части (как в древнем мифе о Прометее, которому орел клевал печень, а она снова восстанавливалась в прежнем размере). После ишемии в процессы регенерации включаются неповрежденные и обратимо поврежденные клетки, интенсивность процессов в итоге и определяет функциональную полноценность ишемизированной печени. Однако процессы регенерации печени после ишемического повреждения, а также способы их дополнительной стимуляции в постйшемическом периоде изучены недостаточно.

В исследованиях, проведенных в 50-х годах, было выявлено, что введение грубых препаратов из измельченной регенерирующей (после удаления части) печени или из печени новорожденных стимулирует рост печеночной ткани у взрослых животных. Позднее к этим исследованиям вернулись, и препараты из регенерирующей печени были названы «стимулирующей субстанцией». Наблюдалось стимулирующее действие на патологически измененную печень (цирроз, удаление большей части печени и др.), однако возможность ускорения процессов регенерации печени после ее ишемии доказана не была. В лаборатории профессора Биленко аспиранткой Л. Серегиной было показано, что печень сохраняет способность к регенерации даже после длительного и очень тяжелого ишемического повреждения. Была сделана попытка ускорить процесс введением стимулирующей субстанции. Действительно, введение субстанции интенсифицировало регенерационные процессы и увеличивало продолжительность жизни животных после летального срока ишемии. В настоящее время ведется дальнейшее изучение этого эффекта, причем усилия направлены на анализ природы стимулирующей субстанции, что, возможно, позволит в будущем применить ее и в клинике.