Едва достигнув 25 лет, Гаусс уже внес значительный вклад в математику. Однако слава об ученом распространилась по всему континенту благодаря его астрономическим работам, связанным с вычислением орбиты Цереры. Для этого Гаусс воспользовался методом наименьших квадратов — одним из своих важнейших математических открытий.

С юных лет Гаусс пользовался известностью и уважением среди коллег и преподавателей и получал материальную поддержку от герцога Брауншвейгского. Однако международная слава пришла к ученому только с первым успехом в области астрономии. Это произошло благодаря вычислению орбиты планеты Цереры, которая сегодня отнесена к карликовым планетам.

Догадка, что между орбитами Марса и Юпитера расположена неизвестная планета, была высказана Иоганном Элертом Боде (1747-1826) в 1772 году. Его рассуждения основывались на законе Тициуса — Боде, предложенном Иоганном Даниэлем Тициусом (1729-1796) в 1766 году. Еще со времен Коперника было очевидно, что расстояние между Марсом и Юпитером ненормально большое. Поэтому, по мере развития знаний об орбитах планет, астрономы пытались найти закон, который объяснял бы расстояния между орбитами и с помощью которого можно было бы открывать новые небесные тела. Первый закон такого типа (строго говоря, его следовало бы называть правилом) был предложен немецким физиком Иоганном Даниэлем Тициусом в то время, когда были известны только планеты Солнечной системы до Сатурна. Согласно этому закону расстояние от каждой планеты до Солнца в астрономических единицах (1 а.е. равна расстоянию от Земли до Солнца) задано следующим правилом:

a = (n+4)/10

где n = 0, 3, 6, 12, 24, 48, то есть каждое значение n, начиная с 3, в два раза больше предыдущего, и а представляет собой наибольшую полуось орбиты. Этот закон затем был использован директором обсерватории Берлина, Иоганном Боде, и стал известен как закон Тициуса — Боде. Если мы вычислим первые восемь чисел ряда, получим такие результаты.

n а (в а. е.)
0 0,4
3 0,7
6 1
12 1,6
24 2,8
48 5,2
96 10
192 19,6

При сравнении этих вычислений с известными расстояниями до открытых к тому времени планет получались следующие результаты.

Планета n Расстояние по закону Т-Б Реальное расстояние
Меркурий 0 0,4 0,39
Венера 3 0,7 0,72
Земля 6 1 1
Марс 12 1,6 1,52
  24 2,8  
Юпитер 48 5,2 5,2
Сатурн 96 10 9,54
  192 19,6  

Как можно заметить, приближение довольно хорошее, хотя его можно было посчитать простым совпадением, поскольку Тициус никак не обосновал свое правило. Однако открытие Уильямом Гершелем (1738-1822) в 1781 году новой планеты, Урана, подтвердило справедливость закона Тициуса — Боде. Уран был обнаружен на расстоянии 19,18 а.е. от Солнца, в то время как правилом предполагалось 19,6. За открытие планеты Гершель получил пособие 200 фунтов в год и титул кавалера.

После открытия Урана астрономы начали искать новую планету в 2,8 а.е. от Солнца, что соответствовало n = 24. На астрономическом конгрессе в городе Гота в 1800 году (сегодня это территория Германии) француз Жозеф Лаланд (1732-1807) рекомендовал начать поиски. В том же году астроном Франц барон Ксавер фон Цах (1754-1832), владелец журнала Monatliche Korrespondenz («Ежемесячная корреспонденция»), самого известного немецкого астрономического издания тех лет, собрал в Лилиентале 24 астронома, чтобы организовать поиск этой гипотетической планеты Солнечной системы. Ученые разделили небо на 24 зоны, и каждый наблюдал за одной из них. Однако судьба была не на стороне группы из Лилиенталя, хотя ей удалось сделать другие значительные астрономические открытия. Удача пришла к Джузеппе Пиацци (1746-1826), который 1 января 1801 года объявил в Палермской обсерватории, что открыл новую планету, которую назвал Церера Фердинанда, в честь Цереры — римской богини плодородия и материнской любви, покровительницы Сицилии, и короля Неаполя и Сицилии Фердинанда IV, поддерживавшего его работу. Название «Фердинанда» затем было снято по политическим мотивам. Пиацци утверждал, что Церера вращается вокруг Солнца по орбите, которая, по-видимому, соответствовала закону Тициуса — Боде для п = 24. Открытие Цереры вызвало всеобщий энтузиазм и было объявлено чудесным предзнаменованием для развития новой науки. Казалось, что это именно та планета, которую ученые с таким интересом искали, и что человечество способно понимать природу и делать научные предсказания.

Чтобы была понятнее важность, которая придавалась этому открытию, следует обрисовать общее состояние науки на тот момент. В течение тысячелетий человечество считало, что им управляют капризные и непостижимые законы. Человек мало что мог противопоставить капризам богов или сверхъестественных сил. Однако научный прогресс XVIII века вновь поместил человека в центр Вселенной и сделал его хозяином своей судьбы. У явлений природы, воспринимаемых чувствами, была найдена причина, которую можно было изучать, таким образом, стало возможным прогнозирование будущего и даже контроль за ним. Благодаря научному прогрессу неизвестное и непредсказуемое в конце концов окажется во власти человека — такой была идея, которая бродила по Европе в начале XIX века, и каждое новое научное открытие увеличивало уверенность в том, что цивилизация приближается к моменту, когда человек сможет понимать, контролировать и предсказывать поведение природы. Сегодня мы знаем, что хотя научный прогресс помогает нам лучше понимать мир вокруг нас, однако всегда будут существовать случайные и непредсказуемые факторы, которые помешают нам достигнуть этой высокой цели.

Энтузиазм Пиацци сменился разочарованием через несколько недель наблюдений. Астроном следил за новым объектом в течение 42 дней, до ночи 11 февраля. Однако затем ученого свалил грипп, и он на некоторое время покинул пост у телескопа, а вернувшись к наблюдениям, не смог найти небесное тело. Планета исчезла, скрылась за Солнцем. Период наблюдений оказался слишком коротким, и Пиацци не смог точно установить орбиту Цереры и предсказать, где она снова появится на ночном небе. Его данные заканчивались дугой орбиты в 9 градусов.

Астрономам XIX века не хватало математических инструментов для вычисления полной орбиты на основе короткой траектории. Наблюдение Цереры стало предметом переписки между Пиацци, Боде и Лаландом — самыми известными астрономами того времени, и это придало вопросу публичный характер. Фон Цах созвал в Лилиентале новое собрание из пяти астрономов (Шрёдера, Хардинга, Ольберса, фон Эде и Тильдемайстера), чтобы заняться определением орбиты открытого небесного объекта.

Гаусс применил метод наименьших квадратов для вычисления орбиты Цереры, которая сегодня считается карликовой планетой. На рисунке можно сравнить размеры Земли, Луны и Цереры (слева внизу).

Гаусс в Гёттингенской обсерватории, директором которой он был с 1807 года до своей смерти.

Когда были проанализированы данные наблюдений, оказалось, что гелиоцентрическое расстояние объекта помещало его между Марсом и Юпитером, как, собственно, и ожидалось. В июне того же года группа, созванная Францем фон Цахом, пользуясь данными Пиацци, провела предварительное исследование орбиты, но абсолютно безуспешно.

Поскольку предполагаемая планета все не появлялась на небосводе, фон Цах послал данные молодому математику из Гёттингена, слава о котором уже начала распространяться по всей Германии. Речь, конечно же, шла о Гауссе, который после выполнения вычислений объявил, что знает, где астрономы должны искать потерянный объект. Других прогнозов не было, так что Цах решил проверить предположение Гаусса, хотя результаты его вычислений очень отличались от остальных. И совсем рядом с тем местом, которое было рассчитано Гауссом, была замечена маленькая светящаяся точка. Произошло это ночью 7 декабря. Наблюдения продолжались каждую ночь, если, конечно, это позволяли делать метеорологические условия, и наконец 1 января 1802 года в Бремене другой астроном из рабочей группы фон Цаха, Генрих Ольберс, смог абсолютно точно подтвердить, что объект, наблюдаемый на орбите, теоретически предсказанной Гауссом, соответствует всем данным наблюдений Пиацци, сделанным год назад.

Этот удивительный прогноз, не имевший прецедентов в астрономии, был сделан математиком, который обнаружил порядок там, где другие видели только крошечную непредсказуемую планету, с помощью математического инструмента, доказавшего со временем свою эффективность для вычисления планетарных орбит. Это был закон наименьших квадратов, открытый Гауссом за шесть лет до описанных событий и до 1809 года не опубликованный. Возможности применения этого метода выходили далеко за рамки астрономии и были такими широкими, что его использование для вычисления орбиты Цереры сегодня кажется анекдотом. Благодаря своему открытию Гаусс немедленно превратился в звезду первой величины в международном научном сообществе.

ПОЧЕМУ НОЧЬ ТЕМНА?

Немецкий астроном Генрих Ольберс (1758-1840) в течение 40 лет работал врачом в городе Бремене. Однако одновременно он был увлечен астрономией и проводил большую часть ночи, наблюдая за небосводом через маленький телескоп, установленный на крыше. В 1779 году он разработал новый метод, названный методом Ольберса, для вычисления орбиты кометы.

Метод продемонстрировал эффективность для некоторых частных случаев круглых или параболических орбит, но оказался неприменим для определения эллиптической орбиты Цереры.

1 января 1802 года Ольберс обнаружил Цереру в положении, предсказанном Гауссом. Через некоторое время он открыл Палладу и предположил, что оба этих астрономических объекта связаны фрагментами большего тела, и начал искать эти фрагменты на небосводе. Для вычисления орбиты Паллады астроном пригласил в Бремен немецкого математика, который задержался в городе на три недели, и Ольберс стал свидетелем применения новейших математических методов, в частности метода наименьших квадратов. Отношения с Гауссом Ольберс поддерживал до конца своей жизни.

Парадокс Ольберса

Сегодня этого врача и астронома вспоминают в основном благодаря тому, что он в 1823 году предложил знаменитый парадокс, носящий его имя, согласно которому в евклидовом пространстве, бесконечном, статичном и равномерно заполненном звездами, ночное небо должно сверкать, как поверхность Солнца. Объяснения этого парадокса состояли в том, чтобы отрицать, что Вселенная бесконечна или что она заполнена звездами равномерно. Теория относительности находит очевидную причину, поскольку от галактик, удаленных от Земли на более чем 14000 миллионов световых лет (предполагается, что именно таков возраст Вселенной), до нас пока не дошел свет, так как его скорость конечна. Это означает, что, по крайней мере относительно галактик, которые мы видим, Вселенная конечна. С другой стороны, Вселенная расширяется, то есть она не статична.

Его подвиг в первой половине XIX века был символом власти математики, ведь именно в это время происходил расцвет науки. Хотя астрономы открыли планету случайно, математик использовал свои аналитические способности для объяснения того, что произойдет в будущем. Благодаря расчету орбиты Цереры к концу первого года нового века Гаусс был не только одним из самых известных математиков, но и самым популярным астрономом в Европе.

В марте 1802 года Ольберс открыл еще один астрономический объект — Палладу, которая имеет меньший размер, чем Церера, и предложил Гауссу описать ее орбиту, пока тот в течение трех недель находился в Бремене по приглашению самого Ольберса. Метод наименьших квадратов снова подтвердил свою силу, и Ольберс своими глазами увидел мощь примененных Гауссом математических техник. А когда возникли споры о первенстве открытия метода наименьших квадратов, Гаусс призвал Ольберса в качестве свидетеля того, что этот метод применялся уже в начале века.

В ноябре того же года молодой Гаусс, которому было всего 25 лет, был объявлен членом Королевского научного общества в Гёттингене. Успех принес ученому много почестей, среди них было и приглашение стать руководителем астрономической обсерватории в Петербургской академии наук. В России существовала давняя традиция приглашать в свои научные институты иностранных ученых, как в случае с Леонардом Эйлером. В 1802 году, когда Гаусс еще только обдумывал это приглашение, Ольберс предупредил об этом своего друга, фон Геерена, преподавателя Гёттингенского университета и советника правительства Ганновера. Ольберс не хотел, чтобы Гаусс уезжал из Германии, и использовал свои связи для того, чтобы ученому предложили руководство новой Гёттингенской обсерваторией, строительство которой еще даже не началось. Серьезные переговоры о переезде Гаусса в Гёттинген начались только в 1804 году и успешно завершились в 1807-м.

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Задача, предложенная Гауссу, касалась вычисления траекторий планет на основе минимального количества наблюдений (по крайней мере, трех). Математически она была чрезвычайно сложной, поскольку нужно было решить шесть уравнений с шестью неизвестными. При этом вычислить точные решения было невозможно и нужно было найти приближенные. Да, решение линейной системы какой-либо задачи, в которой столько же неизвестных, сколько и уравнений, может быть довольно трудоемким, но не предполагает технических сложностей. Однако в этом случае система уравнений была нелинейной. Вычисление орбиты Цереры, как и почти все вычисления Гаусса, включало в себя искусное использование последовательных приближений. Следует отметить прагматизм ученого, который использовал любой доступный математический инструмент. При этом он ввел множество идей, полное доказательство которых далеко не тривиально.

На первом этапе нужно было определить возможную орбиту, а затем, что еще сложнее, осуществить постепенную коррекцию. В целом наблюдаются три типа орбит: эллиптические, параболические и гиперболические. До Гаусса были достигнуты некоторые успехи, например в определении орбиты Урана, но это было довольно просто, поскольку изначальное предположение о том, что Уран описывает круг вокруг Солнца, было недалеко от истины ввиду очень небольшого эксцентриситета орбиты планеты. Кроме того, имелись многочисленные наблюдения, помогавшие скорректировать любую ошибку. В случае с Церерой Гаусс располагал результатами только 41 дня наблюдений; кроме того, ее орбита имела высокую степень эксцентриситета, поэтому гипотеза круга, на которой основывались Ольберс и фон Цах, не сработала. Подход Гаусса был основан только на имевшихся наблюдениях, и для решения задачи ученый пользовался эвристическими методами, то есть улучшал результат шаг за шагом. В эвристических методах используется итерация, при которой найденные частичные решени я служат основой для нахождения новых решений, более близких к реальному решению задачи.

Метод наименьших квадратов, созданный Гауссом, — это техника числового анализа, состоящая в математической оптимизации. Цель — нахождение функции, которая бы наилучшим образом подходила известным данным. Математическая идея следующая: пусть (x1, y1), (х2, y2), ..., (xn, yn) — пары данных, полученных при реальных наблюдениях за переменными X и Y. Теперь предположим, что между переменными X и Y существует связь, определяемая функцией ƒ, так что ƒ(хi) = уi. В случае с планетой Церерой, который изучал Гаусс, пары были образованы положением в пространстве (переменная Y) и временем (переменная X). Определить траекторию планеты было равносильно нахождению вида функции ƒ, так, чтобы при введении данных времени (х) мы могли вычислить ее положение (у) на основе значения ƒ(хi). Нужно выявить метод нахождения функции, при которой были бы минимальными ошибки или вычеты, определяемые как разница между реальным значением переменной Y (положение планеты) и ее вычислением с помощью функции ƒ. Сумма этих ошибок должна быть как можно меньше. Чтобы ошибки взаимно не исключались отрицательными и положительными числами, они возводятся в квадрат; у этой процедуры также есть дополнительное преимущество — она сокращает значение более мелких ошибок, большинство из которых вызваны неточностью взятых данных. Итак, проблема наименьших квадратов сводится к нахождению такой функции ƒ, чтобы минимизировалась сумма квадратов ошибок, то есть чтобы

было минимальным.

Проблема равносильна нахождению минимума среднеквадратической ошибки, то есть минимизации функции:

Эта формулировка несколько проще той, с которой в действительности столкнулся Гаусс, поскольку ради простоты мы предположили, что положение планеты Цереры можно представить только одной переменной, в то время как на самом деле необходима трехмерная система координат, то есть переменная является векторной. Это влияет на сложность вычислений и число неизвестных, с которыми нужно работать, но не на теоретическую постановку.

ПОЛЕМИКА С ЛЕЖАНДРОМ

Авторство разработки метода наименьших квадратов породило большую полемику с французским математиком Адриеном Мари Лежандром. Эта полемика была вызвана методами работы математиков начала XIX века и особенно подходом Гаусса к публикации результатов. На самом деле количество математических достижений Гаусса было несравнимо с числом публикаций. Гаусс, как и другие современные ему математики, не публиковал свои открытия сразу же в коротких статьях, как это делается сегодня, а накапливал их для издания целой книги. При этом он стремился не оставлять следов своего исследовательского труда. В случае с Церерой он озвучил решение, которое оказалось точным и принесло ему славу, но не объяснил используемого метода. Гаусс не публиковал своих трудов о методе наименьших квадратов до 1809 года, когда вышла его работа Theoria motus corporum coelestium in sectionibus conicis solem ambientium («Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям»), то есть произошло это почти через десять лет после использования метода для вычисления орбиты Цереры. В этой публикации ученый обсуждает метод и намекает на работу Адриена Мари Лежандра по этой теме. Действительно, Лежандр хотя и не был первым, кто использовал этот метод, но первым описал его в работе Nouvelles methodes pour la determination des orbite des cometes («Новые методы определения орбит комет»), которая была опубликована в 1805 году (за четыре года до публикации Гаусса). Именно Лежандр дал методу название, известное сегодня. Вскоре после публикации книги Гаусса Лежандр написал ученому приветственное письмо, в котором, тем не менее, заявлял о своем авторстве метода наименьших квадратов.

В 1820 году Лежандр опубликовал дополнение к работе 1805 года, снова споря с Гауссом по вопросу об авторстве метода. Последующее изучение заметок Гаусса и свидетельство Ольберса, который заверил, что Гаусс показал ему записи о методе еще в 1802 году, когда они оба работали над определением орбиты Паллады, подтверждают правоту Гаусса. И это был не последний случай, когда два великих современника спорили об авторстве математических результатов.

Спор нанес ущерб математике, поскольку Лежандр начал испытывать необоснованные подозрения, что Гаусс копирует его работы с помощью его самого знаменитого ученика, Карла Густава Якоба Якоби, и запретил Якоби сотрудничать с Гауссом, хотя они оба долгие годы работали над одной темой — эллиптическими функциями. Как мы увидим далее, в этой теме и во многих других Гаусс шел нога в ногу с Лежандром. Узнав о беспочвенных обвинениях, Гаусс отразил удар. В 1806 году, в письме астроному Генриху Христиану Шумахеру (1780— 1850), он пожаловался:

«Похоже, что мне предназначено совпадать с Лежандром почти во всех своих теоретических работах. Так произошло с высшей арифметикой, с исследованиями трансцендентных функций, связанных со спрямлением [процессом нахождения длины дуги кривой] эллипса, с основами геометрии, и теперь снова здесь с методом наименьших квадратов».

После посмертной публикации работ Гаусса и переписки последних лет все старые споры были решены в пользу немецкого математика.

Такие разногласия были очень распространены среди математиков той эпохи, поскольку они часто запаздывали с публикацией своих открытий, да и само научное общение посредством писем было крайне неспешным, в результате разные ученые независимо работали над одной и той же проблемой и так же независимо друг от друга получали одинаковые результаты. Сегодня с помощью электронных средств коммуникации, особенно интернета, а также при наличии требования публиковать результаты как можно быстрее математик-исследователь может почти сразу же узнать о работах своих коллег, избегая многих подобных споров.

АДРИЕН МАРИ ЛЕЖАНДР

Лежандр (1752-1833) вместе с Лапласом, Лагранжем и Коши работал в период, который можно считать золотым веком французской математики. Он получил прекрасное образование в Коллеже Мазарини в Париже, где изучал физику и математику до 1770 года. С 1775 по 1780 годы Лежандр преподавал в военной школе, а с 1795 — в Нормальной школе.

В 1782 году ему была предоставлена премия Берлинской академии за изучение траекторий снарядов. Ученый внес важный вклад в статистику, теорию чисел и математический анализ, и его работы послужили основой для более поздних математических открытий. В частности, исследования норвежца Нильса Хенрика Абеля об эллиптических функциях были построены на постулатах, разработанных Лежандром, который провел фундаментальную работу в этой области, включая классификацию эллиптических интегралов. Вклад математика в этой области был дополнен его учеником Карлом Густавом Якобом Якоби. Также работу Лежандра дополнял и Гаусс в своих исследованиях, касавшихся статистики и теории чисел, однако между этими двумя учеными состоялось несколько споров о первенстве их открытий. В 1830 году Лежандр представил доказательство тогда еще гипотезы Ферма для n = 5. Также ему принадлежат первые работы по распределению простых чисел и по применению анализа к теории чисел, в чем он вновь совпал с Гауссом.

Карикатура на Лежандра, созданная в 1820 году французским художником Луи-Леопольдом Бальи.

ПРИМЕНЕНИЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ К СТАТИСТИКЕ

Кроме вычисления пространственных орбит, как мы увидим далее, метод наименьших квадратов имеет большой потенциал применения в других областях математики, особенно в статистике. Решение уравнений методом наименьших квадратов зависит от данных о функции ƒ, связывающей переменные, которые нам известны, и от сложности этой функции. Самый простой случай — когда функция имеет вид прямой, то есть Y = а + bХ. Вычисление параметров а и b получается простым расчетом на основе n пар двумерных данных (х1, y1), (х2, у2),..., (xn, yn). После применения техники наименьших квадратов получаем, продифференцировав и приравняв к нулю, уравнения, известные под названием нормальных уравнений:

откуда выводятся значения a и b:

где Cov(X, Y) — это ковариация переменных, Sx² и x — вариация и среднее значение переменной X, соответственно, а у — среднее значение переменной Y. Итоговую прямую называют регрессионной прямой. Такие вычисления позволяют определить возможное значение одной переменной на основе известного значения другой. Представим, что мы выбрали n индивидов, у которых пропорция между весом и ростом нормальная. На основе этих n пар данных мы делаем вычисления соответствующей регрессионной прямой. С помощью этого уравнения мы можем определить средний ожидаемый вес человека, зная его рост, — это вычисление используется по сей день. Рассмотрим следующую таблицу данных.

Рост Вес
170 68
172 70
174 71
175 72
177 73
180 76
182 80
185 82
186 83
187 84
190 85
193 85
194 86

Проведя вычисления для получения регрессионной прямой, получаем, что Y= 0,808Х - 68,912, где Υ — вес, а Х — рост. На графике на следующей странице представлены реальные точки и регрессионная прямая, вычисленная методом наименьших квадратов. Прямая позволяет нам спрогнозировать средний вес человека с ростом 179 сантиметров: Υ = 0,808 · 179-68,921 = 75,71.

Чем сложнее функция ƒ, тем сложнее вычисления, но тем большую точность мы получаем в итоге.

Значительная часть статистики — это формулирование предположений, то есть извлечение выводов о параметрах аудитории на основе репрезентативной выборки. Эти выводы получены с помощью функции выборки, называемой статистической оценкой, которая предполагает оценку поведения целевой аудитории. Для статистического предположения принципиальную роль играет теорема Гаусса — Маркова. В ней утверждается, что при выполнении определенных гипотез статистическая оценка, полученная методом наименьших квадратов, является оптимальной.

Представление точек и регрессионной прямой, вычисленной методом наименьших квадратов.

«ТЕОРИЯ ДВИЖЕНИЯ НЕБЕСНЫХ ТЕЛ»

Как мы уже сказали, в 1807 году Гаусс вернулся в Гёттинген в должности директора астрономической обсерватории. Хотя он интересовался астрономией всю жизнь и это даже уменьшило вклад ученого в традиционную математику, именно на первые годы в Гёттингене приходятся его наибольшие усилия, посвященные доработке имеющихся трудов по астрономии и созданию новых. В 1809 году Гаусс опубликовал свою самую важную астрономическую работу — «Теория движения небесных тел». В ней содержатся полученные им заключения, но, как и ранее, не всегда приведены методы их получения.

Книга была опубликована на латыни, хотя первый вариант Гаусс написал на немецком. Издатель счел, что труд в латинском варианте получит большее распространение. Главная тема работы — определение эллиптических и гиперболических орбит планет и комет при использовании минимального числа наблюдений без дополнительных предположений. В предисловии Гаусс напоминает о вычислении орбиты Цереры, которое принесло ему такую славу. Книга носит явный дидактический характер и включает многочисленные примеры применения. Она разделена на две части: в первой содержится теоретический материал, а во второй — решения общей проблемы. Это первое строго сформулированное применение законов Кеплера для вычисления орбит небесных тел. До открытий Гаусса, таких как метод наименьших квадратов, астрономы пользовались методами, которые от случая к случаю варьировались, и не искали общего правила. Основной вклад Гаусса состоит в сочетании теоретических знаний, необыкновенной легкости алгебраических вычислений и его практического опыта в астрономии. В отличие от своих предшественников (включая Исаака Ньютона, который решал подобные проблемы с помощью геометрического приближения), Гаусс не предполагает знание формы орбиты наблюдаемого объекта. Это затрудняет вычисления, но позволяет подойти к проблеме, не зная, является ли изучаемый объект планетой, кометой или астероидом, что нелегко определить при небольшом объеме наблюдений.

ГАУСС И ЕГО КОЛОКОЛ

Гаусс не был открывателем кривой, носящей его имя. Нормальное распределение, или кривая Гаусса, также известная как Гауссов колокол в статистике, была описана Абрахамом де Муавром (1667-1754) в статье 1733 года, за много лет до рождения героя нашей книги. Функция плотности нормального распределения (она описывает вероятность нахождения значения переменной в определенном множестве), которая естественным образом появляется при изучении поведения реальных явлений, имеет вид:

где μ и σ² — это среднее значение и дисперсия распределения. Их представление показано на следующем рисунке при μ = 0.

Имя Гаусса фигурирует в названии этого распределения по двум причинам: с одной стороны, ученый широко использовал нормальное распределение при изучении ошибок экспериментов, когда анализировал астрономические данные, а с другой стороны, существует тип функций, называемых гауссовыми (в честь Гаусса), среди которых нормальное распределение — частный случай при

В нормальном распределении большинство значений переменной группируется вокруг центрального значения, поэтому в нем график достигает наибольшей высоты. Чем больше мы отдаляемся от него, тем меньше вероятность нахождения данных, поэтому график убывает при отдалении от значения средней величины.

Четыре раздела первой части книги описывают движения тела вокруг Солнца. Раздел I содержит многие необходимые определения, такие как радиус или эксцентриситет, и тригонометрические формулы для описания положения тела в заданной точке орбиты. Также в него включены практические советы о методах экстраполяции числовых таблиц и приближения парабол к эллипсам и гиперболам. Раздел II посвящен определению положения небесного тела как функции с тремя координатами. Гаусс начал с определения семи параметров, которые определяют движение небесного тела: средняя долгота, среднее движение, наибольшая полуось, эксцентриситет, долгота восходящего узла, наклонение орбиты и масса. Затем он описал отношения между этими элементами и объяснил критерии для определения различных конических сечений. И в завершение раздела он указал дифференциальные уравнения движения небесного тела, приведя несколько практических примеров.

В разделе III ученый затронул проблему вычисления орбиты на основе нескольких наблюдений и нахождения всех параметров, описывающих движение тела, с помощью математических отношений. В последнем разделе он занялся случаем различных наблюдений, которые сделаны в той же плоскости, что и Солнце (как движение Земли, например), для которых он вывел их тригонометрические отношения. Этот короткий раздел заканчивается формулировкой уравнения для эллиптических орбит.

Принцип состоит в том, что сумма квадратов разности между наблюдаемым и вычисленными значениями должна быть минимальной.

Гаусс, определение метода наименьших квадратов

Во второй части книги Гаусс перешел к основной проблеме — определению орбиты небесного тела на основе наблюдений. Эта проблема решается в два этапа: на первом вычисляется приблизительное решение на основе трех-четырех наблюдений, а на втором оно улучшается с помощью оставшихся данных. Части 1 и 2 этого раздела посвящены первому этапу, а части 3 и 4 — второму.

Как мы упомянули, элементов движения, которые необходимо вычислить для определения орбиты, семь. В разделе 1 второй части книги Гаусс объясняет, как вычислить шесть из них, пользуясь тремя наблюдениями; седьмой (масса) должен быть определен независимо. Учитывая, что каждое наблюдение предоставляет два параметра (долготу и широту), трех наблюдений достаточно для вычислений, если только наблюдаемая орбита не находится в эклиптике или очень близко от нее.

Говоря об эклиптике, мы имеем в виду плоскость, в которой Земля движется вокруг Солнца, описывая эллипс. Для этого случая, который является предметом раздела II второй части, необходимо еще четыре независимых наблюдения. Гаусс рассмотрел случай четырех независимых наблюдений, из которых только два являются завершенными. Методологически это не ново относительно увиденного ранее, но важно, если упомянутая орбита близка к эклиптике Земли. В этом случае даже маленькие погрешности в наблюдениях могут привести к ошибочным вычислениям, если работать только с четырьмя упомянутыми наблюдениями.

Последние два раздела книги посвящены способам улучшения методов приближенного вычисления орбит, рассмотренных в двух первых разделах. В разделе III Гаусс впервые опубликовал метод наименьших квадратов как наиболее эффективный для достижения этой цели. Как мы уже видели, он был успешно использован для вычисления орбиты Цереры: Гаусс при этом опередил Лежандра в открытии метода, но не в его опубликовании. В довольно коротком разделе IV ученый сделал несколько замечаний о нарушениях эллиптических орбит, вызванных влиянием планет большого размера, что позволило вычислить массу Юпитера на основе орбиты Цереры, не вдаваясь в чрезмерные подробности. Книга заканчивается рядом очень длинных таблиц, которые проясняют отношения между различными параметрами, определяющими орбиту.

Можно утверждать, что «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям» была самым важным астрономическим текстом в течение нескольких десятилетий после публикации. Метод наименьших квадратов стал основным инструментом: сначала это была только техника, которая затем превратилась в один из столпов натуральной философии Гаусса, и ученый значительно расширил ее применение, сделав необходимым инструментом во многих других областях математики.

Как астроном, Гаусс также ставил эксперименты по обнаружению изменения гравитации из-за земного вращения, определению географической долготы, идентификации комет и анализу сложностей в оптике телескопов.