Фрактальная геометрия природы

Мандельброт Бенуа

II ТРИ КЛАССИЧЕСКИХ ФРАКТАЛА - СОВЕРШЕННО РУЧНЫЕ

 

 

5 КАКОВА ПРОТЯЖЕННОСТЬ ПОБЕРЕЖЬЯ БРИТАНИИ?

 

Прежде чем познакомиться с первым видом фракталов — а именно, с кривыми, фрактальная размерность которых превышает 1, — рассмотрим типичный участок какого-нибудь берега. Очевидно, что его длина не может быть меньше расстояния по прямой между его начальной и конечной точками. Однако, как правило, береговые линии имеют неправильную форму — они извилисты и изломаны, и их длины, вне всякого сомнения, значительно превышают расстояния между их крайними точками, измеренные по прямой.

Известно много способов оценить длину береговой линии более точно, и в этой главе мы проанализируем некоторые из них. В конце концов мы придем к очень примечательному выводу: длина береговой линии — понятие весьма скользкое, и голыми руками его не ухватишь. Какой бы метод измерения мы ни применяли, результат всегда одинаков: длина типичного побережья очень велика и настолько нечетко определена, что удобнее всего считать ее бесконечной. Следовательно, если кому-нибудь вздумается сравнить различные берега с точки зрения их протяженности, ему придется подыскать что-нибудь взамен понятия длины, которое к данному случаю неприменимо.

В этой главе мы как раз и займемся поисками подходящей замены, причем в процессе поисков нам не избежать знакомства с различными формами фрактальных концепций размерности, меры и кривой.

 

АЛЬТЕРНАТИВНЫЕ МЕТОДЫ ИЗМЕРЕНИЯ

Метод А. Установим раствор измерительного циркуля на некоторую заданную длину ε, которую назовем длиной шага, и пройдемся этим циркулем вдоль интересующей нас береговой линии, начиная каждый новый шаг в той точке, где закончился предыдущий. Количество шагов, умноженное на длину е, даст нам приблизительную длину берега L(ε). Со школьной скамьи нам известно, что если повторять эту операцию, каждый раз уменьшая раствор циркуля, то можно ожидать, что величина L(ε) быстро устремится к некоторому вполне определенному значению, называемому истинной длиной. Однако то, что происходит на деле, никак не соответствует нашим ожиданиям. В типичном случае наблюдаемая длина L(ε) склонна увеличиваться неограниченно.

Причина такого ее поведения очевидна: если рассмотреть какой-нибудь полуостров или бухту на картах масштаба 1/100 000 и 1/10 000, то на последней карте мы ясно различим более мелкие полуострова и бухты, которых не было видно на первой. Карта того же участка, выполненная в масштабе 1/1000, покажет нам еще более мелкие полуостровки и бухточки, и так далее. Каждая новая деталь увеличивает общую длину берега.

Вышеописанная процедура подразумевает, что линия берега имеет слишком неправильную форму, и поэтому ее длина не может быть непосредственно представлена в виде суммы длин простых геометрических кривых, значения длин которых можно найти в справочниках. То есть, Метод А заменяет береговую линию на последовательность ломаных линий, составленных из прямолинейных участков, длину которых мы определять умеем.

Метод В. Такого же «сглаживания» можно добиться и другими способами. Вообразите себе человека, проходящего вдоль берега по кратчайшему пути, траектория которого нигде не отходит от воды далее чем на заданное расстояние ε. Дойдя до конечной точки, он возвращается назад, несколько уменьшив при этом величину ε. Затем еще и еще, пока, наконец, величина ε не достигнет, скажем, 50 см. Уменьшать ее далее не представляется возможным, так как человек слишком велик и неуклюж, чтобы суметь проследить более детализированную траекторию. Мне могут возразить, что эти недостижимые мелкие детали, во-первых, не представляют для человека никакого непосредственного интереса, а во-вторых, подвержены столь значительным изменениям в зависимости от времени года и высоты прилива, что их подробная регистрация вообще теряет всякий смысл. Первое из возражений мы рассмотрим позднее в этой главе. Что касается второго возражения, то его можно нейтрализовать, ограничившись рассмотрением скалистого берега при низком приливе и спокойной воде. В принципе, человек может проследить и более детализированные приближенные кривые, призвав себе на помощь мышь, затем муравья и так далее. И снова, по мере того, как наш ходок следует все более близкой к воде тропой, расстояние, которое ему предстоит пройти, неограниченно возрастает.

Метод С. Метод В подразумевает определенную асимметричность между водой и берегом. Для того, чтобы избежать этой асимметричности, Кантор предложил рассматривать береговую линию словно бы через расфокусированный объектив, вследствие чего каждая точка превращается в круглое пятно радиуса ε. Другими словами, Кантор рассматривает все точки — как на суше, так и на воде, — расстояние от которых до собственно береговой линии не превышает ε. Эти точки образуют некое подобие сосиски или ленты шириной 2ε (пример такой «сосиски» — правда, в ином контексте — приведен на рис. 56). Измерим площадь полученной ленты и разделим ее на 2ε. Если бы береговая линия была прямой, то лента представляла бы собой прямоугольник, а найденная вышеописанным образом величина оказалась бы действительной длиной берега. Имея дело с реальными береговыми линиями, мы получаем приблизительную оценку длины L(ε), которая неограниченно возрастает при уменьшении ε.

Метод D. Вообразите себе карту, выполненную в манере худож- ников-пуантилистов, т. е. такую, где материки и океаны изображены цветными круглыми пятнами радиуса ε. Вместо того, чтобы считать центрами пятен точки, принадлежащие береговой линии, как в Методе С, потребуем, чтобы количество пятен, полностью скрывающих линию, было наименьшим. В результате у мысов пятна будут по большей части лежать на суше, а у бухт — в море. Оценкой длины береговой линии здесь будет результат деления закрытой пятнами площади на 2ε. «Поведение» этой оценки также оставляет желать лучшего.

 

ПРОИЗВОЛЬНОСТЬ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Резюмируя предыдущий раздел, заметим, что результат применения любого из четырех методов всегда один и тот же. По мере уменьшения е приблизительная длина кривой устремляется в бесконечность.

Для того, чтобы в должной мере уяснить значение этого факта, произведем аналогичное измерение длины какой-либо обыкновенной евклидовой кривой. Например, на отрезке прямой приблизительные оценочные данные измерения в основном совпадают и определяют искомую длину. В случае окружности приблизительное значение длины возрастает, но довольно быстро устремляется к некоторому конкретному пределу. Кривые, длину которых можно определить таким образом, называются спрямляемыми.

Еще более поучительно попробовать измерить длину какой-нибудь из береговых линий, одомашненных человеком, — скажем, побережья вблизи Челси в его сегодняшнем виде. Поскольку очень большие складки местности человек пока оставляет без изменений, установим на нашем циркуле очень большой раствор ε и будем его постепенно уменьшать. Как и следовало ожидать, длина береговой линии при этом будет расти.

Однако здесь имеется одна интересная особенность: при дальнейшем уменьшении ε мы неизбежно попадаем в некую промежуточную зону, где длина L(ε) почти не изменяется. Эта зона простирается приблизительно от 20 м до 20 см (очень приблизительно). Когда ε становится меньше 20 см, длина L(ε) снова начинает возрастать — теперь на результат измерения влияют уже отдельные камни. Таким образом, если построить график изменения величины L(ε) как функции от ε, то на ней, вне всякого сомнения, обнаружится плоский участок при значениях е в интервале от 20 м до 20 см — на аналогичных графиках для естественных «диких» побережий подобных плоских участков не наблюдается.

Очевидно, что измерения, произведенные в этой плоской зоне, обладают огромной практической ценностью. Поскольку границы между различными научными дисциплинами являются, в основном, результатом договоренности между учеными о разделении труда, мы можем, например, передать все феномены, масштабы которых превышают 20 м, т. е. те, до которых человек еще не дотянулся, в ведомство географии. Такое ограничение даст нам вполне определенную географическую длину. Береговая охрана может с успехом использовать то же значение ε для работы с «дикими» берегами, а энциклопедии и альманахи сообщат всем желающим соответствующую длину L(ε).

С другой стороны, мне трудно представить, что все заинтересованные правительственные учреждения пусть даже какой-либо одной страны договорятся между собой об использовании единого значения ε, а уж принятие его всеми странами мира совершенно невозможно вообразить. Ричардсон [494] приводит такой пример: в испанских и португальских энциклопедиях приводится различная длина сухопутной границы между этими странами, причем разница составляет 20% (так же обстоит дело с границей между Бельгией и Нидерландами). Это несоответствие, должно быть, частично объясняется различным выбором ε. Эмпирические данные, которые мы вскоре обсудим, показывают, что для возникновения такой разницы достаточно, чтобы одно значение ε отличалось от другого всего лишь в два раза; кроме того, нет ничего удивительного в том, что маленькая страна (Португалия) измеряет длину своих границ более тщательно, чем ее большой сосед.

Второй и более значительный довод против выбора произвольного ε носит философский и общенаучный характер. Природа существует независимо от человека, и всякий, кто приписывает слишком большую важность какому-либо конкретному значению ε или L(ε), предполагает, что определяющим звеном в процессе постижения Природы является человек со своими общепринятыми мерками или весьма переменчивыми техническими средствами. Если береговым линиям суждено когда-нибудь стать объектами научного исследования, вряд ли нам удастся законодательным порядком запретить неопределенность, наблюдаемую в отношении их длин. Как бы то ни было, концепция географической длины вовсе не столь безобидна, как представляется на первый взгляд. Она не является до конца «объективной», так как при определении длины таким образом неизбежно влияние наблюдателя.

 

ПРИЗНАНИЕ И ЗНАЧЕНИЕ ПРОИЗВОЛЬНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Несомненно, многие придерживаются мнения, что береговые линии представляют собой неспрямляемые кривые, и я, если уж на то пошло, не могу припомнить, чтобы кто-нибудь считал иначе. Однако мои поиски письменных свидетельств в пользу этого мнения потерпели почти полный провал. Помимо цитат из Перрена, приведенных во второй главе, имеется еще вот такое наблюдение в статье Штейнгауза [539]: «Измеряя длину левого берега Вислы с возрастающей точностью, можно получить значения в десятки, сотни и даже тысячи раз большие, чем то, что дает школьная карта... Весьма близким к реальности представляется следующее заявление: большинство встречающихся в природе дуг не являются спрямляемыми. Это заявление противоречит распространенному мнению, сводящемуся к тому, что неспрямляемые дуги — математическая фикция, а в природе все дуги спрямляемы. Из этих двух противоречивых заявлений верным, по всей видимости, следует считать все же первое». Однако ни Перрен, ни Штейнгауз так и не удосужились разработать свои догадки подробнее и довести их до логического конца.

К. Фадиман рассказывает одну занятную историю. Его друг Эдвард Каснер несколько раз проводил такой эксперимент: он «спрашивал у маленьких детей, какова, по их мнению, общая длина побережья Соединенных Штатов. После того, как кто-то из детей высказывал достаточно «разумное» предположение,... Каснер... предлагал им подумать о том, насколько можно увеличить эту цифру, если очень тщательно измерить периметр всех мысов и бухт, затем так же тщательно проследить меньшие мыски и бухточки в каждом из этих мысов и в каждой из этих бухт, затем измерить каждый камешек и каждую песчинку из тех, что образуют береговую линию, каждую молекулу, каждый атом и т. д. Получалось, что берег может быть каким угодно длинным. Дети понимали это сразу, а вот со взрослыми у Каснера возникали проблемы.» История, конечно, очень мила, однако вряд ли она имеет отношение к моим поискам. Каснер явно не ставил перед собой цель выделить некий аспект реальности, достойный дальнейшего изучения.

Таким образом, можно сказать, что статья [356] и книга, которую вы держите в руках, представляют собой по существу первые работы, посвященные этой теме.

В своей книге «Воля верить»1 Уильям Джеймс пишет: «То, что не укладывается в рамки классификаций... всегда являет собой тучную ниву для великих открытий. В любой науке вокруг общепризнанных и упорядоченных фактов вечно кружит пыльное облако исключений из правил — явлений малозаметных, непостоянных, редко встречающихся, явлений, которые проще игнорировать, нежели рассматривать. Всякая наука стремится к идеальному состоянию замкнутой и строгой системы истин... Феномены, не подлежащие классификации в рамках системы, считаются парадоксальными нелепостями и заведомо не истинны. Ими пренебрегают и их отвергают, исходя из лучших побуждений научной совести... Тот, кто всерьез займется иррегулярными феноменами, окажется способен создать новую науку на фундаменте старой. По завершении же этого процесса правилами обновленной науки по большей части станут вчерашние исключения».

Настоящее эссе, скромной целью которого является полное обновление геометрии Природы, описывает феномены, настолько не вписывающиеся в классификацию, что говорить о них можно лишь с позволения цензуры. С первым из таких феноменов вы встретитесь уже в следующем разделе.

 

ЭФФЕКТ РИЧАРДСОНА

Эмпирическое исследование изменения приблизительной длины L(ε), получаемой с помощью Метода А, описано в статье Ричардсона [494], ссылка на которую по счастливой (или роковой) случайности попала мне на глаза. Я обратил на нее внимание только потому, что я был наслышан о Льюисе Фрае Ричардсоне как о выдающемся ученом, оригинальность мышления которого была сродни эксцентричности (см. главу 40). Как мы увидим в главе 10, человечество обязано ему некоторыми наиболее глубокими и долговечными идеями относительно природы турбулентности — особого внимания среди них заслуживает та, согласно которой турбулентность предполагает возникновение самоподобного каскада. Он также занимался и другими сложными проблемами — такими, например, как природа вооруженного конфликта между государствами. Его опыты являли собой образец классической простоты, однако он, если возникала такая необходимость, не колеблясь пользовался и более утонченными концепциями.

Приведенные на рис. 57 графики, обнаруженные уже после смерти Ричардсона среди его бумаг, были опубликованы в чуть ли не секретном (и совершенно не подходящем для таких публикаций) «Ежегоднике по общим системам». Рассмотрев эти графики, мы приходим к заключению, что существуют две постоянные (назовем их λ и D) — такие, что для определения длины береговой линии посредством построения приближенной к ней ломаной необходимо взять примерно Fε−D интервалов длины ε и записать следующую формулу:

L(ε)~Fε1−D .

Значение показателя D зависит, по всей видимости, от характера измеряемой береговой линии, причем различные участки этой линии, рассматриваемые по отдельности, могут дать различные D. Для Ричардсона величина D была просто удобным показателем, не имеющим какого-либо особенного смысла. Однако похоже, что значение этого показателя не зависит от выбранного метода оценки длины береговой линии. А значит, он заслуживает самого пристального внимания.

 

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ [356]

Изучив работу Ричардсона, я предположил [356], что хотя показатель D не является целым числом, его можно и нужно понимать как размерность — точнее, как фрактальную размерность. Разумеется, я вполне осознавал, что все вышеперечисленные методы измерения L(ε) базируются на нестандартных обобщенных определениях размерности, уже применяемых в чистой математике. Определение длины, основанное на покрытии береговой линии наименьшим числом пятен радиуса ε, используется в [481] для определения размерности покрытия. Определение длины, основанное на покрытии береговой линии лентой шириной 2ε, воплощает идею Кантора и Минковского (см. рис. 56), а соответствующей размерностью мы обязаны Булигану. Однако эти два примера лишь намекают на существование многих размерностей (большинство из которых известны лишь немногим специалистам), которые блистают в различных узкоспециализированных областях математики. Некоторые из этих размерностей мы обсудим более подробно в главе 39.

Зачем математикам понадобилось вводить это изобилие различных размерностей? Затем, что в определенных случаях они принимают различные значения. К счастью, с такими случаями вы в этом эссе не встретитесь, поэтому список возможных альтернативных размерностей можно с чистой совестью сократить до двух, о которых я, правда, еще не упоминал. Старейшая и подробнее исследованная размерность из нашего списка восходит еще к Хаусдорфу и служит для определения фрактальной размерности — очень скоро мы ею займемся. Вторая, более простая, размерность называется размерностью подобия: она носит не такой общий характер, как первая размерность, однако оказывается более чем адекватной во многих случаях — ее мы рассмотрим в следующей главе.

Разумеется, я не собираюсь приводить здесь математическое доказательство того, что показатель Ричардсона D является размерностью. Честно говоря, я не представляю, как можно провести такое доказательство в рамках какой бы то ни было естественной науки. Я хочу лишь обратить внимание читателя на тот факт, что понятие длины ставит перед нами концептуальную задачу, а показатель D предоставляет удобное и изящное решение. Теперь, когда фрактальная размерность заняла свое место в изучении береговых линий, вряд мы захотим, из каких бы то ни было особенных соображений, возвращаться к тем временам, когда мы бездумно и наивно полагали D=1. Тому, кто все еще считает D=1, придется теперь постараться, если он пожелает доказать свою правоту.

Следующий шаг — объяснение формы береговых линий и выведение значения D из других, более фундаментальных соображений — я предлагаю отложить до главы 28. На этом этапе достаточно сказать, что в первом приближении D=3/2. Это значение слишком велико, чтобы верно описывать факты, однако его более чем достаточно для того, чтобы мы могли заявить: можно, должно и естественно полагать, что размерность береговой линии превосходит обычное евклидово значение для кривой D=1.

 

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ ХАУСДОРФА

Если согласиться с тем, что различные естественные береговые линии обладают бесконечной длиной, а также с тем, что значение длины, основанное на антропометрической величине ε, дает лишь частичное представление о реальном положении дел, то каким образом можно сравнить между собой разные берега? Так как бесконечность ничем не отличается от бесконечности, умноженной на четыре, много ли нам будет проку от утверждения, что длина любого берега в четыре раза больше, чем длина любой из его четвертей? Необходим лучший способ для выражения вполне разумной идеи о том, что кривая должна обладать некоторой «мерой», причем эта мера для всей кривой должна быть в четыре раза больше, чем та же мера для любой из ее четвертей.

В высшей степени остроумный метод для достижения этой цели предложил Феликс Хаусдорф. В основе его метода лежит тот факт, что линейная мера многоугольника вычисляется сложением длин его сторон без каких бы то ни было их преобразований. Можно предположить, что эти длины сторон возводятся в степень D=1, равную евклидовой размерности прямой (причина такого предположения вскоре станет очевидной). Аналогичным образом вычисляется мера поверхности внутренней области замкнутого многоугольника — посредством покрытия ее квадратами, нахождения суммы длин сторон этих квадратов и возведения ее в степень D=2 (евклидова размерность плоскости). Если же использовать при вычислениях «неверную» степень, то результат этих вычислений не даст нам никакой полезной информации: площадь любого замкнутого многоугольника окажется равной нулю, а длина его внутренней области будет бесконечной.

Рассмотрим с таких позиций полигональную (кусочно-линейную) аппроксимацию береговой линии, составленной из малых интервалов длины ε. Возведя длину интервала в степень D и умножив ее на число интервалов, мы получим некую величину, которую можно предварительно назвать «аппроксимативной протяженностью в размерности D». Так как, согласно Ричардсону, число сторон равно N=Fε−D то наша аппроксимативная протяженность принимает значение FεD Fε−D =F.

Таким образом, теоретически аппроксимативная протяженность в размерности D не зависит от ε. На практике же можно наблюдать лишь незначительное изменение этой аппроксимативной протяженности при изменении е.

Кроме того, получает простое подтверждение и обобщение тот факт, что длина внутренней области квадрата бесконечна: аппроксимативная протяженность береговой линии, определенная при любой размерности dD соответствующая аппроксимативная протяженность береговой линии стремится к нулю при ε→0. То есть аппроксимативная протяженность береговой линии демонстрирует благоразумное поведение тогда и только тогда, когда d=D.

 

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ КРИВОЙ МОЖЕТ БЫТЬ БОЛЬШЕ ЕДИНИЦЫ; ФРАКТАЛЬНЫЕ КРИВЫЕ

Согласно замыслу своего создателя, хаусдорфова размерность сохраняет за собой обязанности обычной размерности и служит показателем степени при определении меры.

Однако с другой стороны, размерность D в высшей степени необычна, — она выражается дробным числом! Мало того, она больше единицы, которая представляет собой «естественную» размерность для кривых (можно строго доказать, что единице равна и их топологическая размерность DT ).

Я предлагаю называть кривые, фрактальная размерность которых превосходит их топологическую размерность 1, фрактальными кривыми. А в качестве краткого резюме для настоящей главы могу предложить следующее утверждение: в географических масштабах береговые линии можно моделировать с помощью фрактальных кривых. Береговые линии по своей структуре фрактальны.

Рис. 55. ОБЕЗЬЯНЬЕ ДЕРЕВО

На данном этапе этот небольшой рисунок следует рассматривать просто как декоративный элемент, он всего лишь заполняет пустое место.

Однако после прочтения главы 14 читатель сможет обнаружить здесь подсказку для распутывания «архитектурной» загадки на рис. 210. Более серьезную подсказку дает нижеприведенный генератор:

Если у математика возникает необходимость «приручить» какую-нибудь особенно нерегулярную кривую, он может воспользоваться следующей стандартной процедурой: выбирается некое значение ε, и вокруг каждой точки кривой строится круг радиуса ε. Эта процедура, восходящая, по меньшей мере, к Герману Минковскому, а то и к самому Георгу Кантору, несколько грубовата, но зато весьма эффективна. (Что касается термина сосиска, то его происхождение, согласно непроверенным слухам, как-то связано с применением Норбертом Винером данной процедуры к броуновским кривым.)

На помещенных здесь иллюстрациях вышеописанное сглаживание применяется не к реальным берегам, а к одной теоретической кривой, которую мы построим несколько позже (см. рис. 79) путем постоянного добавления все более мелких деталей. Сравнивая изображенный справа кусок сосиски с правым концом сосиски, помещенной вверху, мы видим, что критический этап в построении кривой наступает, когда кривая начинает включать в себя детали меньшего, чем ε, размера. На более поздних этапах сосиска существенно не изменяется.

Рис. 57. ЭМПИРИЧЕСКИЕ ДАННЫЕ РИЧАРДСОНА ОТНОСИТЕЛЬНО СКОРОСТИ РОСТА ДЛИН БЕРЕГОВЫХ ЛИНИЙ

На этом рисунке приведены экспериментальные результаты измерения длины кривой, произведенные на различных кривых с использованием равносторонних многоугольников с уменьшающейся длиной стороны ε. Как и ожидалось, в случае окружности измерения с возрастающей точностью дают величину, которая очень быстро стабилизируется около вполне определенного значения.

В случае береговых линий приближенные значения длины, напротив, не стабилизируются вовсе. По мере того, как длина шага ε стремится к нулю, аппроксимативные значения длины, отложенные в дважды логарифмической системе координат, образуют прямую с отрицательным наклоном. Так же обстоит дело и с сухопутными границами между странами. Наведенные Ричардсоном в различных энциклопедиях справки вскрыли значительные различия в определении длины общей границы картографами соответствующих стран: например, длина границы между Испанией и Португалией составляет 987 км с точки зрения испанцев и 1214 км с точки зрения португальцев; аналогичным образом пострадала и граница между Нидерландами и Бельгией (380 и 449 км). Так как угловой коэффициент соответствующих прямых равен -0,25, двадцатипроцентная разница между результатами измерений означает двукратную разницу между принятыми для этих измерений значениями ε — не такое уж невероятное предположение.

Ричардсон не дал никакой теоретической интерпретации различному наклону своих прямых. Мы же с вами намерены интерпретировать береговые линии как приближения к фрактальным кривым и рассматривать угловые коэффициенты соответствующих им прямых как приближенные значения разности 1−D, где D — фрактальная размерность.

 

6 СНЕЖИНКИ И ДРУГИЕ КРИВЫЕ КОХА

 

Для более полного понимания моей интерпретации ричардсонова D как фрактальной размерности перейдем от природных феноменов, над которыми мы не имеем никакой власти, к полностью подвластным нашей воле геометрическим конструкциям.

 

САМОПОДОБИЕ И КАСКАДЫ

До сих пор мы больше уделяли внимание геометрической сложности береговых линий; настало время упомянуть и о том, что их структура в значительной степени упорядочена.

Хотя выполненные в разных масштабах карты и различаются в конкретных деталях, более общие их особенности остаются неизменными. В грубом приближении крупные детали береговых линий геометрически идентичны мелким, разница только в масштабе.

Такую форму можно сравнить с узором, который рисует на небе какой-нибудь многоступенчатый фейерверк: на каждом этапе его сгорания в общую картину добавляются новые, все более мелкие детали, идентичные по форме результату исходного взрыва. Однако из упоминавшихся выше трудов Льюиса Ричардсона, посвященных турбулентности, мы можем позаимствовать более подходящее сравнение и назвать порождающий такие структуры механизм каскадом.

Если каждая из частей некоторой формы геометрически подобна целому, то и форма, и порождающий ее каскад называются самоподобными. В настоящей главе мы займемся исследованием самоподобия, используя для этого самые что ни на есть правильные фигуры.

Наиболее полную противоположность самоподобным формам представляют собой кривые, которые имеют либо только один масштаб (например, окружность), либо два четко разделенных масштаба (например, окружность, украшенная «гребнем» из множества меньших полуокружностей). Такие формы мы можем охарактеризовать как немасштабируемые.

 

ТЕРАГОНЫ КАК МОДЕЛИ БЕРЕГОВЫХ ЛИНИЙ. ТРОИЧНАЯ КРИВАЯ КОХА

K

Если мы хотим получить кривую, содержащую бесконечное число масштабов длины, то надежнее всего будет ввести их туда собственноручно, один за другим. Правильный треугольник с длиной стороны, равной 1, имеет один масштаб, правильные треугольники с длиной стороны, равной 1/3, также имеют один масштаб, только меньший — уменьшая длину стороны далее по правилу (1/3)k , мы будем получать треугольники все меньшего масштаба. Нагромоздив затем все эти треугольники друг на друга (как показано на рис. 70), получим форму, содержащую все масштабы, меньшие 1.

В сущности, мы предполагаем, что некоторый участок береговой линии, изображенный в масштабе 1/1 000 000, выглядит как прямой отрезок единичной длины; назовем такой участок инициатором. Затем мы предполагаем, что на карте масштаба 3/1000 000 становится видимой некая деталь, а именно, — выступ в форме равностороннего треугольника, занимающий среднюю треть исходного отрезка. Полученное таким образом второе приближение — ломаную, составленную из четырех отрезков равной длины — назовем генератором. Предположим далее, что еще более подробная карта (масштаба 9/1000 000) выглядит как результат замены каждого из четырех отрезков генератора уменьшенной в три раза копией этого самого генератора, т. е. из каждого выступа вырастает по два новых выступа той же формы, но меньшего размера.

Продолжая в том же духе, мы заменяем все прямолинейные отрезки ломаными линиями, и первоначально прямой инициатор постепенно превращается во все более длинную ломаную кривую. Поскольку мы будем иметь дело с такими кривыми на всем протяжении этого эссе, предлагаю ввести для их обозначения новый термин терагоны (от греч. «чудовище, странное создание» и «угол»). Кстати, префикс тера обозначает (очень уместно, надо сказать) в метрической системе умножение на 1012 .

Если продолжить вышеописанный каскадный процесс до бесконечности, то наши терагоны устремятся к пределу, рассмотренному впервые фон Кохом [574] (см. рис. 74). Назовем такую кривую троичной кривой Коха и обозначим символом K.

На рис. 71 хорошо видно, что площадь этой кривой обращается в нуль. С другой стороны, с каждой ступенью построения ее общая длина увеличивается в 4/3 раза, следовательно, в пределе длина кривой Коха бесконечна. Более того, кривая Коха непрерывна, но нигде не имеет касательной — точно график непрерывной функции, не имеющей производной.

В качестве модели береговой линии кривая K, представляет собой лишь очень отдаленное приближение, но не потому, что она слишком неправильна — скорее потому, что по сравнению с неправильностью типичной береговой линии неправильность кривой Коха уж очень предсказуема. В главах 24 и 28 мы попробуем добиться лучшего соответствия с помощью некоторой рандомизации процесса построения.

 

КРИВАЯ КОХА В РОЛИ ЧУДОВИЩА

У человека, прочитавшего предыдущий раздел, может сложиться впечатление, что кривая Коха относится к числу наиболее очевидных и интуитивно понятных геометрических фигур. Однако вовсе не так очевидны причины, толкнувшие фон Коха на ее построение. И уж совершенно загадочным представляется отношение к ней со стороны математиков. Чуть ли не единодушно они провозгласили кривую K чудовищной! За подробностями обратимся к работе Хана «Кризис здравого смысла» [190], которая, кстати, еще неоднократно нам пригодится. Хан пишет: «Характер [неспрямляемой кривой или кривой, к которой невозможно провести касательную] совершенно не укладывается в рамки того, что мы можем понять интуитивно. В самом деле, всего лишь после нескольких повторений простой операции сегментирования образующаяся фигура становится настолько сложной, что с трудом поддается непосредственному восприятию, а уж то, к чему эта кривая стремится в пределе, и вовсе невозможно себе представить. Только с помощью разума, применяя логический анализ, мы можем до конца проследить эволюцию этого странного объекта. Если бы мы положились в данном случае на здравый смысл, то составленное нами представление оказалось бы в корне ошибочным, поскольку здравый смысл неизбежно привел бы нас к заключению, что кривых, не имеющих касательной ни в одной своей точке, попросту не бывает. Этот первый пример неадекватности интуитивного подхода затрагивает самые фундаментальные концепции дифференцирования».

Надо отдать Хану должное — в своих высказываниях он не доходит до знаменитого восклицания Шарля Эрмита относительно недифферен- цируемых функций. В письме к Стилтьесу, датированном 20 мая 1893 года, Эрмит пишет об ужасе и отвращении, которые вызывает у него «это наказание Господне, эти жалкие функции без производных» ([211], II, с. 318). Конечно же, каждому из нас хочется верить в то, что великие лишены недостатков и что Эрмит просто шутил, однако из написанной в 1922 году «Заметки» Лебега ([295], I), можно заключить, что это не совсем так. Написав статью о поверхностях, к которым нельзя построить касательные плоскости (об «абсолютно измятых носовых платках»), Лебег представил ее Академии наук для публикации, однако «Эрмит сначала воспротивился включению статьи в «Comptes Rendus»1; примерно к этому времени относится его письмо Стилтьесу... »

Мы с вами уже знаем, что Перрен и Штейнгауз страха перед чудовищами не испытывали, однако единственным математиком, который возражал против общего мнения, основываясь именно на интуитивных соображениях (Штейнгауз возражал, опираясь на факты), был Поль Ле-ви [311]: «[Мне] всегда было удивительно слышать, что если руководствоваться в геометрии здравым смыслом, то непременно приходишь к выводу, что все непрерывные функции дифференцируемы. Насколько я могу судить по собственному опыту, начиная с моей первой встречи с концепцией производной и по сей день, верно как раз обратное».

Как ни печально, эти голоса остались неуслышанными. Почти все книги и абсолютно все музеи науки продолжают уверять нас в том, что недифференцируемые функции противны здравому смыслу, «чудовищны», «патологичны» или даже «психопатичны».

 

ПРИРУЧЕНИЕ КРИВОЙ КОХА. РАЗМЕРНОСТЬ

D=

ln4

/

ln3

≈1,2618

Я утверждаю, что кривая Коха является грубой, но математически строгой моделью береговой линии. В качестве первой количественной проверки рассмотрим длину L(ε) троичного терагона Коха, длина сторон которого равна ε. На этот раз длину кривой можно измерить точно, получив при этом чрезвычайно удовлетворительный результат:

L(ε)=ε1−D .

Эта точная формула оказывается идентичной эмпирическому закону Ричардсона о длине побережья Британии. Для троичной кривой Коха имеем

D=ln4/ln3≈1,2618,

откуда следует, что значение D находится внутри интервала значений, полученных Ричардсоном!

< Доказательство: Очевидно, что L(1)=1, а

L(ε/3)=(4/3)L(ε).

Это уравнение имеет решение вида L(ε)=ε1−D если D удовлетворяет соотношению 3D−1 =4/3.

Следовательно, D=ln4/ln3, что и следовало доказать. ►

Разумеется, в случае кривой Коха показатель D представляет собой не эмпирическую, а математическую постоянную. Таким образом, аргументы в пользу того, чтобы считать этот показатель размерностью, становятся еще более убедительными, чем в случае береговых линий.

С другой стороны, аппроксимативная хаусдорфова протяженность в размерности D (понятие, введенное в предыдущей главе) равна произведению εD на количество отрезков длины ε, т. е. εD ε−D =1. Неплохое подтверждение тому, что величина D представляет собой хаусдорфову размерность. К сожалению, данное Хаусдорфом определение этой размерности весьма плохо поддается строгой математической трактовке. И даже если бы это было не так, идея обобщения понятия размерности на множество нецелых чисел настолько широка и чревата настолько серьезными последствиями, что более глубокое ее обоснование можно только приветствовать.

 

РАЗМЕРНОСТЬ ПОДОБИЯ

Оказывается, мы легко можем получить искомое более глубокое обоснование, рассмотрев случай самоподобных фигур и понятие размерности подобия. Мы часто слышим о том, что математики используют размерность подобия для приблизительного определения хаусдорфовой размерности, причем в большинстве случаев, рассматриваемых в этом эссе, такая приблизительная оценка оказывается верной. В применении к этим случаям мы вполне можем считать фрактальную размерность синонимом размерности подобия. < Аналогичным образом мы используем термин «топологическая размерность» как синоним обычной, «интуитивной», размерности. ►

В качестве своего рода стимулирующего вступления давайте рассмотрим стандартные самоподобные формы: отрезки прямой, прямоугольники на плоскости и т. д. (см. рис. 73). Евклидова размерность прямой равна 1, следовательно, при любом целочисленном «основании» b отрезок 0≤x

Евклидова размерность плоскости равна 2. Отсюда аналогичным образом следует, что при любом значении b «целое», состоящее из прямоугольника с длинами сторон 0≤x

Где k и h изменяются от 1 до b. И здесь каждая часть может быть получена из целого с помощью преобразования подобия с коэффициентом r(N)=1/b=1/N1/2 .

В случае прямоугольного параллелепипеда аналогичное рассуждение приводит нас к коэффициенту r(N)=1/N1/3 .

Не возникает никаких сложностей и с определением пространств, евклидова размерность E которых больше 3. (Здесь и далее мы будем обозначать евклидову — или декартову — размерность буквой E.) Для всех D-мерных параллелепипедов (D

r(N)=1/N1/D .

Таким образом,

NrD =1.

Эквивалентные альтернативные выражения имеют следующий вид:

lnr(N)=ln(1/N1/D )=−(lnN)/D,

D=−lnN/lnr(N)=lnN/ln(1/r)=.

Перейдем теперь к нестандартным фигурам. Для того, чтобы показатель самоподобия имел формальный смысл, необходимо лишь, чтобы рассматриваемая фигура была самоподобной, т. е. чтобы ее можно было разбить на N частей, каждая из которых может быть получена из целой фигуры с помощью преобразования подобия с коэффициентом r (в сочетании со смещением или преобразованием симметрии). Полученная таким образом величина D всегда удовлетворяет равенству

0≤D≤E.

В случае троичной кривой Коха N=4, а r=1/3, отсюда D=ln4/ln3, что полностью совпадает с хаусдорфовой размерностью.

 

КРИВЫЕ. ТОПОЛОГИЧЕСКАЯ РАЗМЕРНОСТЬ

До сих пор мы, не особенно задумываясь, называли фигуру Коха K кривой; настало время разобраться с этим понятием. Здравый смысл подсказывает, что стандартная дуга представляет собой связное множество, причем если удалить любую его точку, то множество становится несвязным. А замкнутая кривая — это связное множество, разделяющееся после удаления двух точек на две стандартные дуги. По этим причинам фигуру Коха K можно считать кривой.

Любой математик скажет вам, что все фигуры, обладающие вышеуказанным свойством (будь то кривая K, интервал [0,1] или окружность), имеют топологическую размерность DT , равную 1. То есть у нас появляется еще одна концепция размерности! Будучи последователями Уильяма Оккама, все ученые прекрасно осведомлены о том, что «не следует множить сущности без необходимости». Здесь я должен признаться, что наши с вами метания между несколькими почти эквивалентными формами фрактальной размерности объясняются всего лишь соображениями удобства. А вот параллельное существование фрактальной и топологической размерности является самой что ни на есть суровой необходимостью. Читателям, пропустившим то отступление в главе 3, где дано определение фрактала, я рекомендую прочесть его сейчас; кроме того, каждому необходимо ознакомиться с разделом, озаглавленным РАЗМЕРНОСТЬ, в главе 41.

 

ИНТУИТИВНЫЙ СМЫСЛ РАЗМЕРНОСТИ D ПРИ НАЛИЧИИ ПОРОГОВ

Λ

И

λ

Одна из работ Чезаро [74] начинается с эпиграфа:

«... безгранична воля, безграничны желания, несмотря на то, что силы наши ограничены, а осуществление мечты — в тисках возможности».1

В самом деле, тиски возможности властны над учеными в не меньшей степени, чем над шекспировскими Троилом и Крессидой. Для построения кривой Коха необходимо, чтобы каскад новых, с каждым разом уменьшающихся выступов уходил в бесконечность, однако в Природе всякий каскад обречен либо прекратиться, либо измениться. Мы, конечно, можем допустить существование бесконечной серии выступов, но охарактеризовать их как самоподобные можно только в определенных пределах. Когда длина уменьшается до значений, меньших нижнего предела, понятие береговой линии перестает принадлежать географии.

Таким образом, представляется разумным рассматривать реальную береговую линию как кривую, включающую в себя два пороговых масштаба. Внешним порогом Ω можно считать диаметр наименьшей окружности, описывающей остров или материк, а в качестве внутреннего порога ε мы можем взять те самые 20 м, о которых говорилось в главе 5. Весьма сложно указать реальные числовые значения для порогов, однако необходимость введения этих самых порогов не подлежит сомнению.

И все же даже после того, как мы отбросили самые крупные и самые мелкие детали, величина D продолжает означать эффективную размерность в том виде, в каком она описана в главе 3. Строго говоря, и треугольник, и звезда Давида, и конечные терагоны Коха имеют размерность 1. Однако — как с интуитивной, так и с прагматической точки зрения, руководствующейся простотой и естественностью необходимых поправочных членов — разумнее рассматривать терагон Коха на одной из поздних стадий построения как фигуру, более близкую к кривой с размерностью ln4/ln3, нежели к кривой с размерностью 1.

Что же касается береговой линии, то она, вероятнее всего, имеет несколько различных размерностей (вспомните клубок ниток из третьей главы). Ее географической размерностью является показатель Ричардсона D. Но в диапазоне размеров, которыми занимается физика, размерность береговой линии может быть совсем иной — связанной с понятием границы раздела между водой, воздухом и песком.

 

АЛЬТЕРНАТИВНЫЕ ГЕНЕРАТОРЫ КОХА И КРИВЫЕ КОХА БЕЗ САМОПЕРЕСЕЧЕНИЙ

Сформулируем еще раз основной принцип построения троичной кривой Коха. Построение начинается с двух фигур: инициатора и генератора. Последний представляет собой ориентированную ломаную, состоящую из N равных отрезков длины r. В начале каждого этапа построения мы имеем некоторую ломаную; сам этап заключается в замене каждого прямого участка копией генератора, уменьшенной и смещенной так, чтобы ее концевые точки совпали с концевыми точками заменяемого отрезка. На каждом этапе D=lnN/ln(1/r).

Нетрудно изменить общий вид получаемой конструкции путем модификации генератора; особенно интересны сочетания выступов и впадин — примеры можно найти на следующих после главы иллюстрациях. Таким образом, можно получить различные терагоны Коха, сходящиеся к кривым, размерности которых находятся в интервале от 1 до 2.

Все эти кривые Коха нигде не пересекают сами себя, поэтому при определении D их можно без какой бы то ни было неоднозначности делить на непересекающиеся части. Однако если при построении кривой Коха использовать небрежно подобранные генераторы, существует известный риск получить самокасание или самопересечение, а то и самоперекрытие. Если желаемое значение D достаточно мало, то тщательным подбором генератора можно легко избежать появления двойных точек. Задача резко усложняется при увеличении D, однако пока значение D остается меньше 2, решение существует.

Если же попытаться получить с помощью вышеописанного построения кривую Коха с размерностью больше 2, то мы неизбежно придем к кривым, которые покрывают плоскость бесконечно много раз. Случай D=2 заслуживает особого рассмотрения, и мы займемся им в главе 7.

 

ДУГИ И ПОЛУПРЯМЫЕ КОХА

В некоторых случаях возникает необходимость в педантичной замене термина «кривая Коха» чем-нибудь более точным и подходящим. Например, фигура, изображенная на рис. 73 внизу, формально является коховым отображением отрезка прямой и может быть названа дугой Коха. Как следствие, граничная линия на рис. 74 оказывается составленной из трех дуг Коха. Часто бывает полезно экстраполировать дугу в полупрямую Коха — экстраполяция увеличивает исходную дугу сначала в 1/r=3 раза, используя ее левую концевую точку как фокус, затем в 32 раз и т. д. Результат каждой следующей экстраполяции включает в себя предыдущую кривую, и получающаяся в пределе кривая содержит все промежуточные конечные кривые.

 

ЗАВИСИМОСТЬ МЕРЫ ОТ РАДИУСА ПРИ ДРОБНОМ ЗНАЧЕНИИ D

Рассмотрим еще одну стандартную ситуацию евклидовой геометрии и обобщим ее с учетом фрактальных размерностей. В случае идеальных однородных физических объектов плотности ρ мы можем считать, что масса M(R) стержня длиной 2R, диска или шара радиуса R пропорциональна ρRE . При E = 1,2 и 3 коэффициенты пропорциональности соответственно равны 2, 2π и 4π/3.

Правило применимо и к фракталам, при условии, что они самоподобны.

В случае троичных кривых Коха это утверждение доказывается проще всего, если начало координат совпадает с концевой точкой полупрямой Коха. Если круг радиуса R0 =3k (где k≥0) содержит массу M(R0 ), то круг радиуса R=R0 /3 вместит в себя массу M(R)=M(R0 )/4. Отсюда

.

Следовательно, отношение M(R)/RD не зависит от радиуса R и может послужить для определения плотности ρ.

 

ДВИЖЕНИЕ КОХА

Представьте себе точку, движущуюся вдоль полупрямой Коха и проходящую за одинаковые интервалы времени дуги одинаковой меры. Если теперь обратить функцию, определяющую время как зависимость от положения точки, то мы получим функцию, определяющую положение точки как зависимость от времени, т. е. функцию движения. Скорость такого движения, разумеется, бесконечна.

 

СЛУЧАЙНЫЕ БЕРЕГОВЫЕ ЛИНИИ: ПРЕДВАРИТЕЛЬНЫЙ ВЗГЛЯД

Кривая Коха похожа на настоящие береговые линии, однако она имеет кое-какие существенные недостатки (эти недостатки практически в неизменном виде присущи всем ранним моделям рассматриваемых в настоящем эссе прецедентов). Ее части идентичны одна другой, а коэффициент само подобия r непременно задается жесткой шкалой вида b−k , где b — целое число, т. е. r=1/3, (1/3)2 и т.д. Таким образом, кривую Коха можно считать лишь очень предварительной моделью береговой линии.

Я разработал несколько способов избавления от этих недостатков, однако ни один из них не обходится без известных вероятностных усложнений, с которыми нам на данный момент не справиться: сначала следует уладить множество вопросов, касающихся неслучайных фракталов. Интересующемуся же читателю, знакомому с теорией вероятности, ничто не мешает заглянуть немного вперед и полюбоваться на модели, основанные на моих «сквиг-кривых» (см. главу 24) и, что более важно, на линиях уровня дробных броуновских поверхностей (см. главу 28).

Здесь и далее я использую следующий способ представления материала. Многочисленные узоры, создаваемые Природой, рассматриваются на фоне упорядоченных фракталов, которые могут служить пусть и очень приблизительными, но все же моделями рассматриваемых феноменов, тогда как предлагаемые мною случайные модели отнесены в более поздние главы.

Памятка. Во всех случаях, когда значение D известно точно, не является целым числом и записано в десятичной форме с целью облегчения сравнений, в нем сохраняются четыре знака после запятой. Число 4 было выбрано исходя из следующих соображений: я хотел показать, что в данном случае значение D не является ни эмпирическим (все эмпирические значения в настоящее время известны с точностью до одного или двух десятичных знаков), ни не вполне определенным геометрическим значением (все подобные значения в настоящее время известны либо с точностью до одного-двух десятичных знаков, либо с точностью до шести десятичных знаков).

 

СЛОЖНОЕ ИЛИ ВСЕ ЖЕ ПРОСТОЕ И ПРАВИЛЬНОЕ?

Кривые Коха демонстрируют новое и весьма интересное сочетание простоты и сложности. На первый взгляд они выглядят гораздо более сложными, чем любая стандартная евклидова кривая. Однако теория математических алгоритмов Колмогорова-Чайтина утверждает обратное: кривая Коха ничуть не сложнее окружности! Эта теория оперирует некоторым набором «букв» или «атомных операций», причем длина кратчайшего известного алгоритма построения искомой функции принимается за объективный верхний предел сложности этой функции.

Попробуем применить вышеописанный подход к построению кривых. Условимся изображать буквы или «атомы» графического процесса прямыми «штрихами». При использовании такого алфавита построение правильного многоугольника требует конечного числа штрихов, каждый из которых можно описать с помощью конечного числа инструкций, и, как следствие, является задачей конечной сложности. В построении же окружности, напротив, участвует «бесконечное количество бесконечно коротких штрихов», и поэтому окружность представляется нам как кривая бесконечной сложности. Однако если производить построение окружности рекурсивно, можно видеть, что необходимо лишь конечное число инструкций, и значит построение окружности также является задачей конечной сложности. Начнем, например, с правильного многоугольника, число сторон которого равно 2m (m>2), затем заменим каждый штрих длины 2sin(π/2m ) двумя штрихами длины 2sin(π/2m+1 ); далее процесс повторяется снова и снова. Для построения кривых Коха применяется тот же подход, но с использованием более простых операций: длину каждого штриха нужно всего лишь умножить на r, причем относительное расположение штрихов остается неизменным на протяжении всего построения. Отсюда и следует парадоксальное заявление: когда сложность определяется длиной лучшего на настоящий момент алгоритма, выраженного средствами данного алфавита, кривая Коха оказывается проще окружности.

Это необычное распределение кривых по относительной сложности их построения не следует принимать всерьез. Самое интересное, что, используя алфавит, основанный на окружности и линейке (т. е. взяв в качестве «атома» окружность), мы придем к противоположному выводу. И все же, при разумно подобранном алфавите, любая кривая Коха не только имеет конечную сложность, но оказывается проще большинства евклидовых кривых.

Меня всегда зачаровывала этимология слов, и поэтому я не могу завершить эту главу, не сознавшись в том, что мне претит называть кривую Коха «неправильной». Этот термин родственен слову править и в принципе вполне приемлем, если понимать это слово как «делать правильным, выпрямлять»: кривую Коха вряд ли что-либо способно выпрямить. Однако вспоминая о другом смысле слова править и размышляя о правителях или королях (тот же смысл, но несколько иная этимология. Кстати, латинские слова rex («король») и regula («правило») также имеют один корень), т. е. о тех, кто устанавливает свод незыблемых правил, которым следует беспрекословно подчиняться, я всякий раз молча протестую против неудачного термина — в этом смысле в мире просто нет ничего «правильнее» кривой Коха.

Рис. 70. ТРОИЧНЫЙ ОСТРОВ (ИЛИ СНЕЖИНКА) КОХА K. ПЕРВОНАЧАЛЬНОЕ ПОСТРОЕНИЕ ХЕЛЬГЕ ФОН КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D=ln4/ln3~1,2618)

Начинается построение с «инициатора», т. е. с черного равностороннего треугольника, длина стороны которого равна единице. Затем в средней трети каждой из сторон строим по равностороннему треугольнику с длиной сторон, равной 1/3. На этом этапе мы получаем шестиконечную звезду, или звезду Давида. На каждой из сторон полученной звезды строим вышеописанным образом по равностороннему треугольнику и повторяем процесс до бесконечности.

Точки средней трети любого из отрезков при каждом добавлении смещаются в перпендикулярном направлении, в то время как вершины треугольного инициатора остаются неподвижными. Остальные девять вершин звезды Давида достигают своих окончательных положений после конечного числа этапов. Некоторые точки смещаются бесконечное число раз, но каждый раз на меньшую величину, и в конце концов сходятся к неким пределам, которые и определяют форму береговой линии.

Сам остров представляет собой предел последовательности областей, ограниченных многоугольниками, каждый из которых содержит область, ограниченную предыдущим многоугольником. Фотографический негатив такого предела можно увидеть на рис. 74.

Обратите внимание на то, что и на этом, и на многих других рисунках чаще изображены не береговые линии, а острова и озера — вообще, «сплошным» фигурам явно отдается предпочтение перед контурами. Объясняется это очень просто — мы всего лишь пытались максимально эффективно использовать высокую разрешающую способность нашей графической системы.

Почему к данной кривой нельзя провести касательную? Выберем в качестве неподвижной точки одну из вершин исходного треугольника и проведем прямую до некоторой точки, расположенной на предельной кривой, в направлении по часовой стрелке. По мере того, как выбранная точка на кривой приближается к нашей вершине, соединяющая их прямая колеблется внутри угла в 30 градусов и совершенно не желает устремляться к какому бы то ни было пределу, который мы могли бы назвать касательной в направлении по часовой стрелке. Касательная в направлении против часовой стрелки также не определена. Точка, к которой нельзя провести касательную, поскольку опущенные из нее хорды колеблются под вполне определенными углами, называется гиперболической точкой. Что касается тех точек, к которым кривая K стремится асимптотически, то к ним также нельзя провести касательную, но по другой причине.

Рис. 71. ТРОИЧНЫЙ ОСТРОВ (ИЛИ СНЕЖИНКА) КОХА К. АЛЬТЕРНАТИВНОЕ ПОСТРОЕНИЕ ЭРНЕСТА ЧЕЗАРО (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D=ln4/ln3~1,2618)

Альтернативное построение острова Коха предложено в статье Чезаро, посвященной кривым фон Коха [74] — работе настолько замечательной, что всякий раз, открывая журнал, я забываю о том, как долго и упорно я искал эту статью (и как разозлился, обнаружив впоследствии, что все мои труды были напрасны — мне следовало сразу же заглянуть в сборник [75]). Позволю себе привести несколько особенно восхитительных строк в моем вольном переводе. «Бесконечное вложение этой фигуры в самоё себя дает нам некоторое представление о том, что Теннисон однажды назвал внутренней бесконечностью — единственный, в сущности, род бесконечности, доступный нашему восприятию Природы. Благодаря такому подобию между целым и частями — вплоть до самых мельчайших, исчезающе малых частей — кривая Коха обретает воистину чудесные свойства. Если бы ей была дарована жизнь, то для того, чтобы убить ее, нам пришлось бы уничтожить всю кривую без остатка, ибо она возрождалась бы вновь и вновь из глубин своих треугольников; то же, впрочем, можно сказать и о жизни во Вселенной вообще».

В роли инициатора в построении Чезаро выступает правильный шестиугольник с длиной стороны √3/3. Окружающий остров океан изображен серым цветом. Каждый прямолинейный участок берега заменяется треугольной бухтой, размер которой уменьшается с каждым этапом построения до бесконечности, а остров Коха становится пределом уменьшающихся приближений.

На приведенном рисунке показаны оба метода построения: и метод Коха (см. рис. 70) и только что описанный метод Чезаро. При таком представлении предельная береговая линия Коха оказывается зажатой между двумя неуклонно приближающимися изнутри и снаружи терагонами. Можно вообразить себе некий каскадный процесс, в начале которого мы имеем три концентрических кольца: твердая земля (черная), болото (белое) и вода (серая). С каждым этапом такого каскадного процесса некоторый участок болота преобразуется либо в твердую землю, либо в воду. В пределе болото донельзя истончается, превращаясь из «поверхности» в кривую.

Интерпретация срединного смещения. Используем приведенные ниже генератор и последующий шаг (угол равен 120 градусов):

Смещение средней точки прямолинейного отрезка наружу k-го внутреннего терагона дает k-й наружный терагон; срединное смещение внутрь k-го наружного терагона дает k+1-й наружный терагон. Эффективность такого подхода демонстрируется на рис. 98 и 99, а также в главе 25.

Рис. 73. ДВА ВИДА САМОПОДОБИЯ: СТАНДАРТНОЕ И ФРАКТАЛЬНОЕ

На рисунке показано, как, располагая некоторым целым числом (в данном случае b = 5), можно разбить прямолинейный отрезок единичной длины на N=b подынтервалов, длина каждого из которых равна r=1/b. Аналогичным образом мы можем разделить единичный квадрат на N=b2 меньших квадратов с длиной стороны r=1/b. И в том, и в другом случае величина lnN/ln(1/r) представляет собой размерность подобия рассматриваемой фигуры, — величина, о которой школьная геометрия не считает нужным упоминать, так как ее значение сводится к евклидовой размерности.

Нижняя фигура — это троичная кривая Коха или треть побережья острова Коха. Ее также можно разбить на подобные исходной кривой фигуры меньшего размера, при этом N=4, а r=1/3. Размерность подобия D=lnN/ln(1/r) в данном случае оказывается дробным числом (ее значение примерно 1,2618), не находя себе аналогов в стандартной геометрии.

Хаусдорф показал, что величина D может быть весьма полезной в математике и что она совпадает с хаусдорфовой, или фрактальной, размерностью. Я же утверждаю, что без величины D не обойтись и в естественных науках.

Рис. 74. ТРОИЧНОЕ ОЗЕРО КОХА К (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D=ln4/ln3~1,2618)

Продолжим построение, описанное в пояснениях к рисункам 70 и 71, до некоторого продвинутого этапа и сфотографируем результат. Негатив такой фотографии представлен на рисунке и напоминает скорее озеро, нежели остров.

Необычный узор серых «волн», заполняющих это озеро, не случаен. Его описание можно найти в пояснениях к рисункам 104 и 105.

Береговая линия озера Коха не самоподобна, поскольку замкнутую кривую нельзя представить в виде совокупности подобных ей меньших замкнутых кривых. < Хотя в главе 13 мы используем самоподобие для построения бесконечного скопления островов. ►

Рис. 75 и 76. ДРУГИЕ ОСТРОВА И ОЗЕРО КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИD=ln9/ln7~1,1291)

Этим вариантом острова Коха мы обязаны В. Госперу (см. [163]): инициатором служит правильный шестиугольник, а генератор выглядит следующим образом:

Рис. 75. Здесь приведено несколько этапов построения «острова Госпера» (показан жирной линией). О внутреннем заполнении острова (тонкая линия) мы поговорим чуть позже (см. рис. 106).

Рис. 76. Одна из поздних стадий построения острова Госпера. За пояснениями относительно заполнения (линии различной толщины внутри острова) обратитесь к рис. 106.

Заметьте, что в отличие от исходной кривой Коха, этот генератор симметричен относительно своего центра. Он совмещает в себе бухты и полуострова таким образом, что площадь острова на протяжении всего построения остается неизменной. То же верно и для кривых Коха (вплоть до рис. 88).

Тайлинг. Островами Госпера можно полностью, без просветов, покрыть плоскость. Эта процедура называется покрытием, или тайлингом}

Пертайлинг. Более того, этот остров самоподобен, в чем легко убедиться, взглянув на области на рисунке, заштрихованные линиями разной толщины. То есть каждый остров можно разделить на семь «провинций», каждая из которых может быть получена из целого острова преобразованием подобия с коэффициентом r=1/√7. Для обозначения покрытия плоскости с помощью таких самоподобных плиток я предлагаю ввести новый термин пертайлинг (латинская приставка per- служит здесь для выражения совершенства и всеохватности процесса).

В большинстве случаев покрытия плоскости плитку нельзя разделить на какое-либо количество меньших плиток, подобных исходной. Многих, например, чрезвычайно раздражает, что сложенные вместе правильные шестиугольники не образуют столь же правильного большего шестиугольника. Из плиток Госпера вполне можно «состряпать» достаточно близкое подобие шестиугольника, способное точно разделиться на семь одинаковых частей. Другие фрактальные плитки позволяют осуществить деление на другое количество частей.

Франция. Среди географических реалий есть одна фигура удивительно правильной формы, часто называемая за свою правильность Шестиугольником. Речь идет о Франции. Надо сказать, что фигура, символизирующая на географической карте Францию, гораздо меньше напоминает шестиугольник, нежели фигуру, изображенную на рис. 76 (хотя Бретань на нашем рисунке выглядит, пожалуй, несколько недокормленной).

< Почему нельзя провести касательную ни в одной точке этой береговой линии? Выберите неподвижную точку на береговой линии, полученной после некоторого конечного числа этапов построения, и соедините эту точку прямой линией с некоторой движущейся точкой предельной береговой линии. По мере того, как движущаяся точка приближается к неподвижной точке вдоль предельной береговой линии (неважно, справа или слева), соединяющая точки прямая постоянно меняет направление. Такая неподвижная точка называется локсодромной точкой. ►

Рис. 79. ПРОЧИЕ ОСТРОВА И ОЗЕРА КОХА (РАЗМЕРНОСТИ БЕРЕГОВЫХ ЛИНИЙ ОТ 1 ДО D=ln3/ln√5~1,3652)

В данной последовательности фрактальных кривых инициатором выступает правильный многоугольник с числом сторон M генератор таков, что N=3, а углы между его первым и вторым и вторым и третьим отрезками совпадают и равны θ=2π/M. На рис. 75 и 76 M=6 (здесь этой фигуры нет), а кривая с M=3 обсуждается в пояснении к рис. 109. На данном рисунке изображены поздние стадии построения терагонов для значений M = 4, 8, 16 и 32 в виде вложенных друг в друга озер и островов. Например, значению M=4 соответствует следующий генератор:

Штриховка внутри центрального острова (M=4) описана в пояснении к рис. 109 и 110.

Если параметр M уходит в бесконечность, соответствующая кривая стремится приобрести форму окружности. Если же M уменьшается, то наши фигуры начинают «съеживаться», сначала постепенно, затем — резкими скачками. Когда M достигает 3, в соответствующей кривой появляются самопересечения. Этот случай мы обсудим позже (см. рис. 109 и 110).

Критическая размерность. Когда в качестве инициатора выбирается отрезок [0, 1], угол θ может принимать любые значения от 180 градусов до 60 градусов. Существует, однако, некий критический угол θkp — такой, что береговая линия не имеет самопересечений в том и только в том случае, если θ>θkp . Соответствующая размерность Dkp называется критической размерностью для самопересечений. Угол θkp близок к 60 градусам.

Обобщение. Построения, изображенные на рис. 75-88, допускают следующее несложное обобщение. Назовем приведенные на рисунке генераторы прямыми (S) и определим обратный генератор (F) как зеркальное отражение прямого генератора относительно линии y=0. На каждом отдельном этапе построения будем использовать один генератор, однако для различных этапов можно выбирать различные генераторы. Кривые на указанных (и некоторых последующих) рисунках построены с помощью S-генераторов, но и другие бесконечные последовательности S- и F-генераторов дают очень похожие результаты.

< При чередовании F- и S-генераторов локсодромические точки переходят в гиперболические, как в оригинальной кривой Коха. ►

На рис. 79-85 показано несколько фигур Коха, инициатором которых является квадрат (отсюда и название квадратичные). Одним из преимуществ таких построений является то, что с ними можно экспериментировать даже на слабых графических системах. < Еще одно преимущество — квадратичные фрактальные кривые ведут непосредственно к оригинальной кривой Пеано, описанной в пояснении к рис. 95. ►

Рис. 81. Инициатором здесь служит квадрат, а генератор выглядит следующим образом:

Как и на рис. 75-79, на каждом этапе построения общая площадь острова остается неизменной. На рис. 81 вверху приведены два первых этапа построения крупным планом и два последующих в более мелком масштабе.

Результат последнего этапа, еще более увеличенный, демонстрирует мельчайшие детали в виде очень тонких, едва видимых выступов, которых вы, конечно же, не увидели бы, не обладай наша графическая система такой превосходной разрешающей способностью.

Как в терагонах, так и в предельной кривой отсутствует какое бы то ни было самоперекрытие, самопересечение или самокасание. Это утверждение остается в силе и для последующих построений (вплоть до рис. 85).

< Не следует забывать о том, что фракталы на рис. 81-85 представляют береговые линии; суша и море здесь — это удобные фигуры, обладающие положительными и конечными площадями. На с. 209 упоминается случай, в котором только «море», будучи объединением простых трем, имеет вполне определенную площадь, в то время как суша не имеет ни единой внутренней точки. ►

Тайлинг и пертайлинг. Этот остров можно разбить на 16 меньших островков (r=1/4). Каждый представляет собой остров Коха, построенный на одном из 16 квадратов, образующих первый этап построения.

< В главах 25 и 29 показано, что размерность D=3/2 характерна также для многих броуновских функций. Следовательно, это значение легко можно получить с помощью случайных кривых и поверхностей. ►

Рис. 81. КВАДРАТИЧНЫЙ ОСТРОВ КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D=3/2=1,5000)

В качестве инициатора снова возьмем квадрат, а генератором будет следующая ломаная:

То, что береговая линия квадратичных островов Коха, представленных в данной подборке иллюстраций, в очень значительной степени зависит от D, весьма показательно. В то же время, поскольку их общим инициатором является квадрат, внешняя форма этих островов остается приблизительно одинаковой. Если инициатором выступает какой-либо другой правильный M-угольник (M>4), то можно наблюдать, как по мере увеличения M внешняя форма становится все более гладкой. Об истинной зависимости между внешней формой и значением D мы узнаем не раньше, чем в главе 28, в которой рассматриваются случайные береговые линии, эффективно определяющие как генератор, так и инициатор.

< Максимальность. Свой вклад в сходство внешних форм вносит тот факт, что изображенные на рис. 79-85 квадратичные кривые Коха обладают весьма интересным свойством максимальности. Расположим все генераторы Коха, порождающие кривые без самопересечений, на квадратной решетке, образованной прямыми, параллельными и перпендикулярными отрезку [0, 1]. Допустим также, что все эти генераторы можно использовать с любыми инициаторами на нашей квадратной решетке. Определим как максимальные те генераторы, которые характеризуются наибольшим значением N и, как следствие, D. Нетрудно заметить, что Nmax=b2 /2 при четных b и Nmax=(b2 +1)/2 при нечетных b.

При увеличении b возрастает как максимальное значение N, так и число альтернативных максимальных многоугольников. Таким образом, на предельную кривую Коха все большее влияние оказывает исходный генератор. Кроме того, кривая выглядит все более изощренной, поскольку стремление достичь максимальной размерности, избежав при этом самопересечения, налагает определенные требования, которые лишь ужесточаются с ростом D. Этот процесс достигает кульминации в следующей главе, вместе с пределом Пеано D=2.

Лакунарность. Фрактальные кривые с одинаковой размерностью D, но разными значениями N и r могут качественно отличаться одна от другой. Ответственный за это параметр, отличный от D, обсуждается в главе 34. ►

Рис. 83. КВАДРАТИЧНЫЙ ОСТРОВ КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D=ln18/ln6~1,6131)

На этих рисунках изображены те же конструкции, что и на рис. 79, только с другими генераторами. Вот так выглядит генератор для кривой на рис. 85:

а так — для кривой на рис. 84:

Дамбы и каналы этих лоцманских кошмаров становятся все уже по мере того, как мы продвигаемся по направлению к самым дальним мысам полуостровов или самым врезающимся в сушу языкам бухт. Вдобавок ко всему, стремление к сужению наблюдается и по мере роста фрактальной размерности, причем при D~5/3 у этих дамб и каналов появляются «осиные талии».

< О турбулентной дисперсии. На мой взгляд, между последовательностью приближений фрактальных кривых, изображенных на рис. 85, и последовательными стадиями турбулентной дисперсии чернил в воде существует поразительное сходство. Разумеется, реальная дисперсия несколько менее упорядочена, однако это можно имитировать, введя в процесс построения элемент случайности.

Можно сказать, что здесь мы наблюдаем ричардсонов каскад «в деле». Исходная малая толика энергии размазывает квадратное пятно чернил по поверхности воды. Затем первоначальное завихрение расщепляется на меньшие завихрения, воздействие которых носит более локальный характер. Исходная энергия разделяется на все уменьшающиеся порции, пока в конце концов не остается ничего, кроме легкой размытости контуров образовавшегося в результате пятна, как показано на приведенной ниже иллюстрации, позаимствованной из работы Коррсина [87].

Рис. 84 и 85. КВАДРАТИЧНЫЕ ОСТРОВА КОХА (РАЗМЕРНОСТИ БЕРЕГОВЫХ ЛИНИЙ D=5/3~1,6667 И D=ln98/ln14~1,7373)

То, что ричардсонов каскад порождает фигуру, ограниченную фрактальной кривой, несомненно. А вот с выводом о том, что ее размерность D=5/3, спешить не стоит. Это значение D соответствует плоским срезам пространственных поверхностей с размерностью D=8/3, какие часто встречаются в турбулентности. В случае изоповерхностей скалярных величин (рассматриваемых в главе 30) размерность D=8/3 можно объяснить в рамках теории Колмогорова. И все же я бы не стал доверять нумерологическим аналогиям.

В сущности, значение D зависит, скорее всего, от начальной энергии жидкости и от размера сосуда, в котором имеет место дисперсия. При низкой начальной энергии из круглого пятна получится кривая с размерностью D, близкой к 1 (см. рис. 79). При высокой начальной энергии, да еще в маленьком сосуде, можно будет наблюдать более сложную дисперсионную картину, плоские срезы которой будут больше похожи на рис. 84 (D~1,7373); их размерность может даже достичь значения D=2 (см. главу 8). См. также работу [386].

Если последнее заключение верно, следующим шагом необходимо изучить связь между начальной энергией и D и отыскать наименьшее значение энергии, при котором плоский срез пятна имеет D=2 (или D=3 в пространственном случае). Исследовав предельный случай D=2 (см. главу 7), мы убедимся, что он качественно отличается от случая D<2, так как позволяет любым двум частицам чернил, которые в начале процесса были далеко друг от друга, прийти в асимптотическое соприкосновение. <Я бы совсем не удивился, если бы оказалось, что за одним термином «турбулентная дисперсия» скрываются два совершенно отличных друг от друга феномена. ►

Постскриптум. Уже после того, как эта иллюстрация появилась во «Фракталах» 1977 г., Пол Димотакис сфотографировал тонкие срезы турбулентной струи, рассеивающейся в ламинарной среде. Сходство снимков с иллюстрацией весьма меня порадовало. ►

Рис. 87 и 88. ОБОБЩЕННЫЕ КРИВЫЕ КОХА И САМОПОДОБИЕ С НЕРАВНЫМИ КОЭФФИЦИЕНТАМИ (D~1,4490,D~1,8797,D~1+ε)

При построении этих конструкций использован метод Коха, но с неравными длинами сторон rm генератора. До сих пор мы подразумевали, что ко всем N «частям», на которые делится наше «целое», применяется один и тот же коэффициент подобия r. При неравных коэффициентах rm кривая Коха несколько теряет в своей неумолимой правильности. На рис. 87 вы можете видеть модифицированную таким образом троичную кривую Коха.

Заметьте, что во всей предшествующей серии иллюстраций построение кривой продолжалось до тех пор, пока не достигало мельчайших деталей заранее определенного размера. Когда rm =r, искомая цель достигается за некоторое заранее определенное число этапов построения, здесь же необходимое число этапов оказывается переменным.

Теперь перед нами стоит задача распространить на данное обобщение рекурсии Коха концепцию размерности подобия. Предположим для начала, что некая стандартная евклидова фигура покрывается подобными ей частями, уменьшенными соответственно в rm раз. При D=1 значение rm должно удовлетворять равенству Σrm =1; в общем случае евклидовы фигуры требуют равенства . Далее, для случая фрактальных кривых, которые могут быть разделены на равные части, уже знакомое нам условие NrD =1 также можно переписать как . Исходя из этих соображений, мы можем построить ренерирующую размерность функцию и определить D как ее единственный действительный корень при G(D)=1. Остается выяснить, совпадает ли наша размерность D с размерностью Хаусдорфа-Безиковича. Да, совпадает — по крайней мере, во всех случаях, о которых мне известно.

Примеры. Размерность D кривой, представленной на рис. 87, несколько превышает размерность оригинальной кривой Коха ln4/ln3. Размерность D кривой, изображенной на рис. 88 вверху, немного не достигает 2. При D→2 береговая линия этого острова стремится к кривой Пеано-Пойа, одной из кривых Пеано, рассматриваемых в следующей главе. Сходство между этой фигурой и рядом деревьев не случайно, как будет показано в главе 17. Наконец, кривая на рис. 88 внизу имеет размерность D лишь чуть больше 1.

 

7 ПОКОРЕНИЕ ЧУДОВИЩНЫХ КРИВЫХ ПЕАНО

 

Обсуждая в предыдущей главе обобщенные кривые Коха без самопересечений, мы не случайно ограничились значениями D<2. Когда размерность D достигает 2, фрактальные кривые претерпевают значительные качественные изменения.

Будем исходить из предположения, что терагоны не имеют самопересечений, хотя самокасание допускается. В этом случае одним из признаков достижения размерности D=2 можно считать то, что точки самокасания становятся асимптотически неизбежными. Главным же признаком является неизбежность заполнения предельной кривой некоторой «области» плоскости, т. е. некоторого множества, состоящего из дисков (заполненных окружностей).

Это двойственное заключение не является следствием пока еще поправимой нехватки воображения со стороны математиков. Оно проистекает из одного фундаментального принципа, сыгравшего центральную роль в кризисе математики 1875 - 1925 гг.

 

«КРИВЫЕ» ПЕАНО, ДВИЖЕНИЯ И ПРОХОЖДЕНИЯ

Упомянутые предельные кривые, представленные на иллюстрациях в конце главы, называются кривыми Пеано, поскольку первая из них была построена Пеано в 1890 г. [465]. Их также называют заполняющими плоскость. Для таких кривых остается справедливым формальное определение размерности lnN/ln(1/r)=2, хотя и не из тех соображений, из каких нам хотелось бы. С математической точки зрения, кривая Пеано — всего лишь несколько необычное представление области или участка плоскости, а все классические определения единодушны в том, что размерность такого участка равна 2. Иными словами, человеку благоразумному следует избегать употребления термина кривая, заполняющая плоскость.

К счастью, большая часть «кривых» Пеано, включая и полученные путем рекурсивного построения Коха, поддается естественной параметризации с помощью скалярной величины t, которую можно назвать «временем». Имея дело с такими кривыми, мы вполне можем (не опасаясь ревнителей математической строгости) использовать термины «движения Пеано», «заполняющие плоскость движения», «движения, проходящие по всем плиткам» или просто «прохождения по плиткам» (о плитках и пертайлинге мы поговорим позже в этой же главе). И мы не замедлим воспользоваться этими терминами, когда наступит подходящий момент; хочу только напомнить, что жанр эссе, согласно своей специфике, ни в коей мере не подразумевает полного освещения того или иного вопроса.

 

КРИВЫЕ ПЕАНО В РОЛИ ЧУДОВИЩ

«Все шатается и рассыпается! Очень трудно передать словами тот эффект, который произвели результаты [Джузеппе] Пеано на все математическое сообщество. Такое ощущение, что кругом одни развалины, что все математические концепции внезапно потеряли всякий смысл» [573]. «[Движение Пеано] невозможно представить себе интуитивно; его можно понять лишь с помощью логического анализа» [190]. «Некоторые математические объекты — такие, например, как кривая Пеано — совершенно противоречат здравому смыслу... просто нелепы» [109].

 

ИСТИННАЯ ПРИРОДА КРИВЫХ ПЕАНО

Я утверждаю, что приведенные цитаты лишь доказывают тот факт, что ни один из тех математиков так и не удосужился тщательно рассмотреть аккуратно построенную кривую Пеано. Кто-нибудь менее добродушный мог бы сказать, что эти цитаты демонстрируют полное отсутствие геометрического воображения.

Я также утверждаю, что после внимательного и непредвзятого изучения и осмысления терагонов Пеано становится весьма затруднительным и дальше не видеть связи между ними и разнообразными природными проявлениями. Эта глава посвящена кривым без самопересечений, т. е. кривым, терагоны которых избегают самокасаний. В главе 13 мы поговорим о кривых с умеренным числом самокасаний. Первыми на предмет устранения самокасаний следует рассмотреть терагоны, заполняющие решетку (например, прямые с целочисленными координатами, параллельные координатным осям).

 

РЕКИ И ДРЕВОВИДНАЯ СТРУКТУРА ВОДОРАЗДЕЛОВ

Изучая всевозможные терагоны Пеано, я обратил внимание на то, что каждый из них представляет собой некоторую комбинацию из двух деревьев (или двух скоплений деревьев), допуская бесконечное разнообразие конкретных интерпретаций. Особенно хорошо эти деревья видны на «прохождении снежинки» — кривой Пеано моего изобретения (см. рис. 105). Глядя на рисунок, мы легко можем представить себе, что там изображено, скажем, скопление кустарников, растущих из нижней трети снежинки Коха и взбирающихся по ее стенкам. Другому эта картинка может показаться похожей на нарисованную плохо очиненным карандашом карту бассейна какой-нибудь большой реки — многочисленные мелкие притоки сливаются в более крупные и в конце концов вливаются в главную реку, протекающую вдоль нижней трети снежинки. Из последней интерпретации немедленно следует, что кривые, отделяющие реки друг от друга, составляют в совокупности древовидный водораздел. Разумеется, реки и водоразделы могут меняться местами.

Какой бы простой и очевидной ни казалась эта новая водораздельно- речная аналогия, она оказалась возможной только после того, как мы перестали считать кривые Пеано чем-то заведомо патологическим. В самом деле, если мы хотим, чтобы древовидная структура, составленная из рек исчезающей ширины, собрала всю воду с некоторого участка, ей просто не остается ничего другого, как проникнуть во все точки этого участка. Всякий, кто отправится прогуляться по берегам всех рек данной системы, совершит заполняющее плоскость путешествие. Не верите? Спросите у любого ребенка!

Вооружившись интуицией, подкрепленной рис. 104, мы с легкостью обнаружим аналогичные сопряженные конструкции во всех тера- гонах Пеано. Даже грубый остров с рис. 95 приобретает в этом свете некое осмысленное содержание. Пронизывающие его тонкие ленты воды нельзя принять за фьорды, как бы мы ни напрягали наше воображение, однако их вполне можно рассматривать как речную систему.

Когда из изучения рек вырастет настоящая наука, ее следует назвать потамологией — термин, созданный Морисом Парде. Однако, по трезвом размышлении, приходится признать, что изучение рек — это лишь часть более общей науки о воде, гидрологии, во владения которой на протяжении этого эссе мы еще не раз наведаемся.

 

НЕИЗБЕЖНЫЕ КРАТНЫЕ ТОЧКИ ДЕРЕВЬЕВ И, КАК СЛЕДСТВИЕ, ДВИЖЕНИЙ ПЕАНО

Неожиданно находят очевидное объяснение и многие математические свойства кривых Пеано. Чтобы объяснить кратные точки, предположим, что некто начинает движение вдоль берега реки, являющейся частью дерева рек Пеано, и движется вверх или вниз по течению, обходя даже самые маленькие притоки (причем чем уже приток, тем быстрее движение). Очевидно, что в конечном счете наш путешественник придет в точку, которая находится на другом берегу напротив точки его отправления. А поскольку в пределе река бесконечно узка, то он по существу вернется в начальную точку. Таким образом, кратные точки на кривой Пеано представляются неизбежными не только с математически логической точки зрения, но и с позиций здравого смысла. Более того, эти точки всюду плотны.

Неизбежно также, что некоторые точки он посетит более чем дважды, так как в местах слияния рек совпадают по меньшей мере три береговых точки. Если все слияния ограничиваются только двумя реками, нет необходимости учитывать более чем тройную кратность. С другой стороны, если мы согласны иметь точки более высокой кратности, можно обойтись и без тройных точек.

Все утверждения, высказанные в предыдущих абзацах, доказаны, и, поскольку доказательства весьма деликатны и вызвали в свое время немало бурных дискуссий, сами свойства можно было бы, по всей видимости, отнести к «техническим подробностям». Если бы не одно «но». Кто теперь будет продолжать настаивать, что чисто логический подход к упомянутым свойствам имеет хоть какие-то преимущества перед моим интуитивным подходом, основанном на здравом смысле?

Как правило, реки Пеано представляют собой не стандартные фигуры, но фрактальные кривые. Это весьма удачно для нужд моделирования, так как все, что говорилось в главе 5 относительно неспрямляемости географических кривых, в полной мере касается и берегов рек. Больше того, среди приводимых Ричардсоном данных имеются сведения и о таких государственных границах, которые частично проходят по рекам и границам водоразделов. А в цитате из Штейнгауза [539] реки и вовсе упоминаются открытым текстом. Что касается водосборных бассейнов рек, то каждый из них может быть окружен замкнутой кривой, напоминающей береговую линию и составленной из участков границы водораздела. Бассейн любой крупной реки представляет собой совокупность бассейнов более мелких рек и притоков, вдоль и поперек исчерченную этими самыми реками и притоками, однако для исчерпывающего описания столь сложной на первый взгляд структуры нам необходимы всего лишь несколько заполняющих плоскость кривых, ограниченных кривыми фрактальными.

 

ДВИЖЕНИЕ ПЕАНО И ПЕРТАЙЛИНГ

Возьмем оригинальную кривую Пеано (см. рис. 95) и представим величину t как число в системе исчисления с основанием N=9 вида 0,τ1 ,τ2 ,... Значения времени с одинаковым первым «знаком» после запятой отобразятся на одну и ту же девятую часть исходного квадрата, значения с одинаковым вторым «знаком» отобразятся на одну и ту же восемьдесят первую (92 ) часть исходного квадрата и т. д. Таким образом, покрытие отрезка [0, 1] отображается на покрытие квадрата. Последовательные девятые доли линейных плиток отображаются на последовательные подплитки плоскости. А свойство отрезка, именуемое пертайлинг, т. е. рекурсивная и бесконечная разбиваемость на меньшие плитки, подобные целому отрезку [0, 1], отображается на аналогичное свойство квадрата. Различные движения Пеано, коими мы обязаны Э.Чезаро и Д. Пойа, отображают это свойство также и на всевозможные самоподобные покрытия треугольников.

В более общем смысле большинство движений Пеано порождают самоподобные покрытия плоскости. В простейшем случае существует некое основание N, и мы начинаем с линейного пертайлинга, заключающегося в последовательном разбиении целого на N-е доли. Однако прохождение снежинки, изображенное на рис. 104 и 105, подразумевает неравномерное разбиение интервала времени t [0, 1] сначала на четыре подынтервала длиной 1/9, затем на четыре подынтервала длиной 1/9√3, один — 1/9, два — 1/9√3 и два — 1/9.

 

ОБ ИЗМЕРЕНИИ РАССТОЯНИЯ ПЛОЩАДЬЮ

Движения Пеано нередко подразумевают весьма деликатные взаимоотношения между длиной и площадью, в которых эти понятия подчас меняются местами. Особенно характерно это для изометрического движения, т.е. такого, при котором временной интервал отображается на площадь, равную длине (Большинству движений Пеано присущи одновременно и изометрия, и пертайлинг, однако эти два понятия не следует смешивать.) Называя отображение временного интервала плоским интервалом Пеано, мы подразумеваем, что вместо измерения расстояний через изменение значения времени, можно измерять их непосредственно на площади. Здесь, правда, возникает одна весьма существенная сложность — точки, расположенные напротив друг друга на разных берегах реки, совпадают в пространстве, но посещаются в разные моменты времени.

Определение «расстояния Пеано» может включать в себя только порядок посещений. Обозначим моменты первых посещений точек P1 и P2 через t'1 и t'2 , а моменты последних посещений — через t''1 и t''2 . Тогда левый интервал Пеано определяется как отображение интервала , а правый интервал Пеано — как отображение интервала . Длины этих интервалов определяют левое и правое расстояния как и . Каждое из этих расстояний аддитивно, т. е. если расположить, скажем, три точки P1 , P2 и P3 в порядке их первых посещений, то мы получим

.

Другие определения интервала и расстояния различают точки реки и точки водораздела. Обозначим через t' и t'' моменты первого и последнего посещения точки P. Точка P считается точкой реки, если отображение интервала ограничено этой точкой и кривыми водораздела. Последовательные посещения точки P располагаются друг против друга на противоположных берегах реки. Точка P считается точкой водораздела, если отображение интервала ограничено этой точкой и реками.

В случае, если кривая Пеано представлена как общая граница между деревом рек и деревом водоразделов, пути, соединяющие точки P1 и P2 , расположенные на противоположных берегах реки (т. е. вдоль водораздела), включают в себя наикратчайший общий путь. Представляется разумным при измерении расстояния между точками P1 и P2 следовать как раз этим путем. Если не считать некоторых исключений, размерность D как дерева рек, так и дерева водоразделов строго меньше 2 и строго больше 1. Следовательно, наикратчайший путь нельзя измерить ни длиной, ни площадью, однако в типичных случаях он имеет нетривиальную хаусдорфову протяженность в размерности D.

И еще. Очень важные дополнительные соображения относительно движений Пеано подробно изложены в пояснениях к нижеследующим рисункам.

Рис. 95. КВАДРАТИЧНОЕ ПОСТРОЕНИЕ КОХА С РАЗМЕРНОСТЬЮ D=2: ОРИГИНАЛЬНАЯ КРИВАЯ ПЕАНО, ПРОХОЖДЕНИЕ КВАДРАТА

Заполняющая плоскость кривая Пеано, представленная на этом рисунке, является оригинальной кривой Пеано. Невероятно краткий алгоритм Джузеппе Пеано был графически воплощен в работе Мура [435] (которая получила, пожалуй, чрезмерно высокую оценку во «Фракталах» 1977 г.). На нашем рисунке кривая Пеано развернута на 45 градусов — тем самым эта «блудная» конструкция оказывается возвращенной в лоно кривых Коха, т. е. теперь генератор всегда одинаково размещается на сторонах терагона, полученного на предыдущем этапе построения.

Инициатором здесь выступает единичный квадрат (черный внутри), а генератор выглядит следующим образом:

Поскольку генератор — самокасающаяся кривая, получаемые в результате построения конечные острова Коха представляют собой скопления черных квадратов, словно вырезанных из бесконечной шахматной доски. После n-го этапа построения терагон Коха выглядит как решетка из прямых с шагом r) = эта решетка заполняет квадрат, площадь которого равна 2, причем плотность линий быстро возрастает по мере того, как k→∞ (вполне достаточный пример этого однообразного узора показан на рисунке рядом с исходным черным квадратом).

На трех верхних картинках двусмысленность самокасаний устранена путем срезания соответствующих углов с сохранением общей площади.

Если четвертый этап построения данной кривой изобразить в том же масштабе, то мы увидим лишь сплошной серый фон, однако увеличенное изображение одной четвертой части, получающейся в результате береговой линии, вполне можно проследить взглядом (рискуя, правда, заработать при этом морскую болезнь). Глядя на этот рисунок, понимаешь, что люди имеют в виду, когда говорят, что предельная кривая Коха заполняет плоскость.

Было бы замечательно, если бы мы смогли определить в этом случае предельный остров по аналогии с островами Коха в главе 6, однако здесь это, к сожалению, невозможно. Любая выбранная наугад точка почти наверняка будет бесконечно колебаться между сушей и морем. Терагоны на поздних этапах построения пронизаны бухтами или реками настолько глубоко и однородно, что суша и вода делят любой квадрат среднего размера x (такого, что η≤x≤1) практически пополам!

Интерпретация. Предельная кривая Пеано устанавливает непрерывное соответствие между прямой и плоскостью. Математическая неизбежность самокасаний — классический результат. Новым является тот факт, что самокасания играют важную роль в моделировании природных феноменов.

Дальний порядок. Не зная о нисходящих каскадах, ответственных за построение наших конечных кривых Пеано, можно только изумиться тому необычайному дальнему порядку, который позволяет этим кривым избегать не только самопересечений, но и самокасаний. Что касается последнего, то весь порядок вообще держится только на жесточайшей дисциплине: малейшее послабление — и все насмарку!

< А если совсем позабыть о дисциплине, то мы почти наверняка не получим ничего, кроме бесконечно повторяющихся самопересечений, поскольку полностью недисциплинированная кривая Пеано — это броуновское движение, о котором мы уже упоминали во второй главе и поговорим подробнее в главе 25.

Теорема Лиувилля и эргодичность. В механике принято представлять состояние сложной системы одной-единственной точкой в «фазовом пространстве». Известно, что в случаях применения к этому пространству уравнений движения каждая его область ведет себя следующим образом: ее протяженность (гиперобъем) остается инвариантной (теорема Лиувилля), однако ее форма меняется — область рассеивается и заполняет весь доступный объем с максимально возможной однородностью. Очевидно, что оба этих свойства находят отражение в том, как, с нашей легкой руки, ведет себя черный квадрат при построении кривой Пеано. Представляется интересным «копнуть» глубже и увидеть, что во многих упрощенных «динамических» системах, допускающих подробное изучение, каждая область рассеивается, трансформируясь во все удлиняющуюся и утончающуюся ленту. Интересно также было бы выяснить, не происходит ли дисперсия других систем по древовидным кривым Пеано вместо лент. ►

 

РИС. 98 И 99. КВАДРАТИЧНЫЕ ПОСТРОЕНИЯ КОХА С РАЗМЕРНОСТЬЮ

D=2

: ПРОХОЖДЕНИЯ ТРЕУГОЛЬНИКА ПО ЧЕЗАРО И ПО ПОЙА И ИХ ВАРИАНТЫ

Простейшим генератором, какой только можно в этом случае вообразить, является ломаная, состоящая из N=2 равных отрезков, угол θ между которыми удовлетворяет условию 90°≤θ≤180°. В предельном случае θ=180° генератор представляет собой отрезок прямой; случай θ=120° (проиллюстрированный в пояснении к рис. 71) порождает (помимо прочих) троичную кривую Коха. Генератор для предельного случая θ=90° показан ниже:

Используя этот генератор, можно построить невообразимое множество различных кривых Пеано (различия обусловлены формой инициатора и способом помещения генератора на предшествующий терагон). На рис. 98-102 дано несколько примечательных примеров.

< Кроме того, в главе 25 с помощью рандомизации всех кривых Пеано с данными Nr мы получим самое что ни на есть броуновское движение. ►

Прохождение треугольника по Пойа. Инициатор отрезок [0, 1], генератор — как на рисунке вверху. Генератор поочередно занимает правое и левое положение относительно терагона, причем его положение относительно начального отрезка (правое или левое) также поочередно меняется. Ниже показаны третий и четвертый этапы построения:

Терагоны напоминают квадратные куски диаграммной бумаги, запихнутые внутрь прямоугольного равнобедренного треугольника, один из катетов которого и есть исходный отрезок [0, 1]. Предельная кривая проходит по всей внутренней области треугольника.

Рис. 98. Прохождение Пойя по прямоугольному неравнобедренному треугольнику. Изменим генератор таким образом, чтобы он состоял из двух неравных отрезков, расположенных под прямым углом друг к другу. Читателю (в качестве упражнения) остается лишь придумать, как в этом случае построить кривую, избегающую самокасаний.

Прохождение треугольника по Чезаро. Инициатор — отрезок [0, 1], генератор — тот же, что и для прохождения по Пойа. Два следующих этапа построения приведены ниже (для большей ясности построения угол θ на рисунке равен 85 градусов вместо θ=90°).

То есть на всех этапах с нечетными номерами генератор располагается справа от кривой; получаемый в результате терагон представляет собой решетку из прямых, параллельных диагоналям инициатора. На всех же этапах с четными номерами генератор располагается слева от кривой; прямые, составляющие решетку получаемого при этом терагона, оказываются параллельными сторонам инициатора. Кривая асимптотически заполняет прямоугольный равнобедренный треугольник, причем исходный отрезок [0, 1] является гипотенузой этого треугольника.

Рис. 99. На рисунке изображено прохождение квадрата, полученное соединением двух прохождений Чезаро с инициаторами [0, 1] и [1,0]. (И здесь угол θ=90° заменен углом θ=85° для ясности построения.)

Самоперекрытие. Каждый отрезок в решетках, покрываемых терагонами Чезаро, покрывается дважды. Конструкция содержит не только самокасания, но и самоперекрытия.

«Эффективность» заполнения плоскости. Одно экстремальное свойство расстояния Пеано - Чезаро. Кривая Пеано с рис. 95 отображает отрезок [0, 1] на квадрат с диагональю [0, 1] иплощадью 1/2. Такая же фигура покрывается и кривой Пойа. Однако кривая Чезаро заполняет всего лишь прямоугольный равнобедренный треугольник с гипотенузой [0, 1] и площадью 1/4. Для того, чтобы покрыть весь квадрат, необходимо отобразить по Чезаро два отрезка, [1, 0] и [0, 1]. Таким образом, из двух рассматриваемых кривых кривая Чезаро оказывается менее «эффективной». Более того, кривая Чезаро вообще самая «неэффективная» кривая Пеано без самопересечений на квадратной решетке. Однако благодаря этому обстоятельству, она — видимо, в качестве компенсации — обладает одним замечательным свойством: левое или правое расстояния Пеано (см. с. 93) между точками P1 и P2 оказывается большим или равным квадрату евклидова расстояния между этими точками:

; .

Для других кривых Пеано разница между расстоянием Пеано и евклидовым расстоянием может быть как положительной, так и отрицательной.

Задача Какутани - Гомори. Какутани (источник — частная беседа) предлагает выбрать M точек Pm внутри единичного квадрата и рассмотреть выражение , в котором инфимум вычисляется по всем линиям, соединяющим точки Pm последовательно. Он доказывает, inf≤8, но полагает, что этот предел не является наилучшим. В самом деле, Р. Э. Гомори сообщает (источник — частная беседа), что он получил уточненный предел inf≤4. При доказательстве Гомори использует кривую Пеано-Чезаро следующим образом: (А) добавим к множеству точек Pm угловые точки квадрата, если они этому множеству еще не принадлежат; (В) расположим M точек Pm в порядке их первых посещений последовательностью из четырех кривых Пеано- Чезаро, построенных внутри квадрата вдоль его сторон; (С) убедимся, что удлинение цепочки на этапе (А) не повлекло за собой уменьшения ; D) убедимся, что каждое слагаемое не уменьшается при замене его на ; (Е) . При использовании других кривых Пеано этапы (В) и (D) следует исключить.

 

РИС. 101 И 102. ПРОХОЖДЕНИЯ КВАДРАТА И ДРАКОНА

Генератор здесь тот же, что и для предыдущих кривых, однако незначительные, на первый взгляд, изменения в других правилах оказывают значительное влияние на результат.

Прохождение квадрата по Пеано, более поздний вариант.

Инициатор отрезок [0, 1], а второй, четвертый и шестой этапы построения выглядят следующим образом:

Эффективность. Экстремальное свойство. Эта кривая заполняет область, площадь которой равна 1, тогда как кривые на рис. 98 и 99, а также кривая дракона, которую мы рассмотрим ниже, покрывают лишь 1/2 или 1/4. Если терагоны лежат на прямоугольной решетке, покрываемая ими область не может превышать 1. Этого максимума она достигает лишь в случае терагонов без самопересечений. Иными словами, отсутствие самокасаний важно не только с эстетической точки зрения, а самокасающаяся кривая со срезанными точками самокасаний (как на рис. 95) не становится от этого эквивалентной кривой Коха без самопересечений.

Взяв только нечетные этапы построения данного прохождения квадрата и соединив средние точки последовательных отрезков терагонов (чтобы избежать самокасаний), мы возвратимся к кривой Пеано, вариант Гильберта.

Рис. 102. Кривая, заполняющая прямоугольную трапецию. Изменим генератор таким образом, чтобы он представлял собой ломаную, составленную из двух неравных отрезков под прямым углом друг к другу. Избегающее самопересечений построение аналогично построению кривой на предыдущем рисунке.

Дракон Хартера-Хейтуэя. (См. [162] и [95].) Инициатор — отрезок [0, 1], генератор — как в начале пояснения к рис. 98. Генератор поочередно занимает правое и левое положение относительно терагона. Единственное отличие от построения прохождения треугольника по Пойа заключается в том, что на всех этапах построения генератор помещается справа от начального отрезка кривой. Ниже показаны третий и четвертый этапы построения:

Последствия этого незначительного изменения выглядят весьма впечатляюще:

На этой иллюстрации нельзя различить саму кривую, мы видим лишь ее границу, которая называется кривой дракона. Таким образом, эта кривая Пеано имеет полное право называться прохождением дракона. Как и любая другая кривая Коха, инициатором которой служит отрезок [0, 1], дракон самоподобен. Кроме того, отчетливо видно, что дракон разделен на части, соединяющиеся между собой тонкими переходами. Эти части подобны друг другу, но не целому дракону.

Двойной дракон. Во «Фракталах» 1977 года отмечалось, что при таких «драконовских» правилах построения данной кривой более естественным инициатором представляется последовательность отрезков [0, 1] и [1,0]. Фигуру, которую в итоге заполняет кривая, я назвал двойным драконом. Эта фигура получила числовое представление в [272]. Выглядит она вот так (один дракон — черный, другой — серый):

Река двойного дракона. Стерев (ради удобства рассмотрения) мелкие притоки, получим древовидную реку двойного дракона:

Двойного дракона можно разбить на его уменьшенные подобия

Шкура двойного дракона. Шкура представляет собой кривую Коха со следующим генератором:

Размеры длинного и короткого отрезков составляют соответственно r1 =1/√2 и . Следовательно, генерирующая размерность функция имеет вид , а величина x=2D/2 удовлетворяет x3 −x2 −1=0.

Другие драконы. (См. [95].) Возьмем некоторую бесконечную последовательность x1 ,x2 ,..., где каждый xk может быть либо 0, либо 1, и воспользуемся значением xk для определения положения генератора при начальном отрезке на k-м этапе построения: если xk =1, то первый генератор расположен справа, если же xk =0, то первый генератор расположен слева. Каждая такая последовательность породит нового дракона.

Рис. 104 и 105. ПРОХОЖДЕНИЯ СНЕЖИНОК: НОВЫЕ КРИВЫЕ И ДЕРЕВЬЯ ПЕАНО (РАЗМЕРНОСТЬ ВОДОРАЗДЕЛОВ И РЕК D~1,2618)

На этих иллюстрациях представлено семейство кривых Пеано моего собственноручного изготовления. Они заполняют оригинальную снежинку Коха (см. рис. 74); тем самым оказываются сведены нос к носу два главных чудовища начала века.

Более важное их достоинство заключается в том, что одного взгляда на них достаточно для подтверждения справедливости одного из основных положений настоящего эссе: кривые Пеано ни в коем случае не являются математическими чудовищами, не допускающими никакой конкретной интерпретации. При отсутствии самокасаний кривые Пеано дают ясно видимую и легко интерпретируемую картину скопления сопряженных деревьев. Эти деревья представляют собой хорошие модели первого порядка для рек, водоразделов, настоящих деревьев и кровеносной системы человека.

Ко всему прочему, мы получаем здесь и замечательный побочный продукт: способ разбиения снежинки на меньшие неравные снежинки.

Семизвенный генератор. Инициатор остается неизменным [0,1], а генератор и второй этап построения выглядят следующим образом:

Чтобы быть более точными, обозначим изображенный выше генератор буквой S и назовем его прямым. Определим зеркальное отражение генератора S относительно прямой x=1/2 как обратный генератор F. На любом этапе построения прохождения снежинки можно использовать как S-, так и F-генераторы, на выбор. То есть каждая бесконечная последовательность символов S и F даст в результате новую кривую, заполняющую снежинку.

Сглаженные терагоны. Ломаные линии выглядят несколько грубовато, но вот если представить каждый отрезок в виде дуги в одну шестую окружности, то заполняющие снежинку терагоны будут выглядеть изотропными и вообще гораздо более «естественными».

Рис. 74. Давным-давно, еще на рис. 74, мы использовали продвинутый терагон семизвенного прохождения снежинки, сглаженного и закрашенного, для заполнения озера волнующейся водой. Теперь, когда мы снова рассматриваем эту картину, она ассоциируется у нас с жидкостью, текущей вдоль фрактальной границы, причем хорошо различимы два приблизительно параллельных потока, движущиеся с различными скоростями.

Тринадцатизвенный генератор. Изменим предыдущий генератор, состоящий из семи отрезков, заменив его пятое звено на уменьшенную копию всего генератора. Эта копия также может иметь S- и F- варианты. В последнем случае получим следующие генератор и второй этап построения:

Рис. 104. Этот продвинутый терагон, изображенный в виде границы между двумя причудливо переплетенным областями, лучше всяких слов объясняет значение термина «заполнение плоскости».

Рис. 105. Сгладим построенный выше 13-звенный генератор. Сгладим также и снежинку Коха. Первые этапы получаемого в результате построения приведены на рис. 105.

Размерности рек. Каждая отдельная река в оригинальной кривой Пеано имеет конечную длину и, как следствие, размерность 1. В данном случае размерность отдельных рек равна ln4/ln3. Для достижения размерности 2, все реки нужно рассматривать в совокупности.

Рис. 106 и 107. КРИВАЯ ПЕАНО-ГОСПЕРА. ЕЕ ДЕРЕВЬЯ И АНАЛОГИЧНЫЕ ДЕРЕВЬЯ КОХА (РАЗМЕРНОСТЬ ВОДОРАЗДЕЛОВ И РЕК D~1,1291)

К рис. 75. На этом рисунке не получившие в свое время объяснения тонкие ломаные линии представляют собой начальные этапы построения (с 1-го по 4-й) кривой Пеано в интерпретации Госпера (см. [163]). Это — первая кривая Пеано без самопересечений, полученная только методом Коха, без дальнейшей доработки.

Инициатор — отрезок [0, 1]. Генератор —

Если развернуть генератор против часовой стрелки так, чтобы его первое звено заняло горизонтальное положение, то становится видно, что он является частью треугольной решетки, занимая на ней 7 из 3х7 звеньев. Благодаря этой особенности треугольные решетки приобретают свойство, аналогичное описанному на с. 101 свойству квадратных решеток.

Теперь мы можем убедиться в том, что данная кривая Пеано действительно заполняет фигуру, ограниченную кривой Коха на рис. 75. Линия переменной толщины внутри кривой Коха на рис. 75 представляет собой результат пятого этапа настоящего построения.

Рис. 106, слева. Четвертый терагон кривой Госпера, перерисованный в виде границы между черной и белой областями.

Рис. 106, справа. Деревья рек и водоразделов. Изображены реки и водоразделы, проходящие по средним линиям черных и белых «пальцев» кривой, показанной на этом же рисунке слева.

Рис. 107, вверху. Мы взяли древовидную структуру рек и водоразделов, показанную на рис. 106 справа, и привели толщину линий в соответствие с их относительной значимостью в схеме Хортона-Штралера (см. [297]). В настоящем примере каждой кривой (и рекам, и водоразделам) назначается ширина, пропорциональная ее длине по прямой. Реки даны черным, водоразделы — серым.

Размерности. Каждая кривая Пеано определяет размерность D собственной границы. На рис. 95 и 98 указанная граница представляет собой просто квадрат. На последующих рисунках появляются драконова шкура и кривая-снежинка. Здесь же мы имеем дело с фрактальной кривой, размерность которой D~1,1291 и которая состоит отчасти из рек, отчасти из водоразделов. Все другие реки и водоразделы сходятся к кривой с фрактальной размерностью D=1,1291.

Франция. Тому, кто, будучи школьником, часто разглядывал карту бассейнов Луары и Гаронны, наши иллюстрации наверняка о многом напомнят.

Рис. 107, внизу. Дерево рек, построенное непосредственно с помощью каскада Коха. Когда сам генератор имеет древовидную структуру, он порождает при построении дерево. Пусть, например, генератор выглядит вот так:

Получаем еще один способ осушения внутренней области кривой Коха с рис. 75. (Ветви, расположенные у самых «истоков», были обрезаны.)

 

РИС. 109 И 110. ЗАПОЛНЯЮЩИЕ ПЛОСКОСТЬ ФРАКТАЛЬНЫЕ ДЕРЕВЬЯ, ПЕРЕКОШЕННАЯ СНЕЖИНКА И КВАРТЕТ

Заполняющие плоскость «речные» деревья, получаемые из некоторых кривых Пеано, могут быть получены и с помощью прямого рекурсивного построения. Ключом здесь служит генератор, который сам имеет древовидную форму. Простейший и скучнейший пример: генератор составлен из четырех отрезков, образующих фигуру, похожую на знак «+». В результате построения получим речное дерево кривой Пеано- Чезаро (см. рис. 99).

Перекошенная снежинка. Более интересного результата можно достичь, взяв в качестве инициатора отрезок [0, 1], а в качестве генератора — следующую фигуру:

Для начала обратим внимание на то, что отдельные реки порождаются генератором, который смещает среднюю точку отрезка (таким, например, как на рис. 71). Следовательно, всякая асимптотическая река имеет размерность D=ln2/ln√3=ln4/ln3. Это значение хорошо знакомо нам еще по снежинке Коха, однако кривая, которой мы намерены заняться теперь, — не снежинка, поскольку размещение генератора на прямолинейных отрезках следует иному правилу.

Если мы хотим, чтобы осталось место для рек, необходимо, чтобы положение генератора с каждым отрезком менялось с правого на левое и наоборот. Таким образом симметрия снежинки искажается, а новая область для заполнения реками заслуживает себе имя — перекошенная снежинка.

Вернемся к дереву рек. Его терагоны не перекрывают сами себя, но самокасаний здесь очень много. Неизбежен — и даже напрашивается — асимптотический вариант этой особенности, поскольку он вполне верно отражает тот факт, что иногда несколько рек начинаются в одной точке. Как мы увидим чуть позже, речные терагоны могут и вовсе обходиться без самокасаний. Рассматриваемый же речной терагон — как раз благодаря самокасаниям — представляет собой ({- неразборчиво заштрихованный обрывок гексагональной диаграммной бумаги в форме близкой фрактальной кривой.

Рис. 110, вверху. Речное дерево станет более явным, если стереть все участки реки, соприкасающиеся с истоком, и изобразить главную реку более жирной линией. Площадь бассейна такой реки составляет √3/2~0,8660.

Прохождение перекошенной снежинки. Построим кривую Пеано, инициатор которой имеет форму равностороннего треугольника, а генератор представляет собой ломаную линию, звенья которой равны и расположены под углом в 60° друг к другу. Это — крайний случай при M=3 из семейства генераторов, использованных при построении кривых на рис. 75 и 76, причем он значительно отличается от остальных случаев этого семейства. Подробнее см. в [95].

Можно легко убедиться, что дерево рек этой кривой Пеано совпадает с деревом, которое мы только что получили с помощью прямого построения. Длина стороны инициатора равна 1, а площадь, заполняемая соответствующей кривой Пеано, составляет √3/6~0,2886 (очень неэффективно!).

Квартет. Теперь рассмотрим другую кривую Коха вместе с тремя кривыми, заполняющими ее: одной кривой Пеано и двумя деревьями. Эти придуманные мною фигуры иллюстрируют еще одну весьма интересную тему.

Инициатором снова будет отрезок [0, 1], а генератор выглядит следующим образом:

Граница заполняемой области стремится в пределе к кривой Коха с размерностью D=ln3/ln√5=1,3652. Продвинутые терагоны границы и кривой Пеано составляют центр рис. 79; я назвал эту фигуру квартетом. Каждый «игрок», равно как и стол между ними, способен к самоподобному разбиению плоскости.

Внутренняя область квартета заполняется, конечно же, и его собственным деревом рек. Однако если воспользоваться каким-либо из следующих генераторов, можно получить совершенно другие варианты заполнения:

Терагоны, построенные с использованием левого генератора, демонстрируют самокасания (как и кривые в первом примере данного пояснения). Заполняемая площадь составляет 1/2. Правый генератор позволяет терагонам избежать самокасаний, и заполняемая площадь увеличивается до 1. На рис. 110 (внизу) показан один из продвинутых терагонов такой кривой.

 

8 ФРАКТАЛЬНЫЕ СОБЫТИЯ И КАНТОРОВА ПЫЛЬ

 

Основная цель этой главы — по возможности безболезненное — но достаточно подробное — ознакомление читателя с еще одним математическим объектом из тех, что обычно рассматриваются как патологические, — с канторовой пылью, С. Фрактальная размерность канторовой пыли и других родственных ей пыльных структур, которые мы здесь рассмотрим, находится в интервале от 0 до 1.

Так как эти структуры образованы точками на прямой, их сравнительно легко изучать. Кроме того, с их помощью можно в наипростейшей форме представить некоторые понятия, занимающие центральное место в теории фракталов, но настолько редко применявшиеся в прошлом, что для их обозначения даже не было придумано терминов. Начнем с термина «пыль», который теперь приобретает специальный смысл как неформальный эквивалент термина «множество, топологическая размерностьDT которого равна 0» (так же, как «кривая» и «плоскость» означают множества, топологическая размерность которых равна, соответственно, 1 и 2). Другие новые термины — такие, например, как творог, пауза и трема — будут объяснены ниже.

 

ШУМ

Обычный человек называет шумом звук, который либо слишком силен, либо не имеет подходящего ритма или ясной цели, либо просто мешает слушать более приятные звуки. Партридж [463] заявляет, что слово «шум» «происходит от латинского nausea «тошнота» (родственного латинскому же nautes «моряк»); можно легко проследить семантическую связь, представив себе звуки, издаваемые толпой пассажиров древнего корабля, попавшего в бурю». («Оксфордский словарь английского языка», похоже, имеет на этот счет другое мнение.) Что до современной физики, то она определяет термин «шум» (менее живописно и далеко не так точно) как синоним случайных флуктуаций или ошибок независимо от их происхождения или проявлений. Канторова пыль С в этой главе вводится через изучение прецедента, а в роли прецедента выступает несколько эзотерический, но довольно простой шум.

 

ОШИБКИ В ЛИНИЯХ ПЕРЕДАЧИ ДАННЫХ

Канал передачи — это некая физическая система, способная передавать электрический сигнал. Однако электрический ток, к сожалению, не свободен от спонтанных шумов. Качество передачи зависит от вероятности возникновения ошибок, обусловленных шумовыми искажениями, которые, в свою очередь, зависят от отношения интенсивности сигнала и шума.

В этой главе мы будем говорить о каналах, по которым данные передаются между компьютерами и используются чрезвычайно сильные сигналы. Интересная особенность заключается в том, что сигнал дискретен; следовательно, распределение шумов донельзя упрощается распределением ошибок. Шум представляет собой некую функцию, которая может иметь множество значений, в то время как функция ошибок может иметь только два возможных значения. В ее роли может выступать, скажем, характеристическая функция, которая при отсутствии ошибок в некий момент времени t равна 0, а при наличии ошибки принимает значение 1.

Физики уже разобрались в структуре шумов, которые преобладают в случае слабых сигналов (тепловой шум, например). Однако в вышеописанной задаче сигнал настолько силен, что классическими шумами можно пренебречь.

Что касается тех шумов, которыми пренебречь нельзя, — избыточных шумов — они сложны и захватывающи, потому что о них почти ничего не известно. Мы рассмотрим один такой избыточный шум, который приблизительно в 1962 году настолько заинтересовал инженеров- электриков, что для его изучения потребовалась помощь различных специалистов в других областях. Я также внес свой скромный вклад в общее дело — занимаясь именно этой конкретной практической задачей, я впервые ощутил нужду во фракталах. Никто в то время даже отдаленно не представлял себе, насколько далеко заведет нас тщательное изучение этой, казалось бы незначительной, инженерной проблемы.

 

ПАКЕТЫ И ПАУЗЫ

Подвергнем ошибки анализу с постепенно возрастающей точностью. Грубый анализ показывает наличие периодов, во время которых не зарегистрировано ни одной ошибки. Условимся называть эти периоды затишья «паузами нулевого ранга», если их длительность превышает один час. Любой временной промежуток, ограниченный с обеих сторон паузами нулевого ранга, назовем «пакетом ошибок нулевого ранга». Увеличив точность анализа в три раза, мы увидим, что исходный пакет также «прерывист». То есть более короткие паузы «первого ранга» длительностью 20 мин или больше перемежаются более короткими пакетами «первого ранга». Аналогично, каждый из последних содержит несколько пауз «второго ранга» длительностью 400 с, разделяющих пакеты «второго ранга» и т.д.; каждый этап основывается на паузах и пакетах, в три раза более коротких, чем предыдущие. Грубую иллюстрацию этого процесса можно видеть на рис. 120. (На пояснение пока внимания не обращайте.)

Предыдущее описание предполагает существование такого понятия, как относительное расположение пакетов k-го ранга внутри пакета k−1-го ранга. Распределение вероятностей этих относительных расположений, по всей видимости, не зависит от k. Очевидно, такая инвариантность говорит о самоподобии, а там и до фрактальной размерности недалеко, однако не будем спешить. Рассмотрения различных прецедентов, содержащиеся в настоящем эссе, нацелены, помимо прочего, как на обнаружение нового, так и на уточнение старого. Исходя из этих соображений, представляется оправданным несколько изменить исторический порядок и представить новое с помощью грубого неслучайного варианта стохастической модели ошибок Бергера - Мандельброта (см. главу 31).

 

ПРИБЛИЖЕННАЯ МОДЕЛЬ ПАКЕТОВ ОШИБОК: ФРАКТАЛЬНАЯ КАНТОРОВА ПЫЛЬ

C

В предыдущем разделе мы предприняли попытку построить множество ошибок, начав с прямой линии, представляющей временную ось, и вырезая все уменьшающиеся свободные от ошибок паузы. Возможно, для естественных наук такая процедура и внове, однако в чистой математике она используется довольно давно — по меньшей мере, со времен Георга Кантора (см. [207], особенно с. 58).

У Кантора (см. [62]) инициатором служит замкнутый интервал [0,1]. Термин «замкнутый» и квадратные скобки означают, что крайние точки принадлежат интервалу: такая запись уже использовалась в главе 6, однако до сих пор у нас не было необходимости указывать на это явным образом. Первый этап построения состоит в разделении интервала [0,1] на три участка и удалении открытой средней трети, которая обозначается ]1/3, 2/3[. Термин «открытый» и развернутые квадратные скобки означают, что крайние точки интервала в этот интервал не входят. Затем удаляются средние трети каждого из N=2 оставшихся отрезков. И так далее до бесконечности.

Получаемое в результате множество остатков C называется либо двоичным, поскольку N=2, либо троичным, поскольку исходный интервал делится на три части.

В общем случае количество частей, называемое основанием, обозначается буквой b, причем отношение между N-й частью множества и всем множеством определяется коэффициентом подобия r=1/b. Множество C называется также канторовым дисконтинуумом; чуть позже я предложу свой термин «канторова фрактальная пыль». И еще: так как точка на временной оси отмечает некое «событие», множество C представляет собой фрактальную последовательность событий.

 

СТВОРАЖИВАНИЕ, ТРЕМЫ И СЫВОРОТКА

В рамках термина, который Льюис Ричардсон применил к турбулентности, а мы позаимствовали для описания береговых линий и кривых Коха в главе 6, канторова процедура является каскадом. «Вещество», однородно распределенное вдоль инициатора [0, 1], подвергается воздействию центробежного вихря, который «сметает» его к крайним третям интервала.

Среднюю треть, вырезанную из интервала [0, 1], мы будем называть трёма-генератором. Этот неологизм образован от греческого слова, означающего «дыра, отверстие» (дальним родственником этого слова является латинское termes «термит»). Это, пожалуй, самое короткое греческое слово из тех, что на сегодняшний день еще не обзавелись значительной терминологической нагрузкой.

В данном контексте тремы совпадают с паузами, однако в других примерах, с которыми мы встретимся позже, совпадения не происходит, поэтому и возникла необходимость в двух разных терминах.

По мере того, как опустошается «трема первого порядка», вещество сохраняется и перераспределяется с однородной плотностью по внешним третям, которые мы будем называть предтворогом. Здесь в действие вступают еще два вихря, и та же процедура повторяется на интервалах [0, 1/3] и [2/3, 1]. Процесс продолжается как ричардсонов каскад, стремясь в пределе к множеству, которое мы назовем творогом. Если длительность этапа пропорциональна размеру вихря, то общая длительность процесса конечна.

Для пространства, не занятого творогом, я предлагаю термин сыворотка (в совокупности получаем вполне полноценную простоквашу).

Предполагается, что эти термины будут использоваться не только в их математическом значении, но для выражения их физического смысла. Створаживанием можно называть любой каскад неустойчивых состояний, приводящий в итоге к сгущению вещества, а термин творог может определять объем, внутри которого некая физическая характеристика становится — в результате створаживания — чрезвычайно концентрированной.

Этимология. Слово «творог» происходит от древнеанглийского crudan «давить, жать, сильно толкать». Не следует думать, будто эта маленькая демонстрация эрудиции, позаимствованной у Партриджа [463], является абсолютно бесполезной — этимологические родственники творога несомненно интересуют нас с фрактальной точки зрения (см. гла- ву 23).

Обратите внимание на цепочку свободных ассоциаций: творог > сыр > молоко > Млечный Путь > Галактика (греч. “гала” переводится как «молоко») > галактики. Термин створаживание пришел мне в голову, когда я занимался как раз галактиками, и этимологическая подоплека «галактического створаживания» весьма меня заворожила.

 

ВНЕШНИЙ ПОРОГ И ЭКСТРАПОЛИРОВАННАЯ КАНТОРОВА ПЫЛЬ

В качестве прелюдии к экстраполяции множества C давайте припомним кое-что из истории. Кантор представил миру множество C, едва покинув поле своей прежней деятельности — изучение тригонометрических рядов. Поскольку такие ряды тесно связаны с периодическими функциями, единственная доступная им экстраполяция заключается в бесконечном повторении. Вспомним теперь такие говорящие термины, как внешний и внутренний предел, которые мы в главе 6 позаимствовали из теории турбулентности. Под этими терминами понимают размеры ε и Ω, соответственно наименьшего и наибольшего элемента множества, — можно сказать, что Кантор решил ограничиться порогом Ω=1. На k-м этапе построения ε=3−k , однако для самого C порог ε=0. Для получения любого другого Ω<∞ — например, приличествующего ряду Фурье значения 2π, — необходимо увеличить периодическую канторову пыль в Ω раз.

Однако при таком повторении разрушается самоподобие, которым мы в настоящем эссе весьма дорожим. Чтобы этого избежать, следует соблюсти два простых правила: инициатор используется только для экстраполяции, а сама экстраполяция происходит в виде обратного или восходящего каскада. На первом этапе множество C увеличивается в 1/r=3 раза и размещается на интервале [0, 3]. В результате получаем множество, включающее в себя множество C и его копию, смещенную вправо и отделенную от C новой тремой, длина которой равна 1. На втором этапе увеличиваем получившееся множество снова в 3 раза и размещаем результат на интервале [0, 9]. Получаем множество C плюс три его копии, смещенные вправо и разделенные двумя новыми тремами длины 1 и одной новой тремой длины 3. Дальнейшие этапы восходящего каскада увеличивают множество C с возрастающим коэффициентом подобия вида 3k .

При желании можно чередовать, скажем, два этапа интерполяции и один этап экстраполяции и т. д. При таком построении каждая серия из трех этапов увеличивает внешний порог Ω в 3 раза и уменьшает внутренний порог ε в те же 3 раза.

< Отрицательная ось в такой экстраполированной пыли остается пустой — бесконечная трема. Соответствующее понятие мы обсудим позже, в главе 13, где мы рассмотрим (бесконечные) континенты и бесконечные же кластеры. ►

 

РАЗМЕРНОСТИ D В ИНТЕРВАЛЕ ОТ 0 ДО 1

Множество, полученное в результате бесконечных интерполяции и экстраполяции, самоподобно, а его размерность

D=lnN/ln(1/r)=ln2/ln3~0,6309

представляет собой дробь в интервале от 0 до 1.

Изменяя правила створаживания, мы можем получить другие значения D — собственно, любое значение между 0 и 1. При длине тремы первого этапа 1−2r, где 0

При N≠2 становится доступным еще большее разнообразие. Для множеств c N=3 и r=1/5 находим

D=ln3/ln5~0,6826.

Для множеств c N=2 и r=1/4 —

D=ln2/ln4=1/2.

Для множеств c N=3 и r=1/9 получаем тот же результат:

D=ln3/ln9=1/2.

Хотя размерности двух последних множеств равны, «выглядят» они очень по-разному. Об этом наблюдении мы будем подробнее говорить в главе 34, где оно приведет нас к концепции лакунарности.

Обратите внимание также на то, что для любого D<1 есть по крайней мере одно канторово множество, однако поскольку Nr≤1 и, как следствие, N≤1/r, нет ни одного множества, размерность D которого превышала бы 1.

 

МНОЖЕСТВО С НАЗЫВАЕТСЯ «ПЫЛЬЮ», ПОТОМУ ЧТО ЕГО ТОПОЛОГИЧЕСКАЯ РАЗМЕРНОСТЬ DT РАВНА НУЛЮ

Фрактальная размерность D канторова множества может изменяться в пределах от 0 до 1; с топологической же точки зрения все канторовы множества имеют размерность 0, так как, по определению, любая точка канторова множества отделена от любой другой, причем для ее отделения не требуется ничего удалять. С этой стороны нет никакой разницы между C и конечным множеством точек! Тот факт, что топологическая размерность DT в последнем случае равна 0, известен нам из стандартной геометрии; мы даже используем это обстоятельство в главе 6 для доказательства того, что топологическая размерность кривой Коха K равна 1. Вообще, DT =0 для любого вполне несвязного множества.

При отсутствии общепринятого обыденного термина, вроде «кривой» и «плоскости» (которые представляют собой связные множества с размерностями DT =1 и DT =2, соответственно), я предлагаю называть множества с DT =0 пылью.

 

РАСПРЕДЕЛЕНИЕ ДЛИН ПАУЗ

Возьмем канторову пыль и обозначим через и возможное значение для длины паузы, через U — неизвестную длину паузы, а через — количество пауз или трем длины U, большей, чем u. < Это обозначение построено по аналогии с обозначением из теории вероятности. ► Оказывается, существует постоянный префактор F — такой, что график функции постоянно пересекает график Fu−D . И вновь в дело вступает размерность. Приняв за координаты lnu и lnNr, получим однородные ступени.

 

СРЕДНЕЕ КОЛИЧЕСТВО ОШИБОК

Как и в случае береговых линий, можно получить приблизительное представление о последовательности ошибок, если остановить канторо- во створаживание при длине интервалов ε=3−k . Эта величина может быть равна времени, необходимому для передачи единичного символа. Кроме того, следует использовать канторову периодическую экстраполяцию с большим, но конечным значением Ω.

Количество ошибок между моментами времени 0 и R (которое мы обозначим через M(R)) выдерживает ритм, так как учитываются только те моменты, в которые происходит что-то важное. Хороший пример фрактального времени.

Если сигнал начинается в момент времени t=0 (а мы рассматриваем только этот случай), величина M(R) ведет себя так же, как в случае кривой Коха. Пока R остается меньше 0, количество ошибок удваивается всякий раз, когда R увеличивается в 3 раза. В результате имеем .

Это выражение похоже на стандартное выражение для массы диска или шара радиуса R в D -мерном евклидовом пространстве. Оно также идентично выражению, полученному в главе 6 для кривой Коха.

В качестве вывода можно заметить, что среднее количество ошибок на единицу длины приблизительно пропорционально RD−1 при условии, что R находится в интервале между внутренним и внешним порогами. При конечном Ω уменьшение среднего количества ошибок продолжается до окончательной величины ΩD−1 которая достигается при R=Ω. После этого их плотность остается более или менее постоянной. При бесконечном Ω среднее количество ошибок уменьшается в конечном счете до нуля. Наконец, эмпирические данные часто предполагают, что величина Ω конечна и очень велика, однако не позволяют определить ее со сколько-нибудь приемлемой точностью. В этом случае среднее количество имеет некоторый нижний предел, который не обращается в нуль, но его неопределенность лишает его какого бы то ни было практического смысла.

 

КОНЦЕВЫЕ ТОЧКИ ТРЕМ И ИХ ПРЕДЕЛЫ

< Наиболее заметные члены множества C, концевые точки трем, вовсе не исчерпывают всего множества; скажем больше, они составляют лишь малую его часть. Физическую значимость других точек мы обсудим в главе 19. ►

 

ИСТИННАЯ ПРИРОДА КАНТОРОВОЙ ПЫЛИ

Читателю, который продержался до этого места и/или/ наслышан об активно сейчас обсуждаемых в научной литературе чертовых лестницах (см. пояснение к рис. 125), возможно, будет сложно поверить в то, что, когда я начал работу над этой темой в 1962 г., все вокруг были единодушны в том, что канторова пыль по меньшей мере столь же чудовищна, как кривые Коха и Пеано.

Каждый уважающий себя физик автоматически «выключался» при одном только упоминании имени Кантора, порывался убежать за тридевять земель от всякого, заявляющего о научной ценности множества C, и всех желающих слушать с готовностью уверял в том, что все подобные заявления были приняты, рассмотрены и найдены беспочвенными. Поддержали меня в то время только предположения С. Улама (совершенно завораживающие, несмотря на отсутствие должной проработки и неприятие научной общественностью) относительно возможной роли канторовых множеств при изучении гравитационного равновесия в звездных скоплениях (см. [570]).

Чтобы опубликовать работу о канторовой пыли, мне пришлось убрать из нее всякое упоминание имени Кантора!

Однако случилось так, что Природа сама привела нас к множеству C. В главе 19 мы поговорим еще об одной, совершенно иной, физической роли для C. Все это призвано подчеркнуть, что истинная природа канторовой пыли весьма разнообразна.

Несомненно, в большинстве случаев само множество C представляет собой весьма грубую модель, нуждающуюся в многочисленных уточнениях. И все же я настаиваю, что те самые свойства, благодаря которым многие считают канторовы дисконтинуумы патологией, незаменимы при моделировании перемежаемости и должны быть сохранены в последующих, более реалистичных, заменителях этих множеств.

Рис. 120 и 121. КАНТОРОВЫ ТРОИЧНЫЕ ГРЕБЕНЬ И БРИКЕТ (РАЗМЕРНОСТЬ ГОРИЗОНТАЛЬНОГО СЕЧЕНИЯ D=ln2/ln3=0,6309). КОЛЬЦА САТУРНА. КАНТОРОВЫ ЗАНАВЕСЫ

Инициатором для канторовой пыли служит интервал [0, 1], а генератор имеет следующий вид:

Рис. 120. Канторову пыль необычайно трудно изобразить на рисунке, так как она настолько тонка и разрежена, что практически невидима. Для получения хоть какого-нибудь представления о ее форме, утолщим исходный интервал и назовем результат канторовым гребнем. < Строго говоря, у нас получится декартово произведение канторовой пыли длины 1 на отрезок длины 0,03. ►

Створаживание. Построение канторова гребня описывается процессом, который я назвал створаживанием. Сначала изобразим стержень круглого сечения (в проекции получится прямоугольник с соотношением «высота/длина», равным 0,03). Удобнее всего представить, что материал, из которого изготовлен стержень, имеет очень малую плотность. Затем материал стержня начинает «створаживаться», смещаясь из средней трети стержня к его крайним третям, причем положение последних остается при этом неизменным. При дальнейшем створаживании вещество уходит из средних третей каждой из крайних третей уже в их собственные крайние трети и так далее до бесконечности. В пределе мы получим бесконечно большое количество бесконечно тонких пластин бесконечно большой плотности. Эти пластины распределены вдоль прямой весьма особенным образом, обусловленным производящим процессом. На рисунке створаживание остановлено на этапе, соответствующем предельному разрешению как типографского пресса, так и человеческого глаза, — последняя строка неотличима от предпоследней; каждый из элементов последней строки выглядит просто как темная линия, тогда как на самом деле представляет собой две тонкие пластины, разделенные пустым промежутком.

Канторов брикет. Выберем в качестве исходного объекта для створаживания круглый корж, толщина которого значительно меньше его диаметра, и пусть тесто при створаживании разделяется на более тонкие коржи (освобождая место для соответствующей начинки). В результате получим этакий бесконечно экстраполированный «наполеон», который можно назвать канторовым брикетом.

Кольца Сатурна. Раньше считалось, что Сатурн окружен одним сплошным кольцом. Затем была открыта щель, разделяющая кольцо, потом еще одна, и наконец «Вояджер-I» обнаружил огромное количество таких щелей, в большинстве своем очень узких. «Вояджер» также установил, что кольца прозрачны: они пропускают солнечный свет... как и подобает множеству, названному нами «тонким и разреженным».

Таким образом, структура колец (см. [542], особенно иллюстрацию на обложке) являет собой, по всей видимости, совокупность близко расположенных окружностей, причем радиус каждой из этих окружностей соответствует расстоянию от некоторой точки отсчета до некоторой точки канторовой пыли. < Специальное название для такого множества — декартово произведение канторовой пыли на окружность. Вообще говоря, мы, наверное, получим более близкую к оригиналу картинку, если умножим окружность на пыль положительной меры, подобную тем, что рассматриваются в главе 15. ► Добавление в последнюю минуту: та же идея независимо от меня озарила и авторов [10], только они соотнесли ее с уравнением Хилла; в Примечании 6 к упомянутой работе содержится немало других соображений по существу вопроса.

Спектры. Хартер описывает в [199] спектры некоторых органических молекул; сходство этих спектров с канторовой пылью потрясает.

Рис. 121. Этот рисунок помогает яснее представить форму канторовой пыли посредством помещения ее среди остальных пылевидных множеств с N=2 и переменным значением r. На вертикальной оси откладывается либо само значение r, изменяющееся в интервале от 0 до 1/2 (внизу), либо размерность D в интервале от 0 до 1 (вверху). Верхняя граница обоих занавесов — это полный интервал [0, 1]. Любой горизонтальный срез на каждом из рисунков представляет собой какую-либо канторову пыль (стрелками показаны значения r=1/3 и D=0,6309).

Знаменитый греческий парадокс. Греческие философы полагали, что условием неограниченной делимости тела является его непрерывность. Очевидно, они ничего не знали о канторовой пыли.

Рис. 125. ФУНКЦИЯ КАНТОРА, ИЛИ ЧЕРТОВА ЛЕСТНИЦА (РАЗМЕРНОСТЬ D=1, РАЗМЕРНОСТЬ МНОЖЕСТВА АБСЦИСС ПОДСТУПЕНЕЙ D ~ 0,6309). КАНТОРОВО ДВИЖЕНИЕ

Функция Кантора описывает распределение массы вдоль канторова гребня, показанной на рис. 120. Многие называют график этой функции чертовой лестницей — она и впрямь ведет себя весьма странно, чтобы не сказать больше. Условимся, что и длина, и масса гребня равны 1; кроме того, каждой точке абсциссы R поставим в соответствие массу M(R), содержащуюся между 0 и R. Поскольку в паузах никакой массы нет, функция M(R) на этих интервалах остается постоянной. Учитывая, что створаживание никоим образом не влияет на общую массу гребня, можно заключить, что функция M(R) должна возрастать хоть где-нибудь между точкой с координатами (0, 0) и точкой с координатами (1, 1). Она и возрастает, только происходит это на бесконечно большом числе бесконечно малых и группирующихся в очень тесные скопления участков, соответствующих полученным нами пластинам гребня. Подробнее о странных свойствах функции Кантора можно прочесть в работе [216].

Регуляризующие отображения. Чертова лестница может похвастаться одним выдающимся свойством: с ее помощью можно отобразить вопиющую неоднородность канторова гребня в нечто пристойно однородное и равномерное. Взяв два различных интервала одинаковой длины на вертикальной оси графика обратной канторовой лестницы, мы обнаружим, что масса двух соответствующих наборов пластин одинакова — хотя на вид они, как правило, сильно отличаются.

Поскольку самым буйным цветом наука цветет именно на почве однородности, такие регуляризующие преобразования часто способны преодолеть преграду между фрактальной иррегулярностью и математическим анализом.

Фрактальная однородность. Распределение масс в канторовом гребне удобно полагать фрактально однородным.

Канторово движение. Как и в случае рассматриваемой в виде движения кривой Коха или движения Пеано, иногда удобно интерпретировать ординату M(R) как время. Тогда обратная функция R(M) будет определять положение точки при канторовом движении в момент времени t. Движение это в высшей степени дискретно. В главах 31 и 31 мы рассмотрим его линейные и пространственные обобщения.

Фрактальная размерность. Сумма ширины всех ступеней чертовой лестницы равна сумме высот всех этих ступеней — каждая из сумм равна 1. Следовательно, чертова лестница имеет совершенно определенную длину, равную 2. Кривая конечной длины называется спрямляемой, а ее размерность D равна 1. Из этого примера хорошо видно, что размерность D=1 вполне совместима с наличием бесконечного множества особых точек — при условии, что они достаточно редко разбросаны.

< Кое-кому, возможно, захочется назвать представляемую вашему вниманию кривую фрактальной, однако для этого нам придется пойти на менее строгое определение фракталов, которое бы наряду с размерностью D основывалось еще на каких-то других понятиях. ►

Сингулярные функции. Канторова лестница представляет собой неубывающую и непостоянную сингулярную функцию — сингулярную в том смысле, что она непрерывна, но не дифференцируема. Ее производная обращается в нуль почти везде, к тому же она ухитряется непрерывно изменяться на множестве, длина — т. е. линейная мера — которого стремится к нулю.

Любая неубывающая функция может быть представлена в виде суммы некоторой сингулярной функции, некоторой функции, состоящей из дискретных скачков, и некоторой дифференцируемой функции. Два последних слагаемых являются классикой в математике и широко используются в физике. Сингулярную же составляющую большинство физиков считает абсолютно бесполезной патологией. Последнее мнение является абсолютно безосновательной чепухой — это заявление можно считать лейтмотивом настоящего эссе.

Чертовы лестницы в статистической физике. Публикация этого рисунка в эссе 1977 г. привлекла к чертовым лестницам внимание физиков и послужила стимулом для многочисленных исследований. Все чаще мне встречаются в книгах и статьях графики, напоминающие «занавес» на рис. 121 или занавес Фату на рис. 273. В этой связи рекомендую заглянуть в [9], где разрозненные — хотя и весьма важные — ранние исследования (например, [11], [218]) объединены с новыми разработками в данной области.