Фрактальная геометрия природы

Мандельброт Бенуа

IV МАСШТАБНО-ИНВАРИАНТНЫЕ ФРАКТАЛЫ

 

 

12 СООТНОШЕНИЯ МЕЖДУ ДЛИНОЙ, ПЛОЩАДЬЮ И ОБЪЕМОМ

 

В главах 12 и 13 мы подробно рассмотрим свойства фрактальной размерности на примере многочисленных «мини-прецедентов» различной важности и возрастающей сложности, а в главе 14 покажем, что фрактальная геометрия непременно включает в себя различные концепции за пределами фрактальной размерности.

В настоящей главе мы опишем и применим к различным конкретным случаям фрактальные аналоги, которые я разработал специально для определенных стандартных выводов евклидовой геометрии. Их можно рассматривать как параллельные фрактальным отношениям вида , полученным в главах 6, 8 и 9.

 

СТАНДАРТНЫЙ АНАЛИЗ РАЗМЕРНОСТЕЙ

Из того, что длина окружности радиуса R равна 2πR, а площадь диска, ограниченного этой окружностью, составляет πR 2 , следует, что

(длина)=2π1/2 (площадь)1/2 .

Соответствующее соотношение для квадрата имеет вид

(длина)=4(площадь)1/2 .

Вообще в любом семействе плоских фигур, геометрически подобных, но имеющих различные линейные размеры, отношение (длина)/(площадь)1/2 представляет собой число, полностью определяемое общей для семейства формой.

Пространство (E=3) предоставляет нам новые альтернативные способы оценки линейной протяженности фигуры с помощью (длины), (площади)1/2 и (объема)1/3 , причем отношение между любыми двумя из этих трех величин является параметром фигуры, независимым от единиц измерения.

Эквивалентность различных линейных протяженностей во многих случаях оказывается очень полезной. А ее расширение (включающее время и массу) лежит в основе мощной методики, известной физикам как «анализ размерностей». (Желающим подробнее ознакомиться с основными его особенностями рекомендую прочесть [37].)

 

ПАРАДОКСАЛЬНЫЕ РАЗМЕРНОСТИ

Однако нам известно множество примеров (и их количество неуклонно растет), демонстрирующих, к нашему вящему разочарованию, полное отсутствие эквивалентности между альтернативными линейными протяженностями. Например, мозг млекопитающего характеризуется соотношением

,

где D~3 значительно больше ожидаемого значения 2. Измерения длины главной реки бассейна (см. [186]) показывают, что

,

где D определенно больше ожидаемого значения 1. В ранних исследованиях этот последний результат объяснялся тем, что речные бассейны не самоподобны — большие бассейны имеют вытянутую форму, а маленькие несколько сплюснуты. К сожалению, такая интерпретация не согласуется с экспериментальными данными.

Ниже приведено мое объяснение этих и других похожих наблюдений с более убедительных позиций, и моим инструментом будет новое-фрактальное-соотношение между длиной, площадью и объемом.

 

ФРАКТАЛЬНОЕ СООТНОШЕНИЕ МЕЖДУ ДЛИНОЙ И ПЛОЩАДЬЮ

Для большей наглядности рассмотрим совокупность геометрически подобных островов с фрактальными береговыми линиями размерности D>1. Стандартное отношение (длина)/(площадь)1/2 в этом контексте стремится к бесконечности, но я намерен показать, что оно имеет достойный фрактальный аналог, вполне пригодный для каких угодно практических целей. Определим длину побережья, измеренную с шагом длины G, как (G-длину), а площадь острова, измеренную в единицах G2 — как (G-площадь). Учитывая, что зависимость (G-длины) от G нестандартна, в отличие от стандартной зависимости (G-площади) от G, мы можем записать следующее обобщенное отношение:

(G−длина)1/D /(G−площадь)1/2 .

Я утверждаю, что значение этого отношения одинаково для любого из наших самоподобных островов.

В результате мы имеем два различных способа оценки линейной протяженности каждого острова в единицах G: стандартное выражение (G−площадь)1/2 и нестандартное (G−длина)1/D .

Характерная особенность данного подхода заключается в том, что при смене длины шага с G на G' мы получим другое отношение альтернативных линейных протяженностей:

(G'−длина)1/D /(G'−площадь)1/2 ,

которое отличается от исходного на коэффициент (G'/G)1/D−1 .

Что касается отношения линейных протяженностей, то для каждого семейства взаимно подобных фигур оно имеет свое значение, независимо от того, фрактальные это фигуры или стандартные. Следовательно, это отношение представляет в количественном виде лишь один аспект формы фигуры.

Заметим, что полученное соотношение между длиной и площадью можно применять для оценки размерности фрактальной кривой, ограничивающей стандартную область.

Доказательство соотношения. Первым делом измерим длину каждой береговой линии с помощью внутренней, зависящей от площади, мерки:

G * =(G−площадь) 1/2 /1000 .

Если аппроксимировать каждое из побережий наших островов многоугольником с длиной стороны G* , эти многоугольники также будут взаимно подобны, а их периметры будут пропорциональны стандартным линейным протяженностям (G−площадь)1/2 .

Заменим теперь G* заданным шагом G'. Из главы 6 нам известно, что измеренная длина при этом изменится в отношении . Следовательно:

Наконец, возведя каждую часть в степень 1/D, получаем искомое соотношение.

 

НАСКОЛЬКО ИЗВИЛИСТА РЕКА МИССУРИ?

Вышеизложенные соображения проливают свет и на измерение длины рек. Чтобы определить длину главной реки речного бассейна, мы аппроксимируем форму русла извилистой самоподобной кривой размерности D>1, которая начинается в точке, называемой истоком, и заканчивается в точке, называемой устьем. Если бы все реки, равно как и их бассейны, были взаимно подобны, то, согласно фрактальному соотношению между длиной и площадью, мы получили бы следующее соотношение:

.

Более того, исходя из стандартности площади:

.

Объединив эти соотношения, заключаем, что

.

В высшей степени замечательно, что в уже упоминавшейся работе Хака [186] на основании эмпирических данных показано, что отношение

(G−длина реки)/(G−площадь бассейна)0,6

и в самом деле одинаково для всех рек. Из косвенной оценки D/2=0,6 получаем D=1,2 — значение, весьма напоминающее те, что дают измерения длины береговых линий. Если с помощью D измерять степень иррегулярности, то значения для локальных излучин окажутся абсолютно идентичными значениям для поворотов в масштабе всей реки!

С другой стороны, согласно наблюдениям Дж. Э. Мюллера, значение D для бассейнов с площадью более 104 км2 и рек соответствующих размеров уменьшается до 1. Исходя из наличия двух различных значений D, можно предположить, что если отобразить бассейны всех рек на листах бумаги одинакового размера, то карты бассейнов малых и больших рек будут выглядеть приблизительно одинаково, в то время как карты бассейнов очень длинных рек будут почти прямолинейными. Может оказаться, что нестандартное самоподобие нарушается вблизи внешнего порога Ω, величина которого составляет порядка 100 км.

Суммарная длина речного дерева. На основании вышеизложенных соображений можно также предположить, что суммарная длина всех рек в бассейне должна быть пропорциональна площади бассейна. Мне говорили, что это предположение верно, однако конкретных ссылок у меня нет.

Назад к геометрии. Для рек и водоразделов, родственных кривой «прохождения снежинки» (см. рис. 104 и 105), D~1,2618, что несколько больше наблюдаемого значения. Соответствующие размерности на рис. 106 и 107 составляют D~1,1291 — недолет.

Кривые Пеано на рис. 95 и 98 и вовсе попадают пальцем в небо, так как D=1.

Заметим, что равенство размерностей рек и водоразделов является не логической необходимостью, а всего лишь характерной особенностью некоторых конкретных рекурсивных моделей. Возьмем, например, речную сеть, объединенную стреловидной кривой (см. рис. 205) и описанную в [381]. Реки здесь имеют размерность D=1, а водоразделы — D~1,5849.

 

ГЕОМЕТРИЯ ДОЖДЯ И ОБЛАКОВ

На с. 13, 25 и 146 упоминается о возможности использования фракталов для моделирования облаков. Эта возможность теперь получила подтверждение в работе Лавджоя [319], который построил график зависимости фрактального периметра облаков и дождевых областей от их фрактальной же площади (см. рис. 169). Не много существует метеорологических графиков, которые учитывали бы все доступные данные в столь обширном диапазоне размеров, и были бы при этом хоть приблизительно такими же прямолинейными.

График построен на основании данных радиолокационных наблюдений зон дождей над тропической Атлантикой (скорость выпадения осадков свыше 0,2 мм/час) и данных наблюдений в инфракрасном диапазоне с геостационарного спутника зон облаков над Индийским океаном (т.е. зон с максимальной температурой облаков не выше — 10°С). Площади зон варьируются от 1км2 до 1000000км2 . Размерность периметра, пригодного, по меньшей мере, для шести порядков величины, составляет 4/3. Удовольствие предоставить физическое объяснение наблюдаемому феномену я уступаю доктору Лавджою.

Самое большое облако простиралось от центральной Африки до южной Индии — а ведь это расстояние далеко превосходит толщину атмосферы, с которой очень часто (слишком часто, на мой взгляд) связывают внешний порог L атмосферной турбулентности. Заявление Ричардсона (см. с. 152) может еще оказаться пророческим.

 

СООТНОШЕНИЕ МЕЖДУ ПЛОЩАДЬЮ И ОБЪЕМОМ. КОНДЕНСАЦИЯ МИКРОКАПЕЛЬ

Рассуждение, с помощью которого мы получили соотношение между длиной и площадью, легко обобщается для случая пространственных областей, ограниченных фрактальными поверхностями, приводя к следующему соотношению:

.

Чтобы проиллюстрировать это соотношение, рассмотрим конденсацию пара в жидкость. Это физическое явление знакомо всем, однако его теоретическое описание появилось совсем недавно. Согласно Фишеру [151], нижеследующая геометрическая картинка была предложена (по всей видимости, совершенно независимо друг от друга) Я. Френкелем, В. Бандом и А. Бийлом в конце 30-х гг. Газ состоит из отдельных молекул, достаточно удаленных друг от друга, за исключением случайных скоплений, где молекулы более-менее тесно связаны между собой силами притяжения. Скопления различных размеров находятся во взаимном статистическом равновесии, ассоциируя и вновь диссоциируя, однако шансов на то, что появится настолько огромное скопление, что его можно будет счесть «каплей» жидкости, чрезвычайно мало. Площадь поверхности больших скоплений (тех, что не слишком «размазаны» в пространстве на манер, скажем, скоплений водорослей) достаточно хорошо определена. Поверхность скопления придает ему устойчивость. Если теперь понизить температуру, то скоплениям станет выгодно соединяться в капли, а каплям — сливаться вместе, минимизируя тем самым общую площадь поверхности и, как следствие, общую энергию. При благоприятных условиях капли быстро растут. Появление капли макроскопических размеров означает начало конденсации.

Отталкиваясь от этой картины, Фишер предположил, что площадь и объем конденсирующейся капли связаны формулой, эквивалентной соотношению (площадь)1/D =(объем)1/3 . Фишер оценивает величину D аналитически, не задумываясь о ее геометрическом смысле, мы же с неизбежностью должны признать, что поверхности капель представляют собой фракталы размерности D.

 

МОЗГОВЫЕ ИЗВИЛИНЫ МЛЕКОПИТАЮЩИХ

Чтобы проиллюстрировать соотношение между площадью и объемом в важном предельном случае D=3 и в то же время довершить изгнание дьявола из кривых Пеано, представленных в главе 7, рассмотрим одну широко известную проблему из сравнительной анатомии в терминах почти заполняющих пространство поверхностей.

Объем головного мозга млекопитающих колеблется от 0,3 до 3000 мл, причем у мелких животных его кора выглядит относительно или совершенно гладкой, тогда как у крупных животных она покрыта видимыми складками, независимо от положения животного на эволюционной лестнице. Зоологи утверждают, что отношение количества белого вещества (образованного нейронными аксонами) к количеству серого вещества (где находятся окончания нейронов) приблизительно одинаково у всех млекопитающих, и для того, чтобы поддерживать это отношение, кора большого мозга неизбежно собирается в складки. Знание того, что степень складчатости обусловлена чисто геометрическими причинами, освобождает человека от страха перед интеллектуальным превосходством дельфинов или китов — они, конечно, больше, однако вовсе не обязательно более высокоразвиты.

Количественная характеристика такой складчатости не под силу стандартной геометрии, но прекрасно вписывается в рамки геометрии фрактальной. Объем серого вещества приблизительно равен произведению его толщины на площадь внешней оболочки мозга, называемой на латыни pia. Если толщина ε одинакова для всех видов, то площадь оболочки будет пропорциональна не только объему серого вещества, но и объему белого вещества, а значит — полному объему мозга V. Следовательно, из соотношения между площадью и объемом получим D=3, а оболочка будет поверхностью, которая за вычетом толщины ε заполняет пространство.

Эмпирическое соотношение между площадью и объемом лучше описывается выражением , где D/3 приблизительно находится в интервале от 0,91 до 0,93 (сведения получены из частной беседы с Джерисоном и основаны на экспериментальных данных Элиаса-Шварца, Бродмана и др.). Первое приходящее в голову объяснение заключается в том, что мозговая оболочка лишь частично заполняет пространство (2,73

 

АЛЬВЕОЛЯРНЫЕ И КЛЕТОЧНЫЕ МЕМБРАНЫ

Найдется ли среди моих читателей биолог, который будет так любезен, что встанет и объявит всем окружающим, что предыдущий раздел не имеет никакой практической ценности и не открывает ничего нового? Я, со своей стороны, был бы чрезвычайно рад услышать такое заявление, поскольку оно лишь подкрепило бы некоторые мои рассуждения, помещенные в начале главы 7. Несмотря на то, что биолог предпочтет обойти за милю любую поверхность Пеано, устроенную для него математиками, я утверждаю, что лучшие теоретики от биологии хорошо знакомы с основной идеей таких поверхностей.

Таким образом, главная новость предыдущих разделов относится к поверхностям размерности D<3, введение которых (как мы убедились) необходимо для согласования теории с экспериментом. Рассмотрим возможность применения этих новых поверхностей в биологии, обсудив вкратце их полезность при выяснении подробной структуры некоторых живых мембран.

Начнем с краткого резюме раздела 4.3.7 труда Вайбеля «Стереологические методы» (см. [586]). Оценки общей площади поверхности альвеол человеческого легкого противоречивы: оптическая микроскопия дает 80м2 , в то время как по данным электронной микроскопии площадь альвеол составляет 140м2 . Существенно ли это расхождение? Ответственные за него мелкие детали не играют никакой роли в газообмене, будучи сглажены покрывающим их жидким слоем (в результате чего функциональная площадь альвеол еще более уменьшается), однако они весьма важны для обмена растворами. Из проведенных измерений (спровоцированных, кстати, моей статьей «Побережье Британии») можно в первом приближении заключить, что мембранная размерность D=2,17 в широком диапазоне масштабов.

Паумгартнер и Вайбель [464] рассмотрели субклеточные мембраны в клетках печени. В этом случае также возникает расхождение между различными оценками площади на единицу объема, и здесь оно также легко устранимо, стоит лишь нам постулировать D=2,09 для внешней митохондриальной мембраны (которая окружает клетку и по гладкости лишь немногим отличается от мембран с минимальным отношением площадь/объем). Для внутренних митохондриальных мембран D=2,53, а для эндоплазматической сети D=1,72.

Заметим еще, что носовая кость многих животных обладает чрезвычайно сложной структурой, в результате чего площадь покрывающей эту кость «мембраны» оказывается очень большой при сравнительном малом объеме. У оленей и песцов эта мембрана, возможно, служит для усиления обоняния, а вот у верблюдов аналогичная структура выполняет водосберегающую функцию [512].

 

КОМПЬЮТЕРНАЯ МОДУЛЯРНАЯ ГЕОМЕТРИЯ

Рассмотрим еще одну иллюстрацию соотношения между площадью и объемом, на этот раз в компьютерном аспекте. Компьютеры не являются естественными системами, но это не должно нас останавливать. Этот и некоторые другие прецеденты призваны продемонстрировать, что с помощью фрактальных методов можно, в конечном счете, описать любую естественную или искусственную «систему», состоящую из отдельных «элементов», самоподобно связанных между собой (кроме того, приоритетными в системе должны являться не свойства элементов, а правила их соединения).

Сложные компьютерные системы, как правило, разделены на многочисленные модули. Каждый состоит из некоторого большого числа C компонентов и связан со своим окружением некоторым большим числом T соединений. Оказывается, что с точностью до нескольких процентов. (Причина необычного написания показателей прояснится чуть ниже.) В корпорации IBM это правило приписывают Э. Ренту (см. также [288]).

Согласно предварительным данным, D/E=2/3; это же значение Р. У. Киз [264] экстраполирует на гигантские «схемы» нервной системы (оптический нерв и мозолистое тело). Однако с ростом эффективности системы отношение D/E увеличивается. Эффективность, в свою очередь, отражает степень параллелизма, заложенную в систему. В частности, конструкции с крайними показателями характеризуются крайними значениями D. В сдвиговом регистре модули выстроены в ряд и T всегда равно 2, независимо от C: следовательно, D=0. При интегральном параллелизме каждый компонент требует отдельного соединения, т. е. T=C, или D=E.

Объясняя значение D/E=2/3, Киз отмечает, что компоненты, как правило, размещены в пределах объема модуля, тогда как соединения проходят через их поверхности. Чтобы показать, что это наблюдение имеет самое непосредственное отношение к правилу Рента, достаточно допустить, что все компоненты имеют приблизительно одинаковые объем v и площадь поверхности σ. Так как C — это общий объем модуля, деленный на v, величина C1/3 будет приблизительно пропорциональна радиусу модуля. С другой стороны, T — это общая площадь поверхности модуля, деленная на σ, т. е. величина T1/2 также будет приблизительно пропорциональна радиусу модуля. Правило Рента всего лишь выражает эквивалентность двух различных мер радиуса в стандартной пространственной фигуре. E=3 — это евклидова размерность модуля, a D=2 — размерность стандартной поверхности.

Следует сказать, что понятие модуля весьма неоднозначно, его даже можно считать неопределенным, однако правилу Рента это ничуть не мешает, пока подмодули в модуле соединяются друг с другом поверхностями.

Так же легко интерпретируются и крайние случаи, упомянутые выше. В стандартной линейной структуре E=1, а граница между компонентами сводится к двум точкам; следовательно, D=0. В стандартной плоской структуре E=2, a D=1.

Однако когда отношение E/D не равно ни 3/2, ни 2/1, ни 1/0, стандартная евклидова геометрия не позволяет интерпретировать величину C как объем, а T — как площадь. Между тем, такие интерпретации имеют значительную практическую ценность — и не составляют никакой сложности для геометрии фрактальной. Для пространственной схемы, контактирующей с внешним миром всей своей поверхностью, E=3, a D может принимать любое значение между 2 и 3. Для плоской схемы, контакт которой с внешним миром осуществляется по всей длине ограничивающей ее кривой, E=2, a D может принимать любое значение между 1 и 2. Случай интегрального параллелизма D=E подразумевает, что граница имеет форму кривой или поверхности Пеано. Кроме того, если граница используется не полностью, «эффективной границей» может стать любая поверхность, размерность D которой находится в интервале от 0 до E.

Рис. 169. ОБЛАКА (о) И ЗОНЫ ДОЖДЕЙ (•). ГРАФИК ЗАВИСИМОСТИ ПЕРИМЕТРА ОТ ПЛОЩАДИ В ДВОЙНОМ ЛОГАРИФМИЧЕСКОМ МАСШТАБЕ (РИСУНОК ВЗЯТ ИЗ [319].)

 

13 ОСТРОВА, КЛАСТЕРЫ И ПЕРКОЛЯЦИЯ; СООТНОШЕНИЯ МЕЖДУ ДИАМЕТРОМ И КОЛИЧЕСТВОМ

 

Эта глава посвящена фрактальным σ-кривым, т. е. фракталам, которые состоят из бесконечного количества непересекающихся фрагментов, каждый из которых представляет собой связную кривую. Конкретные случаи охватывают широкий диапазон от береговых линий островов в архипелаге до такого важного физического феномена, как перколяция. Начальные разделы главы содержат новый материал, которого не было во «Фракталах» 1977 г.; остальная часть также в значительной степени обновлена.

Начнем с того, что перефразируем вопрос главы 5 и спросим, сколько же островов окружает берега Британии? Несомненно, их количество столь же велико, сколь и неопределенно. А если добавить к списку островов все скалы, малые скалы и просто торчащие над водой камни, то длина этого списка устремится чуть ли не к бесконечности.

Поскольку поверхность Земли весьма тщательно «сморщена», полная площадь любого острова — так же, как и длина его береговой линии — географически бесконечна. Однако области, окруженные береговыми линиями, имеют вполне определенную «картографическую площадь». А то, каким образом эта картографическая площадь разделена между различными островами, является важной географической характеристикой. Можно даже утверждать, что такое «соотношение между площадью и количеством» вносит больший вклад в понимание географических форм, чем описание очертаний отдельных береговых линий. Например, если мы будем рассматривать берега Эгейского моря, нам наверняка захочется включить сюда и берега его многочисленных островов. Этот вопрос, вне всякого сомнения, заслуживает самого тщательного количественного исследования, и в этой главе мы предпримем попытку такого исследования, воспользовавшись обобщением кривой Коха.

Далее мы рассмотрим разные другие фрагментированные фигуры, получаемые обобщением уже знакомых нам фракталообразующих процессов: либо процедуры Коха, либо створаживания. Эти фигуры мы будем называть контактными кластерами, причем распределение диаметров в зависимости от количества окажется для них таким же, что и для островов.

Особый интерес представляют контактные кластеры, заполняющие плоскость, в частности, кластеры, образуемые некоторыми кривыми Пеано, терагоны которых не имеют точек самопересечения, но имеют несколько тщательно контролируемых точек самокасания. В саге о приручении чудовищ Пеано появляется, таким образом, новая глава!

И последнее (только по порядку, а отнюдь не по значимости): в эту главу включена первая часть прецедентного исследования геометрии перколяции, весьма важного физического феномена, рассмотрение которого будет продолжено в главе 14.

 

ОБОБЩЕНИЕ ЭМПИРИЧЕСКОГО ЗАКОНА КОРЧАКА

Составим список всех островов некого региона в порядке уменьшения их размера. Общее количество островов, размер которых превышает a, будем записывать как , < обозначение построено по подобию обозначения , позаимствованного из теории вероятности. ► В данном случае a — это возможное значение картографической площади острова, а букву A будем использовать для обозначения площади неопределенной величины.

Обозначив через B и F' положительные константы (показатель и префактор, соответственно), получим следующее, весьма замечательное, соотношение между площадью и количеством:

.

Если мы захотим приписать кому-либо честь открытия этого правила, то лучше всех, пожалуй, подходит кандидатура И. Корчака [279] (хотя, по его утверждению, B=1/2, что я считаю невероятным и не обоснованным представленными в статье данными). Более того, значение B различно для различных регионов и всегда больше 1/2. Позвольте мне теперь показать, что вышеприведенный обобщенный закон является аналогом распределения, полученного нами в главе 8 для длин пустот в канторовой пыли.

 

КОНТИНЕНТ И ОСТРОВА КОХА. ИХ РАЗЛИЧНЫЕ РАЗМЕРНОСТИ

Для построения коховского аналога канторовых пустот я разбиваю генератор на два не связанных друг с другом элемента. Чтобы получаемая фрактальная кривая оставалась интерпретируемой как береговая линия, генератор включает в себя связную ломаную, состоящую из Nc

На последующих этапах построения субострова всегда находятся у левой половины берег-генератора (при движении от 0 к 1) и остров-генератора (при движении по часовой стрелке).

Первая неожиданность: предельный фрактал в этом случае характеризуется двумя различными размерностями. Собрав вместе береговые линии всех островов, получим D=lnN/ln(1/r), однако береговая линия каждого отдельного острова имеет размерность , причем соблюдается неравенство

1≤Dc

Суммарная береговая линия, не будучи связной, является сама по себе не кривой, а бесконечной суммой (Σ) замкнутых кривых (петель). Предлагаю ввести для ее обозначения термин сигма-петля (или σ- петля).

Заметим, что моделирование полученного соотношения между D и Dc при описании реальных островов требует некоторых дополнительных допущений, кроме, разумеется, тех случаев, когда его можно вывести из соответствующей теории (см. главу 29).

 

СООТНОШЕНИЕ МЕЖДУ ДИАМЕТРОМ И КОЛИЧЕСТВОМ

Доказательство применимости закона Корчака к островам, рассмотренным в последнем разделе, проще всего осуществляется тогда, когда генератор включает в себя один остров, а терагоны избегают самопересечений. (Напомню, что терагонами называются аппроксимирующие ломаные линии.) В этом случае на первом этапе создается один остров — обозначим его «диаметр», определяемый √a, через λ0 . На втором этапе образуется N островов диаметра rλ0 , а результатом m-го этапа будет Nm островов диаметра λ=rm λ0 . В целом, всякий раз, как λ умножается на r, количество островов умножается на N. Следовательно, распределение Λ (для всех значений λ вида rm λ0 ) описывается выражением

,

ключевым показателем в котором является фрактальная размерность береговой линии! Как следствие:

, где B=D/2;

т. е. мы самостоятельно вывели закон Корчака. При других значениях λ или a получится ступенчатая кривая, знакомая нам по главе 8, где она описывала распределение длин канторовых пустот.

Результат не зависит ни от Nc , ни от Dc . Его можно распространить на тот случай, когда генератор включает в себя два или более островов. Заметим, что эмпирически полученное значение B для всей Земли составляет величину порядка 0,6, что весьма близко к половине размерности D, полученной измерением длин береговых линий.

 

ОБОБЩЕНИЕ ДЛЯ СЛУЧАЯ Е > 2

Применив наше построение к пространству, мы убедимся в том, что E-мерный диаметр, определяемый как (объем)1/E , подчиняется гиперболическому выражению вида , ключевым показателем в котором снова является D.

Показатель D оказывается определяющим и в особом случае канторовой пыли (E=1), однако здесь имеется одно существенное отличие. Длина за пределами канторовых пустот обращается в нуль, тогда как площадь за пределами «коховых островов» вполне может быть положительной (как, впрочем, чаще всего и бывает). К этому предмету мы вернемся в главе 15.

 

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ ИСКЛЮЧИТЕЛЬНО КАК МЕРА ФРАГМЕНТАЦИИ

Вышеописанное построение допускает следующее изменение генератора:

Общая величина D остается неизменной, однако береговая размерность Dc принимает наименьшее возможное значение, Dc =1. То есть в рамках этой модели береговые линии островов могут быть спрямляемы! В этом случае общая величина D определяет не степень иррегулярности, а единственно степень фрагментации. Размерность D характеризует здесь не извилистость отдельных кривых, а целое соотношение между количеством прямоугольных островов в бесконечном семействе и их площадью.

При измерении длины кривой шагом ε результат все еще стремится к бесконечности при ε→0, однако теперь для этого имеется другая причина. Шагом длины ε можно измерять только острова, диаметр которых не меньше ε. Однако по мере того, как ε→0, число таких островов возрастает, и измеренная длина изменяется пропорционально ε1−D — точно так же, как и в отсутствие островов.

В общем случае Dc >1, значение Dc характеризует только степень иррегулярности, в то время как D описывает степень иррегулярности и фрагментации в совокупности.

Фрагментированная фрактальная кривая может иметь касательные в любой точке. Закруглив углы островов, можно добиться того, что к береговой линии в любой ее точке можно будет провести касательную, причем площади островов — а с ними и общая размерность D — останутся неизменными. Таким образом, фрактальность σ- кривой и отсутствие у кривой касательных — вовсе не одно и то же.

 

БЕСКОНЕЧНОСТЬ ОСТРОВОВ

Безвредная расходимость. При a→0 количество островов стремится к бесконечности. Следовательно, закон Корчака вполне согласуется с нашим первоначальным наблюдением относительно практически бесконечного числа островов.

Относительная площадь наибольшего острова. Этот последний факт приемлем математически только потому, что суммарная площадь очень маленьких островов конечна и пренебрежимо мала, с Общая площадь всех островов, площадь каждого из которых меньше ε, изменяется пропорционально значению интеграла функции на интервале от 0 до ε. Так как B<1, интеграл сходится, и его значение стремится к нулю по мере уменьшения ε. ►

Следовательно, относительный вклад самого большого острова в суммарную площадь всех островов стремится к некоторому положительному пределу по мере того, как увеличивается количество островов. Он отнюдь не является асимптотически пренебрежимым.

Относительная длина самой длинной береговой линии. С другой стороны, если Dc =1, то длины побережий оказываются распределены по гиперболическому закону с показателем D>1. То есть суммарная длина береговой линии маленьких островов становится бесконечной. По мере того, как продвигается построение и увеличивается число островов, длина побережья наибольшего острова становится величиной относительно пренебрежимой.

Относительно пренебрежимые множества. В более общем виде неравенство Dc

 

В ПОИСКАХ БЕСКОНЕЧНОГО КОНТИНЕНТА

В масштабно-инвариантной Вселенной различие между островом и континентом не может основываться на традиции или «относительном размере». Единственный разумный подход состоит в том, чтобы определить континент как особый остров бесконечного диаметра. Ниже я намерен показать, что построения, приведенные в начале главы, практически никогда не генерируют континентов. < Для тех, кто знаком с теорией вероятности: вероятность того, что такое построение даст в итоге континент, равна нулю. ►

При разумном подходе к поискам континента следует отказаться от раздельного выбора инициатора и генератора. С этого момента нам придется использовать один и тот же генератор и для интерполяции, и для экстраполяции. Процесс осуществляется в несколько последовательных этапов, каждый из которых разбивается на шаги. Он очень напоминает экстраполяцию канторова множества в главе 8, однако заслуживает более подробного описания.

Первый шаг укрупняет выбранный нами генератор в отношении 1/r. На втором этапе мы некоторым образом «помечаем» одно из звеньев увеличенного генератора. На третьем — смещаем увеличенный генератор так, чтобы помеченное звено совпало с интервалом [0, 1]. Четвертый и последний этап заключается в интерполяции оставшихся звеньев увеличенного генератора.

Процесс повторяется до бесконечности, причем его течение и результат определяются последовательностью положений «помеченных» звеньев. Эта последовательность может принимать различные формы.

Для получения первой формы берег-генератор должен включать в себя некоторое положительное число Nc −2 «некрайних» звеньев, которые, по определению, принадлежат генератору, но не содержат его концевых точек (0 или 1). Если мы последовательно помечаем некрайние звенья, каждый этап экстраполяции растягивает исходный участок береговой линии и в пределе приводит к включению этого участка во фрактальное побережье бесконечной протяженности в обоих направлениях. Следовательно, построение континентальной береговой линии, исходя из таких начальных условий, вполне возможно.

Вторая форма: всегда помечаем какое-либо из крайних звеньев берег-генератора, причем каждая из двух возможностей выбирается бесконечное количество раз. В этом случае исходный участок побережья также растягивается до бесконечности. Если каждый раз выбирать одно и то же звено, береговая линия будет удлиняться только в одном направлении.

Чтобы получить третью форму, будем всегда помечать звено, принадлежащее остров-генератору. Тогда остров, который до экстраполяции был самым большим, окажется вблизи берегов большего острова; после следующего этапа этот больший остров окажется у берегов еще большего острова, и т. д. до бесконечности. Континента при таком построении мы не получим вовсе.

В следующем замечании мы воспользуемся некоторой толикой «вероятностного здравого смысла», который, должно быть, не чужд ни одному читателю. Предположим, что помечаемое звено выбирается посредством броска N-гранной кости. Для того, чтобы получить при экстраполяции континент, необходимо, по всей видимости, чтобы всякая метка после некоторого конечного (k-ro) этапа попадала на одно из Nc −2 некрайних звеньев берег-генератора. Назовем эти звенья «выигрышными». Чтобы после k этапов иметь уверенность в том, что мы получим в итоге континент, мы должны быть уверены, что каждый последующий бросок нашей кости без единого исключения окажется выигрышным. Такая удача, безусловно, возможна, однако вероятность ее стремится к нулю.

 

КОМБИНАЦИИ ОСТРОВОВ, ОЗЕР И ДЕРЕВЬЕВ

Так как острова Коха взаимоподобны, их диаметр Λ можно переопределить как расстояние между двумя любыми заданными точками, которые лучше всего выбирать на береговой линии. Кроме того, при получении соотношения между диаметром и количеством мы пользовались, в основном, наличием у генератора береговой части. Тем же обстоятельством, что оставшиеся звенья генератора образуют острова, или тем, что они избегают самопересечений, мы так по-настоящему и не воспользовались. Таким образом, соотношение

.

имеет очень широкую область применения. < Можно даже отказаться от непременного условия отсутствия пересечений терагонов, образованных двумя интервалами. ► Покажем теперь на примерах, как конфигурация N−Nc исходных звеньев может повлиять на топологию образующегося фрактала.

Комбинация островов и озер. Ранее мы располагали остров- генератор слева и в направлении по часовой стрелке. Попробуем теперь расположить его также в направлении по часовой стрелке, но справа. В результате вместо островов мы получим озера. Кроме того, можно включить в один генератор u острова, u озера. В обоих случаях предельный фрактал представляет собой σ-петлю, компоненты которой вложены друг в друга. Рассмотрим, например, генератор

Если инициатором служит квадрат, мы получим на некотором отдаленном этапе построения следующий терагон:

Неуловимый континент. На вышеприведенном рисунке можно видеть, что длина стороны инициатора вносит не присущий генератору внешний порог. Более последовательным решением будет экстраполировать эту длину, как мы поступили в случае островов без озер. Однако и в этом случае мы можем быть почти уверены, что мы получим не континент, а лишь бесконечно вложенные друг в друга острова и озера.

Соотношение между площадью и количеством. При определении площади острова (или озера) можно исходить либо из общей площади фигуры, либо из площади суши (или воды) в пределах береговой линии. Эти две величины связаны между собой постоянным коэффициентом, т. е. влияют на количество через его префактор F', а не через показатель D/2.

Комбинация интервалов и деревьев. Допустим теперь, что оставшиеся N−Nc звеньев образуют либо ломаную с двумя свободными концами, либо дерево. В обоих случаях фрактал разделяется на бесконечное множество не связанных между собой элементов, каждый из которых представляет собой кривую. Такую сг-кривую уже нельзя считать σ-петлей; уместнее, пожалуй, будет назвать ее σ-деревом или σ-интервалом.

 

ПОНЯТИЕ КОНТАКТНОГО КЛАСТЕРА

Генератор может также сочетать в себе петли, ветви и разные другие топологические конфигурации. Связные части предельных фракталов, получаемых при таком построении, напоминают кластеры из теории перколяции (как будет показано позже в этой главе) и из многих других областей физики. Для нас использование термина «кластер» чрезвычайно неудобно, так как совсем недавно (при рассмотрении пылевидных множеств в главе 9) мы вкладывали в него несколько иной смысл. Стало быть, необходим более точный и — как следствие — более громоздкий термин. Я решил остановиться на словосочетании «контактный кластер». Хорошо еще, что в термине «сг-кластер» нет такой двусмысленности.

(Можно заметить, что контактный кластер имеет однозначное и естественное математическое определение, тогда как понятие кластеризации в пыли размыто и интуитивно и определяется, в лучшем случае, через весьма спорные статистические законы.)

Контактные кластеры, заполняющие плоскость. В случае, когда размерность D достигает своего максимума D=2, остаются в силе рассуждения из предыдущего раздела, однако возникает необходимость в кое-каких добавочных замечаниях. Каждый отдельный кластер стремится к некоторому пределу, который может представлять собой прямую или — как бывает чаще всего — фрактальную кривую. С другой стороны, все кластеры в совокупности образуют σ-кривую, ответвления которой заполняют плоскость в высшей степени плотно. В пределе эта σ-кривая ведет себя подобно кривым из главы 7: она перестает быть кривой и становиться областью плоскости.

Неуловимый бесконечный кластер. Данный подход ни в коем случае не подразумевает возможности образования действительно бесконечного кластера. Можно легко построить топологию генератора таким образом, чтобы любая данная ограниченная область была почти наверняка окружена контактным кластером. Этот кластер, в свою очередь, почти наверняка окажется окружен большим кластером и т. д. Размер кластера сверху ничем не ограничен. В более общем виде: если кластер представляется бесконечным только потому, что он окружает очень большую область, то стоит лишь вспомнить о том, что сам он окружен кластером еще большего размера, и конечный размер любого кластера перестанет вызывать сомнения.

 

СООТНОШЕНИЕ МЕЖДУ МАССОЙ И КОЛИЧЕСТВОМ. СООТНОШЕНИЕ МЕЖДУ ВЗВЕШЕННЫМ ДИАМЕТРОМ И КОЛИЧЕСТВОМ. ПОКАЗАТЕЛИ D-D

C

И D/D

C

Переформулируем функцию двумя способами: первый состоит в замене диаметра кластера λ его массой μ, второй — в назначении единице размера контактного кластера некоторого веса.

Массой кластера здесь называется просто количество звеньев длины b−k в самом кластере (только не считайте звенья внутри петельных кластеров). В сущности (см. главы 6 и 12), мы строим несколько модифицированную сосиску Минковского (рис. 57), размещая в каждой вершине квадрат со стороной b−k и добавляя по половине квадрата к каждой концевой точке.

Масса кластера диаметра Λ равна площади его модифицированной сосиски, . Поскольку Dc <2, масса M стремится к нулю при k→∞. Масса всех контактных кластеров в совокупности пропорциональна ; при D<2 она также стремится к нулю. Что касается относительной массы каждого отдельного кластера, то она пропорциональна ; скорость ее стремления к нулю возрастает при увеличении значения разности D−Dc .

Соотношение между массой и количеством. Очевидно, что

,

Распределение диаметра, наделенного массой. Заметим, что величина представляет собой количество строк, расположенных выше строки с номером λ в списке, в котором перечисляются контактные кластеры в порядке уменьшения их размеров. Однако сейчас нам необходимо сопоставить каждому контактному кластеру количество строк, равное его массе. Как нетрудно убедиться, окончательное выражение имеет вид

.

 

МАССОВЫЙ ПОКАЗАТЕЛЬ Q=2D

C

-D

Обозначим фрактал размерности D, рекурсивно построенный из инициатора [0, Λ], через F и примем его общую массу за ΛD . Если F — канторова пыль, то, как нам известно из главы 8, масса M(R), содержащаяся в диске радиуса R<Λ с центром в нуле, пропорциональна RD . < Величина представляет собой периодическую функцию от logb (Λ/R), однако мы не станем задерживаться на этих сложностях, так как они исчезают, стоит лишь модифицировать фрактал таким образом, чтобы все значения r>0 оказались допустимыми коэффициентами самоподобия. ►

Мы знаем, что правило применимо также к кривой Коха (см. главу 6). Кроме того, оно распространяется и на рекурсивные острова и кластеры, рассматриваемые в этой главе, только D следует заменить на Dc . Во всех случаях масса, содержащаяся в диске радиуса R с центром в нуле, определяется выражением

,

гдеφ — функция, выводимая из формы фрактала F. В частности:

при R≪Λ;

при R≫Λ.

Рассмотрим теперь среднее взвешенное значение M(R) в случае, когда Λ изменяется в соответствии с весьма широким гиперболическим распределением , и обозначим это среднее через . Известно, что 1≤Dc

, где Q=2Dc −D>0.

Когда центр диска находится не в точке 0, а в какой-либо другой точке фрактала F, изменяется только коэффициент пропорциональности, тогда как показатель остается неизменным. Не изменяется он и при усреднении по всем положениям центра в F, и при замене интервала [0, 1] другим инициатором. < Обычно берут дугу кривой произвольной длины Λ и произвольной же формы. Вышеприведенные формулы для M(R,Λ) применимы и для , усредненного по всем формам. Окончательный результат всегда одинаков. ►

Замечание. Предыдущее рассуждение никак не зависит от топологии кластеров — они могут быть петлями, интервалами, деревьями или чем-нибудь еще.

Вывод. Формула показывает, что при гиперболическом распределении величины Λ и, как следствие, очень широком ее разбросе, одну из существенных ролей размерности берет на себя некий показатель, отличный от D. Обычно он равен 2Dc −D, однако различные весовые функции дают различные показатели Q.

Предостережение: не всякий массовый показатель является размерностью. Составная величина Q представляет собой весьма важную характеристику. А так как это массовый показатель, возникает искушение назвать его размерностью, однако это искушение ничем не обосновано. При слиянии различных кластеров с одинаковой размерностью Dc , но разными Λ, Dc не изменяется, поскольку размерность — это не свойство совокупности различных множеств, но свойство каждого отдельного множества. И D, и Dc являются фрактальными размерностями, a Q — нет.

Обобщая, можно сказать, что во многих областях физики известны соотношения вида однако сама по себе эта формула еще не гарантирует того, что Q непременно будет фрактальной размерностью. Называть же Q эффективной размерностью, как предлагают некоторые авторы, все равно, что попусту сотрясать воздух, так как Q не обладает ни одним из остальных свойств, характеризующих D как размерность (например, суммы или произведения размерностей D имеют смысл, которому нет аналогов в случае Q). Более того, эти пустые слова оказываются источником возможных недоразумений.

 

РАССРЕДОТОЧЕННЫЕ КЛАСТЕРЫ, ПОЛУЧАЕМЫЕ ПРИ СТВОРАЖИВАНИИ

Существует еще два метода построения контактных кластеров. Первый основан на створаживании и применим в случае D<2, второй использует кривые Пеано и пригоден для случая D=2. Читатели, интересующиеся перколяцией, могут пропустить этот и следующий за ним разделы.

Начнем с замены построения Коха естественным обобщением кан- торова створаживания на плоскость. В качестве иллюстрации на нижеследующем рисунке представлены пять примеров генераторов, под которыми помещены последующие этапы построения:

Во всех этих случаях предельный фрактал имеет нулевую площадь и не содержит внутренних точек. Его топология зависит от формы генератора и может быть весьма разнообразной.

В случае генератора A предтворог на каждом этапе построения представляет собой связное множество, а предельный фрактал оказывается кривой — примером может служить чрезвычайной важности конструкция (называемая ковром Серпинского), которую мы подробно рассмотрим в главе 14.

В случае генератора Д предтворог распадается на несвязные участки, максимальный линейный масштаб которых неуклонно уменьшается по мере того, как k→∞. Предельный фрактал представляет собой пыль, аналогичную той, что мы наблюдали в модели Фурнье (глава 9).

Генераторы Б, В и Г более интересны: здесь предтворог распадается на части, которые мы назовем предкластерами. Можно сказать, что на каждом этапе «старые» предкластеры преобразуются в более тонкие и извилистые конструкции и появляются «новые» предкластеры. Посредством тщательного выбора генераторов мы добиваемся того, что каждый новорожденный предкластер оказывается целиком заключен в одной-единственной ячейке наимельчайшей решетки предыдущего этапа построения. По контрасту с «перекрестно сосредоточенными кластерами» следующего раздела я предлагаю назвать эти кластеры «рассредоточенными». Таким образом, размерность предельных контактных кластеров имеет вид lnNc /lnb, где Nc — целое число, не превышающее количества ячеек в самом большом компоненте генератора. Значение Nc достигает своего максимума, т. е. становится равным количеству ячеек, в случае генераторов Б и В, чьи контактные кластеры представляют собой, соответственно, интервалы с Dc =1 и фрактальные деревья с Dc =ln7/ln4. Во фрактале же, построенном с помощью генератора Г, величина Nc максимума не достигает: в этом случае F-обрачные предкластеры продолжают разделяться на все более мелкие части, и в пределе мы снова получаем прямые интервалы с Dc =1.

Соотношение между диаметром и количеством и другие выводы предыдущего раздела остаются в силе и в том случае, если заменить псевдо-сосиску Минковского совокупностью ячеек со стороной b−k , частично совпадающей с каким-либо контактным кластером.

 

ПЕРЕКРЕСТНО СОСРЕДОТОЧЕННЫЕ КЛАСТЕРЫ, ПОЛУЧАЕМЫЕ ПРИ СТВОРАЖИВАНИИ

Придадим генератору плоского створаживания одну из приведенных ниже форм (справа от каждого генератора показан результат следующего этапа построения):

Оба случая демонстрируют массивное «перекрестное сосредоточение», т. е. каждый новорожденный предкластер соединяет в себе элементы, принадлежащие на предыдущем этапе построения нескольким ячейкам наимельчайшей решетки.

В контексте кохова построения аналогичная ситуация возникает в том случае, когда допускается самокасание терагонов, в результате чего происходит слияние малых кластеров. В обоих случаях анализ довольно громоздок, и мы не можем останавливаться на нем подробно. Скажем лишь, что для малых λ соотношение остается верным.

< Если кто-нибудь все же попытается оценить величину D на основании этого соотношения, не исключив из рассмотрения больших λ, то полученная оценка будет систематически отклоняться от истинного значения, оказываясь, как правило, меньше него. ►

Величина приобретает новые, неизвестные ранее свойства. Нет, например, необходимости в том, чтобы она обязательно была целым числом, выводимым из формы генератора путем простого наблюдения; она может быть и дробью. Причина заключается в том, что каждый контактный кластер сочетает в себе: (а) целое число своих собственных версий, уменьшенных с коэффициентом 1/b, и (б) множество уменьшенных версий, возникающих при сосредоточении, причем коэффициентами подобия здесь являются меньшие соотношения вида . Переписав генерирующее размерность уравнение (см. с. 87) в переменных x=b−D , получим уравнение . Случаи, когда 1/x — целое число, могут рассматриваться лишь как исключения.

 

ПРИРУЧЕНИЕ ЗАУЗЛЕННЫХ ЧУДОВИЩ ПЕАНО

Створаживанием нельзя получить заполняющую плоскость совокупность кластеров (D=2), однако я обнаружил возможность альтернативного подхода к задаче: нужно лишь воспользоваться кривыми Пеано — правда, несколько иными, нежели те, что были приручены в главе 7. Как читатель, несомненно, помнит, кривые Пеано, терагоны которых избегают самопересечений, порождают деревья рек и водоразделов. Другие терагоны Пеано (например, терагоны на рис. 95, если оставить углы нескругленными) представляют собой просто заполненные ячейки решетки. По мере продолжения построения пустые ячейки, разделяемые такими кривыми, «сходятся» в повсюду плотную пыль (например, состоящую из точек, ни одна координата которых не кратна b−k ).

Между этими крайностями существует еще один весьма интересный класс кривых Пеано. Ниже представлен примерный генератор одной такой кривой вместе с результатом следующего этапа построения:

Теперь мы готовы приручить и этот класс кривых Пеано. На рисунке видно, что каждая точка самокасания «заузливает» открытый предкластер, который затем может обзавестись ветвями и точками самокасания, потерять при «разузливании» некоторые части самого себя и, в конце концов, превратиться в тонкую и в высшей степени разветвленную кривую, определяющую контактный кластер. Согласно нашему определению, данному в предыдущих разделах, диаметр кластера Λ остается постоянным с момента его рождения и приблизительно равен длине стороны «породившего» кластер квадрата. Его распределение подчиняется уже известному нам соотношению .

Заметим мимоходом, что в отличие от коховых контактных кластеров, которые являются пределами рекурсивно построенных кривых, данные кластеры представляют собой пределы (в своем роде) открытых компонентов дополнения кривой.

 

КЛАСТЕРЫ В БЕРНУЛЛИЕВОЙ ПЕРКОЛЯЦИИ

Какой бы метод ни использовался при генерации фрактальных контактных кластеров с размерностями D=E и Dc

Литература. Всем желающим рекомендую следующие обзорные материалы по бернуллиевой перколяции: [520], [112] (особенно хороша глава, написанная Дж. У. Эссамом), [266], [98], [536] и [134].

Определения. Понятие перколяции включает в себя некоторые элементы из теории вероятности, поэтому, если быть до конца последовательными, нам не следовало бы обсуждать его на данном этапе. Однако некоторая толика непоследовательности приносит порой неплохие результаты. Простейшей задачей о перколяции для случая E=2 является перколяция по связям на квадратной решетке. Для упрощения картины представим себе большую квадратную решетку, составленную из двух видов стержней: одни сделаны из изолирующего винила, другие — из электропроводящей меди. Такая решетка может считаться решеткой Бернулли, если каждый стержень выбран совершенно случайно, независимо от других стержней, причем вероятность выбора проводящего стержня равна p. Наибольшие скопления связанных между собой медных или виниловых стержней называются, соответственно, медными или виниловыми кластерами. Если решетка содержит хотя бы одну непрерывную цепочку медных стержней, электрический ток сможет пройти всю решетку насквозь, от одного края до другого. В таких случаях говорят, что решетка перколирует. (От латинского per «сквозь» и colare «течь».) Все стержни, находящиеся в неразрывном электрическом контакте одновременно с верхним и нижним краями решетки, образуют «перколяционный кластер», а стержни, непосредственно участвующие в передаче, составляют так называемую «магистраль» кластера.

Обобщение на решетки другой формы и на структуры с E>2 очевидно.

Критическая вероятность. Наиболее замечательная находка Хаммерсли имеет отношение к особой роли некоторой пороговой вероятности или, как он ее назвал, критической вероятности pкрит. Эта величина появляется на сцене, когда размер решетки Бернулли (измеряемый числом стержней) стремится к бесконечности. Оказывается, когда p>pкрит, вероятность существования перколяционного кластера возрастает с размером решетки и стремится к единице. Когда же p

Поскольку в случае перколяции по связям на квадратных решетках дело обстоит таким образом, что либо медь, либо винил должны перколировать, то pкрит=1/2.

Аналитическая масштабная инвариантность. Изучение перколяции уже довольно давно вылилось в поиски аналитических выражений, которые связали бы между собой стандартные физические величины. Выяснилось, что все эти величины обладают свойством масштабной инвариантности в том смысле, что отношения между ними задаются степенными законами. При p≠pкрит масштабная инвариантность сохраняется вплоть до внешнего порога, величина которого зависит от p−pкрит и обозначается через ξ. По мере того, как p→pкрит, порог ξ→∞. Физики постулируют (см. [536], с. 21), что величина следует правилу, полученному нами на с. 180.

 

ФРАКТАЛЬНАЯ ГЕОМЕТРИЯ КЛАСТЕРОВ

Форма кластеров. Допустим, что p=pкрит, а длина каждого отдельного стержня уменьшается, в то время как общий размер решетки остается постоянным. Кластеры при этом становятся все более тонкими («кожа да кости»), все более извилистыми и разветвленными. В частности [293], количество стержней, расположенных вне кластера, но по соседству с каким-либо стержнем, принадлежащим кластеру, приблизительно пропорционально количеству стержней внутри кластера.

Гипотеза о фрактальных кластерах. Вполне естественно предположить, что масштабная инвариантность — свойство не только аналитическое, но распространяется и на геометрию кластеров. Однако эту идею нельзя осмыслить средствами стандартной геометрии, поскольку кластеры отнюдь не являются прямыми линиями. Фрактальная же геометрия, можно сказать, просто создана для устранения таких трудностей: как следствие, я высказал предположение, что кластеры можно представить в виде фрактальных σ-кривых, удовлетворяющих равенствам D=2 и 1

< Строго говоря, масштабно-инвариантные фракталы были призваны представлять только те кластеры, которые не усечены границей исходной решетки. Это исключает из рассмотрения сам перколяционный кластер. (Термин кластер обладает чудесным даром создавать путаницу, вы не находите?) Для объяснения возникающего осложнения представим себе чрезвычайно большую решетку, выберем на ней какой-нибудь кластер и квадрат меньшего размера, наложенный на этот кластер. По определению, пресечение кластера и квадрата включает в себя меньший перколяционный кластер, однако оно же включает в себя и «остаток», который соединяется с меньшим перколяционным кластером посредством связей, находящихся вне квадрата. Заметим, что пренебрежение этим остатком смещает вниз оценку Dc . ►

Неслучайные фрактальные модели — очень приближенные, но конкретные. Для того, чтобы утверждение о фрактальной природе какого-либо естественного феномена было обоснованным, его следует сопроводить описанием конкретного фрактального множества, которое могло бы послужить моделью этого явления в первом приближении или хотя бы дать нам возможность представить его перед мысленным взором. Моя модель береговых линий, основанная на кривых Коха, или модель галактических скоплений Фурнье показывают, что такое приближенное неслучайное представление может оказаться весьма полезным. Я полагаю также, что рекурсивно построенные контактные кластеры (подобные тем, что рассматриваются в этой главе) могут снабдить нас полезными фрактальными моделями слабо изученного естественного феномена, который обычно моделируется кластерами Бернулли.

Однако сами кластеры Бернулли полностью изучены (по крайней мере, принципиально), и следовательно, их моделирование с помощью явных рекурсивных фракталов представляет собой несколько иную задачу. Рассмотренные мною коховы контактные кластеры для этого случая не годятся из-за асимметрии между виниловыми и медными стержнями, которая сохраняется даже при равных количествах стержней обоих видов. Далее на очереди заузленные кластеры Пеано. Возьмем терагон на некотором отдаленном этапе построения и покроем ячейки, расположенные слева от кривой, медью, а остальные — винилом. Результат представляет собой форму перколяции относительно ячеек решетки (или их центров, называемых узлами). Задача становится симметричной. Однако она отлична от задачи Бернулли, так как получаемая конфигурация медных и виниловых ячеек очень отличается от той, какой она могла бы быть при независимом их распределении: например, в бернуллиевой решетке девять ячеек, образующих суперквадрат, могут целиком состоять из меди или винила, тогда как в случае заузленной кривой Пеано это невозможно. (С другой стороны, обе модели позволяют группам из четырех ячеек, образующих суперквадрат, принимать любые возможные конфигурации.) Эта разница имеет далеко идущие последствия: например, в задаче о бернуллиевой перколяции по узлам с p=1/2 не перколируют ни медь, ни винил, тогда как в случае заузленных кластеров Пеано перколируют и медь, и винил (учитывая, что p=1/2 — критическая вероятность).

Перечень вариантов бернуллиевой перколяции по связям уже довольно обширен и может быть с легкостью продлен. Я же успел рассмотреть множество вариантов рекурсивно построенных фрактальных контактных кластеров. Детальное сравнение этих двух перечней, к сожалению, заняло бы слишком много места, и потому я не стану приводить его здесь.

Позвольте мне ограничиться весьма расплывчатым выводом о том, что фрактальная сущность задачи о бернуллиевой перколяции в значительной степени иллюстрируется неслучайными заполняющими пространство σ-кластерами, определенными ранее в этой главе. Основная слабость данной модели заключается в том, что за пределами уже сказанного она остается совершенно неопределенной. Ее можно подогнать к любой степени иррегулярности и фрагментации. На предмет топологии см. главу 14.

Модель критических кластеров. Рассмотрим, в частности, критические кластеры, определяемые как кластеры при p=pкрит. Для их представления экстраполируем рекурсивный σ-кластер, как показано ранее в этой главе. Затем, остановив интерполяцию, усечем его таким образом, чтобы положительный внутренний порог оказался равен размеру ячейки в исходной решетке.

Модели некритических кластеров. Для того, чтобы распространить эту геометрическую картину на некритические кластеры, т. е. на кластеры при p≠pкрит, нам необходимы фракталы с положительным внутренним и конечным внешним порогами. Аналитические рассуждения показывают, что протяженность наибольшего медного кластера составляет величину порядка ξ при ppкрит. Оба варианта легко осуществимы. Можно, например, начать с того же генератора, что и в предыдущем подразделе, однако вместо естественной его экстраполяции, подставим в качестве инициатора одну из следующих фигур:

Докритические кластеры. Инициатор на рисунке слева (построенный с таким расчетом, чтобы p

Сверхкритические кластеры. Инициатор на рисунке справа (построенный так, чтобы p>pкрит) составлен из тех линий исходной квадратной решетки, координаты которых (x или y) являются четными целыми числами. Из каждого узла (координаты которого являются четными целыми числами) исходят по четыре связи; выбранный генератор всегда помещается слева. В особом случае, когда берег-генератор не содержит ни петель, ни свободных концов, получающаяся картинка представляет собой дерандомизированный и систематизированный вариант грубой модели кластеров, основанной исключительно на «узлах и связях».

Заметим, что фрактально-геометрическое представление выводит некритические кластеры из критических, в то время как физики предпочитают рассматривать критические кластеры как предельный случай некритических кластеров при ξ→∞.

 

РАЗМЕРНОСТЬ D

С

КРИТИЧЕСКИХ БЕРНУЛЛИЕВЫХ КЛАСТЕРОВ

Значение Dc непосредственно выводится либо из показателя D/Dc =E/Dc в формуле для , либо из показателя Q=2Dc −D=2Dc −E в формуле для . Введя греческие буквы τ, σ и η в обычном для данного контекста значении, получим и 2Dc −E=2−η. Отсюда

и .

Благодаря установленным физиками соотношениям между величинами τ, σ и η, мы знаем, что вышеприведенные формулы для Dc эквивалентны. И наоборот, их эквивалентность имеет не только физические корни, поскольку следует из геометрических соображений.

Харрисон, Бишоп и Куинн [198], Киркпатрик [267] и Штауффер [536] независимо друг от друга получили одинаковое значение Dc . Они отталкиваются от свойств кластеров при p>pкрит и, как следствие, выражают полученный результат с помощью различных критических показателей (β, γ, v и σ). За их рассуждениями не стоит никакой конкретной фрактальной картины. Примером опасностей, таящихся в таком подходе (относительно которого я уже предостерегал ранее в этой же главе), может послужить тот факт, что он привел Стенли [533] к заключению: величины Q и Dc являются одинаково законными размерностями.

В случае E=2 численное значение Dc равно 1,89. Оно согласуется с эмпирическими свидетельствами, полученными с помощью определенной процедуры, знакомой нам по другим задачам. Возьмем некоторую величину r, которая, кстати, вовсе не обязана иметь вид 1/b, где b — целое число. Теперь возьмем большой вихрь, который в сущности представляет собой квадратную или кубическую решетку со стороной 1. Покроем его субвихрями со стороной r, сосчитаем количество N квадратов или кубов, пересекающих кластер, и вычислим приближенное значение размерности lnN/ln(1/r). Повторим процесс с каждым непустым субвихрем со стороной r, покрыв его субсубвихрями со стороной r2 . И так далее, по возможности большее число раз. Наиболее осмысленные результаты дает r, близкое к 1. В некоторых ранних экспериментах [391, 192] была получена смещенная оценка D+ ~1,77, однако последующее, более обширное, моделирование [537] подтвердило теоретическое значение D.

< Смещенное экспериментальное значение D+ очень близко к Q; на какой-то миг может даже показаться, что это подтверждает теоретические рассуждения [534] и [391], которые ошибочны в том, что объявляют величину Q размерностью. Мое внимание на эту ошибку обратил С. Киркпатрик. Еще одну, более раннюю, отличную от вышеприведенной, но также ошибочную оценку D можно найти в статье [293]. ►

 

КИПАРИСОВЫЕ РОЩИ ОКЕФЕНОКИ

Если взглянуть с самолета на лес, за которым никто систематически не «присматривает», можно увидеть, что его граница весьма напоминает береговую линию острова. Контуры отдельных групп деревьев чрезвычайно извилисты и изрезаны, и по соседству с каждой большой группой расположены меньшие группы различного размера. Мое предположение о том, что эти формы могут подчиняться закону Ричардсона и/или/ закону Корчака, было полностью подтверждено в неопубликованном исследовании болота Окефеноки (см. [261]), предпринятом X. М. Хейстингсом, Р. Монтиччиоло и Д. вун Канноном. Наиболее изрезанными оказались контуры кипарисовых рощ (D~1,6); гораздо слабее выражена изрезанность широколиственных и смешанных лесов: размерность D их границ приближается к 1. Мои информаторы отмечают наличие впечатляющего разнообразия масштабов как при личном наблюдении, так и при изучении карт растительности. Имеется, кстати, и внутренний порог, равный приблизительно 40 акрам, — возможно, следствие особенностей аэрофотосъемки.

 

14 ВЕТВЛЕНИЕ И ФРАКТАЛЬНЫЕ РЕШЕТКИ

 

В главе 6 мы рассматриваем плоские кривые Коха с размерностью D<2, которые не содержат двойных точек, благодаря чему их можно назвать лишенными самопересечений или неразветвленными. А глава 7 посвящена кривым Пеано, неизбежным пределом для которых являются повсюду плотные двойные точки. В настоящей главе мы намерены сделать следующий шаг и исследовать некоторые примеры намеренно разветвленных самоподобных фигур: плоских кривых (1

Математический аппарат, используемый в этой главе, не нов (хотя и известен очень немногим специалистам) — новым является мое применение его для описания Природы.

 

САЛФЕТКА СЕРПИНСКОГО - ОЧЕРЕДНОЕ ЧУДОВИЩЕ

Я предложил термин салфетка Серпинского для обозначения фигуры, изображенной на рис. 205. На рис. 207 показан пространственный вариант той же фигуры. Процедуры их построения описаны в пояснениях к рисункам.

У Хана [190] читаем: «Точка кривой называется точкой ветвления, если граница сколь угодно малой ее окрестности содержит более чем две точки, принадлежащие той же кривой... Здравый смысл, судя по всему, настаивает на том, что никакая кривая просто не может состоять из одних лишь ... точек ветвления. Это очевидное убеждение опровергается ... кривой Серпинского, все точки которой являются точками ветвления».

 

ЭЙФЕЛЕВА БАШНЯ: ПРОЧНОСТЬ И ИЗЯЩЕСТВО

И опять Хан со своими взглядами сел в лужу, хотя надо признать, что не характерный для него выбор слов («судя по всему») оказывается весьма мудр. Мой первый контраргумент позаимствован из достижений инженерной мысли. (Перед тем, как приступить к рассмотрению компьютерных структур в конце главы 12, я уже говорил о том, что не усматриваю ничего нелогичного во включении искусственных систем со сложной структурой в настоящий труд, посвященный феноменам Природы.)

Я утверждаю, что (задолго до Коха, Пеано и Серпинского) в построенной Гюставом Эйфелем в Париже башне была осознанно воплощена идея фрактальной кривой, содержащей множество точек ветвления.

В первом приближении Эйфелева башня состоит из четырех А-образных элементов. Согласно легенде, Эйфель выбрал букву А, чтобы выразить в своей башне слово Amour. Все четыре А-образных элемента имеют общую вершину, а соседние А — общее ребро. Кроме того, на верхушке возвышается еще одна, прямая, башня.

Заметьте, что и А-элементы, и верхняя башня сделаны не из цельных балок, а из колоссальных ферм. Фермой называется жестко скрепленная совокупность взаимосвязанных звеньев, каждое из которых не может быть деформировано без деформации, по крайней мере, одного из соседних звеньев. При одинаковой прочности фермы оказываются значительно легче цельных цилиндрических балок. А Эйфель сообразил, что фермы, звенья которых сами являются фермами, еще легче.

Бакминстер Фуллер открыл миру глаза на то, что секрет прочности скрыт в точках ветвления, однако умудренные опытом строители готических соборов знали об этом задолго до него. Чем дальше мы заходим в применении этого принципа, тем ближе подбираемся к идеалу Серпинского! Бывший ученик Безиковича Фримен Дайсон в поисках прочных и легких конструкций для своих межпланетных построек описал однажды бесконечно экстраполированную Эйфелеву башню ([125], с. 646).

 

КРИТИЧЕСКИЕ ПЕРКОЛЯЦИОННЫЕ КЛАСТЕРЫ

Вернемся снова к природе, вернее, к образу природы, описываемому статистической физикой. Я полагаю, что при изучении перколяции сквозь решетки нам просто не обойтись без кого-нибудь из родственников салфетки Серпинского. В главе 13, открывающей рассмотрение данного прецедента, утверждалось, что перколяционные кластеры фрактальны. Теперь я пойду дальше и скажу, что разветвленная структура салфетки Серпинского представляет собой весьма многообещающую модель структуры магистралей кластеров.

Физики оценят эту модель главным образом по тому факту, что она работает, и работает быстро: в статье [166] показано, что с помощью такой модели можно выполнять обычные вычисления точно. Подробности слишком специальны для того, чтобы войти в настоящее эссе, а вот причины, благодаря которым я пришел к этим выводам, могут оказаться интересными. Впервые я задумался об этом, когда заметил сходство между салфеткой Серпинского и магистралями кластеров, показанными на следующем рисунке:

Наиболее явная причина заключена в тремах, оставшихся пустыми после удаления болтающихся связей (образовавшихся после сокращения кластера до магистрали) и кластеров, целиком содержащихся внутри заинтересовавшего меня кластера. Вторая причина: в главе 13 мы показали, что самоподобие является в высшей степени желательным свойством для геометрической модели перколяционного кластера, а ветвление салфетки Серпинского как раз самоподобно. И наконец, размерности этих двух структур настолько близки, что это едва ли может быть простым совпадением! Согласно оценке С. Киркпатрика, плоский кластер имеет размерность D~1,6 — поразительно близко к размерности D салфетки Серпинского! Размерность же пространственного кластера D~2,0 почти совпадает с фрактальной размерностью асимметричной паутины на рис. 207. Кроме того, в [166] показано, что идентичность размерности D магистрали и размерности обобщенной салфетки сохраняется и в R4 . Еще один аргумент в пользу «салфеточной» модели мы представим несколько позже в виде последнего приложения ветвления.

 

ТРОИЧНЫЙ КОВЕР СЕРПИНСКОГО

Перейдем от треугольных решеток к прямоугольным. Они демонстрируют большое разнообразие возможных конструкций — кривых на плоскости и в пространстве и поверхностей в пространстве. Что касается кривых, то они, несмотря на внешнее сходство с салфеткой Серпинского, весьма отличны от нее с фундаментальной точки зрения на ветвление, к которой мы еще вернемся после определения этих кривых.

Буквальное распространение на плоскость канторова метода удаления средних третей описано в пояснении к рис. 205; инициатором такого построения служит квадрат. Фрактал, получаемый бесконечным повторением этого процесса, широко известен под непритязательным названием троичного ковра Серпинского. Его размерность D=ln8/ln3=1,8927.

 

НЕТРОИЧНЫЕ ФРАКТАЛЬНЫЕ КОВРЫ

Для построения «ковра с большим медальоном в центре» запишем, как обычно, r=1/b, где b — целое число, большее 3; в качестве инициатора возьмем квадрат, в качестве тремы — квадрат со стороной 1−2r с центром в той же точке, а в качестве генератора — узкое кольцо из 4(b−1) квадратов со стороной r. Размерность такого ковра имеет вид . Если взять нечетное целое b>3, в качестве тремы — один подквадрат со стороной г и с центром в той же точке, что и центр инициатора, а в качестве генератора — широкое кольцо из (b3 −1) малых квадратов, то получится «ковер с малым медальоном в центре». Размерность такого ковра имеет вид D=ln(b3 −1)/lnb. Таким образом, в центрированных коврах можно получить сколь угодно близкое приближение к любому значению D в интервале от 1 до 2.

Нецентрированные ковры определяются при b≤2. Например, при b=2 и N=3 можно разместить трему, состоящую из одного подквадрата, в правом верхнем подквадрате. Соответствующее предельное множество оказывается салфеткой Серпинского, построенной из треугольника, образующего левую нижнюю половину квадрата.

 

ТРОИЧНАЯ ФРАКТАЛЬНАЯ ПЕНА

Буквальное распространение троичного ковра на пространство начинается с удаления из куба в качестве тремы среднего подкуба (27-й части объема исходного куба), после чего остается «оболочка» из 26 подкубов. Получаемый посредством такой процедуры фрактал я предлагаю назвать троичной фрактальной пеной. Ее размерность D=ln26/ln3=2,9656.

Каждая трема здесь со всех сторон окружена непрерывной границей, разделенной на бесконечное множество бесконечно тонких слоев бесконечной плотности. Для того, чтобы попасть из точки, расположенной в одной треме, в точку, расположенную в другой треме, необходимо пройти сквозь бесконечное количество слоев. Это напоминает «пространственно-временную пену», которая, согласно Дж. А. Уилеру и Дж. У. Хокингу, составляет тончайшую структуру материи. Вынужден, однако, признаться, что я не владею этой темой в достаточной степени, поэтому не решусь обсуждать ее здесь.

 

ТРОИЧНАЯ ФРАКТАЛЬНАЯ ГУБКА МЕНГЕРА

Карл Менгер предлагает в качестве тремы другую фигуру: крест, из центра которого спереди и сзади торчит по выступу. При этом от куба остается N=20 связанных друг с другом подкубов со стороной 1/3. Из этих подкубов двенадцать образуют «брусья» или веревки, а остальные восемь являются узлами или соединителями. Размерность предельного множества (см. рис. 208) составляет D=ln20/ln3=2,7268. Я называю эту структуру губкой, так как здесь и творог, и сыворотка представляют собой связные множества. Можно представить себе, как между двумя любыми точками области сыворотки свободно течет вода.

Чтобы получить комбинацию веревок и листов, возьмем в качестве тремы троичный крест всего лишь с одним выступом — спереди. А если при этом время от времени менять направление выступа, то листы в предельной конструкции получатся дырявыми. Возможно, здесь следует упомянуть и о том, что я размышлял обо всех этих формах, когда искал модели для описания турбулентной перемежаемости, — еще до того, как прочел о них у Менгера.

 

НЕТРОИЧНЫЕ ГУБКИ И ПЕНЫ

Для получения обобщенных губок Менгера с нетроичным основанием b>3, трема должна представлять собой комбинацию из трех цилиндров с квадратными основаниями с соблюдением следующих условий: ось каждого из цилиндров должна совпадать с одной из осей единичного куба, длина каждого цилиндра должна быть равна 1, а стороны его основания должны быть параллельны другим осям куба. Чем больше длина стороны основания, тем «легче» получаемая губка. Наибольшая возможная длина стороны основания для случая E=3 составляет 1−2/b, генератор при этом имеет вид комбинации 12b−16 кубов со стороной r=1/b. Отсюда размерность D=ln(12b−16)/lnb. Аналогичным образом получаем «плотную» губку (только при нечетном b) — длина стороны основания цилиндра в этом случае равна 1/b. При E=3 генератор имеет вид комбинации b3 −3b+2 кубов со стороной r=1/b. И размерность теперь равна D=ln(b3 −3b+2)/lnb.

Фрактальные пены обобщаются аналогичным образом. При E=3 «густые» пены дают размерность D=ln(b3 −1)/lnb, а «разреженные» — D=ln(6b2 −12b+8)/lnb. Если пустоты велики, а размерность близка к 2, то пена похожа на чрезмерно ноздреватый эмментальский сыр; при малых пустотах и D~3 пена напоминает другой изысканный сыр — аппенцелльский.

 

РАСПРЕДЕЛЕНИЕ РАЗМЕРОВ ПУСТОТ

Тремы губок сливаются в одно целое, в то время как тремы ковров и пен представляют собой изолированные друг от друга пустоты, подобные паузам в канторовой пыли (см. главу 8). Распределение их линейного масштаба Λ подчиняется правилу

,

где F — константа. Это правило нам хорошо известно еще с рассмотрения пустот в канторовой пыли, а также островов и кластеров в главе 13.

 

ПОНЯТИЕ О ФРАКТАЛЬНОЙ СЕТИ. РЕШЕТКИ

Решеткой в стандартной геометрии называется совокупность параллельных прямых, ограничивающих одинаковые квадраты, треугольники или другие регулярные фигуры. Этот же термин, судя по всему, применим и к правильным фракталам, любые две точки которых могут быть соединены одна с другой двумя различными путями, нигде более не пересекающимися. В случае неправильного — например, случайного — фрактала решетку я заменяю сетью.

При более внимательном сравнении стандартных и фрактальных решеток становятся заметны весьма значительные различия. Первое заключается в том, что стандартные решетки инвариантны при сдвигах, но не при масштабировании, тогда как для фрактальных решеток верно обратное. Второе различие: при уменьшении размера ячейки стандартной решетки решетка в пределе сходится в плоскость. Кроме того, некоторые стандартные решетки можно интерполировать, помещая дополнительные прямые посередине между уже существующими прямыми и продолжая этот процесс до бесконечности. В этом случае решетка также сходится в плоскость. Аналогичным образом, если возможна интерполяция стандартной пространственной решетки, то пределом ее становится все пространство. То есть предел стандартной решетки не является решеткой. В случае фракталов ситуация прямо противоположна: пределом приближенной фрактальной решетки является фрактальная же решетка.

Термин применим и к фрактальным пенам — их можно считать разветвленными фрактальными решетками.

 

ФРАКТАЛЬНЫЕ РАЗМЕРНОСТИ СЕЧЕНИЙ

Основное правило. Во многих случаях при изучении фракталов важно знать размерности линейных и плоских сечений. Основное наблюдение здесь (мы воспользовались им в главе 10 для того, чтобы показать, что размерность турбулентности D>2) касается сечения плоской фрактальной фигуры интервалом, «независимым от фрактала». Оказывается, если сечение непусто, то его размерность «почти наверняка» составляет величину D−1.

Соответствующее значение для пространственного случая D−2.

Исключения. К сожалению, этот результат весьма сложно проиллюстрировать, имея дело с неслучайными фракталами, обладающими осями симметрии. Интервалы, на которые мы первым делом обращаем внимание, параллельны этим осям и, как следствие, нетипичны, а почти любое простое сечение каким-либо другим интервалом принадлежит исключительному множеству, к которому общее правило не применимо.

Возьмем, например, ковер Серпинского, троичную губку Менгера и троичную пену. Значение D−1, которое почти наверняка должно оказаться размерностью сечения плоской фигуры отрезком, будет, соответственно, равно:

ln(8/3)/ln3

ln(20/9)/ln3 и

ln(26/9)/ln3.

Обозначим через х абсциссу интервала, параллельного оси у ковра Серпинского. Если число x, записанное в троичной системе счисления, оканчивается на бесконечную последовательность нулей и двоек, то сечения сами представляют собой интервалы, а значит D=1 — больше, чем мы ожидали. Если же х оканчивается на бесконечную последовательность единиц, то сечения являются пылевидными канторовыми множествами с размерностью D=ln2/ln3, которая слишком мала. А если x оканчивается периодической последовательностью периода M, включающей в себя pM единиц и (1−p)M нулей или двоек, то размерность сечений имеет вид D=p(ln2/ln3)+(1−p). Ожидаемое значение D получается лишь при p~0,29. < То же верно и в случае случайной последовательности цифр в троичной записи числа x. ► Таким образом, мы получаем три различных размерности — наибольшую, наименьшую и среднюю.

Очень похожие результаты получаются и в пространственном случае.

Что касается салфетки Серпинского, ее наиболее вероятная размерность D=ln(3/2)/ln2, однако значения размерности «естественных» сечений варьируются от 1 до 0. Например, если короткий интервал, проходящий через середину одной из сторон салфетки, достаточно близок к перпендикуляру, то его пересечением с салфеткой будет одна-единственная точка (размерность сечения D=0).

Разнообразие этих особых сечений отчасти объясняется регулярностью исходных фигур. С другой стороны, наиболее экономичное сечение (причем необязательно прямой линией) неизбежно является основой понятий топологической размерности и степени ветвления, к которым мы сейчас и переходим.

 

РАЗВЕТВЛЕННЫЕ ФРАКТАЛЫ КАК КРИВЫЕ И ПОВЕРХНОСТИ

Как мы уже отмечали, термин «кривая» используется в настоящем эссе как эквивалент фразы «связная фигура с топологической размерностью DT =1». Вообще говоря, математик сочтет такую формулировку не совсем удовлетворительной, точные же выражения для этого понятия весьма деликатны. К счастью, для того, чтобы объяснить, почему любая кривая Коха с инициатором [0, 1] заслуживает звания кривой, нам в главе 6 хватало одного простого соображения: как и сам интервал [0, 1], кривая Коха связна, однако становится несвязной при удалении любой принадлежащей ей точки кроме 0 и 1. А граница снежинки похожа в этом отношении на окружность — она связна, но становится несвязной, если удалить любые две ее точки.

Выражаясь более педантично (как нам теперь и подобает), топологическая размерность определяется рекурсивно. Для пустого множества DT =−1. Для любого другого множества S значение DT на единицу больше, чем наименьшая размерность DT разъединяющего множество S «сечения». Размерность конечных и канторовых пылевидных множеств DT =1−1=0, так как для их разъединения требуется удалить пустое множество. Следующие же связные множества становятся несвязными при удалении «сечения» с размерностью DT =0: окружность, интервал [0, 1], граница снежинки Коха, салфетка и ковер Серпинского, губки Менгера. (В трех последних случаях достаточно избежать особых сечений, включающих в себя интервалы.) Следовательно, размерность всех перечисленных множеств DT =1.

Исходя из тех же соображений, фрактальная пена представляет собой поверхность с размерностью DT =2.

Рассмотрим еще один вариант доказательства того, что для салфетки, всех ковров и всех губок с D<2 топологическая размерность DT =1. Поскольку DT есть целое число ≤D, из неравенства D<2 следует, что DT должна быть равна либо 0, либо 1. Но рассматриваемые множества являются связными, значит размерность DT не может быть меньше 1. Единственное решение: DT =1.

 

СТЕПЕНЬ ВЕТВЛЕНИЯ КРИВОЙ

Топологическая размерность и соответствующие понятия пыли, кривой и поверхности дают нам лишь классификацию первого уровня.

В самом деле, два конечных множества, содержащих соответственно M' и M'' точек, имеют одинаковую размерность DT =0, но различаются топологически. А канторова пыль отлична от любой конечной пыли.

Рассмотрим, как можно применить к кривым параллельное различие, основанное на количестве содержащихся в множестве точек (< его «мощности» ►), что приведет нас к топологическому понятию степени ветвления, определенному в начале двадцатых годов Паулем Урысоном и Карлом Менгером. Это понятие почти не упоминается в математической литературе (за исключением трудов самих первопроходцев), зато приобретает все большее значение в физике — любое чудовище проще изучать в прирученном виде, нежели в диком. Оно показывает также, что, рассматривая сначала салфетку, а лишь затем ковер, мы будем руководствоваться не только эстетическими соображениями или стремлением к завершенности.

В понятие степени ветвления входит сечение множества, содержащее наименьшее количество точек, которые следует удалить для разъединения множества S. Кроме того, оно включает в себя и окрестности всех точек P, принадлежащих множеству S.

Окружность. Для плавного перехода от стандартной геометрии к фрактальной начнем с того, что назовем множеством S окружность радиуса 1. Окружность B с центром в точке P пересекает S в R=2 точках, за исключением тех случаев, когда радиус B больше 2 — при этом R=0. Диск, ограниченный окружностью B, называется окрестностью точки P. Таким образом, любая точка P лежит в какой-либо произвольно малой окрестности, граница которой пересекает S в R=2 точках. Вот, собственно, и все: если B является границей некоторой общей окрестности точки P, не обязательно круглой, но «не слишком большой», то R равно, по меньшей мере, 2. Слова «не слишком большой» в предыдущем предложении могут, несомненно, внести путаницу, однако избежать их, к сожалению, не представляется возможным. Величина R=2 называется степенью ветвления окружности. Заметим, что для всех точек окружности эта величина неизменна.

Салфетка. Положим теперь, что множество S — это салфетка Серпинского, построенная с помощью трем. Здесь R уже не является одинаковым для всех точек P. Позвольте мне, воспользовавшись рассуждениями Серпинского, показать, что во всех точках множества, за исключением вершин инициатора, значение R может быть равным либо 2(Rmin) либо4(Rmax).

Значение R=4 относится к вершинам любого конечного приближения к S с помощью треугольников. Вершина для аппроксимации порядка h≥k является общей вершиной P для двух треугольников с длиной стороны 2 . Окружности с центром в точке P и радиусом 2−k (при h>k) пересекают множество S в 4 точках и ограничивают произвольно малые окрестности точки P. А если B ограничивает «достаточно малую» окрестность точки P (при том, что вершины инициатора лежат вне B), то можно показать, что B пересекает S, по меньшей мере, в 4 точках.

Значение R=3 характеризует любую точку множества S, являющуюся пределом бесконечной последовательности треугольников, каждый из которых содержится внутри предшествующего ему треугольника и имеет вершины, отличные от вершин своего предшественника. Окружности, описанные вокруг этих треугольников, пересекают множество S в 3 точках, ограничивая при этом произвольно малые окрестности точки P. В этом случае, если B ограничивает достаточно малую окрестность точки P (вершины инициатора здесь также должны лежать вне B), то можно показать, что B пересекает S, по меньшей мере, в 3 точках.

Ковры. Когда множество S является ковром Серпинского, мы получаем радикально иной результат. Пересечение границы любой достаточно малой окрестности и S представляет собой несчетно бесконечное множество точек, причем независимо от параметров N, r или D.

Замечание. В этой дихотомии конечного/бесконечного салфетка немногим отличается от стандартных кривых, в то время как ковры неотличимы от плоскости.

Однородность. Единственность. Обозначив через Rmin и Rmax наименьшее и наибольшее значения R, достижимые в точке, принадлежащей множеству S, Урысон доказывает, что Rmax≥2Rmin−2. Ветвление называется однородным, если выполняется равенство Rmax=Rmin, так бывает, когда R=2, как в простых замкнутых кривых, или когда R≡∞.

Для других решеток, где Rmax=2Rmin−2, я предлагаю термин квазиоднородные. Самый простой и широкоизвестный пример таких решеток — самоподобная салфетка Серпинского. Другие неслучайные примеры входят в собранную Урысоном коллекцию (см. [571]) и не являются самоподобными. Таким образом, условиям квазиоднородности и самоподобности одновременно удовлетворяет только одно известное множество — салфетка Серпинского. Можно ли строго подтвердить эту, судя по всему, единственность?

Стандартные решетки. Здесь степень ветвления варьируется от минимального значения 2 для всех точек решетки, за исключением узлов, до переменного конечного максимального значения, достигаемого в узлах решетки: 4 (квадратная решетка), 6 (треугольная или кубическая решетка) или 3 (шестиугольная решетка). Однако по мере уменьшения размера ячейки стандартной решетки любого типа она трансформируется из кривой в область плоскости, и степень ее ветвления R устремляется к бесконечности.

Последнее становится более очевидным, если заменить бесконечно малое на бесконечно большое в решетке с фиксированным размером ячеек. Для того, чтобы изолировать все увеличивающуюся область решетки, придется пересечь неограниченно большое количество точек.

Формальное определение. < См. [426] и [38], с. 442. ►

 

ПРАКТИЧЕСКИЕ ПРИМЕНЕНИЯ ВЕТВЛЕНИЯ

Зададим себе привычный вопрос. Как бы ни занимали математиков фигуры Серпинского, Менгера и им подобные, не очевидно ли, что для человека, изучающего Природу, степень ветвления не может представлять никакого интереса? Ответ так же привычен — для нас с вами! — как и вопрос. Степень ветвления обретает значимость уже в «реальном мире» конечных аппроксимаций, получаемых при остановке ведущей к фракталу интерполяции при некотором положительном конечном внутреннем пороге ε.

В самом деле, если дано приближение салфетки Серпинского, составленное из заполненных треугольников с длиной стороны ε, то можно разъединить область, линейный масштаб которой превышает ε, простым удалением трех или четырех точек, каждая из которых принадлежит границе между двумя соседними пустотами. Это число (3 или 4) не изменяется при улучшении приближения. Следовательно, с точки зрения ветвления, все приближения салфетки можно считать кривыми.

Все ковры, напротив, обладают общим свойством: никакая пара пустот не имеет общей границы. Для разъединения конечного приближения такой фигуры, при рассмотрении которой мы игнорируем пустоты, меньшие ε, необходимо удалять целые интервалы. И количество этих интервалов возрастает по мере того, как ε→0. Уайберн [592] показал, что все фрактальные кривые, обладающие этим свойством, топологически идентичны (< гомеоморфны ►) и характеризуются тем, что никакая их часть не может быть отделена удалением одной точки.

С учетом предыдущих замечаний неудивительно, что конечность ветвления находит столь явные и четко очерченные области применения в тех случаях, когда фрактальная геометрия оказывается призвана подробно определить, в какой пропорции плоская фрактальная кривая сочетает в себе два своих стандартных предела: прямую и плоскость. Обобщая, можно сказать, что знать фрактальную размерность кривой отнюдь не достаточно. Например, при исследовании критических феноменов для моделей Изинга на фрактальной решетке авторами работы [165] было установлено, что наиболее важные результаты (< будь то при нулевой или при положительной температуре ►) непосредственно зависят от конечности величины R.

Вот и настало время дать объяснение, к которому мы ранее были не готовы. Причина, по которой магистраль кластера в критической бернуллиевой перколяции лучше моделируется салфеткой Серпинского, нежели ковром, проясняется следующим открытием Киркпатрика [265]. Даже в чрезвычайно больших решетках критическую магистраль можно разъединить удалением некоторого, по существу неизменного, малого количества связей (величины порядка 2). Даже принимая во внимание всевозможные отклонения, это открытие представляется мне весьма убедительным свидетельством того, что R<∞.

 

АЛЬТЕРНАТИВНАЯ ФОРМА ВЕТВЛЕНИЯ

Существуют два варианта снежинки Коха, которые достигают ветвления без образования петель. Первый — плоская кривая, инициатором которой является квадрат, а генератор выглядит следующим образом:

Как видно из рисунка, получаемая кривая ничуть не похожа на снежинку:

Другой пример — поверхность с нулевым объемом, бесконечной площадью и размерностью, равной ln6/ln2=2,58497. Инициатором служит правильный тетраэдр. К средней четверти каждой грани (т. е. к треугольнику, вершинами которого являются середины ограничивающих грань ребер) приставляется другой тетраэдр, линейные размеры которого уменьшены в два раза. Процедура повторяется с каждой гранью получающегося в результате правильного (асимметричного и невыпуклого) 24-гранника, а затем снова и снова до бесконечности. Начиная со второго этапа построения, добавляемые тетраэдры касаются друг друга гранями без самопересечений. В конце концов они заполняют всю поверхность инициатора. Назовем каждую четверть этой конструкции, выросшую на одной из граней инициатора, пирамидой Коха.

 

ТАЙНЫ ПИРАМИДЫ КОХА

Пирамида Коха воистину чудесна — если смотреть сверху, форма ее очень проста, однако в ней скрыто множество потаенных ходов и камер, потрясающих даже самое смелое воображение.

Если смотреть сверху, пирамида Коха — это тетраэдр, основанием которого служит равносторонний треугольник. Что касается трех остальных граней, то они представляют собой прямые равнобедренные треугольники, соединенные вершинами при прямых углах. Если приложить три пирамиды Коха к трем граням правильного тетраэдра, то получится простой куб.

А теперь поднимем нашу пирамиду вверх и стряхнем с нее песок пустыни. Рассматривая ее основание с некоторого расстояния, мы видим, что оно разделяется на четыре равных равносторонних треугольника. Однако на месте среднего треугольника находится отверстие, ведущее в «камеру первого порядка», которая имеет форму правильного тетраэдра, четвертая вершина которого совпадает с верхушкой пирамиды. Подойдя ближе и получив возможность разглядеть более мелкие детали, мы обнаруживаем, что и находящиеся в углах основания правильные треугольники, и верхние грани камеры первого порядка также не являются гладкими поверхностями. Их гладкость нарушается тетраэдральными камерами второго порядка. Аналогичным образом, при исследовании камер второго порядка, мы видим, что в середине каждой треугольной стены имеется треугольное же отверстие, ведущее в камеру третьего порядка. Чем глубже мы погружаемся в пирамиду, тем меньшие камеры открываются нашему взору, и конца им не видно.

Сумма объемов всех камер в точности равна объему всей пирамиды Коха. С другой стороны, если считать, что основания камер являются частью этих камер, а остальные три грани — нет, то окажется, что камеры не пересекаются ни в одной точке. Если бы строителям нашей пирамиды пришлось выдалбливать камеры в толще скалы, то им пришлось бы удалить всю породу, оставив лишь тонкую оболочку. Кривая, которой пирамида Коха опирается на плоскость, и «стены» камер представляют собой салфетки Серпинского.

 

СФЕРИЧЕСКИЕ ТРЕМЫ И РЕШЕТКИ

Авторы работы [313] невольно сделали значительный вклад во фрактальную геометрию, попытавшись заполнить RE шарами, радиус каждого из которых имеет вид ρk =ρ0 rk , где r<1; число шаров радиуса ρk на единицу объема имеет вид , где v — целое число вида v=(1−r)r−E , что накладывает жесткие ограничения на r. Таким образом, показатель распределения размеров пустот определяется следующим выражением:

.

Сначала разместим большие сферы радиуса ρ1 в центрах ячеек решетки с шагом 2ρ1 . Узлы решетки с шагом 2ρ2 , лежащие вне больших сфер, оказываются достаточно многочисленными, чтобы послужить центрами для сфер меньшего радиуса (ρ2 ) и так далее. Такая конструкция подразумевает следующие верхние границы величины r:

при E=1,r≤1/3, при E=2,r≤1/10,

при E=3,r≤1/27, при E→∞,r→∞

Заполнение R3 непересекающимися шарами может занять меньшее время. В случае же одномерной линии максимальное значение r составляет 1/3, что соответствует значению r для троичной канторовой пыли! Существование канторовых пылевидных множеств с r>1/3 указывает на то, что одномерная упаковка может оставлять пустоты произвольно малой размерности. С другой стороны, более тесная упаковка подразумевает более сложную структуру.

 

АНОНС: ЛАКУНАРНОСТЬ

Даже после того, как мы добавим к размерностям DT и D степень ветвления R, фрактал остается во многих отношениях недостаточно определен. Особое значение имеет еще одно дополнительное свойство, которое я назвал лакунарностью. Пустоты в очень лакунарном фрактале имеют очень большой размер, и наоборот. Основные определения можно было бы привести и здесь, однако мне представляется более целесообразным отложить это до главы 34.

Рис. 205. СТРЕЛА СЕРПИНСКОГО (РАЗМЕРНОСТЬ ГРАНИЦЫ D ~1,5849)

В [522] Серпинский строит кривую, инициатором которой является интервал [0, 1], а генератор и второй терагон выглядят следующим образом:

Последующие этапы построения имеют вид:

О том, как будет выглядеть эта кривая на одном из поздних этапов построения, можно получить представление, взглянув на очертания «береговой линии» в верхней части рис. 205 (над самым большим черным тр еугольником).

Самокасания. Конечные приближения кривой не имеют точек самокасания (как в главе 6), однако предельная кривая содержит бесконечно много таких точек.

Стрелы, заполняющие плоскость. Стрела на рис. 205 (если положить ее набок, она будет больше похожа на тропическую рыбу) определяется как участок кривой Серпинского между двумя последовательными возвращениями в точку самокасания — в данном случае, в середину интервала [0, 1]. Такими стрелами можно заполнить плоскость; при этом соседние стрелы соединяются друг с другом в этакой безумной экстраполяции застежки Велькро. (Или, возвращаясь к предыдущей метафоре, плавники одной рыбы в точности помещаются между плавниками двух других рыб.) Кроме того, сплавив вместе четыре должным образом выбранных соседних стрелы, мы получим точно такую же стрелу, увеличенную вдвое.

Тремы салфетки Серпинского. Я называю кривую Серпинского салфеткой по альтернативному способу ее построения, который основан на вырезании «трем» — метод, широко используемый в главах 8 и 31- 35. Мы получаем салфетку Серпинского, имея в качестве инициатора, генератора, а также двух последующих этапов построения следующие замкнутые множества:

Этот трема-генератор содержит в себе вышеприведенный линейный генератор в качестве собственного подмножества.

Водораздел. Впервые я столкнулся со стрелой Серпинского — правда, тогда я еще не знал о Серпинском — при изучении формы одного водораздела [381].

Рис. 207. АСИММЕТРИЧНАЯ ФРАКТАЛЬНАЯ ПАУТИНА (РАЗМЕРНОСТЬ D=2)

Эта паутина получается рекурсивным построением из замкнутого тетраэдра (инициатора) и совокупности четырех меньших тетраэдров (служащих генератором).

Ее размерность D=2. Попробуем спроецировать ее вдоль линии, соединяющей середины любой из пар противоположных ребер. Проекцией тетраэдра-инициатора будет квадрат, который мы назовем исходным. Каждый тетраэдр второго поколения проецируется на подквадрат, длина стороны которого составляет 1/4 от длины стороны исходного квадрата, и т. д. Таким образом на исходный квадрат проецируется вся паутина целиком. Границы подквадратов перекрываются.

Рис. 208. КОВЕР СЕРПИНСКОГО (РАЗМЕРНОСТЬ D~1,8928) И ГУБКА МЕНГЕРА (РАЗМЕРНОСТЬ D~2,7268)

Ковер Серпинского. В [523] Серпинский строит кривую, инициатором которой является сплошной квадрат, а генератор и два следующих терагона представлены ниже:

Площадь такого ковра обращается в нуль, а общий периметр его пустот стремится к бесконечности.

Рис. 208. Губка Менгера. Принцип построения очевиден. Продолжая построение до бесконечности, мы получим некий остаток, называемый губкой Менгера. Я сожалею о том, что в своих предыдущих эссе ошибочно приписал ее авторство Серпинскому. (Рисунок воспроизводится по книге Леонарда М. Блюменталя и Карла Менгера «Геометрические этюды» с любезного разрешения ее издателей, компании W. Н. Freeman & Со. © 1970.) Пересечения губки с медианами или диагоналями исходного куба являются троичными канторовыми множествами.

Сливающиеся острова. Как ковер, так и салфетку Серпинского можно получить и другим способом — еще одним обобщением рекурсии Коха, допускающим самоперекрытия, которые, однако, учитываются только единожды.

Для получения салфетки инициатором следует взять правильный треугольник, а генератором — фигуру, изображенную слева на приведенном ниже рисунке. Для получения ковра в качестве инициатора возьмем квадрат, а генератором послужит фигура, изображенная справа.

Здесь мы снова встречаемся с двумя феноменами, знакомыми нам по главе 13: береговая линия каждого острова спрямляема, следовательно, размерность ее равна 1, размерность же салфетки или ковра выражает скорее степень фрагментации суши (т. е. степень ее разделенности на острова), нежели степень неправильности береговых линий островов.

В остальном результат совершенно нов: в главе 13 море представляет собой связное множество, что выглядит как должная топологическая интерпретация открытых морских пространств. Оно открыто и в смысле топологии множеств, т. е. его граница ему не принадлежит. Новизна, привнесенная настоящим построением, заключается в том, что коховы острова могут теперь асимптотически «сливаться» в некий сплошной сверхостров, однако континента из него не получается, а береговые линии образуют в сочетании решетку.

< С точки зрения топологии, всякий ковер Серпинского является плоской универсальной кривой, а губка Менгера представляет собой пространственную универсальную кривую. То есть (см. [38], с. 433 и 501) эти фигуры оказываются самыми сложными кривыми соответственно в плоскости и в пространстве любой более высокой размерности. ►

Рис. 210. РАСКОЛ В СНЕЖНЫХ ПАЛАТАХ (РАЗМЕРНОСТЬ D ~1,8687)

Давным-давно в далекой стране в прекрасных Снежных Палатах восседал Великий Правитель со своею свитой. Однако между его подданными произошел раскол, за ним последовала война, в которой ни одна из сторон не одержала верх. И тогда Мудрые Старейшины провели границу, разделившую Палаты надвое, дабы туда могли войти без опасения ступить на враждебную территорию и представители Севера, и представители Юга.

Загадки лабиринта. Кто контролирует Великую Палату и как можно войти в нее снаружи? Почему некоторые малые палаты оказываются несориентированы ни по какой стороне света? Подсказку можно найти на обезьяньем дереве на рис. 55.