История химии с древнейших времен до конца XX века. В 2 т. Т. 1

Миттова Ирина Яковлевна

Самойлов Александр Михайлович

ГЛАВА 8.

ПЕРИОД КОЛИЧЕСТВЕННЫХ ЗАКОНОВ. АТОМНО-МОЛЕКУЛЯРНОЕ УЧЕНИЕ

 

 

Вся наша теория есть не что иное, как искусство представлять себе внутренний ход явлений конкретным образом, и она приемлема и достаточна, если все известные в науке факты согласуются с ней.
Йенс Якоб Берцелиус

 

8.1. Общая характеристика периода

На рубеже XVIII–XIX вв. химия переживала величайший революционный переворот. Перемены в химических знаниях были столь обширными и глубокими, что связь с прошлым казалась прерванной. Химия получила новую фундаментальную теоретическую базу, новую терминологию и номенклатуру. Происходило обособление отдельных областей химических знаний, стали возникать промышленные специализированные химические предприятия. В начале XIX в. английский историк науки Уильям Уэвелл характеризовал этот период как «шаг к обобщению», а спустя столетие Томас Кун написал, что в это время химия переживала «смену парадигм».

Начало подлинной химической революции — перехода от, в значительной мере, умозрительных представлений о составе и химических свойствах веществ к созданию научной химии связывают с деятельностью А.Л. Лавуазье (см. гл. 6, п. 6.7). Как уже говорилось ранее, некоторые авторы считают справедливым выделять в истории химии два основных периода — эмпирический и теоретический. До химической революции, начатой А.Л. Лавуазье, решающую роль в развитии химии играл эксперимент, но уже в первой половине XVIII в. все большее значение начинает приобретать теория (см. гл. 6, п. 6.2). По мнению целого ряда авторов, химия становится наукой лишь с развитием и укоренением теоретических представлений. При этом необходимо понимать, что и в период преимущественного развития теоретических знаний эксперимент по-прежнему сохранил свое особое значение. Только в сочетании с экспериментальными методами теория приобрела решающее значение для развития всех областей химии.

В период радикальной смены теоретических концепций в химии и методология экспериментальных исследований также претерпела серьезные преобразования: задачи, содержание, методы и даже оборудование изменились существенным образом. C развитием количественных методов в химии совершенно иным стал сам подход к изучению вещества. Когда на первом плане стояло качественное исследование, все внимание химиков было сосредоточено на раскрытии специфических свойств, характеризующих отдельные вещества и их составные части. Для того чтобы иметь возможность сравнивать различные вещества с количественной стороны, внимание ученых переключилось на изучение общих для сравниваемых тел свойств, каковыми являются вес (масса) и объем {301} . Убежденность в том, что вес (масса) является самым главным свойством материи, представляло собой краеугольный камень механистического мировоззрения XVIII в., которое «по наследству» перешло естествоиспытателям следующего столетия.

Начиная с XVI в., при различных университетах и академиях начинают создаваться первые химические лаборатории, но поскольку чаще всего они были организованы на медицинских факультетах и значительно реже — при горнодобывающих, металлургических или стекольных предприятиях, здесь занимались главным образом решением чисто практических задач. К середине XVIII в. постепенно возникли современные лаборатории (во Франции — при Академии наук, в Англии — при научных обществах, в Германии и России — при академиях и университетах), главным назначением которых становилось проведение фундаментальных исследований. Во Фрейберге при Горной академии возникла лаборатория, в которой в свое время обучался М.В. Ломоносов. Некоторые ученые, например Дж. Пристли и Г. Кавендиш, создавали такие лаборатории у себя дома.

Дальнейшее развитие революционных процессов преобразования фундаментальных основ химии, начатых А.Л. Лавуазье, связано с открытием количественных стехиометрических законов и созданием сначала атомного, а затем и атомно-молекулярного учения. Этот период, охватывающий последнее десятилетие XVIII в. и первые 60 лет XIX в., характеризуется, прежде всего, открытием количественных законов химии, которые не только придали ей рациональный характер, но и положили начало развитию различных научных направлений. Кроме того, эти законы способствовали подведению экспериментального фундамента под атомно-молекулярную гипотезу, полностью лишив ее метафизической окраски. Количественные законы химии целесообразно рассмотреть в хронологическом порядке:

Закон эквивалентов Рихтера (1792–1802);

Закон постоянных отношений Пруста (закон постоянства состава) (1799–1806);

Закон кратных отношений Дальтона (1802–1808);

Закон простых объемных отношений Гей-Люссака (1805–1808);

Закон Авогадро (закон пропорциональности между плотностями газов и молекулярными весами) (1811);

Закон изоморфизма Митчерлиха (1818–1819);

Закон удельных теплоемкостей Дюлонга и Пти (1819);

Законы электролиза Фарадея (1834);

Закон атомов Канниццаро (1858).

 

8.2. Закон эквивалентов

Метод количественных измерений, развиваемый и пропагандируемый А.Л. Лавуазье, способствовал глубокому пониманию истинной сути химических реакций, в частности он был использован при исследовании химических свойств кислот.

В начале 80-х гг. XVIII в. управляющий литейным заводом во Фрейберге Карл Фридрих Венцель, изучая химические свойства кислот, пришел к выводу, что они соединяются с основаниями в постоянных соотношениях, не зависящих от внешних условий, однако его работы остались незамеченными.

Реакции между кислотами и основаниями глубоко заинтересовали еще одного немецкого химика — Иеремию Вениамина Рихтера. Рихтер обнаружил, что в результате этих реакций растворы кислот нейтрализовали растворы оснований: смесь кислоты и основания, взятых в определенном соотношении, не проявляет свойств ни кислоты, ни основания, а представляет собой раствор соли, которая обычно химически менее активна, чем исходные кислота или основание. Немецкий химик измерил точные количества кислот, необходимых для нейтрализации определенных количеств того или иного основания, и наоборот.

Иеремия Вениамин Рихтер (1762-1807)

Рихтер показал, что массы кислот, насыщающих одну и ту же массу основания, находятся в таком же соотношении, как и массы тех же самых кислот, насыщающих определенную массу другого основания. Например, одна и та же масса серной кислоты (1000 частей) нейтрализует 700 массовых частей извести, либо 1180 частей едкого поташа. Эти же количества извести и поташа могут быть нейтрализованы одинаковой массой азотной кислоты, равной 1350 частям. Следовательно, в реакциях нейтрализации 1000 частей H2SO4 эквивалентны 1350 частям HNO3, а 700 частей извести эквивалентны 1180 частям едкого поташа.

В своих работах Рихтер во главу угла ставил понятие о соединительной (эквивалентной) массе — постоянной массе одного химического вещества, реагирующего с другим веществом, также имеющим постоянную соединительную массу. Основываясь на результатах многочисленных анализов солей, Рихтер составил ряд нейтрализации, который показывал относительные массовые количества кислот и щелочей, необходимых для нейтрализации. Немецкий ученый представил таблицы весов (масс) различных оснований, необходимых для нейтрализации 1000 частей данной кислоты, и наоборот — масс различных кислот, требующихся для нейтрализации 1000 частей данного основания.

И.В. Рихтер изложил свои взгляды в книге «Стехиометрия, или искусство измерения химических элементов», которая вышла в трех частях в 1792–1794 гг. Формулировка закона, представленная Рихтером, выглядит примерно следующим образом: Если одно и то же количество какой-либо кислоты нейтрализуется различными количествами двух и более числа оснований, то количества последних эквивалентны и нейтрализуются одним и тем же количеством другой кислоты.

Оригинальность работ немецкого ученого не была оценена современниками, хотя их внимание, казалось, должен был привлечь сам термин стехиометрия, придуманный для обозначения искусства измерения химических элементов. По мнению некоторых историков, в работах И.В. Рихтера можно обнаружить первые попытки применения в химии количественных уравнений реакций. Однако современники Рихтера оказались не готовы к восприятию таких идей. Закон эквивалентов был признан позднее, когда в его защиту практически одновременно выступили немецкий ученый Г.Э. Фишер и француз К.Л. Бертолле. В 1802 г. Г.Э. Фишер систематизировал таблицы И.В. Рихтера и привел их в комментариях к немецкому переводу книги К.Л. Бертолле «Исследование законов сродства». В 1803 г. Бертолле включил ряды нейтрализации Рихтера в свою книгу «Опыт химической статики». (Фрагмент таких рядов приводится в табл. 8.1). Количественные данные, представленные в этих таблицах, позволяли рассчитывать состав солей, который не был еще установлен в процессе их разложения. 

Таблица 8.1

Значения соединительных масс некоторых кислот и оснований (по Г.Э. Фишеру) {304}

(Основание … Соединительная масса)

Известь … 793 (700)

Едкий поташ … 1605 (1180) 

(Кислота … Соединительная масса)

Серная … 1000 (1000)

Угольная … 577 (550)

Азотная … 1405 (1350) 

Примечание. В скобках представлены современные значения, полученные с использованием величин молярных масс компонентов реакции.

Значения соединительных весов (эквивалентных масс) И.В. Рихтера отличались от современных значений атомных или молярных масс, тем не менее, если не принимать во внимание неточности, связанные с несовершенством аналитических приборов конца XVIII в., значения соединительных масс немецкого ученого можно получить из современных данных умножением на общий коэффициент. Именно поэтому некоторые историки полагают, что дальнейшее развитие идей И.В. Рихтера могло привести к фундаментальным представлениям об атомной массе. К сожалению, свои стехиометрические правила немецкий ученый сформулировал в виде чисто эмпирических обобщений, теоретическое содержание которых в ту пору оказалось попросту недоступным.

Закон эквивалентов получил свое объяснение только к середине XIX в., когда была найдена связь между атомно-молекулярным строением веществ и их количеством в химических реакциях. Гипотеза о сути этой связи, которая легла в основу химической атомистики и определила направление развития научного химического мышления, была высказана английским естествоиспытателем Джоном Дальтоном.

 

8.3. Закон постоянства состава

Вскоре после опубликования работ Рихтера во Франции развернулась яростная дискуссия о том, присуща ли строгая определенность только реакциям кислотно-основной нейтрализации или вообще всем химическим процессам. В принципе вопрос стоял так: если какое-либо соединение состоит из двух (трех, четырех) элементов, всегда ли соотношение этих двух элементов постоянно? Меняются ли эти соотношения в зависимости от способа получения? Одним из споривших химиков был К.Л. Бертолле.

Клод Луи Бертолле (1748–1822)

В 1799 г. в статье «Исследование законов сродства» Бертолле утверждал, что на течение химической реакции влияют некоторые физические силы (летучесть, растворимость, упругость и др.) и массы реагирующих веществ. Он считал, что соединение, состоящее из элементов X и Y, может содержать большее количество X, если при получении этого вещества использовался значительный избыток этого элемента. Эти воззрения о переменном количественном составе химического соединения смогли получить весьма широкое распространение благодаря высокому официальному положению К.Л. Бертолле, его безупречной научной репутации и внушительным прошлым заслугам.

Оппонентом именитого французского ученого оказался его менее известный соотечественник Жозеф Луи Пруст, который придерживался прямо противоположного мнения. Он был скромным человеком, весьма искусным экспериментатором и практически не занимался теоретическими вопросами химии. Например, в результате тщательных и многократно повторенных анализов в 1799 г. Пруст показал, что природный малахит и основный карбонат меди (CuOH)2CO3, полученный осаждением раствора какой-либо соли меди карбонатом щелочного металла, имеют один и тот же постоянный качественный и количественный элементный состав. Вне зависимости от того, каким способом эта соль получена в лаборатории или как она выделена из природного сырья, она всегда содержит по массе 5,3 части меди, 4 части кислорода и 1 часть углерода.

Более того, Пруст установил, что постоянство соотношений компонентов наблюдается и для целого ряда других соединений. Он сформулировал общее правило, согласно которому все соединения содержат элементы в строго определенных пропорциях вне зависимости от условий получения этих соединений. Это правило стали называть законом постоянства состава или иногда законом Пруста. Французский ученый писал, что природа дала химическому соединению постоянный состав и тем самым поставила его в совершенно особое положение по сравнению с раствором, сплавом или смесью.

Для элементов, образующих между собой два или более двух соединений, Прусту удалось установить закономерность, согласно которой переход от одного соединения к другому происходит не непрерывно, как это следовало из предположений Бертолле, а скачкообразно. При этом переходе резко изменяются свойства вещества.

Как известно, спор вокруг проблемы постоянства количественного состава веществ длился практически семь лет (1801–1808). Одержавший победу Ж.Л. Пруст смог доказать, что Бертолле пришел к ошибочным выводам вследствие неточности анализов и использования недостаточно чистых исходных реактивов. Таким образом, в начале девятнадцатого столетия для большинства химиков стало совершенно очевидным, что в споре двух ученых правда оказалась на стороне Ж.Л. Пруста. Закон постоянства состава был уточнен и стал краеугольным камнем химии XIX в.

Жозеф Луи Пруст (1754–1826) 

Изучая количественный состав сульфидов и оксидов металлов, Пруст пришел к заключению, что элемент может соединяться с кислородом или серой в одном или немногих отношениях, однако обобщить сделанные наблюдения до постулирования закона кратных отношений ему не удалось.

C момента открытия закона Пруста многих ученых мучили сомнения по поводу его справедливости. Особенно трудно было поверить в этот закон, если считать, что материя является сплошной, а не дискретной. C другой стороны, если признать атомное (дискретное) строение материи, то из его положений закон постоянства состава вытекает как естественное следствие. В начале XIX в. спор между двумя французскими учеными имел огромное методологическое значение для химии. Подтверждение постоянства количественного состава веществ и, следовательно, его дискретности открывало путь атомистике. Напротив, победа противоположной точки зрения о переменном количественном составе тел на долгое время лишило бы атомистику всякой экспериментальной основы. Вот почему Ж.Л. Пруст и К.Л. Бертолле, сами того не подозревая, спорили о важнейшей предпосылке для химической атомистики, которая в тот момент уже рождалась в работах английского ученого Джона Дальтона.

 

8.4. Атомистическая теория Джона Дальтона

 

8.4.1. Закон простых кратных отношений

Английский естествоиспытатель Джон Дальтон, который вошел в историю химии как первооткрыватель закона простых кратных отношений и создатель атомистического учения, изведал все сомнения и размышления по поводу сплошного или дискретного строения материи.

Джон Дальтон (1766–1844)

Исходным пунктом, положившим начало всему атомистическому учению, явились метеорологические наблюдения Джона Дальтона и последующие попытки объяснить природу и строение атмосферы. В 1801 г. английский ученый представил первую из серии статей «Experimental Essays on the Constitution of Mixed Gases», которая была посвящена изучению давления газовых смесей при различных температурах. Ученые в то время еще не могли понять, почему диффузия газов происходит сама собой, без участия внешней силы. Ни одна из теорий строения газов, существующих на рубеже XVIII–XIX вв., не могла научно объяснить этот факт. Согласно первой теории, весьма популярной среди французских химиков, процесс диффузии газов объясняли за счет химического сродства. Однородность газовой смеси трактовали как образование своего рода химического соединения. Автором второй — механической — гипотезы был И. Ньютон (см. гл. 6, пп. 6.1–6.3). В основе этой версии лежала корпускулярная доктрина, согласно которой частицы одинакового сорта обязаны отталкиваться друг от друга. Эта гипотеза возникла в те времена, когда еще не было известно, что воздух представляет собой смесь газов. Дальтон являлся убежденным сторонником идей И. Ньютона, поэтому постарался объяснить строение атмосферы с точки зрения динамической корпускулярной теории, высказанной английским физиком.

Причину существования сил отталкивания между частицами одного сорта Дальтон приписал действию тепла. Используя существующую в тот период гипотезу, каждую частицу газа ученый представлял окруженной теплородной оболочкой, которая не позволяет корпускулам непосредственно соприкасаться друг с другом. При этом плотность теплородной оболочки убывала с увеличением расстояния от центра частицы. Успешное объяснение факту образования однородной смеси давало предположение об отталкивании частиц одного сорта, в то время как разнородные корпускулы могли притягиваться друг к другу. В этом случае каждый газ смеси должен вести себя независимо от присутствия других газов и распространяться на весь объем системы.

Таким образом Джон Дальтон пришел к известному закону о парциальных давлениях (закон Дальтона), согласно которому каждый газ оказывает такое давление на стенки сосуда, как если бы он один занимал все пространство.

где Pint — общее давление газовой смеси; р i — парциальное давление каждого газа в этой смеси.

Гипотеза об отталкивании только одинаковых частиц требовала допустить, что в газовой смеси должно наблюдаться столько типов сил отталкивания, сколько индивидуальных газов находится в системе. Более того, возникала необходимость признания того факта, что теплота такой силой не является, поскольку корпускулы различных газов не отталкиваются. Последнее обстоятельство содержало серьезные противоречия общим представлениям Дж. Дальтона о строении газов.

Английский ученый был вынужден модифицировать эту гипотезу и показать, что отталкивающая сила у всех корпускул одна и та же — теплород, но проявляется она по-разному: одинаковые частицы отталкиваются друг от друга, а различные — вовсе не взаимодействуют. В 1803 г.

Дальтон высказал предположение, что частицы различных газов (вместе с окружающими их теплородными оболочками) имеют различную величину. Фактически он был вынужден признать, что корпускулы различных газов обладают неодинаковыми по величине и плотности теплородными оболочками.

Модель строения однородного газообразного вещества по Дж. Дальтону 

Дальтон был уверен, что высказанное им предположение экспериментально подтверждено образованием двух объемов оксида азота (II) из одного объема азота и одного объема кислорода:

N 2 + O 2 → 2NO.

Вполне логично, что в двух объемах оксида азота (II) не могло находиться больше частиц, чем их содержится в одном объеме азота или кислорода. Следовательно, корпускулы оксида азота должны иметь большие размеры, как показано на рисунке с использованием символики Дж. Дальтона.

Образование оксида азота (II) (селитренного газа) по Дж. Дальтону 

Представление о различных по величине частицах газов позволило найти простое и доступное объяснение процессу их взаимной диффузии. За перемешивание газов несло ответственность нарушение равновесия между частицами разных размеров. В рамках модели Дж. Дальтона такие частицы должны были бы оказывать друг на друга давление, обусловленное отталкивающей силой теплородных оболочек.

Дальтон проиллюстрировал это явление при помощи наложения рисунков частиц одного газа друг на друга. Он показал, что при полном совпадении размеров частиц каждый луч теплородной атмосферы «упирался» в соответствующий луч другой частицы, поддерживая общее равновесие между ними. Если же в сосуде содержались частицы различных размеров, то лучи их теплородных оболочек не наталкивались друг на друга, что и вызывало движение частиц и их взаимопроникновение. Чтобы доказать, что механизм диффузии именно таков, Дальтон попытался рассчитать математически относительные размеры теплородных оболочек у частиц разных газов. Однако для вычисления этих размеров, помимо известных величин плотностей газов, ему потребовалось знание их относительных весов [36]Отношение объемов частиц двух газов (V 1 /V 2 ) равно отношению макроскопических объемов этих газов, деленных на число атомов (V 1 /n 1 : V 2 /n 2 ). Число же частиц каждого газа можно получить, разделив общую массу занимающего данный объем газа на массу одной частицы (n 1 = M 1 /m 1 ; n 2 = M 2 /m 2 ). Отсюда получается, что отношение объемов атомов газов таково: V 1 /V 2 = ρ 2 /ρ 1 ∙ m 1 /m 2 , где ρ — плотность газа. Второй множитель в этом уравнении фактически представляет собой относительную атомную массу.
. Ложное по своей сути представление о теплороде сыграло положительную роль. Оно натолкнуло Дальтона на мысль о том, что частицы различны по величине и по весу (массе).

Диаграмма, объясняющая взаимную диффузию газов 

Впервые об атомной теории английский ученый упомянул в статье «Об абсорбции газов водой и другими жидкостями», которая была прочитана 21 октября 1803 г. на заседании Манчестерского литературно-философского общества и позднее напечатана в «Записках» этого общества. Обсуждая механическую теорию поглощения газов, в заключительном параграфе Дальтон задавал вопрос: «Почему вода не поглощает одно и то же количество разных газов? Я надлежащим образом исследовал эту проблему и пришел к выводу, впрочем полностью в настоящее время меня не удовлетворяющему, что поглощение зависит от веса и числа частиц различных газов… Насколько я знаю, вопрос об относительном весе конечных частиц совершенно нов».

Концепция химической реакции как взаимодействия между дискретными частицами объясняла факт существования и определенных массовых соотношений реагентов, и продуктов химических реакций (стехиометрические закономерности). Действительно, необходимость определенного соотношения мельчайших частиц вещества в реакции означала, что такое же соотношение должно иметь место и в большом объеме этого вещества (построенного из этих мельчайший частиц). Из этого следовала возможность перенести все весовые (массовые) пропорции, установленные для макровеличин на микровеличины. Это позволило Дальтону приступить к вычислению относительных атомных весов элементов, принимая за единицу атомный вес водорода.

Таким образом, Джон Дальтон ввел в науку фундаментальное понятие относительного веса (массы) частицы, которое оказалось фактически первой относительной количественной характеристикой каждого элемента. Введение этого понятия позволило установить взаимосвязь между макро- и микроуровнями организации вещества и подойти к истолкованию экспериментальных химических закономерностей на основе атомистической концепции, т.е. к химической атомистике.

Дальтон опубликовал таблицу относительных весов конечных частиц газов и других тел (табл. 8.2), которая имеет особую важность с исторической точки зрения, поскольку она является первой таблицей весов некоторых элементов. 

Таблица 8.2

Относительные веса некоторых элементов и веществ (Дж. Дальтон , 1803–1804) {312}

(Вещество … Вес)

Водород … 1

Азот … 4,2

Углерод … 4,3

Аммиак … 5,2

Кислород … 5,5

Вода … 6,5

Фосфор … 7,2

Фосфористый водород … 8,2

Азотистый газ … 9,3

Окись углерода … 9,8

Вещество … Вес

Азотистая окись … 13,7

Сера … 14,4

Азотная кислота … 15,2

Сероводород … 15,4

Угольная кислота … 15,3

Спирт … 15,1

Сернистая кислота … 19,9

Серная кислота … 25,4

Углеродистый водород (метан) … 6,3

Маслородный газ (ацетилен) … 5,9 

Значения относительных весов у Дальтона значительно отличаются от современных, вследствие как неверной концепции максимальной простоты, так и несовершенства методов количественного анализа в то время. За единицу он принимал относительный вес самого легкого из известных элементов — водорода и сопоставлял с ним веса других элементов и веществ. Теоретическая простота проблемы, представленной Дальтоном, ясна каждому химику. Однако с экспериментальной точки зрения она представляется весьма и весьма сложной, и для ее решения необходимо использовать не вполне привычные методы работы. При определении относительного веса (массы) кислорода Дж. Дальтон принимал во внимание состав воды, которая, по его мнению, содержала один атом водорода и один атом кислорода. Поэтому сначала относительная масса кислорода была определена равной 5,5 (см. табл. 8.2), а затем, после уточнения, ее приняли равной 7.

Дальтон предположил, что химические соединения образуются между различным числом частиц определенного веса. В 1803–1804 гг. попытка подтвердить эту идею с помощью аналитических данных о весовых соотношениях элементов в соединениях привела его к открытию закона кратных отношений [37]К открытию закона кратных отношений были близки некоторые химики XVIII в., например, Ж.Л. Пруст, У. Хиггинс и др.
. В настоящее время этот закон формулируют следующим образом: если два элемента образуют между собой несколько бинарных соединений, то массы одного из элементов, приходящиеся в этих соединениях на одну и ту же строго определенную массу другого элемента, соотносятся как небольшие целые числа.

Например, при образовании углекислого газа (CO2) 3 массовых части углерода соединяются с 8 массовыми частями кислорода, а 3 части углерода и 4 части кислорода дают угарный газ (СО). Соотношение масс кислорода, содержащегося в СO2 и СО, представляет собой соотношение малых целых чисел. Восемь частей кислорода дают углекислый газ, а четыре части кислорода — угарный газ, т.е. в первом соединении кислорода в два раза больше.

Если в различных соединениях кислорода и азота определить количество кислорода, взятое по отношению к одному и тому же количеству азота (например, m(N) = 14 г), то получатся следующие простые соотношения (табл. 8.3):

m 1 (O):m 2 (O):m 3 (O):m 4 (O):m 5 (O) = 8:16:24:32:40 = 1:2:3:4:5. 

Таблица 8.3

Массовые отношения элементов в оксидах азота

Характеристика соединения Формула соединения
N 2 O NO N 2 O 3 NО 2 N 2 O 5
Молярная масса M, г/моль 44 30 76 46 108
Масса N в 1 моль соединения, m(N) 28 14 28 14 28
Масса О в 1 моль соединения, m(O) 16 16 48 32 80
Масса O, приходящаяся на 14 г N 8 16 24 32 40

Экспериментальное доказательство факта целочисленных соотношений весов элементов в соединениях (1 : 1,1 : 2,1 : 3,2 : 3 и т.д.) подтверждало мысль о том, что в ее основе лежит целостность, химическая неделимость соответствующих микрочастиц вещества. Будучи химически неделимыми, они соединяются так, что на одну частицу одного элемента приходится одна, две и т.д. (но не дробное число) частиц другого элемента. Таким образом, закон кратных отношений получал логичное объяснение только с позиций атомистической теории {313} .

Очевидно, что для подобных расчетов знания только весовых пропорций, в которых одно вещество соединяется с определенным весовым количеством вещества-стандарта (водорода), было недостаточно. Было необходимо еще знание числа атомов, входящих в то или иное соединение. Дальтон принял допущение, что самой вероятной является наиболее простая форма соединения. Следовательно, бинарные соединения содержат по одному атому каждого элемента. В этом случае формула воды — НО, формула аммиака — NH, а относительные веса кислорода и азота равны соответственно 5,5 и 4,2. Для тех случаев, когда для двух элементов было известно несколько бинарных веществ, Дальтон принимал более сложные составы. Так, маслородный газ (этилен) он считал состоящим из одного атома углерода и одного атома водорода (СН), а углеродистый водород (метан) — из одного атома углерода и двух атомов водорода (CH2). Атомный вес углерода из этих формул получался равным 4,3.

 

8.4.2. Основные положения атомистической теории Дальтона

Суммируя результаты своих предыдущих работ, в 1808 г. Джон Дальтон опубликовал труд «Новая система химической философии» («А New System of Chemical Philosophy»), в котором подробно изложил свою атомистическую теорию. Выдвигая новую версию атомистической теории, опиравшуюся на законы постоянства состава и кратных отношений, Джон Дальтон как дань уважения Демокриту и Левкиппу сохранил термин «атом» и назвал так считавшиеся в то время неделимыми мельчайшие частицы, составляющие материю. Подобно античным атомистам, Джон Дальтон исходил из положения о корпускулярном строении материи, но, принимая во внимание развитое Лавуазье понимание химического элемента, пришел к выводу, что все атомы каждого отдельного элемента одинаковы и характеризуются, кроме других свойств, еще и определенной массой, которую он называл атомным весом. Однако Дж. Дальтон рассматривал понятие об атомном весе только в относительном смысле, считая, что определить абсолютный атомный вес невозможно.

Дальтон выдвинул следующие основные положения химической атомистики:

1. Все вещества состоят из атомов. Это самые мельчайшие частицы вещества, неделимые и неразрушимые.

2. Все атомы данного элемента идентичны по своим свойствам, в том числе и по атомному весу (в современном понимании — атомной массе).

3. Атомы различных элементов имеют различные свойства, в том числе и различный атомный вес (атомную массу).

4. Атомы различных элементов могут соединяться между собой в простых целочисленных соотношениях, образуя химические соединения.

5. При разложении соединения (сложного атома) из него получаются исходные атомы в неизменившемся виде, которые затем могут образовать то же самое или другое соединение.

Разнородные атомы способны соединяться между собой в различных соотношениях, но вследствие своей неделимости, они вступают в соединение только целыми единицами. Соответственно, строение «сложных атомов», образованных всегда из целого числа различных элементарных атомов, объясняет кратность отношений в составе химических соединений. Отметим, что кажущееся противоречие положения о неделимости атома и химической делимости «сложного атома», например углекислоты (CO2), Дальтон разрешал следующим образом: «хотя такой атом может быть разделен, однако он перестает тогда быть углекислотой, будучи разложен при этом разделении на уголь и кислород». Несмотря на то, что Дальтон признавал существование сложных атомов, он отрицал взаимодействие между собой атомов одного и того же элемента.

Обобщению атомной теории способствовало употребление специальных символов, предложенных Джоном Дальтоном для обозначения отдельных атомов элементов. Необходимо подчеркнуть, что история химии знала и более ранние попытки использования специальной символики, начиная с алхимической эпохи. Однако прежде графические символы применяли для изображения веществ или, значительно реже, химических операций. Символика Дж. Дальтона впервые позволила отображать качественный и количественный состав соединений. Приходится признать, что графические символы Дальтона достаточно сложны и оказались пригодными для выражения состава лишь самых простых соединений. Однако эта плодотворная идея позднее была усовершенствована в работах Йенса Якоба Берцелиуса (см. гл. 8, п. 8.10). Он упростил способ представления химических уравнений и ввел химическую символику, которая в общих чертах сохранилась до сегодняшнего дня.

Важнейшим аспектом химической атомистики Дж. Дальтона стало впервые отчетливо показанное представление о качественной разнородности атомов различных элементов, которую автор теории мыслил как следствие неких глубинных внутренних различий атомов, проявляющихся в нетождественности их весов и размеров.

Эта идея принципиально отличала атомистику Дальтона от корпускуляристских концепций Р. Бойля или И. Ньютона, предполагавших изначальную качественную однородность мельчайших частиц. В отличие от сторонников идеи об однородности корпускул Дальтон допускал, по его выражению, «существование значительного количества элементарных начал… которые никогда не могут превращаться одно в другое при посредстве находящихся в нашем распоряжении сил». Сравнение этого заключения Дж. Дальтона с идеей А.Л. Лавуазье о химических элементах (см. гл. 6, пп. 6.7.2–6.7.3) показывает, что химическая атомистика позволила соотнести между собой разошедшиеся в древности понятия атома и элемента (см. гл. 3). Сближения двух фундаментальных понятий химии Дальтон достиг положением о том, что каждому элементу соответствует определенный вид атомов.

Символы некоторых химических элементов и формулы соединений, предложенные Дж. Дальтоном 

C современной точки зрения атомистическое учение Дж. Дальтона можно расценить как поворотный момент в развитии всей химии. Английский ученый установил взаимосвязь между эмпирически измеримыми характеристиками веществ и теоретическими представлениями об их атомном строении. В результате такой взаимосвязи атом из философской идеи или абстрактно-механической модели превратился в конкретное химическое понятие. Помимо этого, атомистика Дальтона сделала более определенной и ясной концепцию химического элемента, а также способствовала возникновению научных представлений о сущности химической реакции и объяснила прерывность весовых отношений в химических соединениях. По мнению некоторых исследователей, с атомистики Дальтона начался новый период развития научных представлений о веществе — этап познания его строения после того, как были пройдены этапы познания его свойств (алхимия, ятрохимия) и состава (аналитическая химия XVII–XVIII вв.)

Символы элементов и формулы некоторых соединений (из работы Дж. Дальтона «Новая система химической философии» 

Атомистика Дальтона сделала серьезный шаг к решению вопроса о сущности химических реакций — того основного вопроса, который одновременно актуально стоял перед фундаментальной наукой и практикой того времени.

Важно отметить, что атомная теория Дж. Дальтона не вполне однозначно была воспринята современниками. Одни химики (Клод Луи Бертолле, Гемфри Дэви и др.) скептически отнеслись к новому учению. Хотя оно давало логичное объяснение закону кратных отношений, многие химики считали, что этот закон можно было просто принять как факт, без атомной гипотезы с ее умозрительным правилом наибольшей простоты и понятия об атомах, существование которых невозможно доказать. Другие химики, наоборот, приняли атомную теорию Дальтона с восторгом. К числу его сторонников принадлежали знаменитые английские ученые Т. Томсон и У. Уолластон, а также один из самых выдающихся исследователей в области химии — Й.Я. Берцелиус.

Преимущества атомистической концепции проявились только к середине XIX в. при создании структурной теории органических соединений. Отметим также, что некоторые химики, склонные придерживаться взглядов о единстве материи, не принимали атомистической теории вплоть до конца XIX в. В начале XX в., когда было открыто сложное строение атома, теория Дальтона была пересмотрена.

 

8.5. Закон простых объемных отношений

В 1805 г. французский ученый Жозеф Луи Гей-Люссак совместно с немецким естествоиспытателем Александром фон Гумбольдтом изучал состав атмосферного воздуха в зависимости от географической широты местности. Ученые доказали, что при образовании воды из кислорода и водорода независимо от преобладания того или другого газа один объем кислорода всегда соединяется с двумя объемами водорода (соотношение 1: 2). Ж.Л. Гей-Люссак являлся учеником К.Л. Бертолле, слыл прекрасным экспериментатором и, по мнению современников, обладал глубоким критическим умом. Изучая взаимодействие водорода и хлора, а также объемные соотношения газов в реакциях образования закиси азота, аммиака, оксидов серы, Гей-Люссак установил, что объемы соединяющихся газов и продуктов реакции соотносятся как целые числа. В 1808 г. Гей-Люссак обобщил результаты своих исследований в виде закона соединения газов между собой (закона простых объемных отношений).

Согласно этому закону, газы всегда соединяются в простых объемных отношениях. Объемы вступающих в реакцию газов, находящихся при одинаковых внешних условиях, относятся между собой, а также к объемам образующихся газообразных продуктов реакции, как небольшие целые числа. Это обобщение, также известное как второй закон Гей-Люссака, имело фундаментальное значение для последующего развития химии.

Гей-Люссак отметил, что плотность газов пропорциональна принятым соединительным весам (эквивалентным массам) или простым кратным последним. Он придавал закону простых объемных отношений большое значение для объяснения природы веществ. Найденные закономерности привели французского ученого к мысли об отсутствии взаимодействия между частицами в газообразных телах. Развитие этой идеи могло бы привести к выводу о равенстве числа частиц в одинаковых объемах газов (при одинаковых внешних условиях) и, соответственно, к выводу о пропорциональности весов одинаковых объемов газов и их атомных весов. Однако Гей-Люссак не предпринял попытки на основании своих опытов пересмотреть атомные веса Дальтона, хотя считал, что открытый им закон может способствовать развитию атомистики.

Жозеф Луи Гей-Люссак (1778–1850) 

Следует отметить, что и сам Дальтон предполагал возможность определения атомных весов на основании плотности веществ в газообразном состоянии, однако отверг эту возможность. В случае равенства числа частиц в равных объемах газов число вступающих в соединение и образующихся частиц задается непосредственно соотношением объемов. При традиционном рассмотрении реакции образования, например, окиси азота как реакции простого присоединения п частиц азота к п частицам кислорода в ней следовало ожидать образования такого же числа частиц оксида азота (II): N + О = NO. Однако наблюдаемое экспериментально удвоение объема (N2 + O2 = 2NO) означало, с точки зрения Дальтона, либо неравенство числа частиц в равных объемах газов, либо возможность разделения атомов реагирующих газов на половинки (см. рис.)

Варианты объяснения образования двух объемов оксида азота (II):

а) — закон Гей-Люссака и гипотеза о равенстве числа частиц не выполняются, реакция идет по «механизму» простого присоединения; б) — закон Гей-Люссака и гипотеза о равенстве числа частиц выполняются, входе реакции исходные частицы делятся

Второе допущение противоречило основному положению атомистики — механической неделимости атомов — и разрушало методологическую основу закона постоянства состава и кратных отношений, поэтому оно и было отвергнуто Дальтоном, предположившим неточность в экспериментах Гей-Люссака.

Позднее согласовать между собой данные весового и объемного анализов в своих работах предпринял выдающийся химик XIX в. — Й.Я. Берцелиус.

Во всех своих работах Гей-Люссак отстаивал экспериментальный характер исследований, считая, что он намного продуктивнее абстрактного подхода. Он был убежден, что в науках о природе необходимо прежде всего хранить верность принципам экспериментального метода, требующего, чтобы в науку не вводились представления, которые не могут быть доказаны опытом.

Своими ставшими классическими исследованиями галогенов, в особенности иода, недавно открытого Б. Куртуа, а также соединений фосфора, щелочных металлов и их пероксидов Гей-Люссак значительным образом способствовал развитию неорганической химии. Он впервые выделил дициан, который, будучи неорганическим соединением, находится на границе между органической и неорганической химией. Получая дициан реакцией термического разложения безводного цианида ртути:

Hg(CN) 2 = Hg + (CN) 2 ,

Гей-Люссак первым обнаружил в его химических свойствах сходство с галогенами.

В области аналитической химии он впервые ввел объемные методы, которые в дальнейшем сыграли важную роль при проведении как фундаментальных, так и прикладных исследований. Гей-Люссак также успешно использовал свой талант в развитии промышленной химии. В 1827 г. ему удалось существенным образом усовершенствовать процесс производства серной кислоты. Им была создана башня, которая позволяла регулировать подачу нитрозы в реакционную камеру, что привело к существенному экономическому эффекту.

Необходимо подчеркнуть, что с открытием закона простых объемных отношений Гей-Люссак подготовил экспериментальный материал, послуживший источником для разработки концепции А. Авогадро. Кроме того, исследования французского ученого в известной мере подготовили появление этой концепции и в теоретическом плане:

— была сформулирована модель газа, называемого ныне идеальным;

— изменение объемов газов в ходе реакции не объяснялось изменением объемов самих частиц;

— реакции с участием газов рассматривались на уровне взаимодействия между частицами.

 

8.6. Молекулярная теория Авогадро

Чтобы атомная теория Дальтона стала жизненно необходимой для химии, было необходимо объединить ее с молекулярной теорией, которая принимала существование частиц, образованных из двух и более атомов и способных в химических реакциях расщепляться на составляющие атомы.

Основоположником молекулярной теории явился выдающийся итальянский ученый Амедео Авогадро ди Кваренья. Развивая предположения, сделанные Гей-Люссаком, А. Авогадро в 1811 г. сформулировал гипотезу о том, что частицы различных газов независимо от того, состоят ли они из одиночных атомов или из комбинаций атомов, равно удалены друг от друга, и расстояние между ними достаточно велико. Он был уверен, что число частиц в равных объемах любых газов (при одинаковых внешних условиях — температуре и давлении) всегда одинаково. Велика заслуга А. Авогадро еще и в том, что он сумел показать физическую причину расширения и сжатия газов — изменение расстояний между частицами.

Для обозначения частиц, существующих в газах, Авогадро использовал термин «молекула». Согласно удачному выражению Гуарески, А. Авогадро был настоящим законодателем в области молекул {319} . Центральным местом в теории А. Авогадро было разъяснение различий между понятиями атом и молекула. Он конкретизировал понятия: для обозначения атомов применял сочетание «элементарная или простая молекула», а для молекул — «интегральная или составная молекула».

Если пренебречь собственными размерами молекул, то расстояние между ними должно быть одинаковым для любых газов. А. Авогадро, так же как и Дальтон, придерживался теории теплорода, тем не менее он полагал, что теплородные оболочки не настолько отличаются по своему объему, чтобы повлечь за собой различие в расстояниях между молекулами. Гипотеза Авогадро привела его к мысли о том, что относительное число «элементарных молекул» (атомов) в соединении непосредственно вытекает из объемных соотношений образующих его газов. Исходя из этого, Авогадро предложил способ определения относительных молекулярных масс веществ в газообразном (парообразном) состоянии. Он писал, что отношение масс молекул такое же, что и отношение плотностей газов при одинаковых давлениях и температуре.

Амедео Авогадро ди Кваренья (1776–1856) 

Обобщив все свои идеи, в 1814 г. А. Авогадро сформулировал закон, который носит его имя: равные объемы газообразных веществ при одинаковых внешних условиях (давлении и температуре) содержат одно и то же число молекул, так что плотность различных газов служит мерой массы их молекул и отношения объемов при соединении суть не что иное, как отношения между числом молекул, соединяющихся между собой при образовании сложной молекулы.

Не менее важным для естествознания явилось еще одно положение, высказанное итальянским ученым. Он пытался объяснить несоответствия в объемах продуктов реакций, протекающих в газовой фазе: синтеза воды, оксидов азота и ряда других веществ. Авогадро полагал, что частицы газов не обязательно соединяются друг с другом целиком. Продолжением этой гипотезы стало предположение о том, что молекулы простых газообразных веществ образованы не из одной, а из некоторого числа частиц, объединенных в одну силами притяжения. Соответственно, при протекании химической реакции возможно деление молекул простых веществ на составляющие их атомы. Авогадро специально не уточнял пределов делимости молекул, хотя в одной из работ писал, что при взаимодействии газообразного кислорода и водорода происходит деление их молекул надвое. Как указывает М. Джуа, А. Авогадро «создал настоящую общую теорию, самый остов учения, которое … по справедливости должно называться «молекулярная теория Авогадро»».

Хотя А. Авогадро излагал свою теорию ясно и неоднократно возвращался к ней в своих последующих работах, еще в течение практически сорока лет многие химики откровенно ею пренебрегали. В частности, они не проводили различий между атомами элементов и молекулами важнейших газообразных простых веществ. Вследствие этого существовала и неопределенность при определении атомных масс многих элементов. Например, выдающийся французский физик Андре Мари Ампер, еще в 1814 г. высказывавший сходные идеи о пропорциональности числа частиц объему газов, только в 1832 г. принял различие между атомом и молекулой.

Среди причин недостаточного внимания ученых к этой теории чаще всего называют формулировку гипотезы Авогадро в контексте уже явно устаревшего учения о теплороде, отсутствие независимого метода определения молекулярных масс и межмолекулярных расстояний, а также независимых экспериментальных доказательств многоатомности молекул простых газов. Кроме того, существенным препятствием для распространения взглядов Авогадро стало недостаточно четко обозначенное разграничение между понятиями «атом» («простая молекула») и «молекула» («составная молекула»).

Проблема принятия научной общественностью учения Авогадро была обусловлена двумя основными моментами: во-первых, в работах того периода термины «атом» и «молекула» зачастую были взаимозаменяемыми; во-вторых, многие химики еще не осознавали того факта, что «интегральная молекула Авогадро» является принципиально другой структурной единицей вещества по сравнению с «дальтоновским атомом». Для атомистики первой половины XIX в. характерно наличие только двух основных уровней организации вещества: макроскопическое тело и атом. Мышление химиков постепенно приближалось к представлению о молекуле, однако она понималась именно как «сложный атом». Молекулу еще не осознавали как некую новую целостность, характерную не только для химических соединений, но и для простых тел.

Последователи атомизма с трудом воспринимали идею о делимости молекул многих простых тел, привнесенную в теоретическую химию как бы с другой, непривычной и не очень ясной молекулярной стороны. Большинству ученых более логичным казалось альтернативное атомистическое учение Дж. Дальтона, получившее импульс к дальнейшему развитию в трудах Й.Я. Берцелиуса. Для объединения обеих теорий необходимо было отказаться от исходного методологического положения и осознать, что атом и молекула представляют собой качественно различные ступени организации вещества. В результате вплоть до середины 40-х гг. XIX в. можно указать лишь единичные случаи использования гипотезы Авогадро.

Так, в 1826 г. французский химик Ж.Б. Дюма предложил метод определения относительного веса органических соединений по плотности их паров. При этом в основу своего метода Дюма (см. гл. 9, пп. 9.2–9.4) положил гипотезы, по существу совпадающие с идеями Авогадро. При этом французский химик считал, что образующиеся при делении молекул частицы не следует рассматривать как предел деления веществ. В 1833 г. другой французский ученый М.А. Годэн в одной из своих работ высказал мысль, что при одинаковом давлении и температуре молекулы газообразных тел находятся на одном и том же расстоянии друг от друга. Он пришел к выводу, что молекулы простых газообразных веществ состоят, по меньшей мере, из двух атомов, и при соединении их друг с другом каждая образующаяся молекула делится пополам. Важно отметить, что Годэн настаивал на необходимости четкого разграничения содержания понятий «атом» и «молекула».

Однако статьи Годэна, так же как и работы Авогадро, по-видимому, не привлекли особого внимания современников. В связи с тем, что работы А. Авогадро получили всеобщее признание только во второй половине XIX в., до сих пор предпринимаются попытки приписать заслугу открытия единой атомно-молекулярной теории Дж. Дальтону, однако это следует расценить как непонимание трудов итальянского ученого даже после триумфа атомно-молекулярной теории. Один из первых ученых, сумевший оценить истинное значение трудов А. Авогадро, — Вальтер Нернст был твердо убежден, что молекулярная теория и закон Авогадро представляют собой один из краеугольных камней в фундаменте химической науки. Позднее имя итальянского ученого было увековечено в названии постоянной Авогадро N A = 6,022x10 23 моль–1, равной числу структурных частиц в 1 моль вещества, которую рассматривают как всемирную константу.

 

8.7. Закон изоморфизма

В 1819 г. в результате изучения солей ортофосфорной H3PO4 и мышьяковой H3AsO4 кислот немецкий химик Эйльгарт Митчерлих установил, что эти соединения, имеющие сходный химический состав, могут выделяться в виде смешанных кристаллов. Обобщив свои наблюдения, он пришел к выводу, что форма кристаллов зависит не столько от природы атомов, сколько от их числа. Таким образом, был сформулирован закон изоморфизма («одинаковой формы»): одинаковое число атомов, соединенных одним и тем же способом, дает одну и ту же кристаллическую форму, которая не зависит от химической природы атомов, а зависит лишь от их числа и положения.

Из этого закона следовало, что если два аналогичных по составу соединения кристаллизуются в виде смешанных кристаллов, то их химическую природу можно считать подобной. Закон изоморфизма позволял экспериментаторам делать правильные заключения об эквивалентности молярных масс веществ одинакового элементного состава.

Эйльгарт Митчерлих (1794-1863)

 

8.8. Закон удельных теплоемкостей

В 1819 г. французские химик Пьер Луи Дюлонг и физик Алексис Терез Пти разработали еще один способ расчета атомных масс элементов, образующих простые вещества в твердом состоянии. Они обнаружили, что удельная теплоемкость металлов (количество теплоты, которое необходимо сообщить единице массы вещества, чтобы повысить его температуру на один градус) обратно пропорциональна их относительной атомной массе. Закон удельных теплоемкостей формулируется следующим образом: атомы элементов имеют одинаковую теплоемкость, или же атомные теплоемкости элементов имеют одну и ту же величину.

Таким образом, атомную массу простого вещества в твердом состоянии (правда, только приблизительно) стало возможным определить, измерив его теплоемкость. Для этого было достаточно разделить константу 6,25 (равную произведению удельной теплоемкости на атомную массу) на экспериментально найденную величину удельной теплоемкости. Дюлонг и Пти проверили свой закон на 12 металлах и сере. Исключения из этого закона (например, в случае бора, углерода и кремния) смогли получить объяснения в более позднее время в работах Вальтера Нернста.

Пьер Луи Дюлонг (1785–1838)

 

8.9. Законы электролиза

Электричество было известно человечеству еще с античных времен. Древние греки знали, что кусочек янтаря, если его потереть о шерстяную ткань, способен притягивать пылинки и даже легкие предметы. Найденные при раскопках в Ираке фрагменты упоминаемой ранее «парфянской батареи», позволяют высказывать смелые гипотезы о том, что уже в начале нашей эры человек мог использовать для своих нужд примитивные гальванические элементы (см. гл. 2, п. 2.4).

Спустя практически две тысячи лет английскому физику Уильяму Гилберту удалось обнаружить, что способностью электризоваться обладают и другие вещества. По инициативе Гилберта вещества, обладающие такими свойствами, стали называть «электриками» (от греческого слова ηλεχτρον — янтарь). Как позднее выяснил французский химик Ш.Ф. де Систернэ Дюфе, существует два вида электрических зарядов: один из них возникает на стекле («стеклянное электричество»), а другой — на янтаре («смоляное электричество»). Тело, несущее заряд одного вида, притягивает к себе тело, содержащее заряд другого типа, однако два одинаково заряженных тела испытывают взаимное отталкивание.

В середине XVIII в. выдающийся американский ученый, дипломат и государственный деятель Бенджамин Франклин выдвинул гипотезу для объяснения природы электрических зарядов. Согласно его предположению, носителем заряда является электрический флюид.

Если содержание этого флюида превышает некоторый предел, тело приобретает заряд одного сорта, а в том случае, когда этого флюида содержится меньше нормы, тело несет заряд другого вида. По мнению Б. Франклина, стекло характеризуется избыточным содержанием флюида и вследствие этого несет положительный заряд. У янтаря, напротив, наблюдается недостаток флюидов, поэтому его заряд имеет отрицательный знак. Система знаков электрического заряда используется до сих пор, несмотря на то, что представления о природе электрического заряда противоположны тем, которые существовали в XVIII–XIX вв.

Бенджамин Франклин (1706–1790)

Луиджи Гальвани (1737–1798) 

Важной вехой в изучении электричества стал 1783 г. Согласно наиболее популярной версии, итальянский физиолог Луиджи Гальвани из Болонского университета, препарируя лягушку одновременно с экспериментами по статическому электричеству, первым изучил электрические явления при мышечном сокращении. Продолжая свои исследования, итальянский ученый пришел к выводу, что животная ткань вырабатывает электричество («животное электричество»), а металлы играют роль обычных проводников.

Эстафету исследований в новой области принял у Л. Гальвани его соотечественник — физик Алессандро Вольта. В 1800 г. итальянский ученый установил, что можно так подобрать две металлические пластины, разделенные растворами электролитов, что через соединяющий их провод пойдет электрический ток. Вольта разработал первую электрическую батарею, представляющую собой конструкцию из 20 пар пластинок двух различных металлов. Эта батарея, получившая название Вольтова столба, стала первым источником постоянного тока. Электрический ток в гальваническом элементе образуется в результате протекания химической реакции, в которой участвуют два разных металла и разделяющий их раствор электролита. В своих работах А. Вольта привел первые несомненные доказательства тому, что между химическими реакциями и электричеством существует устойчивая связь. Дальнейшее развитие эта идея получила в исследованиях английских химиков Уильяма Николсона и Энтони Карлайла. В своих работах они обнаружили обратную связь — электрический ток может изменять материю и вызывать протекание химической реакции. При помощи электрического тока они разложили воду на водород и кислород, т.е. осуществили электролиз воды. Выделявшиеся по мере разложения воды H2 и O2 они собирали в отдельные сосуды. Последующие измерения позволили установить, что объем выделившегося H2 в два раза больше объема O2.

C начала XIX в. гальванический электрический ток стал интенсивно применяться в физических и химических экспериментах. Возможность разложения молекулы воды на простые вещества вдохновила английского химика Гемфри Дэви на проведение исследований по использованию электрического тока для разложения соединений, которые было нельзя разложить химическим путем. На первых стадиях своих опытов Г. Дэви пропускал ток через растворы изучаемых веществ, в результате чего он практически всегда получал только H2 и O2. Позднее его посетила блестящая догадка удалить воду и перевести анализируемые вещества в расплавленное состояние. В 1807 г., пропуская электрический ток через расплав карбоната калия, Г. Дэви получил маленькие шарики металла, который он назвал потассием (от тривиального названия K2CO3 — поташ). Некоторое время спустя из расплава Na2CO3 Дэви выделил еще один металл, названный содием. Эти чрезвычайно химически активные металлы впоследствии назвали соответственно калием и натрием, хотя в английском языке сохранились названия, присвоенные этим элементам самим первооткрывателем.

Гемфри Дэви (1778-1829)

После выделения в свободном состоянии щелочных металлов Г. Дэви доказал, что газообразный хлор — «дефлогистированная муриевая кислота» Шееле — является простым веществом. Модифицируя и изменяя оборудование для проведения электрохимических исследований, английский химик выделил в чистом виде целую группу щелочноземельных металлов: магний, стронций, барий и кальций.

Результаты исследований Г. Дэви, Ж.Л. Гей-Люссака и Л.Ж. Тенара подтверждали, что не только хлор, но и иод являются элементами, а не окисленными радикалами. Более того, с помощью электрохимических экспериментов Г. Дэви доказал, что хлороводородная и иодоводородная кислоты не содержат кислорода. В результате длительного изучения процессов электролиза английский ученый пришел к убеждению, что основной составной частью кислот, которая и определяет общие химические свойства этого класса соединений, является водород, а не кислород, как это следовало из теории А.Л. Лавуазье (см. гл. 6, п. 6.7).

Необходимо отметить, что Г. Дэви был поистине блестящим экспериментатором. Все его работы отличались безукоризненной скрупулезностью процедуры и поразительной точностью полученных результатов. Именно поэтому Дэви весьма прохладно отнесся к атомистической теории Дж. Дальтона. Главной мишенью для критических выпадов оказался характер экспериментальных данных Дальтона, которые казались Г. Дэви явно недостаточными для провозглашения фундаментальных теоретических положений. На основании анализа и сопоставления многочисленных экспериментальных данных Дэви разработал собственную электрохимическую теорию, призванную объяснить природу химического сродства. В 1807 г. он опубликовал основные ее положения:

— в химическое взаимодействие вступают вещества неодинаковой природы, при контакте приобретающие противоположные электрические заряды;

— акт химического взаимодействия представляет собой процесс выравнивания зарядов, он протекает интенсивнее между исходными веществами, которые обладают большей разностью между противоположными зарядами;

— химическое сродство составных частей соединения связано с их электрической полярностью: чем больше полярность, тем больше сродство;

— между химическими и электрическими процессами существует однозначная связь; первые всегда связаны со вторыми и наоборот.

Даже с современных позиций теория Г. Дэви выглядит достаточно логичной и не лишенной здравого смысла. Однако в начале XIX в. не все ее положения были безоговорочно приняты современниками. Тем не менее она сыграла важную роль в развитии естествознания, поскольку, во-первых, стимулировала изучение взаимосвязи химических и электрических явлений, что в конечном итоге привело к созданию электрохимии.

Во-вторых, способствовала установлению более тесных отношений между физикой и химией, призывая к более широкому использованию математических методов при проведении химических экспериментов.

Майкл Фарадей (1791–1867) 

Работы Г. Дэви по электролизу продолжил его ученик и помощник Майкл Фарадей. Целый ряд электрохимических терминов, используемых и по сей день, был введен в научный язык по инициативе Фарадея: например, разложение соединений под действием электрического тока английский ученый предложил называть электролизом, а вещества, растворы или расплавы которых способны проводить электричество, — электролитами. Такие термины, как электрод, катод, анод, ион, катион, анион, своим появлением также обязаны Фарадею.

В 1834 г. М. Фарадей высказал утверждение, что электрохимические процессы характеризуются определенными количественными соотношениями, и сформулировал два закона электролиза. Согласно первому из них, масса вещества, выделившегося на электроде во время электролиза, пропорциональна количеству электричества, пропущенного через раствор.

т = kIt ,

где k — коэффициент пропорциональности; I — сила тока; t — длительность процесса электролиза.

Второй закон утверждал, что масса металла, выделенная определенным количеством электричества, пропорциональна его эквивалентной массе. Эти законы, получившие название законов постоянства электрохимических действий, открывали возможность определять электрохимические эквиваленты металлов и далее рассчитывать их относительные атомные массы. Однако в тот период ученые еще не были готовы к тому, чтобы применить законы Фарадея для определения атомных масс, причем одним из наиболее влиятельных противников применения этих законов был сам И.Я. Берцелиус.

 

8.10. Развитие атомистики в первой половине XIX в.

Атомистическое учение Дальтона завоевывало все новых и новых сторонников главным образом потому, что содержало в себе, во-первых, картину физического устройства вещества и, во-вторых, на его основе, — объяснение химических явлений. Именно второй аспект атомистики Дальтона был особенно важен для дальнейшего развития химии, поскольку принятие учеными атомистической теории зависело, в первую очередь, от соответствия ее основных положений экспериментальным данным.

Некоторые ученые, безусловно признавая методологическую значимость атомистики Дальтона, справедливо расценивали его идею определять атомный состав соединений по данным весового анализа с применением постулата наибольшей простоты как недостаточно обоснованную. Такой точки зрения придерживались, например, английский ученый У.Г. Уолластон и шведский химик Й.Я. Берцелиус. Именно они предприняли попытки усовершенствовать систему Дальтона на основе собственных исследований и представлений.

Уильям Гайд Уолластон (1766-1828)

Использование наиболее простых соотношений между элементами приводило к неправильным значениям относительных атомных масс. Более того, относительная атомная масс одного и того же элемента (например азота) могла различаться в зависимости от того, при анализе какого соединения она была получена (оксида азота или аммиака). Однако несовершенство техники взвешивания какое-то время позволяло округлять результаты разных анализов.

Вместо относительных атомных весов У.Г. Уолластон предложил использовать эквивалентные веса, которые он определил для многих элементов и соединений по отношению к кислороду. Хотя в своих работах он не дал однозначного определения понятию эквивалент (и иногда отождествлял его с дальтоновским относительным атомным весом), в большинстве случаев его данные представляли собой соединительные веса, т.е. весовые соотношения, в которых соединяются элементы. Пересчитанные относительно водорода (принятого за 1), многие значения эквивалентов Уолластона оказались близки к атомным весам Дальтона. В 20-е гг. XIX в. многие химики предпочитали пользоваться именно эквивалентами Уолластона. Они казались ученым менее произвольными, поскольку их величины можно было рассчитать не на основании абстрактного дальтоновского постулата, а по экспериментальным результатам.

Следует подчеркнуть, что закон простых кратных отношений был выведен на основании анализа весьма ограниченного круга соединений, поэтому значения относительных атомных весов (масс) Дальтон определил для сравнительно небольшой группы из известных в то время элементов (см. табл. 8.2). Благодаря работам Т. Томсона и У.Г. Уолластона список элементов с рассчитанными относительными атомными весами был существенным образом расширен. Путем многочисленных аналитических экспериментов достоверность закона кратных отношений применительно ко многим неорганическим оксидам, солям, а позднее — и к органическим соединениям проверил и подтвердил И.Я. Берцелиус.

 

8.11. Й.Я. Берцелиус — титан химии XIX в.

Атомные массы и символы элементов

Чрезвычайно важный этап в истории эволюции химической атомистики связан с именем шведского ученого Йенса Якоба Берцелиуса. Его заслуга состоит в том, что на основе идей Дальтона он попытался создать целостную, подкрепленную многочисленными экспериментальными данными теорию.

Йенс Якоб Берцелиус (1779–1848) 

Примерно с 1807 г. под влиянием закона эквивалентов Рихтера Берцелиус занимался определением точного количественного состава различных соединений. Спустя три года молодой ученый познакомился с атомистической теорией Дж. Дальтона. Как писал позднее С. Канниццаро, «предмет исследований Берцелиуса сразу оказался освещенным светом, и очень скоро в результате своих опытов он пришел к открытию отношений, о которых до тех пор не догадывался».

В 1813 г. внимание Берцелиуса привлек открытый Гей-Люссаком закон простых объемных отношений. В своих дальнейших исследованиях Й.Я. Берцелиус исходил из попыток сочетать закон объемных отношений с атомной теорией Дж. Дальтона. Однако, как и большинству его современников, ему не удалось в полной мере оценить значение закона объемных отношений и тем более молекулярной теории А. Авогадро.

Шведский ученый был захвачен идеей определения атомных весов, разрабатывая для этого более точные экспериментальные методики, чем у Дж. Дальтона. В своих работах Берцелиус сделал попытку согласовать данные весового и объемного анализа. Он принял, что в одинаковых объемах газообразных веществ содержится одинаковое число атомов, и что, например, вода состоит из одного атома кислорода и двух атомов водорода. Для объяснения образования двух, а не одного объема воды при ее синтезе из элементов (как должно было бы быть в представлении об одноатомности молекул простых газов 2H + О = H2O) Берцелиус вынужден был прибегнуть к гипотезе об увеличении расстояния между «сложными атомами» воды по сравнению с простыми газами.

Базовый принцип, который он положил в основу своих соображений, сводился к постулированию простых отношений между числом атомов кислорода в составе оснований и кислот (т.е. в составе основных и кислотных окислов), образующих соли. Таких стехиометрических закономерностей им было подмечено довольно много.

Весы Й.Я. Берцелиуса 

В результате длительных и тщательных аналитических работ Й.Я. Берцелиус пришел к выводу, что в солях существуют простые и постоянные отношения между атомами кислорода основания и атомами кислорода кислоты. Этот «кислородный закон» окончательно убедил шведского ученого в атомарном строении материи. В некоторых случаях ему не удавалось, однако, установить подчинение составов солей этим закономерностям. Например, в солях фосфорной кислоты отношение кислорода кислоты к кислороду основания не целое — 5/3). По этой причине для вывода числа атомов в соединениях Берцелиус не ограничивался применением только одного критерия, а принимал во внимание все «косвенные соображения», в том числе аналогии. Например, аналогия кислорода и серы позволяла ему изучать соединения серы в тех случаях, когда в ряду кислородных соединений отсутствовали какие-либо члены. Таким образом, подход Берцелиуса к рассматриваемому аспекту атомистической теории был существенно более глубоким по сравнению с подходом Дальтона.

Лабораторные приборы Й.Я. Берцелиуса:

1 — стакан; 2 — прибор для промывания; 3 — капиллярный регулятор; 4 — штатив с воронкой; 5 -лампа для высушивания осадков; 6 — длительное фильтрование; 7 — масляная лампа 

Тем не менее Берцелиус характеризовал атомистическую гипотезу Дж. Дальтона как крупнейшее событие в истории химической науки. При всем этом шведский ученый критиковал Дальтона за то, что тот упрямо придерживался одной устоявшейся предпосылки и игнорировал результаты Гей-Люссака, которые на самом деле не опровергали, а наоборот, подтверждали эту теорию. Берцелиус добился результатов чрезвычайной важности, но достиг он их не столько логическими рассуждениями, сколько благодаря вычислению относительных атомных масс 45 известных к тому времени элементов. В 1818 г. он опубликовал таблицу атомных масс, отличающихся высокой точностью, причем атомные массы элементов были рассчитаны относительно кислорода (атомная масса O была принята за 100). Объясняя такой подход, Берцелиус писал: «… Кислород имеет все преимущества. Он, так сказать, является центром, вокруг которого вращается вся химия». Поскольку у Берцелиуса Ar(O) = 100, абсолютные значения масс элементов в этой таблице по сравнению с привычными для нас завышены в несколько раз. Например, масса водорода, по данным Берцелиуса, составляла 6,2398. Однако соотношения между ними в основном (за исключением нескольких элементов), совпадают с величинами, принятыми в настоящее время. Так можно увидеть, что Ar(O)/Ar(Н) = 100/6,2398 = 16,023. Причина ошибок шведского ученого в определении атомных масс в таблице 1818 г. заключалась еще и в том, что он руководствовался идеей образования соединений с самыми простыми целочисленными соотношениями. Все это не позволяло Берцелиусу найти верное решение атомистической проблемы, хотя он располагал для этого обширными и весьма точными экспериментальными данными.

Несколько позднее шведский ученый провел сопоставление процентного состава около 2000 химических соединений (почти всех соединений, известных в то время) и указал значения их «атомных» масс. Так же как и Дж. Дальтон, Берцелиус не использовал понятие «молекула», а рассматривал их как атомы различной степени сложности.

C работами Берцелиуса по атомистике тесно связано введение в употребление буквенных символов для обозначения химических элементов, которые с небольшими изменениями используются до настоящего времени. Его система химической символики, подробно разработанная в 1818–1819 гг., позволяла отражать не только символы элементов и формулы соединений с применением индексов, но и производить запись химических реакций. Данная система по своей сути представляла собой специфический научный химический язык, который весьма содействовал развитию химии.

Лабораторные приборы Й.Я. Берцелиуса:

1 — трубка для фильтрования; 2 — газометр; 3 — аппарат для фильтрования; 4 — водяная баня; 5 — эксикатор; 6 — лампа с поддувом; 7 — калильная печь; 8 — пробирки на штативе 

Берцелиус признал важность закона Дюлонга и Пти для определения атомных весов (масс), но сделал это скрепя сердце, поскольку многие значения, полученные французскими учеными, отличались от его собственных результатов. C другой стороны, весьма восторженно Берцелиус отзывался о законе изоморфизма Э. Митчерлиха, оценивая его взором учителя, благосклонного к своему ученику. Шведский ученый расценивал этот закон «как самое важное открытие после создания учения о химических пропорциях» и широко использовал его для определения и уточнения атомных весов.

Уточненные данные об атомных массах, опубликованные в 1826 г., были получены с использованием представлений о сложных атомах. Подвергая сомнению дальтоновское правило наибольшей простоты, Берцелиус в своих работах пытался вывести состав «сложных атомов» из стехиометрических закономерностей. При создании системы атомных весов 1826 г. Берцелиус использовал различные подходы (закон изоморфизма, закон Дюлонга-Пти, химические аналогии), но основную роль, по-прежнему, отводил объемному и весовому методам. Как и в предыдущих работах, атомные массы всех элементов были отнесены к кислороду, а его масса принята равной 100.

Необходимо подчеркнуть, что при расчетах атомных масс в таблице 1826 г. Берцелиус стал использовать новое теоретическое положение.

Он признал существование оксидов, содержащих два атома металла или другого элемента.

В 1818 г. единственным представителем таких соединений была вода, для обозначения которой Берцелиус употреблял формулу H2O. Небезынтересно, что для изображения кислорода в соединениях, как видно из рисунка, шведский ученый использовал точки.

В 1826 г. в связи с изменением системы химических формул для обозначения двух атомов металла или неметалла в соединении Берцелиус стал применять символ элемента, перечеркнутый горизонтальной чертой. Использование понятия «двойного атома» привело к изменению формул некоторых кислот, оснований и солей. Таким образом, система химических формул солей Берцелиуса оказалась близка к аналогичным построениям Дж. Дальтона, Т. Томсона и У.Г. Уолластона. Установленные шведским ученым значения атомных масс имеют большую историческую важность, поэтому его таблица вошла в анналы химии как «Таблица атомных весов (масс) 1826 г.»

Формулы некоторых соединений, записанные с использованием символики Й.Я. Берцелиуса 

Таблица 8.4

Таблица атомных весов (масс) Й.Я. Берцелиуса (1826)

Название элемента Символ Атомный вес
O = 100 H = 1
Кислород… O 100 16,02
Водород… H 6,2398 1
Углерод… C 76,44 12,26
Бор … в 136,2 21,82
Фосфор… P 196,14 31,44
Сера … S 201,17 32,24
Селен … Se 494,58 79,26
Иод … I 789,75 126,56
Бром … Br 489,75 78,40
Хлор … Cl 221,33 35,48
Фтор … Ft 116,9 18,74
Азот … N 88,52 14,18
Калий… К 489,92 78,52
Натрий… Na 290,90 46,62
Литий… Li 80,33 12,88
Барий … Ba 856,88 137,32
Стронций… Sr 547,29 87,70
Кальций… Ca 256,02 41,04
Магний… Mg 158,35 25,38
Иттрий… Y 402,51 64,50
Глиций… Gl 331,26 53,08
Алюминий… Al 171,17 27,44
Торий… Th 744,90 119,30
Цирконий Zr 420,20 67,34
Кремний Si 277,31 44,44
Титан … Ti 303,66 48,66
Железо… Fe 339,44 54,40
Тантал … Та 1153,72 184,90
Вольфрам W 1183,00 189,60
Молибден Mo 598,52 95,92
Ванадий… V 856,89 137,32
Хром … Cr 351,82 56,38
Уран … Ur 2711,36 434,52
Марганец… Mn 345,89 55,44
Мышьяк… As 470,04 75,34
Сурьма… Sb 806,45 129,24
Теллур… Те 801,76 128,50
Висмут… Bi 886,92 142,14
Цинк … Zn 403,23 64,62
Кадмий… Cd 696,77 111,66
Олово … Sn 735,29 117,84
Свинец … Pb 1294,50 207,46
Кобальт… Со 368,99 59,14
Никель… Ni 369,68 59,24
Медь … Cu 395,71 63,42
Ртуть … Hg 1265,82 202,86
Серебро… Ag 1351,61 216,60
Золото … Au 1243,01 199,20
Платина… Pt 1233,50 197,70
Палладий… Pd 665,90 106,72
Родий … Rh 651,39 104,40
Иридий… Ir 1233,50 197,68
Осмий … Os 1244,49 198,44

Принципиальное различие между таблицами атомных масс Дж. Дальтона и И.Я. Берцелиуса состоит в том, что во втором случае большинство величин атомных масс не являлись целыми числами. Необходимо признать, что система атомных весов, созданная громадными усилиями Берцелиуса, не была лишена ошибок и противоречий. Здесь уместно напомнить о так называемой гипотезе Праута {330} . Эта гипотеза основывалась на идее об изначальном единстве материи. Как известно, сама идея далеко не нова: ее формулировали многие античные натурфилософы и атомисты XVII в., включая И. Ньютона и Р. Бойля. Новая гипотеза была в определенной степени лишена метафизической окраски. В 1815–1816 гг. английский химик Уильям Праут, опираясь на таблицу атомных масс Дж. Дальтона, высказал мнение, что все элементы состоят из водорода, и атомные массы различных элементов различаются лишь по той причине, что они содержат различное число атомов Н. Новая гипотеза с восторгом была принята Т. Томсоном, последовательным популяризатором атомистического учения Дж. Дальтона. В то же время Берцелиус, получавший в результате своих исследований дробные величины относительных атомных масс, категорически высказался против идеи Праута.

Созданная Й.Я. Берцелиусом система атомных масс и изображения формул химических соединений опиралась на его электрохимическую теорию, которую иногда называют «дуалистической теорией». Эта теория, которая привела шведского ученого к созданию дуалистической системы изображения формул химических соединений, была изложена им в классической статье 1818 г. «Исследования в области теории химических пропорций и химического действия электричества». Можно сказать, что электрохимическая теория Берцелиуса во многом являлась развитием представлений Г. Дэви (см. гл. 8, п. 8.8). Однако в отличие от английского ученого Берцелиус считал, что электрические заряды уже присутствуют в атомах до их контакта, поэтому можно разделить элементы на электроотрицательные и электроположительные (табл. 8.5).

Таблица 8.5

Электрохимический ряд Й.Я. Берцелиуса {331}

Электроотрицательные элементы в нисходящем порядке Переходный элемент Электроположительные элементы в восходящем порядке
Кислород Водород Золото Цинк
Сера   Иридий Марганец
Азот и его нитрорадикал   Родий Алюминий
Радикал муриевой кислоты   Платина Иттрий
Радикал фтористого водорода   Палладий Бериллий
Фосфор   Ртуть Магний
Селен   Серебро Кальций
Мышьяк   Медь Стронций
Молибден   Никель Барий
Хром   Кобальт Натрий
Вольфрам   Висмут Калий
Бор   Олово  
Углерод   Цирконий  
Сурьма   Свинец  
Теллур   Церий  
Тантал   Уран  
Кремний   Железо  
Осмий   Кадмий  

Располагая элементы согласно их электрической полярности, Берцелиус выстроил их в ряд, первым членом которого был кислород, затем следовали сера, азот, фосфор и другие неметаллы с переходом через водород к натрию, калию и другим металлам. Таким образом, Берцелиус разделил все элементы на металлы и металлоиды. По мнению шведского ученого, химическое соединение образуется путем объединения атомов с противоположными зарядами.

Согласно теории Й.Я. Берцелиуса, электрическая полярность элементов не исчезает после образования ими сложных веществ. Поэтому процесс электролиза объясняется тем, что при прохождении электрического тока атомы восстанавливают свою исходную полярность, которой они обладали до вступления в соединение, вследствие чего и возникает их миграция к электроду с противоположным электрическим зарядом.

Цель дуалистической теории Берцелиуса заключалась в том, чтобы найти отправной пункт для суждения о конституции соединений. Попытка установить рациональные формулы химических соединений привела ученого к созданию так называемой дуалистической системы и в то же время к усовершенствованию номенклатуры, разработанной французской школой под руководством А. Лавуазье. Дуалистическая система предполагала, что каждое соединение состоит из двух частей, имеющих различную электрическую полярность. Например, сульфат бария должен был иметь формулу (BaO)+∙(SO3)-, а карбонат кальция — (CaO) +∙(CO2)-. Согласно Берцелиусу, в растворах кислот вода имела слабо электроположительную функцию, таким образом, водную серную кислоту следовало изображать формулой (H2O) +∙(SO3)-, в то время как в водных растворах оксидов металлов вода слабоотрицательна, например, в (CaO) +∙(H2O)-.

Титульный лист «Учебника химии» И.Я. Берцелиуса (Лейпциг, 1823)

Этих кратких сведений достаточно для того, чтобы показать, насколько важна была для своего времени дуалистическая теория Й.Я. Берцелиуса. Она была достаточно проста и плодотворна для описания состава и строения неорганических соединений, однако применять ее для органических веществ можно было лишь с большими оговорками. Поначалу Берцелиус был явным сторонником Лавуазье и отстаивал его кислородную теорию кислот (см. гл. 6, п. 6.7). Лишь в 1825 г. под влиянием неопровержимых экспериментальных данных, полученных другими учеными (в том числе, Г. Дэви и Гей-Люссаком), Берцелиус отказался от представлений о том, что все кислоты должны содержать кислород.

Продолжая изучать электролиз растворов солей, Г. Дэви доказал, что в солях положительной составной частью является металл, а отрицательной — кислотный остаток. В тридцатые годы XIX в. были доказаны факты существования многоосновных кислот, в частности ортофосфорной, лимонной и винной. Все эти экспериментальные данные свидетельствовали о недостатках дуалистической системы. Решительному отказу от нее способствовало также бурное развитие органической химии, поскольку строение органических веществ, подавляющее большинство из которых не являются электролитами, нельзя было объяснить с позиций дуалистической теории. Попытки Берцелиуса всячески защитить свою теорию не помешали тому, что в начале 1840-х гг. она была практически забыта, ибо наука пользуется той или иной теорией до тех пор, пока она жизненна, и отказывается от нее, когда она становится бесполезной.

Как справедливо отмечает М. Джуа, нелегко дать полный обзор поистине исполинской деятельности выдающегося шведского химика. Необходимо напомнить, что помимо занятий непосредственными фундаментальными исследованиями в области химии Берцелиус много сил отдавал литературной деятельности. В 1808–1818 гг. он опубликовал «Учебник химии» в трех томах, который пользовался огромной популярностью, выдержал пять изданий и был переведен практически на все европейские языки.

C 1821 г. Берцелиус составлял ежегодные аналитические обзоры естественнонаучных исследований, проводимых в разных странах. Его «Обзоры успехов физики и химии» (всего 27 томов) составляли главный источник информации в тот период, имели широкую известность и переводились на другие языки. Шведский ученый был безусловным лидером и корифеем среди исследователей-химиков своего времени. Он бережно взрастил целую плеяду преемников, среди которых были такие выдающиеся ученые, как исследователь редкоземельных металлов К.Г. Мосандер, Э. Митчерлих, X. Г. Гмелин, Ф. Велер и многие другие.

Роль И.Я. Берцелиуса в развитии химической науки велика и неоспорима. Он внес огромный вклад в развитие и укрепление атомного учения, обогатил неорганическую химию открытием целого ряда элементов: церия (1803), селена (1817), кремния (1824), циркония (1824), тантала (1825) и ванадия (1830).

 

8.12. Попытки реформы системы атомных весов

Ученики Й.Я. Берцелиуса достойно продолжили его дело по развитию атомного учения. В последующие годы таблицы атомных масс постоянно уточнялись, и все более очевидным становились выводы Берцелиуса, считавшего, что атомные массы различных элементов не являются целыми числами, кратными массе водорода.

Во второй четверти девятнадцатого века многие химики занимались определением атомных масс элементов. Особого упоминания заслуживают Леопольд Гмелин и Жан Сервэ Стас.

В системе атомных масс, предложенных Л. Гмелином, в основном содержались данные, сходные с результатами Берцелиуса. Однако в его системе атомная масса водорода была вдвое больше принятой Берцелиусом. Л. Гмелин привел для водорода молекулярную массу простого вещества H2. В результате атомные массы элементов, образующих с водородом соединения, были определены правильно, а атомные массы металлов оказались вдвое меньше.

Существование различных систем атомных весов в первой половине XIX в. вносило серьезные осложнения в практику химических исследований (некоторые значения атомных весов элементов для различных систем приведены в табл. 8.6). К 40-м гг. XIX столетия проблема приобрела особую остроту, когда химические эквиваленты, в частности, предложенные Л. Гмелином, получили широкое распространение в химической литературе. Ситуацию осложняло еще и то, что само понятие «эквивалент» ученые понимали по-разному: как соединительный вес, как атомный вес или как равнозначные массы вещества в реакциях замещения.

Леопольд Гмелин (1788–1853)

Таблица 8.6

Относительные атомные массы элементов , пересчитанные к эталону A r (H) = 1

Элемент Относительные атомные массы, рассчитанные разными авторами
Гмелин (1827) Дюма (1828) Берцелиус (1835)
Водород 1 1 1
Углерод 6 6 12,3
Кислород 8 16 16
Натрий 23,3 46,6 46
Иод 32,2 64,4 128

В зависимости от принятой системы формулы соединений (минеральных и органических) составлялись по-разному, и поэтому для одних и тех же веществ могло существовать несколько вариантов. В таких условиях некоторые ученые высказывали сомнения в необходимости и целесообразности установления числа атомов в соединениях. Необходимо отметить, что в начале второй четверти XIX в. разночтения и неопределенности в установлении формул соединений достигли таких пределов, что стали сдерживать развитие органической химии, которая накопила большой эмпирический материал, нуждавшийся в обобщении и систематизации.

Именно в рамках органической химии на рубеже 50-х гг. XIX в. наметилась тенденция реформы атомистической теории, направленная на возрождение и развитие молекулярных представлений. В 40-х гг. XIX в. два молодых французских химика Огюст Лоран и Шарль Фредерик Жерар (см. гл. 9, п. 9.4) предприняли очередную попытку уточнения относительных атомных масс. В ходе своих исследований Ш.Ф. Жерар пришел к выводу, что в качестве общей меры для изучения свойств и составов органических веществ атомные веса представляют больше удобства по сравнению с системой эквивалентов. Эквиваленты Гмелина, ближе всего подходившие к соединительным весам, численно были равны уменьшенным вдвое атомным весам Берцелиуса для ряда элементов, в том числе для основных, входящих в состав органических соединений. Анализируя соотношение объемов CO2 и паров H2O, образующихся при горении органических веществ, Жерар пришел к выводу, что представленные Берцелиусом формулы многих соединений являются удвоенными. В обстановке путаницы в атомных и эквивалентных массах, а также в формулах органических веществ Ш.Ф. Жерар предложил устранить накопившиеся противоречия путем исправления значений атомных масс углерода, кислорода и серы. При A r (H) = 1 он предложил считать атомные массы этих элементов равными A r (O) = 16; A r (C) = 12 и A r (S) = 32. Жерар также исправил эквивалентные массы серебра, свинца и щелочных металлов. Необходимо признать, что в целом таблица атомных масс Жерара была менее совершенной по сравнению с системой Берцелиуса 1826 г., однако ее главное преимущество заключалось в том, что она опиралась на правильные эмпирические формулы веществ. ½

В результате своих исследований Жерар и Лоран не только предложили упростить формулы многих соединений, но практически очень близко подошли к современному пониманию молекулярного состояния вещества, используя представления о «химической частице». По крайней мере, из статей О. Лорана видно, что он осознавал различие между атомарным и молекулярным хлором, приписывая последнему формулу Cl2.

Полностью поддержав идеи Ш.Ф. Жерара, О. Лоран предложил использовать в записи химических реакций обозначения половинных объемов эквивалентов простых газов (H½, Cl½). К концу 40-х гг. XIX в. он уверился в существовании двойных молекул этих веществ (H2, Cl2) и высказал предположение о том, что в реакциях такие молекулы могут делиться на два атома. «Даже если допустить, — писал Лоран, — что существует предел делимости материи, мы не обязаны считать атомы химиков таким пределом, и мы вполне будем в состоянии понять причину закона определенных пропорций, предположив, что химические атомы на самом деле представляют собой молекулярные группы, составленные из некоторого числа меньших атомов».

В одной из последующих статей, пользуясь обозначениями Берцелиуса, Лоран предложил уравнения с обозначениями двухатомных молекул газообразных простых тел:

(HH) + (ClCl) = (HCl) + (HCl);

(HH) + (HH) + (OO) = (HH)O + (НН)О.

Используя новые химические формулы, О. Лоран показал принципиальное различие между понятиями атом, молекула и эквивалент. Он продемонстрировал, например, что атом кислорода эквивалентен атому серы, а атом водорода — атому галогена, но каждый атом первой пары эквивалентен двум атомам второй пары. Кроме того, Жерар отмечал, что значение эквивалента (эквивалентной массы) сложного вещества далеко не всегда является постоянной величиной — оно может зависеть от природы партнеров, с которыми реагирует данное соединение.

Таким образом, Ш.Ф. Жерар и О. Лоран на рубеже 50-х гг. XIX в. инициировали долгожданную реформу сложившейся в химии системы атомных весов. Еще шаг, как пишет М. Джуа, и идеи Авогадро осветили бы систему атомных масс, но преждевременная кончина обоих французских химиков помешала закончить работы по реформе атомного учения. Решить эту проблему и осуществить настоящую реформу атомно-молекулярной теории предстояло итальянскому химику С. Канниццаро.

В 60-х гг. XIX в. бельгийский химик Ж.С. Стас определил атомные массы элементов точнее, чем Берцелиус. В начале XX в. американский химик Теодор Уильям Ричардс, приняв все меры предосторожности, определил значения атомных масс с такой точностью, которая только была возможна при использовании чисто химических методов исследования. Результатом экспериментов Ж.С. Стаса и Т.У. Ричардса явились ответы на те вопросы, которые оставались нерешенными в работах Берцелиуса.

Однако необходимо напомнить, что в начале XX в., когда Т.У. Ричардс проводил свои поразительные по точности эксперименты, вновь встал вопрос о том, что следует понимать под атомной массой. На этом этапе развития химии гипотезе Праута суждено было возродиться.

Теодор Уильям Ричардс (1868–1928)

Эксперименты показали, что атомные массы различных элементов взаимосвязаны между собой не столь простым способом, как это предполагалось ранее, поэтому насущной задачей стало определение стандарта, относительно которого было бы целесообразно выражать массы других элементов. Если принимать за единицу атомную массу водорода, окажется, что атомная масса кислорода будет выражена нецелым числом 15,9. Это было бы крайне неудобно, поскольку кислород входит в состав подавляющего числа соединений.

Чтобы атомная масса кислорода выражалась целым числом при минимальном нарушении стандарта, т.е. атомной массы водорода, Ar(O) округлили и приняли равной 16,000. Атомная масса водорода при этом оказалась равной 1,008. Атомная масса кислорода служила стандартом вплоть до середины XX в., пока ее не сменила углеродная шкала атомных масс.

 

8.13. Международный съезд химиков в Карлсруэ.

Атомно-молекулярная реформа С. Канниццаро

Идеи Ш.Ф. Жерара и О. Лорана получили признание среди наиболее передовых ученых мира. В своей магистерской диссертации «Удельные объемы» Д.И. Менделеев развил некоторые идеи и методы Ш.Ф. Жерара. Он доказал универсальность гипотезы Авогадро и объяснил причины отклонения плотности паров некоторых веществ при высокой температуре их термической диссоциацией. В 1856 г. русский ученый предложил формулу для определения молекулярной массы газообразных веществ непосредственно по их относительной плотности, независимо от того, известен их количественный химический состав или нет:

M (вещества) = 29D воздух .

Менделеев писал: «Это дает легчайший способ по удельному весу (относительной плотности) узнавать приближенный вес частицы и обратно».

Обзор состояния химии в середине XIX в. показывает, что разные школы и группы ученых пользовались различными системами атомных масс: одни придерживались данных Берцелиуса, другие употребляли значения, исправленные Лораном и Жераром. Вследствие этого рациональные формулы соединений, претендующие на раскрытие состава веществ, ученые представляли по-разному. Например, воду изображали четырьмя различными формулами, а для уксусной кислоты существовало целых девятнадцать вариантов написания. При этом необходимо учитывать, что основные химические понятия — атом, молекула и эквивалент — трактовались многими химиками весьма произвольно.

Все это привело к тому, что ученые практически перестали понимать друг друга. В такой сложной обстановке некоторые исследователи пришли к идее об организации международного симпозиума с участием наиболее известных ученых разных стран для того, чтобы выработать общие взгляды по самым животрепещущим научным проблемам, в частности — внести ясность в содержание основных химических понятий. Видные ученые, составившие инициативную группу конгресса, обратились к специалистам из разных стран с приглашением посетить это чрезвычайно важное совещание. Начало работы конгресса было назначено на 3 сентября 1860 г.

На Первом Международном конгрессе в г. Карлсруэ присутствовало 140 химиков из Европы и Америки, в том числе семь ученых из России, среди них были Н.Н. Зинин и Д.И. Менделеев, которые были включены в состав комиссии, образованной для принятия согласованного решения конгресса. После бурных дискуссий комиссия пришла к заключению, что основные разногласия сводятся, по существу, к вопросу о различии понятий «химическая частица» (молекула) и «атом». Среди обсуждаемых мнений, представленных на конгрессе, научные идеи итальянского химика Станислао Канниццаро оказались наиболее передовыми и отчетливо сформулированными, это сыграло решающую роль в выяснении запутанных вопросов. Его доклад и брошюра «Конспект лекций по химической философии», распространенная среди участников конгресса, произвели сильное впечатление.

Станислао Канниццаро (1826–1910) 

Еще в 1858 г. независимо от Д.И. Менделеева С. Канниццаро предложил объективный метод определения молекулярных весов газообразных веществ непосредственно по их относительной плотности по водороду:

M (вещества) = 2D H2 .

C помощью этого метода он исправил некоторые неточности в таблицах атомных весов (масс) в системах Берцелиуса и Жерара. Утверждая, что молекулы простых веществ в газообразном состоянии имеют, чаще всего, двухатомное строение, Канниццаро, в отличие от Берцелиуса и Жерара, пришел к выводу, что металлы (прежде всего, ртуть) в парообразном состоянии находятся в виде одноатомных молекул. Данное заключение позволило ему сделать важный шаг по пересмотру атомных масс металлов. Исследования С. Канниццаро сыграли важную роль в устранении непоследовательности системы атомных весов металлов, разработанной Жераром. Основываясь на результатах измерения плотности паров ртути и ее соединений в совокупности с фактами изоморфизма и данными об удельных теплоемкостях, Канниццаро предложил удвоить атомную массу ртути по сравнению с величиной, принятой Жераром. Имея в виду аналогию формул соединений ртути и других металлов (за исключением щелочных), он предложил уточненные значения атомных масс меди, цинка и олова.

Центральным положением в новых представлениях Канниццаро явилось утверждение важнейшего для химии понятия о молекуле. Взяв за основу гипотезу Авогадро и пользуясь при определении молекулярных масс простых веществ методом плотности пара, Канниццаро пришел к выводу о существовании у простых веществ молекул, состоящих из различного числа атомов.

Необходимо отметить, что математическая разработка кинетической теории газов, начавшаяся в 1856–1857 гг., привела к физическому обоснованию гипотезы Авогадро. Было доказано положение о равенстве числа молекул в равных объемах при одинаковых условиях, а также наличие различного числа атомов в молекулах простых газообразных веществ: H2, N2, P4, S6 и т.д. Проанализировав работы Авогадро, Ампера, Годэна, Дюма, Жерара и Лорана, Канниццаро внес ясность в вопрос о различии атомных, молекулярных и эквивалентных масс. Таким образом, заслуга С. Канниццаро состоит прежде всего в возрождении гипотезы Авогадро об объемных отношениях и последовательном приложении этой гипотезы к определению молекулярных масс металлоорганических соединений и атомных масс ряда металлов. После того как итальянский химик рассчитал молекулярные массы ряда простых веществ и химических соединений, он пришел к следующему выводу: различные количества одного и того же элемента, содержащиеся в различных молекулах, являются целыми кратными одной и той же величины, которая входит неделимо в эти соединения и по праву называется атомом. Это положение иногда называют «законом атомов» С. Канниццаро.

C изложением этих взглядов итальянский ученый и выступил на Первом Международном химическом конгрессе в Карлсруэ. В своей речи С. Канниццаро призвал ученых принять атомно-молекулярное учение и предложил придерживаться единой системы основных химических понятий — молекулы как наименьшего количества простого или сложного вещества, вступающего в реакцию, и атома как наименьшего количества элемента, входящего в состав молекулы.

Четкая детализация содержания фундаментальных понятий химии, представленная итальянским ученым, подкрепленная точными и согласующимися между собой результатами расчетов атомных масс элементов придала атомно-молекулярной теории законченный характер.

Таким образом, в этой системе подразумевалась принципиальная равнозначность простого и сложного вещества. Атом же мыслился не как неделимый первичный объект материи (то есть не как дальтоновский атом), а как некая мельчайшая «элементная единица».

«Одушевленная речь Канниццаро по справедливости была встречена общим одобрением», — писал позднее Д.И. Менделеев. Результаты голосования по основным положениям доклада С. Канниццаро выявили практически полное единодушие участников конгресса.

Отсутствие прямых экспериментальных доказательств существования атомов приводило к тому, что, несмотря на широкое признание взглядов Канниццаро, и после съезда в Карлсруэ оставались естествоиспытатели, которые либо не приняли атомистики вообще, либо рассматривали атомы лишь как удобную, но гипотетическую модель для разъяснения некоторых явлений. Тем не менее, большинством ученых второй половины XIX в. атомно-молекулярное учение было принято и его распространение сыграло решающую роль в дальнейшем развитии химии. Исследования итальянского ученого ознаменовали собой торжество унитарных представлений в химии. Предложенные им способы определения состава молекул впоследствии внесли ясность в правильное понимание валентности элементов и химической структуры веществ.

Атомно-молекулярное учение обеспечило предметную связь химии с физикой. Эта связь приобретала различные конкретные формы в зависимости от объекта исследования (атом, ион, молекула) и новых экспериментальных методов.

Статья Д.И. Менделеева в газете «Санкт-Петербургские ведомости» от 2 ноября 1860 г., посвященная Международному конгрессу химиков в Карлсруэ 

Первый Международный конгресс в Карлсруэ едва ли не единственный пример в истории химии, когда глубокие теоретические расхождения обсуждались собранием наиболее авторитетных ученых многих стран и были устранены путем голосования. Конгресс в Карлсруэ, проведенный в атмосфере откровенной и плодотворной дискуссии по важнейшим теоретическим вопросам химии того времени, буквально «оздоровил» обстановку, в которой велись научные исследования и преподавание химии. Многие ученые — участники конгресса — отметили те положительные сдвиги, которые произошли в осознании основных фундаментальных положений химии после его окончания. В частности, Д.И. Менделеев позднее неоднократно отмечал огромное конструктивное значение конгресса в деле поступательного развития химии и в особенности генезиса и становления Периодического закона.

 

8.14. Краткие биографические данные ученых

РИХТЕР (Richter) Иеремия Вениамин (1762–1807), немецкий химик, иностранный член-корреспондент Петербургской АН (1800). По профессии инженер-строитель; семь лет прослужил в корпусе военных инженеров. C 1785 г. изучал математику и философию в Кенигсбергском университете, где слушал лекции Иммануила Канта, от которого воспринял многие философские и естественнонаучные идеи. Еще до поступления в университет Рихтер интересовался химией и физикой; химию он изучал по «Химическому словарю» Макера. C 1794 г. работал пробирщиком в Бреслау, затем — при управлении Берлинского горного округа. C 1798 г. — химик фарфоровой мануфактуры в Берлине. В 1792–1794 гг. он опубликовал работу «Начала стехиометрии, или способ измерения химических элементов». В этой работе И.В. Рихтер показал, что при образовании соединений элементы вступают во взаимодействие в строго определенных соотношениях, впоследствии названных эквивалентами. Открыл закон эквивалентов, ввел термин «стехиометрия».

ПРУСТ (Proust) Жозеф Луи (1754–1826), французский химик. Ученик Г.Ф. Руэля. Заведовал аптекой Сальпетриер в Париже. C 1791 по 1808 г. был профессором химии в Мадриде. В 1816 г. избран действительным членом Парижской академии наук. Установил закон постоянства состава химических соединений, утвердив его в споре с К.Л. Бертолле (1800–1808).

ДАЛЬТОН (Долтон) (Dalton) Джон (1766–1844), английский химик и физик, создатель химического атомизма. Образование получил самостоятельно. C 1793 г. преподавал физику и математику в Новом колледже (г. Манчестер). В 1803–1804 гг. установил закон кратных отношений, ввел фундаментальное понятие «относительный атомный вес», первым определил атомные веса (массы) ряда элементов. Открыл газовые законы, названные его именем. Предложил систему знаков для обозначения химических элементов и их соединений. Первым (1794) описал дефект зрения, которым страдал сам, позже названный дальтонизмом. Всемирную известность получил его труд «Новая система химической философии» (1808–1827). Член многих академий наук и научных обществ.

БЕРЦЕЛИУС (Berzelius) Йенс Якоб (1779–1848), шведский химик и минералог, иностранный почетный член Петербургской АН (1820). Окончил Упсальский университет. В 1802–1832 гг. работал в Медико-хирургическом институте в Стокгольме. Научные исследования охватывают все главные проблемы общей химии первой половины XIX в. Создал таблицы относительных атомных масс элементов (1818 и 1826). Ввел современную систему обозначения химических элементов и формул соединений. Открыл химические элементы: церий (1803), селен (1817), торий (1828). Впервые получил в свободном состоянии кремний, титан, тантал и цирконий. Создал электрохимическую теорию химического сродства (1812–1819), на ее основе построил классификацию элементов, соединений и минералов. Определил атомные массы 45 элементов (1807–1818), ввел современные химические знаки элементов (1814). Предложил термин «катализ».

ДЭВИ (Дейви) (Davy) Гемфри (Хамфри) (1778–1829), английский химик и физик, один из основателей электрохимии, иностранный почетный член Петербургской АН (1826). Получил электролизом водород и кислород (из воды), К, Na, Ca, Sr, Ba, Mg и Li. Описал электрическую дугу. Предложил водородную теорию кислот. Открыл обезболивающее действие гемиоксида азота. Изобрел безопасную рудничную лампу.

УОЛЛАСТОН Уильям Гайд (1766–1828), английский химик, физик, врач. Определил состав кислых и средних карбонатов. Наиболее известны его работы по экспериментальному изучению эквивалентов. Является первооткрывателем родия (1803) и палладия (1805), впервые получил в чистом виде платину (1803). Достаточно подробно изучил их химические свойства. Независимо от И. Риттера открыл ультрафиолетовое излучение, сконструировал рефрактометр (1802) и гониометр (1809).

ГЕЙ-ЛЮССАК (Gay-Lussac) Жозеф Луи (1778–1850), французский химик и физик, иностранный почетный член Петербургской АН (1829). Открыл газовые законы, названные его именем. Открыл бор (1808, совместно с Л. Тенаром). Получил безводную синильную кислоту (1811) и исследовал ее количественный состав (1815), открыл дициан (1815). Построил первые диаграммы растворимости (1819). Усовершенствовал методы элементного и объемного волюмометрического химического анализа, технологию производства серной кислоты (башня Гей-Люссака). Совместно с М. Шеврелем получил патент на изготовление стеариновых свечей (1825).

АВОГАДРО (Avogadro) Амедео (1776–1856), итальянский физик и химик, член Туринской АН (1819). Получил юридическое образование в Туринском университете (1792). В 1800 г. начал самостоятельно изучать физику и математику. C 1806 г. работал демонстратором в колледже при Туринской академии. C 1809 г. профессор в колледже Верчелли, в 1820–1822 гг. и 1834–1850 гг. заведовал кафедрой математической физики в Туринском университете. Основные работы посвящены молекулярной физике. В 1811 г. выдвинул молекулярную гипотезу строения вещества, установил один из газовых законов, названный его именем. Согласно этому закону в одинаковых объемах газов при одинаковых значениях температуры и давления содержится одинаковое количество молекул. Исходя из этого, разработал метод определения молекулярного и атомного весов. Именем Авогадро названа универсальная постоянная — число молекул в одном моле идеального газа (число Авогадро). Установил количественный атомный состав молекул некоторых веществ, для которых он ранее был определен неправильно (вода, водород, кислород, азот, оксиды азота, хлора и др.). Первым обратил внимание на аналогию в свойствах азота, фосфора, мышьяка и сурьмы. Эти химические элементы впоследствии составили главную подгруппу пятой группы периодической системы. В 20–40-х гг. XIX в. занимался электрохимией, изучал тепловое расширение тел, теплоемкости. Автор четырехтомного труда «Физика весовых тел, или трактат об общей конституции тел» (1837–1841), который стал первым руководством по молекулярной физике.

АМПЕР (Ampere) Андре Мари (1775–1836), французский физик, математик, химик, член Парижской АН (1814), иностранный член Петербургской АН (1830), один из основоположников электродинамики. Получил домашнее образование. Основные труды в области электродинамики. Автор первой теории магнетизма. Предложил правило для определения направления действия магнитного поля на магнитную стрелку (правило Ампера). Провел ряд экспериментов по исследованию взаимодействия между электрическим током и магнитом, для которых сконструировал большое количество приборов. Обнаружил действие магнитного поля Земли на движущиеся проводники с током. Открыл механическое взаимодействие токов и установил закон этого взаимодействия (закон Ампера) (1820). Сводил все магнитные взаимодействия к взаимодействию скрытых в телах круговых молекулярных электрических токов, эквивалентных плоским магнитам (теорема Ампера). Последовательно проводил чисто токовую природу магнетизма. Открыл магнитный эффект катушки с током (соленоида) (1822). Высказал идею об эквивалентности соленоида с током и постоянного магнита. Предложил помещать металлический сердечник из мягкого железа для усиления магнитного поля. Высказал идею использования электромагнитных явлений для передачи информации (1820). Изобрел коммутатор, электромагнитный телеграф (1829). Сформулировал понятие «кинематика». Проводил также исследования по философии и ботанике.

Эйльхард МИТЧЕРЛИХ (Мичерлих) (Mitscherlich) (1794–1863), немецкий ученый, химик. Иностранный член-корреспондент Петербургской АН (1829). Открыл явления изоморфизма (1819) и диморфизма (1821).

Его племянник Эйльхард Альфред МИТЧЕРЛИХ (1874–1956), немецкий ученый, агрохимик и физиолог растений. Труды по почвоведению, физиологии и повышению урожайности растений и др.

ДЮЛОНГ (Дюлон) (Dulong) Пьер Луи (1785–1838), французский физик и химик. Первым получил хлористый азот (1811) и фосфорноватистую кислоту (1816). Совместно с А. Пти установил закон теплоемкости (закон Дюлонга и Пти), изобрел катетометр (1816).

ПТИ (Petit) Алекси Терез (1791–1820), французский физик. Совместно с П.Л. Дюлонгом установил закон теплоемкости Дюлонга-Пти (1819), изобрел катетометр.

ГИЛЬБЕРТ (Гилберт) (Gilbert) Уильям (1544–1603), английский физик и врач. В труде «О магните, магнитных телах и о большом магните — Земле» (1600) впервые последовательно рассмотрел магнитные и многие электрические явления.

ДЮФЕ (Dufay, Du Fay) Шарль Франсуа (1698–1739), французский физик. Открыл существование двух родов электричества и установил, что одноименно заряженные тела отталкиваются, а разноименно — притягиваются (1733–1734).

ГАЛЬВАНИ (Galvani) Луиджи (1737–1798). Итальянский анатом и физиолог, один из основателей учения об электричестве, основоположник экспериментальной электрофизиологии. Первым исследовал электрические явления при мышечном сокращении («животное электричество»). Обнаружил возникновение разности потенциалов при контакте металла с электролитом.

ВОЛЬТА (Volta) Алессандро (1745–1827), итальянский физик и физиолог, один из основоположников учения об электричестве. Создал первый химический источник тока (вольтов столб, 1800). Открыл контактную разность потенциалов. Его важнейшим вкладом в науку явилось изобретение принципиально нового источника постоянного тока, сыгравшее определяющую роль в дальнейших исследованиях электрических и магнитных явлений. В честь него названа единица разности потенциалов электрического поля — вольт.

ФРАНКЛИН (Franklin) Бенджамин (Вениамин) (1706–1790), американский просветитель, государственный деятель, ученый, один из авторов Декларации независимости США (1776) и Конституции США (1787). Родился в семье ремесленника. Работал в типографии. Основал в Филадельфии первую в североамериканских колониях публичную библиотеку (1731), Пенсильванский университет (1740), Американское философское общество (1743). Призывал к отмене рабства. По философским воззрениям деист. Сформулировал за полвека до А. Смита трудовую теорию стоимости. Как естествоиспытатель известен главным образом трудами по электричеству, разработал его унитарную теорию. Один из пионеров исследований атмосферного электричества. Предложил молниеотвод. Иностранный почетный член Петербургской АН (1789).

ФАРАДЕЙ (Faraday) Майкл (1791–1867), английский физик, основоположник учения об электромагнитном поле, иностранный почетный член Петербургской АН (1830). Обнаружил химическое действие электрического тока, взаимосвязь между электричеством и магнетизмом, магнетизмом и светом. Открыл (1831) электромагнитную индукцию — явление, которое легло в основу электротехники. Установил законы электролиза (1833–1834), названные его именем, открыл параи диамагнетизм, вращение плоскости поляризации света в магнитном поле (эффект Фарадея). Доказал тождественность различных видов электричества. Ввел понятия электрического и магнитного поля, высказал идею существования электромагнитных волн.

ПРАУТ (Prout) Уильям (1785–1850), английский химик и биохимик. Окончил Эдинбургский университет, где получил медицинское образование. Автор первой научной гипотезы, допускавшей сложное строение атомов, названной его именем. По мнению Праута, атомные массы всех элементов, выраженные целыми числами, кратны атомной массе водорода. Автор ряда исследований в области органической химии.

СТАС (Stas) Жан Серве (1813–1891), бельгийский химик. Окончил Лувенский университет. C 1837 г. работал в Париже под руководством Ж.Б. Дюма. В 18401865 гг. профессор Военной школы в Брюсселе. Труды по определению атомных масс химических элементов. В 1860 г. предложил за атомную единицу массы принимать 1/16 часть массы атома кислорода. Определенные Стасом значения атомных масс до конца XIX в. считались наиболее точными.

ГМЕЛИН Леопольд (1788–1853), немецкий химик. Автор «Руководства по теоретической химии» (Т. 1–2, 1817–1819), которое ныне широко известно как «Справочник по неорганической химии» Гмелина (8-е изд., начатое в 1924 г., продолжается).

РИЧАРДС Теодор Уильям (1868–1928), американский химик. Окончил Гарвардский университет. C 1889 г. до конца жизни работал в Гарвардском университете. Разработал специальную методику и оригинальную аппаратуру для определения атомных масс. C большой точностью определил относительную атомную массу 25 элементов (1888–1923). Сконструировал (совместно с Л. Гендерсоном и Г. Форбесом) адиабатический калориметр. Определил многие термохимические константы. Нобелевская премия (1914).

КАННИЦЦАРО (Cannizzaro) Станислао (1826–1910), итальянский химик, один из основателей атомно-молекулярной теории, иностранный член-корреспондент Петербургской АН (1889). Получил образование в университетах Палермо и Пизы. Профессор химии университетов Генуи (1856–1861), Палермо (1861–1871) и Рима (1871–1910). Основные экспериментальные работы в области органической химии. Однако главное значение работ Канниццаро — принятие фундаментальных химических понятий, означавшее реформу атомно-молекулярного учения. Разграничил понятия «атом», «эквивалент» и «молекула» (1858). Установил и обосновал правильные атомные массы многих элементов, в частности металлов. Свою атомно-молекулярную теорию представил на Первом Международном конгрессе химиков (Карлсруэ, 1860).