Металл Века

Николаев Григорий Ильич

ЧАСТЬ ВТОРАЯ. В АВАНГАРДЕ ТЕХНИЧЕСКОГО ПРОГРЕССА

 

 

 

Глава 1. ЗА ОБЛАДАНИЕ НЕБОМ

 

 

В ГЛУБИНЫ КОСМИЧЕСКОГО ПРОСТРАНСТВА

Живя на уютной Земле, мы редко задумываемся над тем, какое место занимает наша планета во всей вселенной и что представляет собой солнечная система. Но уже начавшаяся космическая эра настоятельно побуждает нас, в том числе и тех, кто непосредственно не связан с космонавтикой, обращать свои мысленные взоры за пределы Земли. И что же мы видим?

Сразу же за тонкой земной атмосферой начинается бездна космоса. Планеты, их спутники и даже звезды — совсем крохотные образования вещества по сравнению с этой бездной почти абсолютной пустоты.

Представим себе солнечную систему, уменьшенную в 2 миллиарда раз. Диаметр ее составит всего четыре с половиной километра. Огромное Солнце станет небольшим шаром диаметром 70 сантиметров, а планеты будут еще меньше. Меркурий и Марс превратятся в зернышки, Земля и Венера — горошины. Уран и Нептун покажутся грецкими орехами, а гигантские Сатурн и Юпитер — яблоками средней величины. Отделять эти зернышки и горошины друг от друга будут многие десятки и сотни метров пространства. Расстояние же между Ураном и Нептуном, самыми удаленными от Солнца планетами, которые на нашей уменьшенной модели выглядят грецкими орехами, достигнет почти километра.

Таким образом, на пространстве в 16 квадратных километров будут размещены несколько зернышек, горошин, орехов и яблок, а также золотистый шар, достигающий размеров мяча, которым играют в мотобол. Вот и все, что приходится на долю вещества, остальное занимает космическое пространство.

Картина солнечной системы, образно нарисованная Константином Эдуардовичем Циолковским, помогает отчетливо представить громаду космоса и наше очень скромное место в нем. Но, несмотря на столь, казалось бы, незаметное положение, люди уже начали великий штурм мироздания, посылая плоды своего разума и творения своих руд как к ближайшим, так и отдаленным космическим объектам. Аппараты, созданные на Земле, достигают не только Луны. Но и Венеры, Марса, Юпитера.

Если до Луны корабль летит всего трое суток, то время достижения Венеры и Марса измеряется уже многими месяцами, а полет к Сатурну и Юпитеру занимает годы. Между тем космическое пространство — не слишком уютно для путешествий. Там царит ледяной холод, но сторона корабля, повернутая к Солнцу, сильно нагревается. Такие температурные контрасты действуют самым отрицательным образом на материалы, из которых изготовлен космический аппарат.

Не идут на пользу кораблю и частицы космической пыли, щедро рассыпанной по всему пространству вселенной, через которую летательному аппарату нередко приходится ”проди- раться”. Вредна и космическая радиация. Казалось бы, чем может вредить пустота — космический вакуум, огромнейшее безвоздушное пространство? А между тем, вакуум далеко не безобиден.

Эксперименты, проведенные учеными, помещавшими самые различные металлы в специальную вакуумную камеру, позволили обнаружить любопытные факты. В камере искусственно создавали разрежение, соответствующее тому, которое царит на расстоянии 800 километров от поверхности Земли. И оказалось, что глубокий вакуум действует на металлы очень своеобразно: кадмий, цинк, магниевые сплавы . .. закипают и испаряются, многие другие металлы, хотя и в меньшей степени, но тоже начинают терять свои собственные атомы. Самыми устойчивыми в вакууме оказались сталь и титан, а также вольфрам и платина. Менее устойчив, но еще достаточно надежен алюминий. Остальные металлы мало пригодны для эксплуатации в открытом космосе.

Эти эксперименты были проведены сравнительно недавно — уже после того, как титан стали применять в космической технике. Тогда, разумеется, не знали, что новый металл очень устойчив в вакууме, но и без того у титана имелось немало достоинств, которые и определили быстрый рост его применения в космической технике.

С каждым запуском кораблей серии "Аполлон” в межпланетное пространство стартовали более 60 тонн титановых сплавов. Узлы и детали из сплавов титана использовались не только в самом корабле "Аполлон”, но и в лунном модуле, и в трехступенчатой ракете-носителе ”Сатурн-5”, которая выводила космических путешественников на траекторию полета к Луне.

На космическом корабле ”Аполлон” насчитывается около сорока титановых емкостей, предназначенных для хранения химически активных веществ, входящих в состав горючего. В частности, в титановых баках хранятся монометилгидразин, используемый как топливо, тетраксидазот, применяемый в качестве окислителя, и жидкие газы — кислород, водород, азот и гелий. Воздух, который служит для вентиляции кабины в космических полетах, содержится в титановых цилиндрах под давлением, превышающим 200 атмосфер.

В лунном модуле, опускавшемся на пыльную поверхность нашего естественного спутника, из нового конструкционного материала изготовлена камера сгорания жидкостного ракетного двигателя. В гигантской ракете ”Сатурн-5” сосуды высокого давления и лопасти стабилизаторов тоже из титана.

Корпус ракеты ’Титан-П”, которая выводила на околоземную орбиту космический корабль ”Джеминай”, высотой 27 метров и диаметром 3 метра был изготовлен из титана с использованием некоторого количества сплавов на основе алюминия и магния. Кабины космических кораблей ”Джеминай” и ”Мер- курий” почти полностью были сделаны из титана.

Титановые сплавы были успешно использованы для корпусов двигателей американских космических кораблей "Пионер^”, ”Юнона-2”, ”Юпитер-С”. Новый промышленный металл применяется и в установках для запуска ракет.

Титан — металл, который в немалой степени обеспечил и обеспечивает многие отечественные достижения в освоении космического пространства.

Сегодня космические перевозки уже не фантастика, а реальность. Но стоят они фантастически дорого: перевезти один килограмм вещества с Луны на Землю обходится более 1000 дол ларов. Отсюда понятно, насколько важно поставлять для орбитальных и лунных станций, монтируемых непосредственно в космосе, конструкционный материал, который был бы высокопрочным и вместе с тем не слишком плотным. Таким материалом как раз и является титан. Металл не только сохранит в космосе все свои достоинства, но и лишится некоторых присущих ему недостатков.

Например, в межпланетном пространстве значительно упростится сварка титана: не надо будет защищать металл от взаимодействия с воздухом, так как такового в космосе попросту нет. Сваривается же титан отлично. При испытаниях сваренного образца на прочность гораздо чаще случается так, что разрывается основной металл, а не сварной шов.

Но возможна ли сама по себе сварка в условиях невесомости? Предстояло проверить это на практике. Оказалось, что в космосе металлы свариваются так же надежно, как и на Земле. Успешные эксперименты по автоматической сварке и резк

етитана в межпланетном пространстве провели в октябре 1969 года советские космонавты Г.С.Шонин и В.Н.Кубасов во время группового полета трех космических кораблей "Союз”.

Самая первая экспедиция на Луну доставила с нашего естественного спутника образцы пород с очень большим содержанием титана. Впоследствии оказалось, что ”Аполлон-11” совершил посадку в районе титанового месторождения. Образцы лунного грунта, доставленные советскими автоматическими станциями и другими американскими кораблями, были взяты в иных местах нашего естественного спутника и содержали уже гораздо меньше титана. Но даже и это”низкое” содержание значительно превосходит процент содержания элемента в земной коре. Итак, Луна богата титаном. Запомним это. И обратим внимание на то, что уже не первый год (и не только в научно-фантастической литературе, но и в самой что ни на есть серьезной печати) появляются материалы, рассказывающие о перспективах космической металлургии, о неизбежном ее возникновении и ее преимуществах.

Предполагают, что энергию для металлургических предприятий будущего дадут солнечные нагреватели. Сфокусированные солнечные лучи будут плавить любые соединения и самые тугоплавкие металлы. Космический вакуум намного упростит технологию получения целого ряда металлов, в том числе и титана.

Теперь давайте немного помечтаем. Перенесемся в XXII . . . нет, вероятно, ближе — в XXI век. Луна уже обитаема. Здесь живут и работают люди, исследуют космическое пространство и недра нашего спутника, ведут самые разнообразные работы. Вряд ли сюда будут возить с Земли основные материалы для строительства — намного дешевле и целесообразней добывать их прямо на месте

.В отношении металлов очень сомнительно, что для создания объектов, находящихся в безвоздушном пространстве, будут использовать платину или вольфрам. Значит, остаются только сталь, титан и алюминий. Но сталь плохо переносит космический холод, алюминий же не настолько прочен, чтобы конкурировать с титаном. К тому же, будет ли он найден на Луне? Неизвестно. А титан обнаруживают на каждом "обжитом” участке лунной поверхности. Так что, по всей вероятности, именно титан будет основным конструкционным материалом для сооружений, изготовляемых и монтируемых непосредственно в космосе. Титановые заводы, работающие в идеальном вакууме, будут производить гораздо более дешевый металл, чем если бы они работали на Земле. Титану найдется очень много дел в межпланетном пространстве, и сейчас даже трудно представить себе будущее этого металла во всей полноте. Можно только с уверенностью сказать, что будущее это — большое и прекрасное. Титан хорошо послужит людям в завоевании космоса.

 

РОЖДЕННЫЙ ЛЕТАТЬ

Появление сверхзвуковой пассажирской авиации знаменует новую ступень прогресса, так как в любой достаточно крупный отдаленный город мира можно будет долететь максимум за 12 часов. Огромные планетарные расстояния сделаются намного короче, что будет способствовать сближению наций и государств.

31 декабря 1968 года яркой страницей вошло в историю авиации. В этот день в воздух поднялся первый в мире сверхзвуковой пассажирский самолет. Им был советский лайнер Ту-144. С тех пор советский сверхзвуковой самолет посетил с демонстрационными полетами многие города, был представлен на разных авиационных выставках, стал совершать регулярные авиарейсы.

Ту-144 перевозит 140 пассажиров со скоростью 2100 километров в час. Если скорость самолета превышает скорость звука не более чем в 2 раза, то конструкторы еще применяют для обшивки машины алюминиевые сплавы. Ту-144 — не исключение. Он тоже в целом алюминиевый самолет, но наиболее нагревающиеся части — мотогондолы двигателей, элероны, рули поворота и другие — изготовлены из титана. Титана в этом алюминиевом самолете не так уж и мало: только литых деталей — несколько тысяч.

В начале 1969 года взлетел сверхзвуковой пассажирский самолет англо-французского производства "Конкорд”. Он принадлежит к тому же типу, что и Ту-144, и даже внешне напоминает его. "Конкорд" тоже почти целиком сделан из алюминия, но и при его изготовлении не обошлись без титана: известная английская фирма "Роллс-ройс" использовала новый промышленный металл в конструкции двигателя этого сверхзвукового лайнера.

Американская реклама на все лады расхваливает самолет "Боинг-747". Это аэробус, то есть самолет, вмещающий большое количество пассажиров, своеобразный воздушный автобус. Аэробусы — дозвуковые самолеты третьего поколения — используются на магистралях с огромным потоком пассажиров и помогают авиаторам решать целый ряд проблем.

"Боинг-747" — четырехмоторный транспортный самолет, двухэтажный внутри, имеет четыре пассажирских салона, несколько кухонь, бар. Посадка в самолет и выход из него осуществляются через десять дверей по десяти трапам. Размах крыльев этого корабля, который, наверное, уже нельзя называть птицей — так он похож и по величине, и по уровню комфорта на океанский лайнер, — достигает 60 метров. Скорость самолета — 1000 километров в час. Стоимость одной такой машины — 20 миллионов долларов, а постройка прототипа обошлась в грандиозную сумму — в 750 миллионов долларов. И если бы создание опытного образца закончилось неудачей, то это была бы самая дорогая неудача в истории самолетостроения.

Генеральный авиаконструктор С.В.Ильюшин считает, что с повсеместным вводом в эксплуатацию аэробусов и сверхзвуковых пассажирских самолетов в развитии авиации произойдет коренной перелом. Воздушный флот займет первое место среди всех видов транспорта по объему перевозок пассажиров.

В нашей стране создан гигантский аэробус Ил-86, вмещающий 350 пассажиров.

Но какое отношение имеют размеры, уровень комфорта сверхмощного реактивного великана к теме книги о металле с величественным именем? Самое непосредственное.

На создание каждого такого великана затрачиваются десятки тонн различных титановых сплавов. Около 20 тонн нового конструкционного материала используется только в остове самолета и его турбореактивных двигателях. Каждый аэробус содержит в себе также два с половиной миллиона титановых заклепок, болтов и гаек, что облегчает его на несколько тонн. Именно титан дал аэробусу возможность летать.

В США разрабатывается проект сверхзвукового пассажирского самолета. Однако самые большие оптимисты считают, что американский лайнер ”Боинг-2707” появится в воздухе только лет через восемь после того, как начали совершать регулярные рейсы Ту-144 и "Конкорд”.

Программа создания такого самолета оценивается в 5,5 миллиарда долларов. Американские конструкторы и промышленники утверждают, что ”Боинг-2707”, обладая более высокими техническими характеристиками, будет сверхзвуковым лайнером второго поколения. Предполагают, что он будет брать на борт 300 пассажиров и мчаться со скоростью, в два с половиной раза превышающей скорость звука. ”Боинг-2707” почти целиком должен быть изготовлен из титановых сплавов.

По мнению ведущих авиаконструкторов мира, титан имеет наибольшие перспективы широкого использования в конструкциях как сверхзвуковых, так и дозвуковых самолетов, потому что главным условием обеспечения высокой эффективности летательного аппарата является снижение его массы. С этой задачей титан справляется лучше всех остальных металлов. Необходимо также учесть, что титан — материал еще очень ”молодой”, его сплавы находятся на гораздо более ранней стадии развития, чем алюминиевые, и имеют еще много нераскрытых потенциальных возможностей.

Титан позволяет намного уменьшить массу элементов конструкций, работающих на растяжение и подвергающихся сильному сжатию. Металл широко используют в конструкции крыла, фюзеляжа и даже шасси. В американском самолете ”ДС-7” из титана изготовлено носовое колесо диаметром около метра. Во время испытаний титановое колесо спокойно выдержало 6000 приземлений 100-тонного самолета и без всякого для себя ущерба прокатилось по взлетно-посадочной полосе свыше 2700 километров!

Дополнительного снижения массы достигают благодаря способности титана превосходно свариваться. В связи с этим во многих случаях исключают более металлоемкие методы соединения.

7 августа 1970 года газета ”Правда” опубликовала очерк ”Сердце из титана”. Очерк совершенно не затрагивал медицинских проблем, хотя, если судить только по названию, могло показаться, что речь должна была идти об использовании титана для искусственного сердца. Титан действительно применяют в аппаратах искусственного кровообращения, но в этом очерке слово ”сердце” имело метафорический смысл. Опубликованный материал рассказывал о людях, создавших турбореактивные

двигатели НК-8 и НК-8-4 для пассажирского самолета Ил-62. Среди них были не только конструкторы и инженеры, но и технологи, разработавшие и внедрившие комплекс производственно-технических процессов, которые и обеспечили максимальное применение титановых сплавов в турбореактивных двигателях.

"Можно часами рассказывать о том, как на двигателе Ил-62 впервые в мировой практике широко применили легкие и прочные титановые сплавы. Когда-нибудь об этих "муках" с титаном напишут подробно (совсем неспроста автор очерка обращает наше внимание на трудности работы с "парадоксальным металлом": они действительно нередко кажутся непреодолимыми) . Советские конструкторы и те, кто им помогал, преодолели трудности первыми. Их упорство вознаграждено: по росту ресурса двигатель Ил-62 становится рекордсменом.

. . . Могучее двухконтурное турбореактивное сердце из титана ровно бьется над океанами, легко дышит в тропиках, у экватора, над Гималаями. И работает так, что о нем и о тех, кто его создал, подчас забывают. А они рады. Ведь если сердце отличное, человек не замечает его. Когда пассажиры не вспоминают об авиационном двигателе, — это, пожалуй, лучшая ему оценка".

Так заканчивался очерк в "Правде”. И, полностью соглашаясь с автором в оценке двигателя, нельзя не дать высокую оценку и металлу, из которого изготовлено сердце авиалайнера и без которого этот двигатель было бы невозможно создать, как, впрочем, двигатели ”Антея”, ”Руслана”, ”ИЛа-86” и других самолетов-богатырей.

 

Глава 2. С НЕБА - НА ЗЕМЛЮ

 

 

МАТЕРИАЛ ДЛЯ МОРСКИХ И ЗЕМНЫХ ГЛУБИН

Корреспондент агентства печати ”Новости” сообщил из Нью- Йорка: ”В США создан батискаф ”Алвин”, который позволит экипажу из трех человек опуститься на самые большие глубины Атлантики. ”Алвин” примет участие в совместном американофранцузском глубоководном эксперименте, цель которого — исследование расположенной в 200 милях к югу от Азорских островов подводной долины, где имеются действующие вулканы, гейзеры и часто происходят землетрясения. Французская сторона в эксперименте использует батискаф ”Архимед” и подводный аппарат СП-3000. . ."Батискаф "Алвин” или ”Эл- вин”, как его еще величают, очень хорошо зарекомендовал себя при поиске и исследовании затонувшего знаменитого пассажирского корабля ”Титаник”. Оболочка этого батискафа — титановая.

Спору нет — титан действительно самый перспективный металл для корпусов батисфер, батискафов и других глубоководных аппаратов. Именно в условиях, когда на металл действуют чудовищное давление и вызывающая коррозию средами раскрываются все его лучшие свойства: высочайшая удельная прочность, стойкость против коррозии под действием механических нагрузок. Способность титана ”играючи” переносить сколь угодно длительное воздействие морской воды открывает ему дорогу как материалу для подводных обитаемых научных станций.

Фирма "Дженерал электрик" разрабатывает проект таких экспериментальных жилищ. Предполагается, что они будут размещаться либо на океанском дне, либо вблизи грунта на глубинах до 3700 метров. Основными материалами исследовательских обитаемых станций должны быть пирокерамика, упрочняемые стеклопластики и, конечно же, титановые сплавы, которые уже сейчас нередко используются в качестве высокопрочных тросов для погружения и подъема глубоководных аппаратов.

Титан может сослужить очень хорошую службу и тем исследователям, которые занимаются геофизическими замерами и наблюдениями, плавая на специальных немагнитных судах. На таких кораблях совершенно не должно быть железных, никелевых изделий, деталей из нержавеющих сталей. Вместе с тем, другие материалы, отличающиеся немагнитностью, не могут быть полностью заменены сталями и сплавами на никелевой основе, так как уступают им и по. прочности,и по стойкости против коррозии. Титан же и немагнитен, и в состоянии не просто заменить магнитные материалы, но и обеспечить целый ряд дополнительных преимуществ.

Люди уже спускались в самую глубокую впадину мирового океана, ступали по Луне. Аппараты, созданные человеком, устремляются к самым отдаленным планетам солнечной системы. И все же есть сфера, где наши достижения очень скромны, сфера, куда мы почти совершенно не проникали. Мы знаем, что такое океан, знаем, что такое космическое пространство, но еще мало изучены недра нашей планеты. И не только те, глубинные недра, которые удалены от нас на тысячи километров и образуют загадочное ядро, но даже земную мантию, находящуюся , казалось бы, совсем рядом, в 15—20 километрах от поверхности. Однако как труднодоступна земная глубь! Самая глубокая в мире шахта, находящаяся на африканском континенте, из которой извлекают золото, не достигает и трети расстояния до верхней мантии, да и бурить на такие глубины — целая проблема. Казалось бы, пустяк, какие-то полтора десятка километров . . . Что стоит воздвигнуть мощную буровую вышку и бурить, пока не достигнешь нужной глубины. Но что значит бурить? Это значит высверлить долотом отверстие, все глубже погружая в землю бурильную колонну, свинчиваемую по мере удлинения из новых и новых труб. Можете себе представить, какую массу будет иметь многокилометровая колонна. А ведь держится она только за счет прочности стенок труб, находящихся у земной поверхности, над устьем скважины.

Колонна висит и если ее бесконечно удлинять, то наступит момент, когда она оборвется под собственной тяжестью. И произойдет это значительно раньше, чем будет достигнута верхняя мантия. Вот что препятствует нам поглубже заглянуть в земную твердь. Вы скажете, что можно ведь сделать трубы с гораздо более толстыми стенками, более пробные. Да, можно, но это значительно увеличит их массу, так что таким способом проблему все равно решить нельзя. И все же в различных местах планеты уже приступили к сверхглубокому бурению. В СССР научно-экспериментальные скважины пробуривают на суше, американские исследователи предпочитают достичь земной мантии через дно океана, поскольку земная кора под океаном несколько тоньше. Проект "Верхняя мантия Земли” уже воплощается в жизнь.

Трудно переоценить научное значение сверхглубокого бурения, но оно будет иметь также и немаловажный практический результат. С помощью таких скважин удастся обнаружить немало полезных ископаемых, залегающих как глубоко в земной коре, так и в самой верхней мантии.

Как же удалось решить проблему прочности труб? Разумеется, без высокопрочных сплавов на основе титана здесь не обошлось. Благодаря им могут быть достигнуты глубины не только в 15—20, но и в 30 километров.

 

УТОЛЯЯ ЖАЖДУ ПЛАНЕТЫ

Важнейшее условие жизни на Земле — вода, и вряд ли кто- нибудь будет спорить с этим положением. Но воды на Земле мало . . . Вот это утверждение многие уже будут оспаривать. ”Как — мало?” — вполне резонно могут спросить. — Разве моря и океаны не покрывают большую часть поверхности нашей планеты?” Покрывают. Но именно моря и океаны, в которых вода, как известно, соленая. Основой жизни же является вода пресная.

Без пищи человек в состоянии прожить больше месяца, а без воды — погибает уже через несколько суток. От двух с половиной до четырех литров — такова ежедневная физиологическая норма воды для каждого человека. Но физиологическая норма — это только та жидкость, которую человек должен принимать внутрь. Цивилизованный человек на свои нужды тратит гораздо больше воды — от 30 до 230 литров в сутки, а цивилизованное общество — целые реки и моря.

Промышленность поглощает невообразимо огромное количество пресной воды. Для изготовления бутылки лимонада, например, расходуется 5 литров, а для производства тонны газетной бумаги — 50 тонн воды, но есть и такие производственные процессы, при которых потребность в воде превышает по массе выход готовой продукции в сотни и даже в тысячи раз. Например, на выпуск одной тонны каустической соды требуется 250—300 тонн воды, на отбелку тонны хлопка — 280 тонн, на получение тонны искусственного шелка — более 750 тонн, одной тонны никеля — 800—850 тонн, а на выработку одной тонны аммиака расходуется до 1000 тонн воды!

Пресная вода необходима в овощеводстве для полива и подкормки растений в парниках и теплицах, вода нужна для полива газонов, цветников и городских парков. При уходе за крупным рогатым скотом на каждую голову расходуют 100— 125 литров воды в сутки. Все больше распространяется орошаемое земледелие.

Но вода нужна не только всему живому. Каждому трактору необходимо в сутки 150 литров воды, автомобилю — 50—100 литров. В конечном счете, все расходы воды так или иначе связаны с удовлетворением потребностей человека, а поэтому можно сказать, что каждому из нас ежегодно требуется 900 тонн воды.

Где же взять такое огромное количество пресной воды для миллиардов живущих на Земле людей, если учесть к тому же, что численность населения планеты быстро увеличивается, а количество пригодной для использования воды даже уменьшается, так как водоемы все больше загрязняются промышленными отходами? Ответ может быть только один: перерабатывать морскую воду в пригодную для питья и хозяйственнотехнических нужд.

Каждые 97 из 100 литров имеющейся на Земле влаги содержат 3,5 процента солей, которые и делают воду непригодной для использования в промышленности и в быту. Обессолить воду можно различными способами — вымораживанием, выпариванием, перегонкой и некоторыми другими. Но в любом случае дело придется иметь с морской водой, коррозионная активность которой хорошо известна. Именно поэтому в качестве конструкционных материалов опреснительных установок никогда не фигурируют обычные стали, а упоминаются сплавы алюминия, различные бронзы, медноникелевые сплавы и, разумеется, титан. Было бы удивительно, если бы его не упоминали вообще. Правда, титан как не очень дешевый металл не используется для изготовления всего опреснителя, а применяется только в местах, где без него совершенно нельзя обойтись.

Полтораста километров бесшовных титановых труб, множество трубчатых решеток и деталей испарителя использовано в опреснительной установке, находящейся на самом большом из американских Виргинских островов — Санта-Крус. Многоступенчатая установка, работающая по методу однократного испарения, была построена компанией "Вестингауз” для снабжения водой алюминиевого завода фирмы "Харвей алюминиум”.

Поначалу предполагалось, что основным материалом опреснителя будут медноникелевые сплавы, и установка была спроектирована из расчета, что рабочая температура рапы не превысит 85 °С. Применение титана в испарителе позволило повысить температуру рапы до 121 °С и удвоить производительность агрегата. Это оказалось возможным благодаря еще и тому, что титан обеспечивает более высокую теплопередачу, чем более теплопроводные, но покрытые накипью материалы.

Спустя два года с момента начала эксплуатации проверили состояние титановых труб. Несмотря на то что через установку за это время протекало 18 миллиардов кубических метров морской воды вместе со скорлупой моллюсков, а температура рассола в испарителе превышала 100 °С, вся система труб пребывала в идеальном состоянии. Трубы из других стойких материалов в таких условиях не выдержали бы и года работы. Предполагают, что титановые трубы будут эксплуатироваться без замены десятки лет, обеспечивая на протяжении всего срока службы бесперебойную работу опреснительной установки.

Сейчас за земном шаре работает уже несколько сот опреснительных установок различной производительности и различного принципа действия. Ежесуточно они вырабатывают несколько сот тысяч кубометров пресной воды. Этого едва хватит развитому промышленному городу средней величины. Опреснительные установки действуют в СССР, США, Кувейте, Израиле и в других странах.

Увеличение спроса на такие установки потребует огромного количества титана. Только в одной опреснительной установке, смонтированной в Эль-Джебеле (Саудовская Аравия), использовано 2800 тонн этого металла.

По запасам пресной воды наша страна занимает первое место в мире, но запасы эти распределены очень неравномерно и в таких районах, как Средняя Азия, Казахстан, южная часть Украины, отсутствие достаточного количества пресной воды сдерживает развитие промышленности и сельского хозяйства. Кроме того, у нас много пустынь и полупустынь. Вот почему проблеме опреснения воды в нашей стране придается большое значение.

На берегу Каспийского моря, где постоянно бушуют песчаные бури, где нещадно палит солнце, а земля покрыта солью высохших соленых озер, где даже верблюды чувствуют себя неуютно, в течение нескольких лет вырос город Шевченко, названный в честь великого украинского поэта. В городе живут десятки тысяч людей — нефтяники, геологи, строители. В городе много зелени, растут деревья и кустарники, цветут цветы.

На сотни километров вокруг нет воды, месяцами не бывает дождей, но город живет, расходует пресную воду на все свои нужды, в том числе и на полив зеленых насаждений. Откуда же берут воду? Из моря. Но, разумеется, предварительно удалив из морской воды соль. Шевченко — единственный город в мире, который использует опресненную воду. Пресная вода, получаемая искусственно, поступает не только для технических и хозяйственных нужд города, но и в квартиры его жителей, ее пьют все. Другой воды здесь нет. Опреснитель расположен недалеко от города, прямо на морском берегу. Его корпуса видны издалека, ночью они освещаются специальными лампами.

Титан еще не раскрыл всех своих возможностей относительно процессов и аппаратов по обессоливанию, но его не сбрасывают со счетов, когда проектируют передвижные опреснители, емкости для хранения и перевозки пресной воды.

Водный голод еще не стоит перед человечеством вплотную, но его приближение ощущается все явственнее. Недостаток воды испытывают сейчас не только в районах Африки, Ближнего и Среднего Востока, Южной и Северной Америки, которые всегда страдали от этого, но и во многих других местах.

Чистая питьевая вода становится дефицитом и в Европе. Рационирование питьевой воды вводится в Бельгии, ФРГ, Японии. Нехватка воды уже становится государственной проблемой Англии. Скоро с этой проблемой столкнуться все без исключения государства.

Но человечество не погибнет от жажды. На помощь придут гигантские опреснители, работающие на атомной энергии, использующие новейшие достижения инженерной мысли и новые надежные материалы, среди которых будет и титан.

 

ЕДИНСТВЕННЫЙ, НЕЗАМЕНИМЫЙ. ..

Что говорить, титан — металл замечательный! Но у него достаточно конкурентов, которые, хотя и не безукоризненно, но все же справляются с возложенными на них обязанностями. Нержавеющая сталь менее стойка? Что ж, не беда! Пусть она служит не двадцать лет, а год или два, но ведь и год, и два она будет успешно использоваться. Зато она дешевле. Пусть чугун тяжелее, пусть алюминий намного уступает титану по прочности, но ведь и из них делали и делают вполне пригодные для использования вещи.

Титан, таким образом, в большинстве случаев является одним из металлов, пригодных для изготовления изделий, но не единственным. А это значит, что ему не всегда будет отдано предпочтение.

Но есть такие области техники, где только титан позволяет добиваться дальнейшего прогресса, где отказаться от титана означает отказаться от самой возможности создания тех или иных агрегатов, машин, установок.

Не секрет, что конструкторские разработки в некоторых случаях вынужденно приостанавливаются, так как еще не найдены, не созданы материалы, которые обеспечивали бы конструкции нужные свойства и параметры. К числу таких разработок некоторое время относилось и создание мощных паровых турбин.

Казалось бы, мощность турбины можно увеличить беспредельно: сделай турбину покрупнее —вот и повысится мощность. Но чем больше вращающиеся детали, тем с большей скоростью движется огромная масса металла и тем сильнее центробежные силы растягивают ее и в конце концов разрушают. Рабочие лопатки паровых турбин длиной около метра и более сделать из нержавеющей стали вообще невозможно, так как запаса прочности стали недостаточно, чтобы выдержать те огромные напряжения, которые развиваются во вращающейся с бешеной скоростью конструкции. Кстати, скорость, с которой движутся концы лопаток, приближается к скорости звука!

Вот здесь-то и оказывается незаменимым промышленный металл с самой высокой удельной прочностью! Преимущества титана особенно важны во вращающихся деталях, и поэтому в авиастроении титан применяется сравнительно давно. Ротор компрессора реактивного двигателя, изготовленный из особопрочной специальной стали, не выдерживает скорости вращения в 17 тысяч оборотов в минуту, а точно такой же титановый ротор разрушается только при 25 тысячах оборотов.

Благодаря титану, по-видимому, удастся создать паровые турбины мощностью в 1500 и даже более мегаватт. Одна такая турбина заменит несколько Днепрогэсов.

Базовой моделью отечественной теплоэнергетики сейчас служит турбина мощностью 300 тысяч киловатт. В Донбассе уже работает агрегат в 800 тысяч киловатт. В ближайшие годы такие турбины придут на смену ”300-тысячнику”. А в Ленинграде, на знаменитой выборгской стороне, создан гигант, равного которому не знает мировая практика энергомашиностроения: паровая турбина мощностью 1 миллион 200 тысяч киловатт. В часы "пик" она развивает колоссальную мощность — в 1 миллион 400 тысяч киловатт. Уникальная турбина изготовлена в объединении "Ленинградский металлический завод". При ее производстве использованы новейшие титановые сплавы высокой прочности. Турбина уже работает: в январе 1981 года на Костромской ГРЭС досрочно введен в действие крупнейший в мире среди тепловых электростанций энергетический блок с одновальным турбоагрегатом. На этом уникальном агрегате опробованы новые конструкторские, технологические и эксплуатационные разработки. Он станет основой для выпуска еще более мощной турбины, которая и будет служить базовой моделью на ближайшие десятилетия. Начинается новый этап в мировом энергомашиностроении, который без титана не был бы возможен вообще.

Титан незаменим при изготовлении парогенераторов не только благодаря своей высокой удельной прочности, но и вследствие присущей ему стойкости против коррозии. В цилиндры низкого давления турбинных агрегатов постоянно нагнетается пар, который и приводит лопатки в стремительное движение. Эта горячая влага вызывает коррозионное и эрозионное разрушение подавляющего большинства металлов и сплавов. Титан же по стойкости против воздействия влажного пара превосходит все нержавеющие стали.

Прежде чем приняли решение о проектировании и изготовлении сверхмощной турбины, были испытаны лопатки из титановых сплавов в агрегатах мощностью 300 тысяч киловатт. Паровые турбины с титановыми лопатками успешно используются на Лукомской и Конаковской ГРЭС, лопатки не подвергаются коррозии и эрозии. По расчетам Центрального котлотурбинного института имени Ползунова, применение титановых сплавов в таких агрегатах увеличивает коэффициент их полезного действия и дает экономию по каждой турбине 150 тысяч рублей в год.

Наряду с титановыми лопатками в паровых турбинах успешно используют титановую проволоку. На последней ступени ротора турбины К-300-240, работающей на Приднепровской ГРЭС, эксплуатируют титановые бандажи, что повышает вибрационную стойкость вращающейся детали.

В энергомашиностроении по достоинству оценены и высокая стабильность свойств нового промышленного металла при воздействии рабочих напряжений, и высокая его усталостная прочность. Ведь турбина должна служить без замены 10 лет и более, и все эти годы ротор и лопатки будут стремительно вращаться,

В дальнейшем титановые сплавы могут найти применение для изготовления конденсаторов паровых турбин, что позволит уменьшить габариты и увеличить срок эксплуатации без капитальных ремонтов до 20 лет. Благодаря способности титана сохранять свои свойства в напряженном состоянии его применяют при изготовлении компрессоров. Изготовление рабочих колес аммиачных турбокомпрессоров из сплавов на основе титана позволило в два раза уменьшить число ступеней сжатия и перейти на одноагрегатную конструкцию, что значительно снизило количество требующегося на изготовление машин металла, вдвое уменьшило площадь зданий холодильных станций.

Несколькими страницами ранее рассказывалось о том, что титан начинают использовать в качестве материала для особопрочных и легких труб, предназначенных для бурения сверхглубоких скважин. Прогрессу в деле бурения способствовала все та же незаменимость, уникальность свойств нового промышленного металла.

Незаменимой в некоторых случаях является и стойкость титана против коррозии. Благодаря титану удалось наладить промышленное производство хлористого аммония по методу выпаривания. Метод был известен сравнительно давно, но не применялся, так как не существовало стойкого конструкционного материала для создания нужного оборудования.

Титановое оборудование обеспечило появление новой прогрессивной технологии — автоклавного разложения никелевых концентратов и экстракционной очистки растворов в производстве кобальта. Появилась возможность использовать более высокие давления и температуры, применять для извлечения металлов более агрессивные вещества, что увеличивает производительность труда и позволяет создать непрерывную технологию. С внедрением титановых вентилей, кранов, задвижек в никелевом производстве было ликвидировано загрязнение промежуточных продуктов посторонними примесями, что в значительной мере способствовало освоению выпуска никеля высокой степени чистоты.

 

МОРОЗ НИПОЧЕМ

Когда хотят подчеркнуть незаурядную силу, крепость или мощь, то прибегают к сравнению с железом, сталью. "Крепкий, как сталь”, "железная воля" — часто говорим мы, справедливо делая такие образные сопоставления — ведь прочность железа достаточно хорошо известна еще с древнейших времен.

Но беда в том, что железо не выдерживает сильных морозов, и уже при температуре 40 °С ниже нуля становится хрупким. А ведь на земном шаре встречаются и такие места, где температура достигает 70 °С холода, и это не только антарктический континент, но и вполне обитаемые земли — Якутия, Заполярье. Славится своими морозами и вся Сибирь. В Якутии, например, довольно часты морозы, превышающие 60 °С. При таких температурах резко возрастает число поломок транспорта, машин и механизмов, особенно землеройных.

Промерзший грунт с трудом поддается механическому воздействию и может легко вывести из строя машину, работающую даже при обычной температуре воздуха. Насколько же увеличивается число неисправностей, когда материал, из которого сделана машина, становится сам по себе хрупким, непрочным!

В условиях Крайнего Севера число повреждений техники в зимнее время по сравнению с летним увеличивается в три, а нередко и в десять раз. А ведь сейчас стоит задача все интенсивнее осваивать богатства Севера и Сибири. Значит, нужна особая техника, техника в "северном" исполнении — надежная и долговечная.

Металлурги разрабатывают специальные марки стали, экспериментируют, стараются "вылечить" железо от столь досадной хрупкости при низких температурах. Было замечено, что добавка циркония в значительной степени снижает хрупкость железа. Получена особая сталь для Севера, которая намноголучше обычной. Но все же и она не лишена тех недостатков, от которых свободна "легкая сталь" — титан.

То, что так разрушает железо, — холод — титану нипочем. Большинство серийных титановых сплавов совершенно спокойно переносит температуру до минус 196 °С, некоторые свободно выдерживают температуру жидкого водорода (минус 253 °С), а учеными Института металлургии Академии наук СССР создан титановый сплав, который не разрушается даже в самой холодной жидкости мира ~ жидком гелии (температура минус 269 °С). Что такому хладостойкому материалу, как титан, 60—70 °С ниже нуля? Сущие пустяки.

Разработанные титановые сплавы предназначены для изготовления оборудования, работающего в районах Заполярья и Крайнего Севера. Детали экскаваторов, тракторов, бульдозеров, сделанные из таких сплавов, будут необычайно долговечными и по-настоящему надежными.

В северных нефтегазодобывающих районах нередко выходят из строя центробежные колеса магистральных газопроводов. Сделанные из титана, они станут безотказными.

Но холод далеко не всегда враг. Часто он крайне необходим. И холод научились получать искусственно: начиная с прошлого века стали создавать специальные устройства, вырабатывающие холод средь жаркого лета. Родилась холодильная техника. Мы хорошо знаем ее в быту: домашние холодильники — полноправные ее представители. Правда, это не те холодильники, в которых развиваются температуры в 100 °С и более ниже нуля, необходимые во многих областях техники, и в которых применяются титановые сплавы.

По данным Всесоюзного научно-исследовательского института холодильного машиностроения, применение титановых сплавов для производства аммиачных компрессоров холодильных установок позволит создать машину лишь с одним агрегатом вместо двух и даст около 70 тысяч рублей годовой экономии по каждой установке. Из титана целесообразно изготовлять емкости для хранения и транспортировки жидкого гелия, водорода, азота. Кстати, температура жидкого азота (минус 196 °С) в технике низких температур является граничной. Она отделяет холодильную технику от криогенной.

 

ВБЛИЗИ АБСОЛЮТНОГО НУЛЯ

Слово "криогенный” происходит от греческого ”криос” — холод. Но ведь холод — и 50, и 100, и 150 °С ниже нуля. Почему же возникла еще какая-то особая техника холода? Потому что многие вещества резко меняют свои физические свойства, если их охладить ниже температуры жидкого азота (ниже минус 196 °С).

Брусок свинца, например, обычно звучащий при ударе глухо вследствие своей мягкости, при криогенных, сверхнизких температурах твердеет и начинает звенеть. Сталь, которая никуда не годится уже в обычный сильный мороз, будучи охлажденной ниже 200 °С, рассыпается на осколки при малейшем ударе. У одних веществ резко возрастает теплопроводность, у других, напротив, падает. Значительно уменьшается электрическое сопротивление чистых металлов и сплавов.

Криогенные температуры начинаются с температуры жидкого азота. Но какого предела они достигают? Абсолютного нуля — минус 273,16 °С. Более низкой температуры в природе не бывает. Почему? Потому что именно при этой температуре молекулы прекращают свое движение, их кинетическая энергия равна нулю.

А ведь та или иная температура не что иное, как уровень кинетической энергии вещества.

Практически достичь абсолютного нуля невозможно, но можно максимально приблизиться к нему. Сейчас только сотые доли градуса отделяют исследователей от него. А температуры, отличающиеся от абсолютного нуля в несколько граду-

сов, были достигнуты еще в самом начале нашего века. Жидкий гелий имеет температуру минус 263—269 °С. Впервые его получил голландский физик Гейке Камерлинг-Оннес в 1911 году.

Вполне понятно, что, едва получив столь необычное вещество, голландский профессор принялся экспериментировать с ним. Один из опытов заключался в том, что ученый погружал в необычный гелий различные вещества и измерял их электросопротивление. При проведении именно этого опыта и было обнаружено явление, названное Камерлинг-Оннесом сверхпроводимостью.

Некоторые металлы, погруженные в жидкий гелий, совершенно утрачивали электрическое сопротивление. Происходило это скачком, резко, мгновенно. Вещества как бы становились совершенно другими, непохожими на себя. Сейчас установлено, что способностью к сверхпроводимости обладают 26 чистых металлов и большое количество сплавов и соединений. Среди них и титан, который как известно, обычно плохо проводит электрический ток.

В начале века сверхпроводимость не имела никакого практического значения, однако в наши дни она, как и вся криогенная техника, играет важную роль в дальнейшем научно-техническом прогрессе.

Большие успехи достигнуты в деле разработки быстродействующих сверхпроводящих переключателей, так называемых криотронов, предназначенных для использования в новейших электронно-вычислительных машинах. Прежде прогресс электроники связывали исключительно с полупроводниками, ныне — со сверхпроводниками.

Для накапливания энергии от маломощного источника тока с целью мгновенного ее разряда очень удобны сверхпроводящие соленоиды. С помощью сверхпроводников создают устройства для усиления сигналов. Широко изучается вопрос о возможности создания сверхпроводящих линий электропередач, кабели которых должны охлаждаться жидким гелием.

Западногерманская фирма ”АЭГ-Телефункен” провела сравнение технико-экономических показателей трех линий электропередач постоянного тока. При этом все три линии имели одинаковую электроизоляцию и один диаметр, различались только проводящими материалами. В одном случае это была чистая медь, нагретая до 70 градусов, в другом — чистый алюминий, охлажденный жидким водородом до минус 253 градусов, и, наконец, в третьем — сверхпроводящий сплав ниобий-титан, охлажденный жидким гелием. Оказалось, что кабели из сверхпроводящего сплава смогут передавать энергию, по мощности впятеро большую, чем медные и алюминиевые.

Эффективность таких сверхпроводящих линий тем выше, чем больше передаваемая мощность, поэтому они будут незаменимыми при передаче мощности 3000000 киловатт и выше. При передаче такой мощности стоимость оборудования и эксплуатации сверхпроводящего кабеля гораздо ниже стоимости обычных проводников.

Разрабатываются мощные турбогенераторы со сверхпроводящей обмоткой возбуждения, охлаждаемой жидким гелием. Роторы таких турбогенераторов должны обладать не только высокой удельной прочностью и хорошей коррозионной стойкостью, но и хладостойкостью, низкой теплопроводностью, немагнитностью. Титановый сплав, созданный в Институте металлургии АН СССР, отвечает всем требованиям и сохраняет свою пластичность даже при температуре жидкого гелия. Испытания сплава подтвердили его полную пригодность как материала для роторов именно таких турбогенераторов.

 

ГОРИЗОНТЫ ТРАНСПОРТА БУДУЩЕГО

Замечательные свойства титана — легкость, прочность, высокая стойкость против коррозионного разрушения — в полной мере проявляются при использовании нового промышленного металла не только в авиации, но и в наземных видах транспорта — на железных дорогах, в автомобилях, морских и речных судах.

О применении нового конструкционного материала в военно- морском флоте уже рассказывалось. Те же преимущества даст этот металл, если его использовать не только для военных кораблей, но и для нужд торгового и рыболовного флота. В результате повысятся дальность плавания и маневренность судов, будут значительно сэкономлены средства, затрачиваемые на ремонт материальной части и уход за нею. Корпуса судов, обшитые листами титана, совершенно не будут нуждаться в окраске. Высокая стойкость титановых сплавов в движущейся воде делает их наилучшим материалом для подводных крыльев и стоек.

В Институте проблем литья Академии наук УССР разработана технология изготовления керамических форм для получения крупногабаритных отливок из титановых сплавов. В этих формах изготовлены гребные винты для речных и морских судов.

Габариты винта достигают метра. Титановые винты обладают целым рядом преимуществ.

Лучшими материалами для гребных винтов считаются латунь и бронза, стойкие в морской воде, хотя ежегодно коррозия все равно проникает в глубь металла на несколько сотых долей миллиметра. Титан же не просто стоек в морской воде, он — абсолютно стоек, то есть, как уже говорилось об этом выше, практически не разрушается. В меньшей степени титан подвергается и кавитационному износу. Все это и обеспечивает высокий срок службы гребных винтов из титановых сплавов.

Мало того. Титановый винт имеет массу всего 40 килограммов, тогда как бронзовый — почти 80 и стоит к тому же в полтора раза дороже. Облегченный винт снижает центробежную нагрузку на вал и увеличивает моторесурс дизельного двигателя теплохода. Эксплуатация каждого титанового винта средних размеров дает общий экономический эффект 700 рублей.

Применение нового конструкционного материала для клапанов, толкателей, механизмов газораспределения, шатунов, поршневых пальцев и других деталей двигателя позволяет уменьшить инерционные нагрузки на кривошипно-шатунный механизм, повысить предел усталости, снизить усилия на болты и гайки шатуна, увеличить число оборотов, а следовательно, и мощность двигателя. Увеличивается запас сил пружин, уменьшается на 30 процентов сила удара клапана о седло. Важными свойствами титановых сплавов, помимо высокой удельной прочности и стойкости против коррозии, являются сравнительно высокая жаропрочность, низкий коэффициент теплового расширения.

Применяемые в дизелестроении для шатунов высоколегированные стали далеко не полностью удовлетворяют требованиям эксплуатации: под влиянием растягивающих напряжений стали деформируются — текут. Титановые сплавы таких недостатков не имеют.

Титановый сплав ВТ5 (титан с небольшими добавками алюминия, железа и кремния) успешно использован на одном из отечественных дизелестроительных заводов для шатунов серийно выпускаемых мощных двигателей. Титановые шатуны показали высокую надежность, отличную коррозионную стойкость в среде паров масла и продуктов сгорания топлива, обеспечив длительную безотказную работу двигателей.

Обычно применяемые глушители автомобильных двигателей изготовляются из мягкой углеродистой стали и быстро выходят из строя вследствие прогаров и внешней коррозии. Использование титана позволяет избежать этого.

Японская фирма ”Кобе стил” разрабатывает титановые сплавы для автомобилестроения. Один из сплавов предназначен для изготовления впускных и выпускных клапанов и будет выдерживать нагрев до 800—900 °С. Этот новый титановый сплав в два с половиной раза легче стали, которую он заменит. Другой сплав, разработанный фирмой, станут применять для толкателей клапанов, клапанных тарелок, поперечных клиньев и шатунов. Оба сплава уже используются в гоночных автомобилях марок Е380 и Е382, выпущенных японской фирмой "Ниссан Мотор”, которая планирует применить эти сплавы также в спортивных машинах.

Объединенными усилиями трех японских автомобильных фирм из титанового сплава создан сверхлегкий двигатель, который в два с половиной раза легче обычного автомобильного мотора. Сплав более чем на 80 процентов состоит из титана, остальное — олово, алюминий, цирконий и совсем небольшое количество хрома и стали. Стоимость нового двигателя весьма велика и на первых порах его будут ставить только на дорогие машины.

В других странах титан применяется пока в основном в конструкциях гоночных автомобилей. Крупнейший производитель титана в США фирма ТМКА сконструировала гоночный автомобиль Т1-22. Автомобиль оправдывает свое название: он изготовлен почти целиком из титана, что и дает хорошие результаты. Титановые сплавы используют и во многих других американских гоночных машинах.

В автомобиле ”Инди-500” из титана сделаны клапанные приводы и выхлопная система. Успешно прошел испытания экспериментальный газотурбинный автомобиль. ”Огненная птица”, корпус которого полностью изготовлен из титана. Титан применен и в гоночном автомобиле ”Орел” компании AAR, завоевавшем Большой приз по итогам 24-часовой гонки в Бельгии.

Одна из канадских фирм использует титановые сплавы для изготовления шатунов двигателей гоночных машин, благодаря чему число оборотов мотора достигло 8600 в минуту, а мощность увеличилась на 8,8 киловатт. Титановый сплав, разработанный фирмой ”Кобе стил”, о котором сообщалось выше, используют в США и Англии для изготовления нагнетательных и выхлопных клапанов автомобильных двигателей.

Применение титана в автомобилестроении, конечно же, не ограничится гоночными машинами. Особо ответственные детали серийных автомобилей и двигателей также необходимо изготовлять из материалов, обладающих наилучшим комплексом свойств, что существенно повышает надежность и долговечность изделий и той техники, в которой они применяются.

На восстановление действующего парка машин ежегодно расходуются десятки миллионов рублей. Затраты на ремонт и межремонтное обслуживание — осмотры, проверки — иногда достигают в год четверти стоимости машины, а трудоемкость капитального ремонта грузового автомобиля в три, а нередко и в четыре раза превышает трудоемкость его изготовления. Показателем масштабов ремонтных работ может служить огромное количество запасных частей, которые выпускаются сотнями заводов и которых тем не менее не хватает.

Если же автомобильные детали изготовлять из сплавов титана, они будут надежными и долговечными. Это позволит значительно сократить ремонты, увеличить срок службы, благодаря чему можно сэкономить многие миллионы рублей. Наиболее целесообразно использовать титановые сплавы для деталей двигателей, несущей конструкции и ходовой части, причем самыми подходящими сплавами для деталей двигателя являются высокопрочные и жаропрочные титановые композиции, для несущих конструкций ~ сплавы средней прочности, а для ходовой части автомобилей — высокопрочные сплавы.

Замена стали титаном при производстве рам, осей грузовиков и автоприцепов позволит увеличить полезную грузоподъемность и срок службы, уменьшить износ покрышек, расход горючего, сократить затраты на ремонт и простои, что в конечном итоге не. только окупит стоимость титановых сплавов, но и даст существенную экономию средств. Снижение массы грузового транспорта всего на один килограмм увеличивает полезную нагрузку на сумму в несколько рублей.

Титан дает возможность уменьшить массу железнодорожных вагонов и тем самым снизить расход энергии, необходимой для их передвижения. Благодаря снижению общей массы подвижного состава становится возможным уменьшить габариты вагонных шеек и букс. Одна из зарубежных фирм — производителей железнодорожных вагонов — предполагает, что уменьшение массы вагона на 450 килограммов даст экономию в 2000 долларов. Другая фирма уже использует титановые сплавы в турбине поезда, развивающего скорость 260 километров в час.

 

СПЛАВ "ПОМНИТ”

В самые последние годы у титана обнаружилось свойство, о котором прежде никто даже не догадывался: сплав этого металла с никелем (в соотношении 1 :1) обладает редкой и удивительной способностью "запоминать” форму. Изделие из такого сплава можно изогнуть, скрутить. Пройдет много времени, но стоит нагреть сплав до определенной температуры, как изделие ”вспомнит” свой первоначальный вид и распрямится (или изогнется, если его перед этим выпрямили).

Такие сплавы у нас в стране называются ”ТН”, за рубежом — ”нитинол”. В обоих названиях использованы первые буквы или слоги металлов, из которых изготовлены сплавы: соответственно титан и никель, никель и титан.

Первой областью применения свойства ”памяти” титана стали космические исследования: компактно упакованную антенну, занимающую совсем мало места, помещают в искусственный спутник Земли или межпланетный корабль, а в открытом космосе нагревают до нужной температуры и антенна растягивается на многие десятки метров. Нагревают ее, разумеется, не в печи, а пропуская через металл электрический ток.

Но немало работы найдется этим сплавам и на земле.

На большой глубине в нефтяной скважине проржавела труба и вместе с нефтью наверх стали поступать соленые грунтовые воды. Авария! Надо быстро принять меры. Быстро! . . Легко сказать. Чуть ли не месяц уходит на ремонт одной обсадной колонны: трубы надо поднять с глубины, доставить к месту ремонта, устранить неисправность, затем отвезти на место и, снова смонтировав, опустить на нужную глубину.

Сотрудниками института ТатНИПИнефть (г. Бугульма) разработана технология дистанционного латания поврежденных труб на нефтяных и газовых промыслах. Трубы остаются на местах, в внутрь скважины опускают "пластырь” из никелида титана. Спиральный электронагреватель разогревает вставленную в нужное место оболочку и та, "вспомнив” свою первоначальную форму, расширяется и плотно закрывает отверстие. Просто? Да! Экономично? Еще как! Стоимость ремонтных работ сокращается в 5 раз.

Но это не единственная область применения новых сплавов на земле. Благодаря им можно создать заклепки, которые не нужно расплющивать. Достаточно только вставить их в отверстие и нагреть — заклепки расплющатся сами. Такие заклепки крайне необходимы при сборке узлов конструкций в труднодоступных местах. И не следует думать, будто никелид титана можно использовать всего лишь несколько раз. Изделие из этого сплава при нагреве и охлаждении может безотказно сгибаться и разгибаться десятки, сотни тысяч раз. Стало быть, брусок сплава можно длительное время использовать как рычаг или клапан, где тепловая энергия непосредственно будет превращаться в механическую работу. Этот материал нужен чувствительным термомеханическим датчикам, противоударным устройствам, химическому оборудованию. Короче говоря, перед новыми сплавами большое поле деятельности!

 

ОТ ЯДЕРНЫХ РЕАКТОРОВ ДО АВТОРУЧЕК

В атомной промышленности титан не получил широкого применения. Однако наряду с цирконием его используют за рубежом в атомных спец- установках; в сплаве с ванадием рекомендуют в качестве возможного материала для оболочек реакторов на быстрых нейтронах. Титановый сплав, легированный алюминием, цирконием и углеродом, предложен для применения в атомных электростанциях.

Испытания целого ряда металлов с целью определения их пригодности для работы в конструкции ядерных реакторов с водяным охлаждением показали, что в охлаждающей воде таких установок, содержащей радиоактивные вещества, титан является одним из самых стойких металлов. Очень важно, что он в отличие от многих других материалов не разрушается под действием электрического тока, возникающего при химических реакциях.

В Англии получен патент на футеровку ядерных реакторов водного типа пористыми или перфорированными тонкими листами титана. Из этого металла также изготовляют стержни для контроля степени поглощения нейтронов.

Титан используют в химическом сепарационном производстве, где элементы ядерно го топлива растворены в азотной кислоте.

Имеется опыт успешного применения титана в установках для получения плазмы. Ученые Института атомной энергии имени И.В. Курчатова сообщают о безотказной работе титановых электродов в одной из таких установок.

Гораздо большее применение находит металл в приборостроении. Например, в США из титана изготовляют не тускнеющие, практически вечные зеркала для телескопов национальной обсерватории в Аризоне; в Японии его широко используют для изготовления затворов кинокамер и фотоаппаратов, мембран телефонов. На титановые конденсаторные микрофоны влияние изменений температуры сказывается в значительно меньшей степени, чем на стальные. Гибкие титановые трубки разработаны для бронирования кабелей. Компанией ”Вестингауз” подсчитано, что применение для этой цели титана вместо стали дает на каждый двухкилометровый пролет более 10 тысяч долларов экономии.

В электронной технике очень ценной оказалась способность титана при высоких температурах поглощать и связывать различные газы, благодаря чему удается получить в замкнутом пространстве прибора совершенный вакуум. Титан помещают, скажем, в электроннолучевую трубку еще до того, как из нее через отверстие начнут насосом выкачивать воздух. Когда же воздух выкачают, а отверстие запаяют, токами высокой частоты расплавляют находящийся внутри сосуда титан и тот жадно "схватывает” все оставшиеся после механической откачки атомы азота, кислорода, водорода.

Установлено, что по сравнению с барием титан позволяет достичь более высокого вакуума (почти в 40 раз). Именно это свойство титана успешно используют в конструкции специальных геттерно-ионных насосов, позволяющих искусственно получать на земле сверхвысокий вакуум межпланетного пространства.

Титан применяется для изготовления анодов высоковольтных кенотронов и катодов поляризационных электролитических конденсаторов, что существенно увеличивает срок их службы, используется в производстве полупроводниковых выпрямителей. В термоионных преобразователях находят применение титановые диски; снаружи эти приборы также окружены слоем титана, поверх которого нанесена оболочка из керамики. Поскольку при нагреве титан расширяется не в большей степени, чем керамические материалы, его с успехом используют при изготовлении электронных трубок микроскопических размеров.

Ведутся исследования по применению титана и его оксидов в тонкопленочных интегральных схемах. Рассчитывают, что использование именно таких пленок в сложных электронных приборах позволит делать их еще более миниатюрными, более надежными. Проводится работа по использованию особо чистого металла в производстве тонкопленочных конденсаторов.

Недавно было установлено, что применение титана в качестве материала для сетки электронных ламп снижает до минимума электронную эмиссию; это очень важно для улучшения параметров.

В Харьковском физико-техническом институте Академии наук СССР успешно завершены испытания установки ”Булат-4”, которая станет одевать в надежную броню детали машин и механизмов. Главным рабочим органом установки служит так называемый плазменный ускоритель с электродом из титана. Испаряясь при огромной температуре, титан взаимодействует с азотом и оседает на деталях ровной тонкой пленкой. В результате их прочность возрастает более чем в два раза.

Из титана изготовляют множество опытно-экспериментальных изделий, выпускаемых в небольших количествах: инвентарь для участников антарктических экспедиций, снаряжение для пожарных и альпинистов (которые особенно чувствуют каждый лишний грамм веса), теннисные ракетки, шары и клюшки для игры в гольф (в США), лыжные палки и садовые инструменты.

Иногда из нового металла изготовляют ружья для подводной охоты, мачты гоночных яхт. Отправляясь на опасное для жизни задание, американские агенты полиции нередко надевают под пиджаки и рубашки тонкие пуленепробиваемые жилеты из титанового сплава.

В общем машиностроении титан применяют при изготовлении пружин и диафрагм благодаря его высокой упругости. Предполагают, что металл станет конструкционным материалом для деталей штампов.

Всем известно, что шариковой ручкой можно писать только в том положении, когда пишущий узел обращен К земле. Наклоненная горизонтально (и уж, конечно, будучи перевернутой) ручка перестает писать, так как паста не вытекает. Изливаться же пасту заставляет земное тяготение и, казалось бы, в космосе, шариковые ручки совершенно непригодны. Но нет.

По заданию американского национального управления по аэронавтике и исследованию космического пространства (сокращенно называемого НАСА) создана шариковая ручка, которой космонавты делают записи в условиях невесомости. Паста в ней находится под давлением и достаточно легкого прикосновения к бумаге, чтобы пишущая масса выделилась безо всякого труда. Корпус такой ручки отливает темно-серым металлическим блеском. Да, верно, он — из титана. И титановые ручки становятся доступными не только космонавтам.

"Перьевая не сдается” — под таким заголовком в одном из журналов появилось сообщение, рассказывающее о борьбе между шариковой и перьевой авторучками на американском рынке. Вот это сообщение.

"Несмотря на победное шествие шариковой ручки, перьевая не сдает своих позиций — ее устройство непрерывно совершенствуется. Вслед за сменными патронами с чернилами появилось перо, представляющее собой продолжение корпуса, отштампованного из титанового сплава — коррозионно устойчивого и вдвое более легкого, чем сталь. Под кончиком такого "пера” — переключающее устройство, позволяющее писать с легким и средним нажимом или же со средним и сильным”.

 

Глава 3. ТИТАН В НАСТОЯЩЕМ И БУДУЩЕМ

 

 

ПЕРЕДНИЙ КРАЙ МЕТАЛЛУРГИИ

Создание крупной титановой промышленности стало возможным только на базе последних достижений вакуумной металлургии. Титановая индустрия — крайне сложное производство и поэтому оно осуществляется только в некоторых наиболее развитых в промышленном отношении странах мира.

Трудность получения титановых сплавов заключается в том, что в металле, который в расплавленном состоянии жадно поглощает из воздуха кислород, азот, водород, а также вступает в реакцию с углеродом, железом и многими другими элементами, количество примесей не должно превышать сотых, а иногда даже и тысячных долей процента. В противном случае полученный титан становится непригодным для использования в качестве конструкционного материала.

Поэтому при плавке и формировании металла, при получении и охлаждении слитка, а также во время термической обработки, горячей прокатки и сварки титан изолируют от соприкосновения с воздухом. Все эти операции выполняют в вакууме или под защитой инертных газов—аргона или гелия. Требования к чистоте металла настолько велики, а обеспечить ее настолько непросто, что на одном из американских обрабатывающих заводов ковку и прокатку титана производят в больших герметических камерах, заполненных аргоном. Инертный газ обновляют каждые три часа. Вполне понятно, что обслуживающий персонал работает в скафандрах.

Конструкции некоторых печей для плавки титана напоминают боксы для испытания реактивных двигателей. Печь размещается в шахте из армированного железобетона и оборудуется специальными защитными устройствами, которые обеспечивают максимальную степень безопасности. Оператор находится в железобетонном отсеке и наблюдает за печью через окно из толстого и прочного стекла. Отдельные печи для производства титана оснащены сложной контрольной аппаратурой, оптическими перископами, телевизионными установками.

Промышленный выпуск металлического титана ведут двумя распространенными способами: восстановлением тетрахлорида титана (TiCl4 ) магнием или натрием. Каждый из этих способов имеет свои преимущества и недостатки.

Натриетермический метод восстановления титана был разработан гораздо раньше, чем способ восстановления металла расплавленным магнием. Его развивали и осваивали и Кириллов, и Нильсон, и Петерсон. Ведь именно при помощи натрия, как уже упоминалось, был получен чистый металлический титан Хантером в 1910 году. Но очень существенные трудности, неизбежно возникающие при работе с химически активным натрием, и представления о взрывном характере процесса затормозили развитие этого способа. Вильгельм Кролль, к примеру, считал его совершенно не имеющим перспективы. А перспектива имелась. Этот метод получил распространение в Англии (благодаря тому, что из-за отсутствия дешевого сырья там недостаточно развито производство металлического магния, тогда как производство натрия находится на высоте).

Восстановление титана натрием имеет целый ряд преимуществ перед восстановлением магнием. Благодаря большей химической активности натрия скорость процесса гораздо выше, что увеличивает и производительность реакторов. Натрий используется в реакции полностью, тогда как магний лишь на две трети. Мало того, при натриетермическом восстановлении титан получают в виде порошка, что позволяет выплавлять более однородные слитки. Есть и еще некоторые преимущества.

Но и недостатки способа также весьма существенны. При работе с натрием необходимо соблюдать специальные меры предосторожности, аппаратура должна быть предельно герметичной и надежной, что, помимо всего прочего, не дает возможности отводить из реактора в ходе процесса побочные продукты реакции. Серьезную трудность представляет и огромное количество тепла, которое надо быстро и эффективно отводить.

Но, пожалуй, самый серьезный недостаток этого способа — необходимость производства в больших количествах натрия — неконструкционного материала, который не находит достаточного применения, тогда как магний имеет самостоятельное значение и широко используется в технике. И потому магниетермический способ стал основным промышленным методом получения титана как у нас в стране, так и в США и Японии.

 

СТУПЕНИ РОСТА

Титановая промышленность, как уже известно, начала свое развитие в США. Несколько лет никто в мире, кроме США, не производил титановую губку. Эта монополия объяснялась как тем обстоятельством, что американцам удалось заполучить не только патент Кролля, но и самого автора, так и агрессивным курсом крупнейшей капиталистической державы, резкой милитаризацией ее экономики. Но в 1952 году производство титана началось в Японии и США утратили свою монополию. Японцы быстро нарастили мощности по выпуску губки и уже к концу 1957 года выпуск ее превышал 3000 тонн. Основное количество титановой губки страна экспортирует, в том числе и преимущественно в США, так как по своему качеству японская губка гораздо лучше, чем американская. Она лучше и той продукции, которую выпускают все другие капиталистические страны.

В Англии производство титана началось в 1953 году. Спустя два года после начала опытного выпуска металла был введен в действие титановый завод в графстве Йоркшир. Англия—вторая держава капиталистического мира по выпуску титанового проката. Небольшое количество титана производит в последнее время ФРГ. Западногерманская фирма ”Контимет” перерабатывает импортную титановую губку в различные полуфабрикаты. Опытное производство титана налажено во Франции, Италии, Норвегии и Канаде. Но крупной титановой промышленностью располагают в мире только четыре державы “СССР, США, Англия, Япония.

Ученые нашей страны занялись изучением различных технологических способов производства титана в конце 40-х годов. Первыми стали заниматься проблемой отечественного титана специалисты. Государственного института редких металлов и Всесоюзного института авиационных материалов, затем к ним присоединились сотрудники Института металлургии Академии наук СССР, Всесоюзного алюминиево-магниевого института и многих других организаций. В 1954 году начал работать Подольский химико-металлургический завод (ПХМЗ), где впервые в нашей стране была получена партия нового металла. Опыт ПХМЗ был использован при создании крупнопромышленного производства титана.

Однако недостаточно было освоить опытное получение технически чистого титана. Стояла задача организовать крупное промышленное производство этого нужного стране металла. И она была решена в самые короткие сроки. Большую помощь службам Министерства цветной металлургии СССР, которому было поручено руководить развитием отечественной титановой промышленности, оказал организованный Академией наук СССР научный совет по титану, возглавляемый академиком Иваном Павловичем Бардиным.

Небезынтересна судьба этого выдающегося ученого-gатриота. Выходец из народных низов, благодаря своим незаурядным способностям и стараниям получивший в царской России образование инженера-металлурга, он долго не мог найти приложение своим силам и в поисках работы переселился в США. За океаном Иван Бардин работал простым металлургом по 10— 12 часов в сутки, до полного изнеможения. После нескольких лет эмиграции вернулся в Россию.

Октябрьская революция, которую Бардин принял всей душой, круто изменила его судьбу: бывший рабочий стал организатором строительства предприятий черной металлургии страны, крупным ученым, создателем и первым директором Института металлургии Академии наук СССР. Академик Бардин посвятил всю свою жизнь металлургии черных металлов. Он не занимался ни алюминием, ни магнием, ни медью, ни оловом. Но для одного цветного металла Бардин сделал исключение и в его наследии существенное место занимают исследования в области металлургии титана.

К тому времени, когда у нас начала создаваться титановая промышленность, Ивану Павловичу Бардину было 70 с лишним лет. Но возраст не помешал ему с молодым задором, с поистине юношеским энтузиазмом взяться за новое для него дело, возглавить его. Академик Бардин не просто возглавил отечественyю титановую индустрию, но и стал ее вдохновителем, убежденным пропагандистом нового промышленного металла.

”С каждым днем открываются все новые и новые области применения этого обладающего прекрасными свойствами металла,—писал Иван Павлович.—Можно не сомневаться в том, что в ближайшем будущем титан станет одним из наиболее широко применяемых в технике металлов наряду с железом, алюминием и магнием...”. В интервью, данном в августе 1957 года газете ”Комсомольская правда”, Бардин называет титан ”юным богатырем, соперничающим со сталью”, металлом, обладающим такими замечательными свойствами, что они делают его не просто конкурентом, а ”опасным соперником” железа.

В создании и развитии отечественной титановой промышленности участвовали ведущие ученые, инженеры и организаторы производства—С. Г. Глазунов, Н. П. Сажин, В.А.Ильичев, П.И. Мирошников, А. К. Дроздов и многие другие. И вот 30 июня 1956 года в городе Запорожье состоялся митинг, посвященный выпуску в СССР первой крупнопромышленной партии тирана.

Днепровский магниевый завод, был пущен в эксплуатацию в 1935 году. Страна впервые получила собственный магний. Запорожский завод давал тогда шестую часть мирового выпуска этого металла. За успешное освоение выпуска магния, перевыполнение производственных заданий и развитие социалистического соревнования Днепровский магниевый завод $ 1939 году был награжден орденом Трудового Красного Зна1- мени.

В 1971 году на знамени предприятия появилась новая, самая высокая награда Родины —орден Ленина, а восстановленное из руин предприятие называлось Запорожским титано-магниевым комбинатом (ЗТМК), основной продукцией которого был уже губчатый титан. В сентябре 1969 года двум высшим сортам титановой губки, выпускаемой Запорожским титано-магниевым комбинатом, присвоен государственный Знак качества. Большая часть продукции, выпускаемой комбинатом, —именно высшие сорта, которые еще более совершенствуются с каждым годом.

В Запорожье находится Всесоюзный научно-исследовательский и проектный институт титана —единственное в мире учреждение, целиком занимающееся этим металлом, проблемами его металлургии, химии, применения в народном хозяйстве, его соединениями, проектированием предприятий, цехов и участков титано-магниевой промышленности.

Титано-магниевый комбинат в Запорожье—не единственное предприятие такого рода в стране. Спустя несколько лет после получения титана в украинском городе этот металл стали выпускать на Урале и в Казахстане —вошли в строй Березниковский и Усть-Каменогорский титано-магниевые комбинаты. С пуском в 1965 году Усть-Каменогорского комбината по производству этого металла Советский Союз вышел на ведущие позиции в мире.

Усть-Каменогорский титано-магниевый комбинат —одно из самых передовых предприятий страны. Ему нет равных по комплексному использованию сырья (когда,помимо основной продукции, из примесей извлекают побочную, пригодную к употреблению), степени извлечения металлов, качеству продукции. УКТМК—неоднократный победитель Всесоюзного социалистического соревнования. Весь производимый здесь товарный магний и более 70 процентов титановой губки имеют Знак качества.

Наша страна располагает теперь мощной производственной базой по выпуску "металла века". Отечественная промышленность не только обеспечивает потребность в титане всей нашей страны, но и позволяет экспортировать металл во многие зарубежные страны: как в государства, входящие в СЭВ, так и в США, Англию, Францию, ФРГ, Италию, Швецию и другие капиталистические державы, где он успешно выдерживает конкуренцию с лучшими сортами американских, английских и японских фирм. Советский титан покупает даже Япония, которая изготовляет самую высококачественную титановую губку среди стран капитализма.

 

БОЛЬШАЯ ЧЕСТЬ

Наше время—время стремительного и неудержимого развития науки. Ежегодно в мире проводятся десятки, быть может, даже сотни международных конгрессов, симпозиумов, форумов на самом высшем уровне. Они посвящены целым направлениям в науке, большим проблемам, волнующим мировую общественность. Начиная с 1968 года проводятся симпозиумы, целиком посвященные титану.

Первый международный симпозиум по титану состоялся в Лондоне в мае 1968 года. На симпозиум съехались ведущие ученые и специалисты в области металлургии, обработки металлов, материаловеды — как теоретики, так и практики, которым было что рассказать друг другу. На этот международный форум привезли доклады представители ведущих организаций и фирм СССР, США, Англии и Японии. От Советского Союза участвовала делегация Академии наук СССР. Специалисты многих стран присутствовали в качестве гостей.

С трибун информировали о взаимодействии титана с низшими хлоридами и его применении в различных областях промышленности как стойкого против коррозии материала, о влиянии на титановые сплавы углерода и кислорода и об использовании этих сплавов в военной технике.

Представитель НАСА из Хьюстона, где США подготавливают к запуску свои космические объекты, сообщил, что в космических кораблях "Аполлон” были установлены сосуды высокого давления из титановых сплавов, легированных алюминием и ванадием. В каждом из кораблей применялось по 44 таких титановых сосуда.

Докладывалось об особенностях эксплуатации изделий из нового металла в условиях моря и суши, на земле и под землей, на заводах и под открытым небом. Но больше всего говорилось о применении нового промышленного металла в создании самолетов.

В двигателях современных реактивных самолетов количество использованного титана составляет от 15 до 35 процентов общей массы. Эти количества титана обеспечивают значительное снижение массы двигателя, что, в свою очередь, уменьшает общую массу конструкции самолета в 5—10 раз!

На симпозиуме по титану было заявлено, что "большие самолеты как дозвуковые, так и сверхзвуковые не были бы экономически оправданы или практически возможны, если бы не существовал титан".

Англичане представили интересные предложения по замене многих элементов каркаса сверхзвукового пассажирского самолета "Конкорд" титановыми. Если бы это удалось осуществить, то в самолете можно было бы разместить на 40 пассажиров больше, чем планировалось. А если бы остовы всех самолетов в английском гражданском самолетостроении стали изготовлять из титана, то при общих капиталовложениях в 20 миллионов фунтов стерлингов ежегодно можно было бы получать почти 40 миллионов фунтов прибыли.

Советские ученые тоже рассказали немало интересного своим зарубежным коллегам.

Как и любой другой мировой форум, первый симпозиум по титану имел не только сугубо научное, но и немаловажное политическое значение. Ведь ученые разных стран смогли лишний раз убедиться в том, что при всех национальных и идеологических барьерах, которые еще существуют, человечество все же—одна большая семья на планете Земля.

Четыре года спустя в американском штате Массачузетс состоялся второй всемирный симпозиум, посвященный все тому же "металлу века”. Эти годы не прошли бесследно для исследователей и практиков —им было что рассказать о новых достижениях в деле использования титана, а также о том, как преодолеваются старые и новые трудности, возникающие при работе с этим капризным, но тем не менее превосходным металлом.

Третий такой симпозиум состоялся в мае 1976 года в Москве. Более 500 ученых из почти сорока стран мира собрались в актовом зале Московского государственного университета. На конференцию были представлены 223 доклада, рассматривавшихся (в зависимости от их тематики) на тринадцати различных секциях. Откуда только ни были присланы доклады: академические учреждения и исследовательские лаборатории частных фирм, высшие учебные заведения СССР, США, Англии, Франции, Японии... Мир предстал здесь во всем географическом и этническом многообразии: свое слово в науке о титановых сплавах, изделиях из них сказали Атомный научно-исследовательский центр Бхабха (Индия) и лаборатория авиационных материалов военно-воздушной базы Райт-Пэттерсон (США), Американский исследовательский центр морского флота и центр ”Браун Бовери” из Швейцарии, Национальная аэрокосмическая лаборатория Нидерландов и корпорации ”Кобе стил Лимитед” (Япония) — десятки, сотни организаций. Больше всего было докладов советских ученых. В 1980 году прошел аналогичный симпозиум в Токио. Самый последний симпозиум по титану состоял ей в 1984 году в западногерманском городе Мюнхене.

 

ТИТАН УСТАРЕЛ?

”Титан, получивший за свои высокие механические свойства прозвище богатырского металла, только-только начал получать широкое распространение в сверхзвуковой авиации и ракетостроении, а некоторые специалисты считают, что он уже устарел. Таково, например, мнение исследователей-материаловедов английского Министерства техники. Применение титана позволило несколько лет назад вдвое снизить массу конструкций, изготавливающихся ранее из жаропрочной стали. А английские исследователи получили материал, при той же жаропрочности оказавшийся вдвое легче титана”.

Эта заметка была опубликована летом 1969 года в журнале ”Изобре- татель и рационализатор”. Что же за материал удалось получить английским специалистам? Алюминиевый сплав, толщу которого пронизывают тончайшие волокна карбида кремния. Такие, как их называют, композиционные материалы, составленные из менее прочного, но очень пластичного материала, армированного различными высокопрочными волокнами в форме сот, сеток, получают все большее распространение и привлекают к себе пристальное внимание как материаловедов, так и конструкторов. Предполагают, что к концу нашего века до 20 процентов от общего количества применяемых металлов будет приходиться на композиционные материалы.Заметка в журнале была интересна еще и тем, что в ней сообщалось не о лабораторном производстве армированного материала, а о его получении на полупромышленной установке, и о факте успешного производства из нового материала опытных заготовок методом литья под давлением. Титановые сплавы, говорилось далее, могли бы быть вытеснены уже сейчас, но дело упирается в высокую стоимость волокон из карбида кремния. Однако специалисты английского Министерства техники не унывают, так как полагают, что экономические проблемы будут успешно решены в самое ближайшее время и можно будет приняться за сооружение первого завода по выпуску сверхпрочных волокон.

Должно быть, ”самое ближайшее время" еще не пришло, поскольку титан еще не вытеснен. Все же такие сообщения надо принимать всерьез, так как и титан, и все другие металлы постоянно находятся под угрозой вытеснения неметаллическими материалами. Достижения химической науки позволяют получать вещества с превосходными свойствами как по механической прочности, так и по стойкости против коррозии. Есть настолько прочные и упругие стекла, что, будучи не толще обычного оконного стекла, спокойно выдерживают тяжесть автомобиля!

Разработаны десятки широко используемых неметаллических материалов, обладающих высокой коррозионной стойкостью. Среди них вещества неорганического и особенно органического происхождения. Перечислить их все нет никакой возможности, но даже если назвать только некоторые из них, то и тогда вас поразит их обилие: ведь туг будут ситаллы и стекло эмали, диабазовые и метлахские плитки, кислотоупорные эмали и цемент, стеклопластики, текстолит, фаолит, винипласт... Мало? Тогда, пожалуйста, еще: полиэтилены, фторопласты, пентопласт, полиизобутилен, эпоксидные смолы, замазки арзалит, лак бакелитовый, лак перхлорвиниловый... И это далеко не все из уже применяемых веществ, а ведь непрерывно создают еще более современные и совершенные.

Некоторые из неметаллических материалов обладают такой стойкостью, что конкуренции с ними не выдерживают не только титан, но и более коррозионностойкие металлы. Фторопласт-4, к примеру, совершенно не разрушается ни в серной, ни в соляной, ни в азотной кислоте, даже если они сильно нагреты, нипочем ему горячие щелочи и соли. Из органических материалов изготовляют разнообразные изделия. То есть пластики, лаки, смолы также являются конструкционными материалами.

Так что неметаллические материалы —очень серьезные конкуренты металлов. И все же металловеды считают, что металлы всегда будут основными конструкционными материалами техники как бы ни развивалась химия. И думать именно так у них есть серьезные основания. Дело в том, что только металлы под воздействием местной перегрузки деформируются, не разрушаясь (пластически), причем местная пластическая деформация сопровождается как бы одновременным само упрочнением вещества. Неметаллические же материалы под воздействием перегрузки трескаются, а затем разрушаются вследствие присущей им хрупкости.

Правда, среди неметаллов есть вязкие материалы, способные "течь", но их пластическое течение не сопровождается одновременным само упрочнением, а вызывает уменьшение сечения изделия и приводит к возрастанию в нем напряжений. Неметаллы не способны изменить свою форму без потери прочности —вот самое существенное практическое отличие их от металлов. И это различие принципиально неустранимо. Оно не объясняется только лишь недостаточным уровнем развития современной науки.

Как бы ни развивалась наука в будущем, неметаллы, вероятно, не смогут заменить и вытеснить металлы. Почему? Потому что металлы имеют особое строение: внутри кристаллической решетки у них находятся свободные электроны. Наличие свободных, принадлежащих всему кристаллу,

а не определенному атому электронов и обеспечивает металлам способность к пластической деформации и самоупрочнению—наклепу.

Но, быть может, ученым будущего удастся изменить строение неметаллов и те обретут пластичность благодаря появившемся у них свободным электронам? Допустим, что именно так и произойдет. Но ведь тогда это будет не что иное, как превращение неметаллов в металлы! Появятся хоть и искусственные, но все же металлы, потому что наличие в веществах свободных электронов и служит важнейшим показателем именно металлов.

Не будем гадать, какими достоинствами станут обладать эти фантастические искусственные металлы, заменят ли они металлы природные. Лучше задумаемся над тем, что, несмотря на обилие сталей, чугунов, сплавов цветных металлов, количество которых, взятых всех вместе, на сегодняшний день исчисляется десятками тысяч наименований, ни один из металлов ”не устарел” и не выброшен за ненадобностью на свалку истории.

В самом деле, ведь и сейчас с успехом используют все те металлы, которые были известны людям еще при первобытно-общинном строе: и медь, и бронза, и железо, не говоря уж о золоте и серебре. Бурно развивающаяся алюминиевая промышленность нисколько не поколебала пьедестала, на котором стоит железо —важнейший металл современности. Появление магниевых сплавов не упразднило сплавов на основе алюминия. Точно так же и титан не ”отменил” алюминия, железа, магния и любого другого металла, так что если когда-либо и будет создан материал, превосходящий по комплексу своих свойств титан, последнему тоже найдется работа. Тем более, что титан не собирается сдаваться без боя: разрабатываются все более совершенные сплавы на его основе, превосходящие обычные во много раз по стойкости против коррозии, прочности, сопротивлению высоким температурам. Совершенствуются процессы химико-термической обработки поверхности. Так, например, в результате процессов алитирования и алюмосилицирования, при которых поверхность металла насыщается атомами алюминия и кремния, жаростойкость титановых сплавов возрастает настолько, что они выдерживают длительный нагрев при температуре около 1000°С, а кратковременно могут эксплуатироваться даже при 1300°С!

Так что рановато стали поговаривать о ”старости” титана. Этот металл в расцвете сил, у него еще очень много дел и на Земле, и в космосе, и если бы каким-нибудь образом удалось заглянуть в будущее, мы с вами, по всей вероятности, воочию убедились бы в этом. К сожалению, такой возможности нет, путешествовать во времени пока не удается. Впрочем, есть люди, которые тем только и занимаются, что всматриваются в даль времени, пытаясь предугадать будущее, увидеть его своим внутренним взором, а затем рассказать об увиденном остальным. Конечно же, речь идет о писателях-фантастах —профессиональных "разведчиках будущего”. Давайте отправимся в путь вместе с ними.

 

МНЕНИЕ ПИСАТЕЛЕЙ-ФАНТАСТОВ

Роман известного советского фантаста и учено го-палеонтолога Ивана Ефремова "Туманность Андромеды” получил признание у читателей всего мира. В центре произведения—люди далекого коммунистического будущего, их образ жизни, техника, которая помогает им в преобразовании природы. В этой деятельности металлы играют не последнюю роль и в самых первых рядах — титан.

Один из главных героев романа, Дар Ветер, по собственному желанию получает работу на самом физически трудном поприще деятельности людей того времени—в подводных титановых рудниках, находящихся на западном побережье Южной Америки. Вот что открывается взору героя, когда он прибывает на место своей работы.

"Далеко в море выдавалась искусственная мель, заканчивавшаяся обмытой ударами волн башней. Она стояла у края материкового склона, круто спадавшего в океан на глубину километра. Под башней вниз шла отвесно огромная шахта в виде толстейшей цементной трубы, противостоявшей давлению глубоководья. На дне труба погружалась в вершину подводной горы, состоявшей из почти чистого рутила—оксида титана. Все процессы переработки руды производились внизу, под водой и горами".

Очевидно, по мнению автора "Туманности Андромеды", в далеком будущем запасы титановых руд на поверхности нашей планеты будут полностью использованы и человечество займется залежами, находящимися на большой глубине. Один из таких рудников-заводов и описан в романе советского фантаста.

Дар Ветер становится механиком по проверке и наладке агрегата, в котором ведется первичная обработка руды. Всего на руднике работало восемь человек, в том числе и несколько женщин. Спустя несколько дней Дар Ветер освоился с новой для себя деятельностью и стал настоящим работником титанового предприятия, которое имело собственные ядерные энергетические установки, находящиеся в старых выработках, на большой глубине.

Как и все остальные работники рудника, он удовлетворен результатами своего труда: аккуратно уложенные бруски титана ежедневно отвозятся на специальных плотах. Живет Дар Ветер в оранжевом домике с синевато- серой крышей. В таких оранжевых или ослепительно желтых особняках живет весь персонал предприятия, которое находится вдали от основных магистралей и поселений. Но люди не чувствуют себя заброшенными, живут активной духовной жизнью, не испытывая ни в чем недостатка, и наш герой—тоже. Когда обычная музыка, ежевечерне звучащая в поселке металлургов, уже им не воспринимается, Дар Ветер вызывает из Дома Высшей Музыки свою любимую цветомузыкальную симфонию "фаминор-синий".

Люди почти совершенного будущего не трудятся подолгу на одном и том же месте, чтобы однообразие работы не притупляло ощущения романтической новизны, не снижало энтузиазма, не препятствовало радости, которую доставляет свободный труд. И наш герой трудился на руднике до тех пор, пока тяга к космосу не оказалась сильнее.

В повести выдающегося польского фантаста Станислава Лема "Непобедимый” действие развивается вокруг загадочной гибели экипажа космического корабля "Кондор”. Прилетевшие на неведомую планету люди с корабля "Непобедимый” пытаются разобраться в причинах гибели своих предшественников, знакомясь с их кораблем. По мнению Станислава Лема, обшивка кораблей будущего будет изготовлена из сплава титана с молибденом.

”Роган, Баллмин, биолог Хачеруп и один из техников, Кралик, вчетвером вошли в кабину. Роган по укоренившейся привычке посмотрел на мощную выпуклость корпуса, проплывающую за переплетом клети, — и остолбенел. Титаномолибденовые плиты были все не то насверлены, не то исколоты каким-то ужасающе твердым инструментом, отверстия эти были неглубоки, но до того густо усеивали наружную оболочку корабля, что вся она стала рябой, словно от оспы. Роган тряхнул за плечо Баллмина, но тот сам уже заметил эту диковинку. Оба они уставились на странные отверстия, стараясь получше их разглядеть. Все дырочки были маленькие, словно выдолбленные острием долота, но Роган знал, что нет такого долота, которое вгрызлось бы в оболочку космического корабля”.

Как видите, польский фантаст, "используя” титан, создает сплав, который ”не по зубам” обычным земным инструментам и служит надежной защитой экипажей звездолетов. Прочность сплава поистине фантастическая.

”—Коллега Петерсен, чем можно пробрать такую оболочку?

Если она соответствует кондициям, то, собственно, ничем, ответил заместитель главного инженера. —Можно ее слегка насверлить алмазами, но и на это потребуется чуть ли не тонна сверл и тысяча часов времени. Уж скорее кислотами. Но кислотами неорганическими, и они должны бы действовать при температуре самое меньшее две тысячи градусов и при участии соответствующих катализаторов.

А что, по-вашему, изъело броню ”Кондора”?

Понятия не имею. Он мог бы так выглядеть, если бы сидел в кислотной ванне при соответствующем нагреве. Но как это было сделано без плазменных дуг и без катализаторов, этого я себе не могу представить”.

При всем ”уважении” к титану и молибдену следует все же сказать, что польский писатель несколько переоценил возможности такого сплава. Дело в том, что титаномолибденовые сплавы уже созданы —как за рубежом, так и у нас в стране. Они действительно обладают феноменальной стойкостью в кислотах, обрабатывать их в самом деле не просто, но тонны алмазов и тысячи часов для этого не требуется.

Отечественный титаномолибденовый сплав состоит, как это нетрудно догадаться, из титана и молибдена, взятых в соотношении два к одному. Сплав создан не для того, чтобы служить прочной обшивкой, выдерживающей колоссальные механические нагрузки, а для использования в химическом машиностроении в качестве материала, стойкого в концентрированных соляной и серной кислотах. Уже накоплен некоторый опыт его применения.

Это наиболее стойкий против коррозии титановый сплав: в кипящих растворах неорганических кислот он превосходит обычный титан по стойкости в тысячу раз! Что же касается его твердости, то она лишь вдвое выше, чем у технически чистого титана. Обрабатывать его примерно в 4—5 раз труднее, чем обычную углеродистую сталь, но резцы из твердых сплавов вполне справляются с ним. Обработка ведется на обычном оборудовании. Правда, очень трудно получать из этого сплава полуфабрикаты, но все же он уже взят современной техникой на вооружение, тогда как польский фантаст видит его только в отдаленном будущем. Но то, что и в будущем приходится рассчитывать на титановые сплавы,—это, пожалуй, верно.

Что же касается такой фантастики, как американская, то в очень многих произведениях самых различных авторов титан упоминается как один из обычных материалов, окружающих людей будущего в их повседневной деятельности.

Итак, ведущие фантасты мира считают, что титану найдется работа и в отдаленном будущем. Думается, что они совершенно правы.

 

Глава 4. ТИТАНОВАЯ ПРОМЫШЛЕННОСТЬ

 

 

РЕДКИЙ МЕТАЛЛ?

Еще и сейчас титан иногда называют редким элементом, что в общем-то не соответствует действительности. По содержанию в земной коре титан уступает только трем конструкционным металлам: алюминию, железу и магнию. В недрах нашей планеты титана в 6 раз больше, чем марганца, в 20 раз больше, чем хрома, в 30 раз больше, чем никеля, в 50 раз больше, чем меди и цинка (а ведь ни медь, ни цинк никто и никогда не считал редким металлом), в 100 раз больше, чем вольфрама и молибдена. Взятые вместе все вышеназванные металлы, если даже к ним прибавить еще ванадий, кобальт и ниобий, составят всего лишь одну десятую часть того количества, которое приходится на титан.

Только в зарубежных странах разведанные к настоящему времени запасы титановых руд составляют более 2 миллиардов тонн. Из такого количества сырья может быть получено 140 миллионов тонн металлического титана.

Один из наиболее важных и распространенных титановых минералов — рутил. Это хрупкие, с алмазно-металлическим блеском кристаллы. Они могут быть красновато- коричневыми, иногда совсем красными, иногда желтоватыми, синеватыми, фиолетовыми и даже совсем черными. И очень редко — зелеными.

Кристаллы рутила почти целиком состоят из двуокиси титана, но в них также содержатся окислы железа, алюминия, магния, тантала, ниобия. Эти соединения и придают минералу такую разнообразную окраску. Кристаллы рутила прозрачны, но если кусочком минерала провести по бумаге, то он оставит слабую коричневую черту.

Когда-то рутил назывался "красным венгерским шерлом". Именно эти красновато-коричневые кристаллы исследовал в свое время немецкий профессор-химик Мартин Клапрот, когда вслед за Уильямом Грегором открыл элемент титан.

А что за крупицы обнаружил тогда Грегор в черном магнитном песке? Это ильменит. Так называется минерал железно-черного или бурого цвета со слабым блеском, отдаленно напоминающим металлический. Ильменит—титанистый железняк. Он представляет собой соединение железа, титана и кислорода. Титана содержится в ильмените не так уж и много — около 30 процентов, и то в пересчете на оксид.

В минерале перовскит титана почти вдвое больше, чем в ильмените. А распространенный титановый минерал сфен содержит около 25 процентов титана.

Известно более 100 минералов, в которых титан содержится в виде диоксида или солей титановой кислоты, однако для промышленной переработки пригодны только те, месторождения которых достаточно распространены и велики. К их числу относятся рутил и особенно ильменит, но и их месторождения, пригодные для промышленной разработки, встречаются только в немногих местах земного шара. Крупных месторождений титановых руд в мире насчитывается чуть более 150.

Руды, пригодные для промышленного производства металлического титана, бывают коренные и россыпные. К коренным относят титано-магнетитовые руды, залегающие сплошными массивами в виде жил. Уместно сказать, что свое название минерал ильменит получил от Ильменских гор. К такому типу относятся руды многих месторождений США, Канады, Финляндии.

Россыпные месторождения титана образовались в результате разрушения горных пород. Ильменит, рутил и другие тяжелые титансодержащие минералы накапливаются в горном песке. Водные потоки уносят песок в моря и океаны, но значительная часть его остается на побережье и занимает большие площади.

А вот пески, про стирающиеся на сотни километров вдоль восточного побережья Австралии, служат сырьевой базой для титановой промышленности Соединенных Штатов Америки. Экспорт рутила в США начался задолго до начала производства металлического титана.

После того, что вам о титане уже известно, у вас вполне могло сложиться мнение, будто все добываемые на земном шаре титансодержащие руды перерабатывают в серебристо-серый легкий и прочный металл. Но такое мнение весьма далеко от истинного положения дел, так как в металл перерабатывают всего лишь одну двадцатую часть используемого титанового сырья. "Куда же девают остальные девятнадцать частей, эту уйму ильменита, рутила, сфена? —наверное, спросите вы. Перерабатывают в пигментную диоксид титана —ту самую наилучшую белую краску, о которой говорилось еще в начале книги.

Увы, на сегодня титановая промышленность не столько металлургия, сколько промышленность по производству белого красителя, завоевывающего с каждым годом все большую популярность. Что ж, с этим тоже приходится считаться и металлурги разрабатывают и совершенствуют способы получения полупродуктов для производства титана, одинаково пригодные как для извлечения металла, так и для выпуска титановых белил.

Пляжные пески Австралии тянутся довольно узкой полосой, но в некоторых местах ее ширина составляет чуть ли не километр. Это обширное месторождение эксплуатируется с начала 30-х годов нашего века и до сих пор не исчерпано, несмотря на то что в последнее время ежегодное количество обогащенных титановых руд, вывозимых оттуда, измеряется сотнями тысяч тонн.

Россыпные месторождения титановых руд —это не только ныне существующие пляжи и прибрежные полосы, они нередко залегают на месте доисторических берегов и морей, погребенных под многометровым слоем глинистых песков и зеленовато-серых глин.

 

ОТ РОССЫПИ ДО КОНЦЕНТРАТА

Все титансодержащие минералы содержат большое количество посторонних включений, поэтому прямо на местах добычи титановые руды обогащают, то есть отделяют породу, содержащую титан, от пустой породы и от сырья, содержащего железо. В зависимости от того, какие именно руды обогащают, применяют тот или иной метод.

Наиболее часто встречающиеся титановые руды промышленного значения—ильм енитовые—обогащают путем магнитной сепарации, так как магнитная проницаемость их составных частей различная.

Руду в несколько приемов измельчают, в результате чего ее крупицы становятся похожими на пыль. Измельченную руду подают в специальный магнитный сепаратор на ленту транспортера. Над этой лентой быстро движется другая, рядом с которой установлен электромагнит. Поскольку частицы магнетита—железосодержащего сырья — сильно притягиваются магнитным полем, они пристают к поверхности быстро движущейся ленты и уносятся ею в специальный бункер. Немагнитная фракция, куда входят ильменит и пустая порода, попадает в другой приемник.

Теперь необходимо отделить ильменит от пустой породы. Обычно пустую породу из ильменитовой руды удаляют на концентрационных столах.

Концентрационные столы—это специальные машины, состоящие из качающихся плоскостей, омываемых водой. Под действием силы трения и давления воды и благодаря тому, что наклонные поверхности стола непрерывно вибрируют, происходит расслоение руды: тяжелые зерна размещаются в самом низу, легкие же занимают места наверху. Тяжелые зерна—это крупицы ильменита, они вдвое тяжелее пустой породы.

Столы неспроста называют концентрационными, так как с их помощью удается получить минералы в концентрированном виде, в данном случае ильменитовый концентрат, который примерно наполовину состоит из двуокиси титана. Однако, кроме оксида титана, в его составе находится значительное количество оксидов железа, алюминия, кремния, магния и других элементов. Особенно много в ильменитовом концентрате соединений железа. Чтобы отделить титановое сырье от железа, железо-титановые руды необходимо переплавить. Такую восстановительную плавку уже делают на титано-магниевых комбинатах.

 

ЭКСКУРСИЯ НА КОМБИНАТ

Титано-магниевые комбинаты —огромные промышленные предприятия, где каждый цех представляет собой как бы самостоятельный завод. "Рождению” титана предшествует несколько стадий, так называемых переделов, каждый из которых—определенный технологический этап.

Восстановительная плавка ильменитового концентрата — первая стадия переработки сырья на комбинате. В обычные электродуговые печи, представляющие собой ванны из огнеупорного кирпича с опущенными почти до самого дна графитированными электродами, загружают шихту. Она состоит из ильменитового концентрата и специального углеродистого восстановителя— кокса, антрацита и других углеродсодержащих веществ с наименьшим количеством золы и серы. В результате плавки раздельно получают богатые титаном шлаки и обычный чугун. Присутствие в чугуне титана действует благотворно на черный металл, поэтому при производстве чугуна и стали титан к ним нередко добавляют специально. Здесь же титан переходит в чугун непосредственно из ильменитового концентрата.

Входящий в состав ильменита оксид железа восстанавливается до металла* который опускается на дно ванны и, насыщаясь у гл ерю дом, превращается в чугун. Чтобы отделить титановые шлаки от чугуна, жидкой массе дают отстояться. Титановые шлаки всплывают, а более тяжелый чугун оседает на дно, так происходит их разделение. Основу шлака составляет диоксид титана, но он загрязнен примесями соединений железа, кремния, кальция.

Остывший шлак представляет собой порошок, в котором отчетливо видны мелкие чешуйки. В титановый шлак добавляют нефтяной кокс. Кокс служит одновременно и топливом, и восстановителем. В качестве связующего вещества применяют каменноугольные пек или смолу. Из полученной массы, называемой шихтой, прессуют брикеты. Их высушивают, затем в специальных печах, куда не проникает воздух, при температуре 700 — 900°С спекают. В результате происходит процесс коксования, поры в брикетах увеличиваются. Теперь уже можно подавать брикеты в шахтную электропечь.

Печь для хлорирования —это стальной цилиндр, выложенный изнутри слоем особостойкого кирпича. В цилиндр через загрузочное устройство сверху подают брикеты шихты, с помощью электронагревательных элементов доводят их температуру до 800—850°С. Хлор подают снизу. Оксиды титана практически не взаимодействуют с газообразным хлором, поскольку даже незначительные следы кислорода препятствуют этому. Чтобы связать свободный кислород, облегчить тем самым хлорирование, и добавляют кокс, так как кокс практически не что иное, как углерод, а углерод хорошо связывает кислород. Печь герметически закрыта и работает непрерывно. Процессы хлорирования идут в нижнем, нагретом слое шихты. По мере расходования брикетов добавляют новые, причем загружают их так, что герметичность печи не нарушается. В результате хлорирования атомы титана "порывают” связь с кислородом и, соединяясь с хлором, образуют молекулы четыреххлористого титана (TiCl4).

При комнатной температуре это— жидкость, бесцветная и неспокойная. Она чрезвычайно активна и реагирует с очень многими веществами, в том числе и с водой. Поскольку в воздухе практически всегда есть влага, то достаточно открыть сосуд с TiCl4 —и начинают образовываться белые сгустки дыма. Способность этого соединения к дымообразованию была использована еще в годы первой мировой войны для создания дымовых завес. В мирные дни белый дым спасает фруктовые деревья от заморозков. Главное же назначение TiCl4 — служить основным исходным материалом для получения легкого, прочного и стойкого металла.

Чистый TiCl4 прозрачен, но в промышленных условиях он редко бывает таким. Обычно TiCl4 желто-коричневая или даже темно-бурая жидкость, и неудивительно—ведь она загрязнена. Чего в ней только нет. Хлор, фосген, кислород, азот, магний, марганец, каменный уголь, соединения железа, ванадия, ниобия, алюминия, кремния... Всего не перечислить! Примеси и растворены в веществе, и находятся в нем в виде нерастворимых частичек (так называемые механические примеси).

Очистить раствор от механически взвешенных примесей сравнительно несложно: его достаточно профильтровать. А с примесями, растворенными в жидкости, поступают так. Первым делом очищают TiCl4 от соединенй ванадия. В раствор добавляют медный порошок, происходят сложные химические реакции и в результате получается твердая взвесь, суспензия. Твердые частицы извлекают, а осветленный раствор вновь фильтруют.

Соединения ванадия не просто примеси, это ценные, нужные промышленности вещества, и, очищая ТЮ14, на титано-магниевых предприятиях одновременно извлекают пентаоксид ванадия, соединения ниобия и других редких и потому дефицитных элементов. Иными словами, помимо титана и магния, ведется побочное производство других веществ, хотя и в меньших количествах. Кроме того, стремятся при очистке и переработке сырья извлекать как можно больше титана. Но это—задачи вспомогательные. Основная задача—тщательнейшим образом очистить жидкий TiCl4 : ведь суммарное количество примесей в этом соединении не должно превышать одной сотой доли процента.

Особенно вредны для металлического титана кислород, азот, углерод, кремний и водород. Избавиться от них удается благодаря тому, что их соединения кипят при других, отличных от TiCl4, температурах. Происходит это в технологической установке, основу которой составляют две ректификационные колонны из нержавеющей стали. Ректификационная колонна-это вертикальная труба диаметром около метра, перегороженная горизонтальными полками с отверстиями, через которые вверх поднимается пар, а вниз стекает жидкость. В колонне поддерживается различная температура: в нижней части — повышенная, в верхней — менее высокая.

Подогретый до 60°С TiCl4 подается в первую колонну (в средней ее части), затем во вторую. Вследствие различных температур кипения веществ и многократного контактирования друг с другом паров загрязняющих соединений исходная смесь практически полностью разделяется, вещество TiCl4 удается очистить до нужной степени.

Итак, полупродукт очистили. А дальше?

В реакционный аппарат (из которого предварительно выкачали весь воздух, заменив аргоном) подают расплавленный магний и тут же начинают нагнетать TiCl4. Вещества вступают в контакт друг с другом и возникает стремительная, интенсивная, бурная реакция. Если бы удалось заглянуть внутрь, глазу предстала бы картина, подобная пожару. Но этот пожар управляем. К тому же горит не вся масса веществ, а только тонкий слой в месте их соприкосновения.

Магний "разрывает” TiCl4 на составные части: хлор и титан. Освободившийся было хлор тут же соединяется с магнием, образуя хлористый магний, а титан остается свободным. Хлопья титана собираются в сгустки, оседая на стенках. Процесс идет до тех пор, пока сосуд не заполнится получаемыми продуктами. Все это время снаружи стенки реактора охлаждаются потоками воды.

Когда процесс прекращается, подъемным краном реактор извлекают из печи, охлаждают и разбирают. Открытую реторту помещают в специальный аппарат, где полученный титан нагревают в вакууме и из толщи рыхлого металла легко испаряются загрязняющие его примеси.

Извлечь титан из реактора не просто: он прикипает к стенкам. Приходится выбивать массу отбойным молотком. Собственно говоря, извлека- 108 ют еще не металл, а так называемую губку. Но что такое титановая губка? Титан ли это? Титан. Почему же в таком случае употребляется слово ”губка”? Потому, что полученный в реакторе титан совсем не похож на серебристо-серый, плотный и звонкий монолитный металл. И если показать губку несведущему человеку, ничего не говоря и не объясняя, тот никогда не поверит, что ему показывают металл, да еще такой удивительный, как титан.

Представьте себе рыхлую, причудливо запекшуюся пепельно-серую массу, похожую не то на какое-то глубоководное чудовище, не то на серые водоросли, не то на застывшую лаву вулканов с хаотическими прожилками, порами, изъязвлениями. От нее не так уж трудно отбить молотком небольшие куски, а некоторая часть причудливой массы может даже выкрошиться сама.

Но если ударять молотком по одному и тому же месту, пористая масса будет спрессовываться и вскоре сверкнут настоящая титановая поверхность, звенящая и прочная. Такова титановая губка и не случайно ее так назвали: по внешнему виду она действительно похожа на настоящую губку. Титановую губку измельчают. Хотя губка и очищена, в ней все же имеются незначительные остатки хлористого и металлического магния, которые интенсивно поглощают влагу из воздуха, и в губку попадает вода. А это недопустимо, поскольку значительно ухудшается качество металла. Вот почему все операции по обработке губки после ее очистки проводят в помещениях с максимально сухим воздухом, а готовую губку хранят и транспортируют в специальной герметически закрывающейся таре. Иногда контейнеры с нею заполняют аргоном.

Так получают титановую губку и технология ее производства очень и очень непроста. К тому же процесс восстановления титана не является непрерывным. Реактор работает по прямому назначению только часть времени, а в остальное — используется на вспомогательных операциях. Сложность технологии, ее несовершенство, трудоемкость работ приводят к тому, что из природного сырья, которое стоит совсем недорого и имеется в большом количестве, получают металл стоящий намного дороже алюминия, магния, меди, свинца, цинка, не говоря уже о черных металлах.

 

ГУБКА - ЭТО ЕЩЕ НЕ ВСЕ

Мало получить титановую губку, надо еще превратить эту ломкую пористую массу в звонкий конструкционный металл, наделить его заранее заданными свойствами, с тем чтобы он удовлетворял требованиям конструкторов. Для этого титановую губку необходимо прежде всего переплавить.

На специальных гидравлических прессах титановую губку уплотняют. Получаемые секции сваривают в электроды требуемой длины, масса которых—многие сотни килограммов, иногда даже больше тонны. Их помещают в дуговые вакуумные электропечи, включают постоянный ток силой в несколько тысяч ампер. Вспыхивает яркая, как солнце, вольтова дуга. Титановый электрод медленно расплавляется, образуя слиток. Но это еще далеко не все. В результате первой переплавки слиток получается неплотным, в нем встречаются и не полностью проплавившиеся участки. Чтобы их устранить,а также чтобы слиток был более однородным по своему химическому составу, металл переплавляют повторно. Теперь уже электродами служат слитки, полученные при первой переплавке. Их сваривают по две-три штуки и вновь помещают в печь, на этот раз уже в более производительную. Плавка длится несколько часов и обходится очень дорого: ведь только электроэнергии на каждую тонну получаемого слитка расходуется до 5 тысяч киловатт-часов.

Если переплавляют губку без всяких добавок, то получают слитки технически чистого титана. Когда же в титановую губку добавляют перед плавкой другие элементы, получают различные титановые сплавы. В зависимости от того, какие именно элементы входят в их состав, титановые сплавы могут быть легче или тяжелее технического титана, дороже или дешевле его.

Чаще всего в титан добавляют алюминий —легкий и весьма дешевый металл, действующий на титан благотворно. Он делает титановые сплавы более жаропрочными, повышает их упругие характеристики, снижает массу. Прочностные и другие свойства титана существенно улучшают ванадий, олово, марганец, хром. Как уже говорилось, значительно увеличивают коррозионную стойкость нового промышленного металла добавки палладия, молибдена, тантала. Сплавы с добавками этих металлов предназначены для использования в самых разрушительных средах вместо чистого тантала, платины, золота.

Из технически чистого титана и титановых сплавов выпускают полуфабрикаты всех видов: листы, ленты, плиты, прессованные профили, прутки, проволоку, трубы, поковки и штамповки. Производство полуфабрикатов обычно ведется на специальных металлообрабатывающих заводах.

Прежде чем приступить к прокатке титановых слитков, их круглому сечению необходимо придать прямоугольную форму. Поэтому слитки в нагретом состоянии куют на молотах либо прессуют на вертикальных прессах. Нагревают титановые сплавы до температуры 900—1100°С, нелегированный металл—до более низкой температуры. Для ковки титана используют молоты с многотонной падающей частью, а для прессования — прессы мощностью в несколько тысяч тонн. Титан деформируется хуже, чем сталь, поэтому усилие, необходимое для его обработки, значительно больше.

Если при прокатке меди или латуни с одного прокатного стана получают в год несколько тысяч тонн листов, то титановых листов с такого же стана получают всего несколько сот тонн в год. Контраст разительный, не правда ли?

Как во время прокатки, так и после нее титановые листы неоднократно очищают от окалины. Это достигается травлением в тех кислотах, в которых металл нестоек. В конце процесса изготовления листы отделывают: правят, растягивают, обрезают под заданный размер. Специальной обработкой можно получить листы с зеркальной поверхностью. Именно такими полированными листами облицован обелиск в честь покорителей космоса, установленный в Москве неподалеку от ВДНХ.

Минимальная толщина получаемой титановой фольги составляет несколько микрон. Изготовляют фольгу на небольших ленточных прокатных станах. Как внешне, так и по своим механическим свойствам титановая фольга очень мало походит на алюминиевую, которой обертывают плитки шоколада. Впрочем, она и предназначена совсем для других целей.

Из технического титана и их Титановых сплавов изготовляют самый разнообразный ассортимент труб—тонкостенных и с очень толстыми стенками, узких, как стержень шариковой ручки, и таких широких, что внутри может свободно поместиться богатырского сложения человек. Длина труб может достигать нескольких десятков метров.

Так как прессование трубной заготовки связано с целым рядом трудностей, а сварной шов у титана так же прочен и стоек против коррозии, как и основная масса металла, то наряду с бесшовными выпускают также и сварные трубы. В качестве заготовки используют продольно свернутую титановую ленту, боковые стороны которой сваривают с помощью электрического тока. Скорость сварки достигает многих десятков метров в минуту. Для предохранения расплавленного титана от взаимодействия с воздухом металл защищают подачей (как снаружи, так и изнутри) инертного газа аргона.

Сварные трубы дешевле бесшовных, для их изготовления расходуется меньше титана. Они гораздо прочнее бесшовных или, как их называют иначе, цельнотянутых труб из других распространенных материалов. Так, например, сварные трубы из титана вдвое прочнее труб из нержавеющей стали, втрое прочнее медно-никелевых труб и в тринадцать раз прочнее графитовых. Что же касается стойкости титана против коррозии, то она не нуждается в дополнительной рекламе и несоизмерима со стойкостью традиционных материалов.

Проволока из титана производится волочением проволочной заготовки. Главная трудность при изготовлении проволоки заключается в том, что из-за склонности прикипать к другим металлам титан налипает на волочильный инструмент. Чтобы уменьшить налипание, поверхность титановых заготовок обрабатывают очень вязкими смазками. Титановую проволоку в основном используют как присадочный материал при сварке титановых конструкций.

Обточенные на токарном станке кованые слитки служат заготовками для прессования. На горизонтальных прессах из них получают профили и трубную заготовку. Перед прессованием слитки в зависимости от марки сплава нагревают до 700—1000°С на специальных нагревательных установках или в печах.

Если титан прессовать без особых мер предосторожности, то удается получить всего лишь несколько метров профилей или трубной заготовки: матрица пресса истирается, на нее налипает металл, что приводит к порче изделий. Приходится смазывать специальными составами детали пресса. В качестве смазки служат легкоплавкие сорта стекла, керамики, смеси минерального масла с графитом, слюдой, алюминиевыми чешуйками, особой глиной. Применяют также смазки на основе мыла. Все это уменьшает трение и схватывание.

 

ТРУДНОСТИ ОБРАБОТКИ

Принято считать, что титан поддается механической обработке подобно нержавеющей стали. Это значит, что обрабатывать титан в 4—5 раз труднее, чем обычную сталь, но это все же не составляет неразрешимой проблемы. Основные помехи при обработке титана —это большая склонность его

к налипанию и задиранию, низкая теплопроводность, а также то обстоятельство, что практически все металлы и огнеупоры растворяются в титане, в результате чего стружка представляет собой сплав титана и твердого материала режущего инструмента. При такой обработке быстро изнашивается резец.

Для уменьшения налипания и задирания и для отвода большого количества тепла, которое выделяется при резании, применяют охлаждающие жидкости. Точение заготовки обычно производят с помощью резцов из твердых сплавов, причем скорость обработки, как правило, ниже, чем при точении нержавеющей стали.

Если необходимо разрезать листы из титана, то эту операцию осуществляют на гильотинных ножницах. Сортовой прокат больших диаметров режут механическими пилами, применяя ножовочные полотна с крупным зубом. Менее толстые прутки разрезают на токарных станках.

При фрезеровании титан остается верным себе и налипает на зубья фрезы. Фрезы тоже изготовляют из твердых сплавов, а для охлаждения применяют смазки, отличающиеся большой вязкостью.

При сверлении титана основное внимание обращают на то, чтобы стружка не скапливалась в отводящих канавках, так как это быстро повреждает сверло. В качестве материала для сверления титана применяют быстрорежущую сталь.

При использовании титана как конструкционного материала титановые детали соединяют друг с другом и с деталями из иных металлов разными методами.

Основной метод — сварка. Самые первые попытки сваривать титан были неудачными, что объяснялось взаимодействием расплавленного металла с кислородом, азотом и водородом воздуха, ростом зерна при нагреве, изменениями в микроструктуре и другими факторами, приводившими к хрупкости шва. Однако все эти проблемы, ранее казавшиеся неразрешимыми, были решены в самые короткие сроки и в наши дни сварка титана—обычная промышленная технология.

Но, хотя проблемы и решены, сварка титана не стала простой и легкой. Главная ее трудность и заключается в необходимости постоянного и неукоснительного предохранения сварного шва от загрязнения примесями. Поэтому при сварке титана используют не только инертный газ высокой чистоты и специальные бескислородные флюсы, но и разнообразные защитные козырьки, прокладки, которые защищают остывающие участки шва и прилегающей к нему зоны, а также обратную его сторону.

Чтобы максимально снизить рост зерна и уменьшить другие вредные изменения в микроструктуре, сварку ведут с большой скоростью. Почти все виды сварки производят в обычных условиях, применяя специальные меры для защиты нагретого металла от соприкосновения с воздухом.

Но мировая практика знает и сварку в контролируемой атмосфере. Такая защита сварного шва обычно необходима при выполнении особо ответственных работ, когда требуется стопроцентная гарантия того, что сварной шов не будет загрязнен. Если свариваемые части невелики, сварку ведут в специальной камере, заполненной инертным газом. Сварщик хорошо видит все, что ему нужно, через специальное окно.

Когда же сваривают большие детали и узлы, контролируемую атмосферу создают в специальных вместительных герметичных помещениях, где сварщики работают в скафандрах. Разумеется, эти работы ведут сварщики самой высокой квалификации, но и обычную сварку титана должны проводить только специально обученные этому делу люди.

В тех случаях, когда сварка невозможна или попросту нецелесообразна, прибегают к пайке. Пайка титана осложняется тем, что он при высоких температурах химически активен и очень прочно связан с покрывающей его поверхность оксидной пленкой. Подавляющее большинство металлов непригодно для использования в качестве припоев при пайке титана, так как получаются хрупкие соединения. Только чистые серебро и алюминий подходят для этой цели.

Соединять титан с титаном, а также с другими металлами можно и механически—клепкой или при помощи болтов. При использовании титановых заклепок время клепки увеличивается почти вдвое по сравнению с применением высокопрочных алюминиевых деталей, а гайки и болты из нового промышленного металла непременно покрывают слоем серебра или синтетического материала тефлона, иначе при завинчивании гайки титан будет, как это ему неизменно присуще, налипать и резьбовое соединение не сможет выдержать больших напряжений.

Склонность к налипанию, обусловленная высоким коэффициентом трения, ~ очень серьезный недостаток титана. Это приводит к тому, что титановые сплавы быстро изнашиваются и их нельзя использовать для изготовления деталей, работающих в условиях трения скольжения. При скольжении по любому металлу титан налипает на его поверхность, и деталь вязнет, схваченная липким слоем титана.

Впрочем, говорить, что титановые сплавы нельзя применять при изготовлении трущихся деталей, неверно. Существует немало способов, упрочняющих поверхность титана и устраняющих склонность к налипанию. Один из них — азотирование.

Процесс заключается в том, что детали, нагретые до 850— 950 °С, выдерживают в чистом газообразном азоте более суток. На поверхности образуется золотисто-желтая пленка нитрида титана большой микротвердости. Износостойкость титановых деталей повышается во много раз и не уступает изделиям из специальной поверхностно упрочненной стали.Другой распространенный метод устранения склонности титана к задиранию — оксидирование. При этом в результате нагрева на поверхности деталей образуется оксидная пленка. При низкотемпературном оксидировании свободный доступ воздуха к металлу затруднен и оксидная пленка получается плотной, хорошо связанной с основной толщей титана.

Высокотемпературное оксидирование заключается в том, что в течение 5-6 часов детали выдерживают на воздухе нагретыми до 850 °С, а затем резко охлаждают в воде, чтобы удалить с поверхности рыхлую окалину. В результате оксидирования сопротивление износу возрастает в 15—100 раз.