Стратегии решения математических задач. Различные подходы к типовым задачам

Позаментье Альфред

Крулик Стивен

Глава 10

Обоснованное предположение и проверка

 

 

Конечно, даже мысль о том, что в качестве стратегии решения задач можно использовать догадки, вызывает недоумение. В самом деле, может ли кто из нас вспомнить, чтобы учитель говорил кому-то, давшему нестандартный ответ: «Ты это знаешь или просто строишь догадки?» В некоторых книгах выдвижение предположений и их проверку называют методом «проб и ошибок», и это воспринимается более негативно. Добавление определения обоснованное в название метода должно успокоить вас и уверить в том, что это действительно эффективная и нередко очень полезная стратегия.

Мы пользуемся стратегией «предположение-и-проверка» на протяжении всей своей жизни. Например, на кухне мы делаем предположение о том, готово ли мясо в духовке, а потом с помощью специального термометра проверяем, правильно ли оно. Если нет, то мясо опять отправляется в духовку, а процесс «предположение-проверка» повторяется через некоторое время. Пытаясь найти конкретное место во время поездки на автомобиле, мы «предполагаем», что оно находится на определенной улице. Если его там нет, то мы делаем другое предположение на основе информации, полученной в результате первой попытки.

При решении задач, когда слишком много неопределенностей, мы можем использовать эту стратегию для уменьшения неопределенности с помощью конкретных предположений. Проверяя предположения, мы получаем информацию для уточнения следующего предположения и приближаемся к отысканию ответа.

Чтобы помогать решению задач, предположения должны быть неслучайными и не взятыми с потолка без очевидного основания. После изучения условий задачи определяется возможный подход к решению и выдвигается предположение. Затем предположение проверяется на основе условий задачи. Если это не приводит к получению ответа, то выдвигается следующее предположение с учетом информации, полученной на предыдущем этапе. Новое предположение опять проверяется. Процесс уточнения предположений продолжается до тех пор, пока не будет накоплена информация, достаточная для решения задачи. Например, предположим, что нас просят найти следующие два члена последовательности 2, 0, 4, 3, 6, 7, 8, 12, 10, 18, ____, ____. Что мы видим? Возможно, члены последовательности возрастают и уменьшаются случайным образом. Не исключено, что здесь смешаны две последовательности. Это выглядит как обоснованное предположение. Попробуем проверить его!

Похоже, что наше предположение правильно — здесь действительно две последовательности. Последовательность 1 состоит из четных чисел. Следующим ее членом будет 12. В последовательности 2 разность между последовательными членами возрастает каждый раз на 1, т. е. разности равны 3, 4, 5, 6 и т. д. Следующий ее член должен быть равен 25. Таким образом, мы получаем ответ: следующие два члена — это 12 и 25. Обратите внимание на то, что здесь использовалась также стратегия выявления закономерности. В применении нескольких стратегий для решения задачи нет ничего необычного.

Обратите внимание также, что предположения берутся не с потолка. Все они основываются на тщательном анализе того, что дано, и того, что требуется найти. Предположения делаются с умом! Не забывайте, что эту стратегию не случайно называют «обоснованным предположением и проверкой».

Рассмотрим еще один пример использования этой стратегии.

Местная фирма должна выполнить заказ на поставку полых и сплошных резиновых шаров. Полый шар весит одну унцию, а сплошной — две унции. И те и другие шары имеют одинаковый размер. В коробку вмещается 50 шаров. Самый выгодный транспортный тариф установлен для коробок весом 80 унций. Сколько шаров того и другого вида нужно положить в коробку, чтобы получить этот вес?

Вместо привычного составления уравнений попробуем воспользоваться стратегией выдвижения обоснованного предположения и его проверки. Для отслеживания наших предположений составим таблицу. Начнем с середины — с 25 шаров каждого вида.

В коробку следует положить 30 сплошных шаров и 20 полых. Если попробовать все сочетания подряд, то они все равно приведут к правильному ответу. Выдвижение обоснованных предположений позволяет сократить количество попыток.

Рассмотрим еще одну задачу, решение которой сильно выигрывает от применения нашей стратегии.

Игра в дротики очень популярна во многих странах. Памела сделала несколько бросков в мишень, секции которой обозначены как 2, 3, 5, 11 и 13. Если ее счет составил 150, то какое наименьшее количество дротиков она могла бросить?

Поскольку нужно найти минимальное количество дротиков, секций с высокими значениями должно быть как можно больше. Сделаем несколько предположений и представим результаты в табличной форме.

Наименьшее количество дротиков, которые могли потребоваться Памеле, равно 12. Обратите внимание на то, что мы опять использовали стратегию организации данных для отслеживания результатов оценки предположений. Табличное представление данных нередко очень облегчает анализ полученной информации.

 

Задача 10.1

 

На местной ферме выращивают голубику, кусты которой высажены так, что они образуют решетку с квадратными ячейками, а количество рядов равно количеству колонок. Фермер решил увеличить размеры поля на одинаковое количество рядов и колонок. Новое поле вмещает на 211 кустов больше, чем старое. Сколько кустов было в одном ряду на старом поле?

 

Обычный подход

Обычно начинают с составления уравнений. Возьмем за x количество рядов и колонок. Тогда первоначальное количество кустов равно x × x, или x2. Обозначим дополнительные кусты в каждом ряду и колонке как b, тогда новое количество кустов будет равно (x + b)2. Теперь у нас есть уравнение:

x 2 + 211 = ( x + b ) 2 ;

x 2 + 211 = x 2 + 2 bx + b 2 ;

211 = b 2 + 2 bx .

Здесь возникает проблема. Мы получили квадратное уравнение с неизвестной b, в котором есть еще одна неизвестная x. Что с ним делать? Возможно стоит подставить какие-нибудь значения вместо неизвестных и посмотреть, не удастся ли решить уравнение. Хотя такой подход и может дать правильный ответ, он не слишком эффективен.

 

Образцовое решение

Попробуем пойти путем выдвижения предположений и их проверки. Мы видим, что 211 — это простое число, а x и b должны быть целыми числами. Если разложить на множители приведенное выше уравнение, то мы получим:

211 = b ( b + 2 x ).

Поскольку 211 — это простое число, у него только два множителя: 211 и 1. Таким образом, b должно быть равным 1, а (b + 2x) — 211. В результате мы получаем 2x = 210, а x = 105. В одном ряду на старом поле было 105 кустов.

 

Задача 10.2

 

Джек хочет огородить прямоугольный участок, отведенный под огород. У него есть готовая ограда длиной 20 м. Какие размеры должен иметь участок, чтобы огороженная площадь была наибольшей?

 

Обычный подход

Наиболее очевиден алгебраический подход. Можно составить уравнения, а потом решить их. Обозначим длину, как x, а ширину, как y. Тогда мы получим:

2 x + 2 y = 20, или x + y = 10.

При составлении второго уравнения возникает проблема — как представить максимальную площадь? Иначе говоря, нам нужно получить xy = максимум. Что здесь можно сделать? Посмотрим, можно ли найти другой подход.

 

Образцовое решение

Первая же прикидка показывает, что, например, длина 8 и ширина 2 «подходят». Однако точно так же подходят и другие пары чисел. Воспользуемся стратегией обоснованного предположения и проверки, чтобы понять, какие размеры дают наибольшую площадь. Будем вести учет предположений в табличной форме. Поскольку для определения площади нужно умножить одну длину на одну ширину, ограничимся половиной периметра, равной 10. Начнем с наибольшей возможной длины.

Похоже, что прямоугольник размером 5 × 5 (квадрат) имеет наибольшую площадь. А что, если попробовать дробные размеры? В условиях задачи не говорится, что они должны быть целыми. Добавим в нашу таблицу дробные значения и посмотрим, что произойдет.

Все равно получается, что прямоугольник с периметром 20 м имеет наибольшую площадь при размерах 5 × 5 (квадрат). Некоторые и без этого знают, что при заданном периметре прямоугольника наибольшую площадь всегда имеет квадрат. А раз так, то ответ получается совсем быстро — это квадрат с периметром 20, площадь которого равна 5 × 5 = 25 м2.

 

Задача 10.3

 

Найдите наименьшее простое число, превышающее 510. (Напомним, что простым называют такое число, которое делится только на 1 и на само себя.)

 

Обычный подход

Поскольку в задаче требуется найти наименьшее простое число, превышающее 510, мы будем, начиная с 511, брать число и пробовать разные делители в порядке возрастания вплоть до его половины. Если ни один из этих возможных делителей не подойдет, значит мы нашли простое число.

 

Образцовое решение

Воспользуемся стратегией обоснованного предположения и проверки для сужения диапазона возможных вариантов. Мы знаем, что число, превышающее 510, не может быть простым, если у него в конце стоят цифры 0, 2, 4, 5, 6 или 8. Кроме этого вспомним, что число, сумма цифр которого делится на 3, тоже делится на 3. Это позволяет отбросить некоторые числа, превышающие 510, например число 513. Таким образом, мы ограничиваем предположения числами 511, 517, 521 и т. д. В результате проверки следующим за 510 простым числом оказывается 521.

 

Задача 10.4

 

В эстафетном забеге на одну милю участвует команда в составе: Густав, Йохан, Ричард и Вольфганг. Они бегут свой четвертьмильный этап в том порядке, в котором перечислены. Каждый бегун проходит свой этап на 2 секунды быстрее предыдущего. Они финишируют с общим временем 3 минуты 40 секунд. За сколько каждый бегун пробежал свой этап?

 

Обычный подход

Применив несложные алгебраические вычисления, можно решить задачу следующим образом:

x = время, за которое свой этап пробежал Густав;

x — 2 = время, за которое свой этап пробежал Йохан;

x — 4 = время, за которое свой этап пробежал Ричард;

x — 6 = время, за которое свой этап пробежал Вольфганг.

x + ( x — 2) + ( x — 4) + ( x — 6) = 220

(3 минуты 40 секунд = 220 секунд);

4 x — 12 = 220;

4 x = 232;

x = 58.

Густав пробежал свой этап за 58 секунд, Йохан — за 56 секунд, Ричард — за 54 секунды, Вольфганг — за 52 секунды.

 

Образцовое решение

Конечно, это решение зависит от знания алгебраических методов. Вместе с тем задачу можно решить с помощью стратегии обоснованного предположения и проверки. Предположим, что бегуны прошли дистанцию примерно с одинаковой скоростью. Если так, то можно разделить 220 на 4 и получить 55 в качестве первого предположения.

Таким образом, Густав пробежал свой этап за 58 секунд, Йохан — за 56 секунд, Ричард — за 54 секунды, Вольфганг — за 52 секунды.

 

Задача 10.5

 

В коробке у Дэна находятся почтовые марки стоимостью 13 и 8 центов. Отправка посылки, которую он приготовил, стоит ровно $1. Сколько марок каждого достоинства Дэн должен наклеить на посылку?

 

Обычный подход

Можно попробовать решить эту задачу алгебраически. Если обозначить как x количество 13-центовых марок и как y количество 8-центовых марок, то мы получим следующее уравнение:

0,13 x + 0,08 y = 1,00.

Если перевести все в центы, то уравнение приобретет вид:

13 x + 8 y = 100.

Это, однако, уравнение с двумя неизвестными, а значит ответов может быть несколько. Поскольку количество марок должно быть целым числом, нам нужно решить диофантово уравнение.

Для начала выразим y через x: После деления и выделения целых величин и остаточных членов, а затем объединения остаточных членов мы получаем:

Дробная часть должна быть целым числом, поскольку количество марок не может быть дробным. Выберем какое-нибудь значение для x, при котором дробная часть превращается в целое число. Пусть x = 4. Тогда y = 12 − 4 + (–2), или y = 6.

Дэн, таким образом, должен использовать шесть 8-центовых марок и четыре 13-центовых марки. (Но все ли это возможности? Можно ли найти все возможные ответы?)

 

Образцовое решение

Более изящное решение дает использование нашей стратегии обоснованного предположения и проверки в сочетании с табличным представлением результатов.

Таким образом, четыре 13-центовых марок и шесть 8-центовых марок дают сумму $1, необходимую Дэну. Обратите внимание на то, что таблица ясно показывает отсутствие других вариантов.

 

Задача 10.6

 

Разница между двумя положительными целыми числами равна 5. Если сложить их квадратные корни, то сумма также будет равна 5. Что это за целые числа?

 

Обычный подход

Традиционный подход — это составление системы уравнений:

Пусть x = первое целое число;

Пусть y = второе целое число.

Тогда:

Возведем обе стороны в квадрат:

Упростим полученное выражение:

Снова возведем обе стороны в квадрат:

4 x 2 + 20 x = 4 x 2 — 80 x + 400;

100 x = 400;

x = 4;

y = 9.

Два целых числа — 4 и 9.

 

Образцовое решение

Традиционный подход требует умения решать уравнения с радикалами и связан с большим количеством алгебраических преобразований. В качестве альтернативы воспользуемся нашей стратегией обоснованного предположения и проверки. Поскольку сумма квадратных корней из двух целых чисел равна 5, квадратные корни этих чисел должны представлять собой 4 и 1 или 3 и 2. Таким образом, целые числа должны быть равными 16 и 1 или 9 и 4. Вместе с тем, если взять разность, которая равна 5, становится понятно, что правильный ответ — 9 и 4.

 

Задача 10.7

 

Тренер футбольной команды разрешает игрокам самостоятельно выбрать номер, под которым они выйдут на поле. Макс и Сэм, которые не только играют в футбол, но и входят в состав математической команды, останавливаются на особой паре номеров. Когда их номера возводят в квадрат, они дают двузначные числа. Когда два футболиста стоят рядом, образующееся из этих квадратов четырехзначное число также является квадратом простого числа. Какие номера они выбрали?

 

Обычный подход

Большинство людей берут числа 1, 2, 3, 4, 5, … и возводят их в квадрат, пытаясь найти те, которые дают двузначный квадрат. Затем они помещают эти квадраты рядом друг с другом и смотрят, какие из них образуют квадрат простого числа. Такое гадание нельзя назвать продуктивным.

 

Образцовое решение

Призовем на помощь нашу стратегию обоснованного предположения и проверки. Прежде всего, можно ограничить количество чисел, из которых делается выбор. При возведении в квадрат двузначное число дают числа от 4 до 9, поскольку квадраты 1, 2 и 3 — это однозначные числа, а квадраты 10, 11, …, 31 — трехзначные числа. Таким образом, мы можем выбирать из следующих квадратов: 16, 25, 36, 49, 64, 81. Начиная с 16 проверим, пара каких квадратов образует при размещении рядом квадрат простого числа. Обратите внимание, если мы оцениваем 1625 (это не квадрат простого числа), то нам нужно оценить и 2516 (тоже не квадрат простого числа). Чтобы выдвинуть обоснованное предположение, нужно в пару к 16 поставить оставшиеся двузначные числа. Если взять пару 16 и 81, то мы получим число 1681, равное 412. Макс и Сэм выбрали в качестве своих номеров числа 4 и 9.

Обратите внимание на то, что числа 3 и 4 тоже работают, так как 32 = 9, а 42 = 16. При размещении рядом друг с другом эти квадраты дают число 169, которое является квадратом простого числа. Однако в условиях задачи говорится о четырехзначном числе, так что этот ответ исключается.

 

Задача 10.8

 

Лайза получила на неделю задание решить 26 арифметических задач. Чтобы заинтересовать ее, отец обещал выдавать ей по 8 центов за правильно решенные задачи и вычитать по 5 центов за неправильно решенные. После выполнения задания Лайза обнаружила, что отец не должен ей ничего, но и она ничего не должна. Сколько задач Лайза решила правильно?

 

Обычный подход

Эту задачу позволяет решить обычный алгебраический подход.

Пусть x обозначает количество правильно решенных задач, а y — количество неправильно решенных задач.

Тогда:

8 x — 5 y = 0;

x + y = 26.

Из первого уравнения получаем, что 8x = 5y и

Подстановка значения x во второе уравнение дает:

Лайза решила правильно 10 задач и неправильно 16 задач.

 

Образцовое решение

Те, кто не умеет решать системы из двух уравнений с двумя неизвестными, могут попробовать найти ответ с помощью стратегии обоснованного предположения и проверки. Результаты лучше представлять в табличной форме. Начнем с середины — 13 правильных решений и 13 неправильных.

Лайза решила правильно 10 задач и неправильно 16 задач.

Табличное представление результатов делает ответ очевидным. Обратите внимание на то, что предположения не выдвигаются наобум. Мы начинаем в середине и движемся вверх или вниз по одному предположению за раз. Поскольку первое предположение значительно выше искомого ответа, мы уменьшаем количество правильных решений на 1 и увеличиваем количество неправильных на 1 за раз, уменьшая сумму на 13 центов.

 

Задача 10.9

 

В США существуют монеты следующего достоинства: 1 цент, 5 центов, 10 центов, 25 центов, 50 центов (есть даже монета $1). Какое наименьшее количество монет необходимо, чтобы составить любую сумму от 1 цента до $1?

 

Обычный подход

Один из подходов — это взять какое-то количество монет каждого достоинства и попытаться найти наименьшее их число, которое позволяет составить любую сумму от 1 цента до $1. Другими словами, реально выполнить необходимые действия. Некоторые пытаются пойти обратным путем и начинают с двух 50-центовых монет. Ни тот ни другой подход нельзя назвать рациональным.

 

Образцовое решение

Воспользуемся стратегией обоснованного предположения и проверки. Очевидно, что нам понадобятся четыре одноцентовых монеты для получения сумм величиной до 4 центов. Добавив одну пятицентовую монету, мы можем получить любую сумму от 1 цента до 9 центов. Добавление 10-центовой монеты позволяет составить суммы величиной до 19 центов. Еще одна 10-центовая монета делает доступными суммы до 29 центов. Одна 25-центовая монета позволяет составить все суммы до 54 центов. Наконец, одна 50-центовая монета расширяет диапазон доступных сумм до $1. Нам необходимы девять монет следующих достоинств:

1 цент, 1 цент, 1 цент, 1 цент, 5 центов, 10 центов, 10 центов, 25 центов, 50 центов.

Для проверки полученного ответа можно выбрать наугад несколько сумм и попробовать составить их с помощью наших девяти монет. Например, чтобы составить сумму 73 цента, нам потребуются монеты 50 центов, 10 центов, 10 центов и три по 1 центу.

 

Задача 10.10

 

Древние египтяне были выдающимися математиками. Пирамиды и многие построенные ими храмы наглядно подтверждают это. Они одними из первых стали пользоваться дробями и представляли их в виде суммы долей единицы. (Доля единицы — это дробь, в числителе которой находится 1.) Так,

Как древние египтяне записали бы дробь?

 

Обычный подход

Традиционно выписывают различные доли единицы, находят их общий знаменатель и суммируют, чтобы подобрать подходящий набор долей. Ответ практически невозможно получить, если действовать беспорядочно. Количество возможностей здесь почти бесконечно.

 

Образцовое решение

Простое тыканье наугад редко дает результат. Обоснованное предположение и проверку можно использовать организованно. Проанализируем приведенные выше примеры.

Прежде всего, обратите внимание на то, что все знаменатели долей единицы являются множителями исходного знаменателя. В первом случае знаменатели 2 и 3 являются множителями исходного знаменателя 6. Значит у искомых долей единицы в знаменателе должны стоять множители числа 28. Кроме того заметьте, что доли единицы идут в порядке убывания — впереди стоит наибольшая доля, за ней идет следующая по величине и т. д. Очевидно, что наибольшая доля единицы это Если в качестве возможных знаменателей использовать множители числа 28, то следующей величине долей единицы будет При сложении этих долей мы получим: Нам, однако, нужно еще чтобы получить в сумме Таким образом, искомая сумма единичных долей равна:

Использованный здесь метод подходит для дробей, знаменатель которых представляет собой составное число. Если знаменатель — простое число, то для решения задачи нужна другая процедура.