Сборник основных формул по химии для ВУЗов

Рябов М. А.

Невская Е. Ю.

Сорокина Е. А.

Шешко Т. Ф.

В пособии приведены все основные формулы, уравнения реакций, а также даны определения по общей, неорганической, аналитической, органической и физической химии.

Предназначено для студентов нехимических специальностей вузов, а также может быть полезно абитуриентам.

 

I. Общая химия

 

1. Основные понятия химии

Химия – наука о составе, строении, свойствах и превращениях веществ.

Атомно-молекулярное учение. Вещества состоят из химических частиц (молекул, атомов, ионов), которые имеют сложное строение и состоят из элементарных частиц (протонов, нейтронов, электронов).

Атом – нейтральная частица, состоящая из положительного ядра и электронов.

Молекула – устойчивая группа атомов, связанных химическими связями.

Химический элемент – вид атомов с одинаковым зарядом ядра. Элемент обозначают

где X – символ элемента, Z– порядковый номер элемента в Периодической системе элементов Д.И. Менделеева, A – массовое число. Порядковый номер Z равен заряду ядра атома, числу протонов в ядре атома и числу электронов в атоме. Массовое число A равно сумме чисел протонов и нейтронов в атоме. Число нейтронов равно разности A – Z.

Изотопы – атомы одного элемента, имеющие разные массовые числа.

Относительная атомная масса (Ar) – отношение средней массы атома элемента естественного изотопического состава к 1/12 массы атома изотопа углерода 12С.

Относительная молекулярная масса (Mr) – отношение средней массы молекулы вещества естественного изотопического состава к 1/12 части массы атома изотопа углерода 12С.

Атомная единица массы (а.е.м) – 1/12 часть массы атома изотопа углерода 12С. 1 а.е. м = 1,66 × 10-24 г.

Моль – количество вещества, содержащее столько структурных единиц (атомов, молекул, ионов), сколько содержится атомов в 0,012 кг изотопа углерода 12С. Моль – количество вещества, содержащее 6,02 • 1023 структурных единиц (атомов, молекул, ионов).

n = N/N A , где n – количество вещества (моль), N – число частиц, a N A – постоянная Авогадро. Количество вещества может обозначаться также и символом v.

Постоянная Авогадро N A = 6,02 • 10 23 частиц/моль.

Молярная масса M (г/моль) – отношение массы вещества m(г) к количеству вещества n (моль):

М = m/n, откуда: m = М • n и n = m/М.

Молярный объем газа V M (л/моль) – отношение объема газа V (л) к количеству вещества этого газа n (моль). При нормальных условиях V M = 22,4 л/моль.

Нормальные условия: температура t = 0°C, или Т = 273 К, давление р = 1 атм = 760 мм. рт. ст. = 101 325 Па = 101,325 кПа.

V M = V/n, откуда: V = V M • n и n = V/V M .

В результате получается общая формула:

n = m/M = V/V M = N/N A .

Эквивалент – реальная или условная частица, взаимодействующая с одним атомом водорода, или замещающая его, или эквивалентная ему каким-либо другим способом.

Молярная масса эквивалентов М э – отношение массы вещества к количеству эквивалентов этого вещества: Мэ = m/n( экв ) .

В реакциях обмена зарядов молярная масса эквивалентов вещества

с молярной массой М равна: Мэ = М/(n × m).

В окислительно-восстановительных реакциях молярная масса эквивалентов вещества с молярной массой М равна: Мэ = М/n(ē), где n(ē) – число переданных электронов.

Закон эквивалентов – массы реагирующих веществ 1 и 2 пропорциональны молярным массам их эквивалентов. m 1 /m 2 = М Э1 /М Э2 , или m 1 /М Э1 = m 2 /М Э2 , или n 1 = n 2 , где m 1 и m 2 – массы двух веществ, М Э1 и М Э2 – молярные массы эквивалентов, n 1 и n 2 – количества эквивалентов этих веществ.

Для растворов закон эквивалентов может быть записан в следующем виде:

c Э1  • V 1 = c Э2  • V 2 , где с Э1 , с Э2 , V 1   и V 2 – молярные концентрации эквивалентов и объемы растворов этих двух веществ.

Объединенный газовый закон: pV = nRT, где p – давление (Па, кПа), V – объем (м3, л), n – количество вещества газа (моль), T – температура (К), T (К) = t (°C) + 273, R – константа, R = 8,314 Дж/(К × моль), при этом Дж = Па • м3 = кПа • л.

 

2. Строение атома и Периодический закон

Корпускулярно-волновой дуализм материи – представление о том, что каждый объект может иметь и волновые, и корпускулярные свойства. Луи де Бройль предложил формулу, связывающую волновые и корпускулярные свойства объектов: λ = h/(mV), где h – постоянная Планка, λ – длина волны, которая соответствует каждому телу с массой m и скоростью V. Хотя волновые свойства существуют для всех объектов, но наблюдаться они могут лишь для микрообъектов, имеющих массы порядка массы атома и электрона.

Принцип неопределенности Гейзенберга: Δ(mV x ) • Δх > h/2n или ΔV x • Δx > h/(2πm), где m – масса частицы, x – ее координата, V x – скорость в направлении x, Δ – неопределенность, погрешность определения. Принцип неопределенности означает, что нельзя одновременно сколь угодно точно указать положение (координату x) и скорость (V x ) частицы.

Частицы с маленькими массами (атомы, ядра, электроны, молекулы) не являются частицами в понимании этого механикой Ньютона и не могут изучаться классической физикой. Они изучаются квантовой физикой.

Главное квантовое число n принимает значения 1, 2, 3, 4, 5, 6 и 7, соответствующие электронным уровням (слоям) К, L, M, N, О, Р и Q.

Уровень – пространство, где расположены электроны с одинаковым числом n. Электроны разных уровней пространственно и энергетически отделены друг от друга, поскольку число n определяет энергию электронов Е (чем больше n, тем больше Е) и расстояние R между электронами и ядром (чем больше n, тем больше R).

Орбитальное (побочное, азимутальное) квантовое число l принимает значения в зависимости от числа n: l = 0, 1,…(n – 1). Например, если n = 2, то l = 0, 1; если n = 3, то l = 0, 1, 2. Число l характеризует подуровень (подслой).

Подуровень – пространство, где расположены электроны с определенными n и l. Подуровни данного уровня обозначаются в зависимости от числа l: s – если l = 0, p – если l = 1, d – если l = 2, f – если l = 3. Подуровни данного атома обозначаются в зависимости от чисел n и l, например: 2s (п = 2, l = 0), 3d (n = 3, l = 2) и т. д. Подуровни данного уровня имеют разную энергию (чем больше l, тем больше Е): E s < E < Е А < … и разную форму орбиталей, составляющих эти подуровни: s-орбиталь имеет форму шара, p-орбиталь имеет форму гантели и т. д.

Магнитное квантовое число m 1 характеризует ориентацию орбитального магнитного момента, равного l, в пространстве относительно внешнего магнитного поля и принимает значения: – l,…-1, 0, 1,…l, т. е. всего (2l + 1) значение. Например, если l = 2, то m 1 = -2, -1, 0, 1, 2.

Орбиталь (часть подуровня) – пространство, где расположены электроны (не более двух) с определенными n, l, m 1 . Подуровень содержит 2l+1 орбиталь. Например, d – подуровень содержит пять d-орбиталей. Орбитали одного подуровня, имеющие разные числа m 1 , имеют одинаковую энергию.

Магнитное спиновое число m s характеризует ориентацию собственного магнитного момента электрона s, равного ½, относительно внешнего магнитного поля и принимает два значению: +½ и _½.

Электроны в атоме занимают уровни, подуровни и орбитали согласно следующим правилам.

Правило Паули: в одном атоме два электрона не могут иметь четыре одинаковых квантовых числа. Они должны отличаться по меньшей мере одним квантовым числом.

Из правила Паули следует, что на орбитали могут располагаться не более двух электронов, на подуровне может содержаться не более 2(2l + 1) электронов, на уровне содержится не более 2n 2 электронов.

Правило Клечковского: заполнение электронных подуровней осуществляется в порядке возрастания суммы (n + l), а в случае одинаковой суммы (n + l) – в порядке возрастания числа n.

Графическая форма правила Клечковского.

Согласно правилу Клечковского, заполнение подуровней осуществляется в следующем порядке: 1s, 2s, 2р, 3s, Зр, 4s, 3d, 4р, 5s, 4d, 5р, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s,…

Хотя заполнение подуровней происходит по правилу Клечковского, в электронной формуле подуровни записываются последовательно по уровням: 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4р, 4d, 4f и т. д. Таким образом, электронная формула атома брома записывается следующим образом: Br(35ē) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 .

Электронные конфигурации ряда атомов отличаются от предсказанных по правилу Клечковского. Так, для Сr и Cu:

Сr(24ē) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 и Cu(29ē) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .

Правило Хунда (Гунда): заполнение ор-биталей данного подуровня осуществляется так, чтобы суммарный спин был максимален. Орбитали данного подуровня заполняются сначала по одному электрону.

Электронные конфигурации атомов можно записать по уровням, подуровням, ор-биталям. Например, электронная формула Р(15ē) может быть записана:

а) по уровням)2)8)5;

б) по подуровням 1s 2 2s 2 2p 6 3s 2 3p 3 ;

в) по орбиталям

Примеры электронных формул некоторых атомов и ионов:

V(23ē) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 3 4s 2 ;

V3+(20ē) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 0 .

 

3. Химическая связь

 

3.1. Метод валентных связей

Согласно методу валентных связей, связь между атомами А и В образуется с помощью общей пары электронов.

Ковалентная связь.

Донорно-ацепторная связь.

Валентность характеризует способность атомов образовывать химические связи и равна числу химических связей, образованных атомом. Согласно методу валентных связей, валентность равна числу общих пар электронов, а в случае ковалентной связи валентность равна числу неспаренных электронов на внешнем уровне атома в его основном или возбужденных состояниях.

Валентность атомов

Например, для углерода и серы:

Насыщаемость ковалентной связи: атомы образуют ограниченное число связей, равное их валентности.

Гибридизация атомных орбиталей – смешение атомных орбиталей (АО) разных подуровней атома, электроны которых участвуют в образовании эквивалентных σ-связей. Эквивалентность гибридных орбиталей (ГО) объясняет эквивалентность образующихся химических связей. Например, в случае четырехвалентного атома углерода имеется один 2s– и три 2p-электрона. Чтобы объяснить эквивалентность четырех σ-связей, образованных углеродом в молекулах CH4, CF4 и т. д., атомные одна s- и три р-орбитали заменяют четырьмя эквивалентными гибридными sp 3 -орбиталями:

Направленность ковалентной связи состоит в том, что она образуется в направлении максимального перекрывания орбиталей, образующих общую пару электронов.

В зависимости от типа гибридизации гибридные орбитали имеют определенное расположение в пространстве:

sp – линейное, угол между осями орби-талей 180°;

sp 2 – треугольное, углы между осями орбиталей 120°;

sp 3 – тетраэдрическое, углы между осями орбиталей 109°;

sp 3 d 1 – тригонально-бипирамидальное, углы 90° и 120°;

sp 2 d 1 – квадратное, углы между осями орбиталей 90°;

sp 3 d 2 – октаэдрическое, углы между осями орбиталей 90°.

 

3.2. Теория молекулярных орбиталей

Согласно теории молекулярных орбита-лей, молекула состоит из ядер и электронов. В молекулах электроны находятся на молекулярных орбиталях (МО). МО внешних электронов имеют сложное строение и рассматриваются как линейная комбинация внешних орбиталей атомов, составляющих молекулу. Число образующихся МО равно числу АО, участвующих в их образовании. Энергии МО могут быть ниже (связывающие МО), равны (несвязывающие МО) или выше (разрыхляющие, антисвя-зывающие МО), чем энергии образующих их АО.

Условия взаимодействия АО

1. АО взаимодействуют, если имеют близкие энергии.

2. АО взаимодействуют, если они перекрываются.

3. АО взаимодействуют, если имеют соответствующую симметрию.

Для двухатомной молекулы АВ (или любой линейной молекулы) симметрия МО может быть:

σ, если данная МО имеет ось симметрии,

π, если данная МО имеет плоскость симметрии,

δ, если МО имеет две перпендикулярные плоскости симметрии.

Присутствие электронов на связывающих МО стабилизирует систему, так как уменьшает энергию молекулы по сравнению с энергией атомов. Стабильность молекулы характеризуется порядком связи n, равным: n = (n св – n разр )/2, где n св и n разр — числа электронов на связывающих и разрыхляющих орбиталях.

Заполнение МО электронами происходит по тем же правилам, что и заполнение АО в атоме, а именно: правилу Паули (на МО не может быть более двух электронов), правилу Хунда (суммарный спин должен быть максимален) и т. д.

Взаимодействие 1s-AO атомов первого периода (Н и Не) приводит к образованию связывающей σ-МО и разрыхляющей σ*-МО:

Электронные формулы молекул, порядки связей n, экспериментальные энергии связей Е и межмолекулярные расстояния R для двухатомных молекул из атомов первого периода приведены в следующей таблице:

Другие атомы второго периода содержат, помимо 2s-AO, также и 2рх-, 2рy– и 2рz-АО, которые при взаимодействии могут образовывать σ– и π-MO. Для атомов О, F и Ne энергии 2s– и 2р-АО существенно различаются, и можно пренебречь взаимодействием 2s-AO одного атома и 2р-АО другого атома, рассматривая взаимодействие между 2s-AO двух атомов отдельно от взаимодействия их 2р-АO. Схема МО для молекул O2, F2, Ne2 имеет следующий вид:

Для атомов В, С, N энергии 2s– и 2р-АО близки по своим энергиям, и 2s-AO одного атома взаимодействует с 2рz-АО другого атома. Поэтому порядок МО в молекулах В2, С2 и N2 отличается от порядка МО в молекулах O2, F2 и Ne2. Ниже приведена схема МО для молекул В2, С2 и N2:

На основании приведенных схем МО можно, например, записать электронные формулы молекул O2, O2+ и O2¯:

O2+(11ē)σs2σs*2σz2(πx2πy2)(πx*1πy*0)

n = 2 R = 0,121 нм;

O2(12ē)σs2σs*2σz2(πx2πy2)(πx*1πy*1)

n = 2,5 R = 0,112 нм;

O2¯(13ē)σs2σs*2σz2(πx2πy2)(πx*2πy*1)

n = 1,5 R = 0,126 нм.

В случае молекулы O2 теория МО позволяет предвидеть большую прочность этой молекулы, поскольку n = 2, характер изменения энергий связи и межъядерных расстояний в ряду O2+ – O2 – O2¯, а также парамагнетизм молекулы O2, на верхних МО которой имеются два неспаренных электрона.

 

3.3. Некоторые виды связей

Ионная связь – электростатическая связь между ионами противоположных зарядов. Ионная связь может рассматриваться как предельный случай ковалентной полярной связи. Ионная связь образуется, если разница электроотрицательностей атомов ΔХ больше чем 1,5–2,0.

Ионная связь является ненаправленной ненасыщаемой связью. В кристалле NaCl ион Na+ притягивается всеми ионами Cl¯ и отталкивается всеми другими ионами Na+, независимо от направления взаимодействия и числа ионов. Это предопределяет большую устойчивость ионных кристаллов по сравнению с ионными молекулами.

Водородная связь – связь между атомом водорода одной молекулы и электроотрицательным атомом (F, CI, N) другой молекулы.

Существование водородной связи объясняет аномальные свойства воды: температура кипения воды гораздо выше, чем у ее химических аналогов: tкип(Н2O) = 100 °С, а tкип(H2S) = -61°C. Между молекулами H2S водородные связи не образуются.

 

4. Закономерности протекания химических процессов

 

4.1. Термохимия

Энергия (Е) – способность производить работу. Механическая работа (А) совершается, например, газом при его расширении: А = р • ΔV.

Реакции, которые идут с поглощением энергии, – эндотермические.

Реакции, которые идут с выделением энергии, – экзотермические.

Виды энергии: теплота, свет, электрическая, химическая, ядерная энергия и др.

Типы энергии: кинетическая и потенциальная.

Кинетическая энергия – энергия движущегося тела, это работа, которую может совершить тело до достижения им покоя.

Теплота (Q) – вид кинетической энергии – связана с движением атомов и молекул. При сообщении телу массой (m) и удельной теплоемкостью (с) теплоты ΔQ его температура повышается на величину Δt: ΔQ = m • с • Δt, откуда Δt = ΔQ/(c • т).

Потенциальная энергия – энергия, приобретенная телом в результате изменения им или его составными частями положения в пространстве. Энергия химических связей – вид потенциальной энергии.

Первый закон термодинамики: энергия может переходить из одного вида в другой, но не может исчезать или возникать.

Внутренняя энергия (U) – сумма кинетической и потенциальной энергий частиц, составляющих тело. Поглощаемая в реакции теплота равна разности внутренней энергии продуктов реакции и реагентов (Q = ΔU = U 2 – U 1 ), при условии, что система не совершила работы над окружающей средой. Если реакция идет при постоянном давлении, то выделяющиеся газы совершают работу против сил внешнего давления, и поглощаемая в ходе реакции теплота равна сумме изменений внутренней энергии ΔU и работы А = р • ΔV. Эту поглощаемую при постоянном давлении теплоту называют изменением энтальпии: ΔН = ΔU + р • ΔV, определяя энтальпию как Н = U + pV. Реакции жидких и твердых веществ протекают без существенного изменения объема (ΔV = 0), так что для этих реакций ΔН близка к ΔU (ΔН = ΔU). Для реакций с изменением объема имеем ΔН > ΔU, если идет расширение, и ΔН < ΔU, если идет сжатие.

Изменение энтальпии обычно относят для стандартного состояния вещества: т. е. для чистого вещества в определенном (твердом, жидком или газообразном) состоянии, при давлении 1 атм = 101 325 Па, температуре 298 К и концентрации веществ 1 моль/л.

Стандартная энтальпия образования ΔН обр – теплота, выделяемая или поглощаемая при образовании 1 моль вещества из простых веществ, его составляющих, при стандартных условиях. Так, например, ΔН обр (NaCl) = -411 кДж/моль. Это означает, что в реакции Na(тв) + ½Cl2(г) = NaCl(тв) при образовании 1 моль NaCl выделяется 411 кДж энергии.

Стандартная энтальпия реакции ΔН – изменение энтальпии в ходе химической реакции, определяется по формуле: ΔН = ΔН обр (продуктов) – ΔН обр (реагентов).

Так для реакции NH3(г) + HCl(г) = NH4Cl(тв), зная ΔHo6p(NH3)=-46 кДж/моль, ΔHo6p(HCl) = -92 кДж/моль и ΔHo6p(NH4Cl) = -315 кДж/моль имеем:

ΔH = ΔHo6p(NH4Cl) – ΔHo6p(NH3) – ΔHo6p(HCl) = -315 – (-46) – (-92) = -177 кДж.

Если ΔН < 0, то реакция экзотермическая. Если ΔН > 0, то реакция эндотермическая.

Закон Гесса: стандартная энтальпия реакции зависит от стандартных энтальпий реагентов и продуктов и не зависит от пути протекания реакции.

Самопроизвольно идущие процессы могут быть не только экзотермическими, т. е. процессами с уменьшением энергии (ΔН < 0), но могут быть и эндотермическими процессами, т. е. процессами с увеличением энергии (ΔН > 0). Во всех этих процессах «беспорядок» системы увеличивается.

Энтропия S – физическая величина, характеризующая степень беспорядка системы. S – стандартная энтропия, ΔS – изменение стандартной энтропии. Если ΔS > 0, беспорядок растет, если AS < 0, то беспорядок системы уменьшается. Для процессов в которых растет число частиц, ΔS > 0. Для процессов, в которых число частиц уменьшается, ΔS < 0. Например, энтропия меняется в ходе реакций:

СаО(тв) + Н2O(ж) = Са(OH)2(тв), ΔS < 0;

CaCO3(тв) = СаО(тв) + CO2(г), ΔS > 0.

Самопроизвольно идут процессы с выделением энергии, т. е. для которых ΔН < 0, и с увеличением энтропии, т. е. для которых ΔS > 0. Учет обоих факторов приводит к выражению для энергии Гиббса: G = Н – TS или ΔG = ΔН – Т • ΔS. Реакции, в которых энергия Гиббса уменьшается, т. е. ΔG < 0, могут идти самопроизвольно. Реакции, в ходе которых энергия Гиббса увеличивается, т. е. ΔG > 0, самопроизвольно не идут. Условие ΔG = 0 значит, что между продуктами и реагентами установилось равновесие.

При низкой температуре, когда величина Т близка к нулю, идут лишь экзотермические реакции, так как TΔS – мало и ΔG = ΔН < 0. При высоких температурах значения TΔS велико, и, пренебрегая величиной ΔН, имеем ΔG = – TΔS, т. е. самопроизвольно будут идти процессы с увеличением энтропии, для которых ΔS > 0, a ΔG < 0. При этом чем больше по абсолютной величине значение ΔG, тем более полно проходит данный процесс.

Величина AG для той или иной реакции может быть определена по формуле:

ΔG = ΔСобр(продуктов) – ΔGoбp(реагентов).

При этом величины ΔGoбр, а также ΔН обр и ΔSoбр для большого числа веществ приведены в специальных таблицах.

 

4.2. Химическая кинетика

Скорость химической реакции (v) определяется изменением молярной концентрации реагирующих веществ в единицу времени:

где v – скорость реакции, с – молярная концентрация реагента, t – время.

Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции (температуры, концентрации, присутствия катализатора и т. д.)

Влияние концентрации. В случае простых реакций скорость реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их стехиометрическим коэффициентам.

Для реакции

где 1 и 2 соответственно направление прямой и обратной реакции:

v1 = k1 × [А]m × [В]n и

v2 = k2 × [C]p × [D]q

где v – скорость реакции, k – константа скорости, [А] – молярная концентрация вещества А.

Молекулярность реакции – число молекул, участвующих в элементарном акте реакции. Для простых реакций, например: mA + nB → рС + qD, молекулярность равна сумме коэффициентов (m + n). Реакции могут быть одномолекулярными, двумолекулярными и редко трехмолекулярными. Реакции более высокой молекулярности не встречаются.

Порядок реакции равен сумме показателей степеней концентрации в экспериментальном выражении скорости химической реакции. Так, для сложной реакции

mA + nB → рС + qD экспериментальное выражение скорости реакции имеет вид

v 1 =  k1 × [А]α × [В]β и порядок реакции равен (α + β). При этом α и β находятся экспериментально и могут не совпадать с m и n соответственно, поскольку уравнение сложной реакции представляет собой итог нескольких простых реакций.

Влияние температуры. Скорость реакции зависит от числа эффективных столкновений молекул. Увеличение температуры увеличивает число активных молекул, сообщая им необходимую для протекания реакции энергию активации Еакт и увеличивает скорость химической реакции.

Правило Вант-Гоффа. При увеличении температуры на 10° скорость реакции увеличивается в 2–4 раза. Математически это записывается в виде:

v 2 = v 1  × γ (t 2  – t 1 )/10

где v1 и v2 – скорости реакции при начальной (t1) и конечной (t2) температурах, γ – температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции при увеличении температуры на 10°.

Более точно зависимость скорости реакции от температуры выражается уравнением Аррениуса:

k = A × e—E/(RT) ,

где k – константа скорости, А – постоянная, не зависящая от температуры, е = 2,71828, Е – энергия активации, R = 8,314 Дж/(К × моль) – газовая постоянная; Т – температура (К). Видно, что константа скорости увеличивается с увеличением температуры и уменьшением энергии активации.

 

4.3. Химическое равновесие

Система находится в равновесии, если ее состояние не изменяется во времени. Равенство скоростей прямой и обратной реакции – условие сохранения равновесия системы.

Примером обратимой реакции является реакция

N2 + 3H2 ↔ 2NH3.

Закон действия масс: отношение произведения концентраций продуктов реакции к произведению концентраций исходных веществ (все концентрации указывают в степенях, равных их стехиометрическим коэффициентам) есть постоянная, называемая константой равновесия.

Константа равновесия – это мера протекания прямой реакции.

К = О – прямая реакция не идет;

К = ∞ – прямая реакция идет до конца;

К > 1 – равновесие сдвинуто вправо;

К < 1 – равновесие сдвинуто влево.

Константа равновесия реакции К связана с величиной изменения стандартной энергии Гиббса ΔG для этой же реакции:

ΔG = – RTlnK, или ΔG = -2,3RTlgK, или К= 10 -0,435ΔG/RT

Если К > 1, то lgK > 0 и ΔG < 0, т. е. если равновесие сдвинуто вправо, то реакция – переход от исходного состояния к равновесному – идет самопроизвольно.

Если К < 1, то lgK < 0 и ΔG > 0, т. е. если равновесие сдвинуто влево, то реакция самопроизвольно вправо не идет.

Закон смещения равновесия: если на систему, находящуюся в равновесии, оказывается внешнее воздействие, в системе возникает процесс, который противодействует внешнему воздействию.

 

5. Окислительно-восстановительные реакции

Окислительно-восстановите льные реакции – реакции, которые идут с изменением степеней окисления элементов.

Окисление – процесс отдачи электронов.

Восстановление – процесс присоединения электронов.

Окислитель – атом, молекула или ион, который принимает электроны.

Восстановитель – атом, молекула или ион, который отдает электроны.

Окислители, принимая электроны, переходят в восстановленную форму:

F2 [ок. ] + 2ē → 2F¯ [восст.].

Восстановители, отдавая электроны, переходят в окисленную форму:

Na0 [восст. ] – 1ē → Na+ [ок.].

Равновесие между окисленной и восстановленной формами характеризуется с помощью уравнения Нернста для окислительно-восстановительного потенциала:

где Е 0 – стандартное значение окислительно-восстановительного потенциала; n – число переданных электронов; [восст. ] и [ок. ] – молярные концентрации соединения в восстановленной и окисленной формах соответственно.

Величины стандартных электродных потенциалов Е 0 приведены в таблицах и характеризуют окислительные и восстановительные свойства соединений: чем поло-жительнее величина Е 0 , тем сильнее окислительные свойства, и чем отрицательнее значение Е 0 , тем сильнее восстановительные свойства.

Например, для F2 + 2ē ↔ 2F¯Е 0 = 2,87 вольт, а для Na+ + 1ē ↔ Na0Е 0 = -2,71 вольт (процесс всегда записывается для реакций восстановления).

Окислительно-восстановительная реакция представляет собой совокупность двух полуреакций, окисления и восстановления, и характеризуется электродвижущей силой (э.д.с.) ΔЕ 0 :  ΔЕ 0 = ΔЕ 0 ок – ΔЕ 0 восст , где Е 0 ок и ΔЕ 0 восст – стандартные потенциалы окислителя и восстановителя для данной реакции.

Э.д.с. реакции ΔЕ 0 связана с изменением свободной энергии Гиббса ΔG и константой равновесия реакции К:

ΔG = – nFΔЕ 0 или ΔЕ = (RT/nF)lnK.

Э.д.с. реакции при нестандартных концентрациях ΔЕ равна: ΔЕ = ΔЕ 0 – (RT/nF) × IgK или ΔЕ = ΔЕ 0 – (0,059/n)lgK.

В случае равновесия ΔG = 0 и ΔЕ = 0, откуда ΔЕ = (0,059/n)lgK и К = 10nΔE/0,059.

Для самопроизвольного протекания реакции должны выполняться соотношения: ΔG < 0 или К >> 1, которым соответствует условие ΔЕ 0 > 0. Поэтому для определения возможности протекания данной окислительно-восстановительной реакции необходимо вычислить значение ΔЕ 0 . Если ΔЕ 0  > 0, реакция идет. Если ΔЕ 0 < 0, реакция не идет.

Химические источники тока

Гальванические элементы – устройства, преобразующие энергию химической реакции в электрическую энергию.

Гальванический элемент Даниэля состоит из цинкового и медного электродов, погруженных в растворы ZnSO4 и CuSO4 соответственно. Растворы электролитов сообщаются через пористую перегородку. При этом на цинковом электроде идет окисление: Zn → Zn2+ + 2ē, а на медном электроде – восстановление: Cu2+ + 2ē → Cu. В целом идет реакция: Zn + CuSO4 = ZnSO4 + Cu.

Анод – электрод, на котором идет окисление. Катод – электрод, на котором идет восстановление. В гальванических элементах анод заряжен отрицательно, а катод – положительно. На схемах элементов металл и раствор отделены вертикальной чертой, а два раствора – двойной вертикальной чертой.

Так, для реакции Zn + CuSO4 = ZnSO4 + Cu схемой гальванического элемента является запись: (-)Zn | ZnSO4 || CuSO4 | Cu(+).

Электродвижущая сила (э.д.с.) реакции равна ΔЕ 0 = Е 0 ок – Е 0 восст = Е 0 (Cu2+/Cu) – Е 0 (Zn2+/Zn) = 0,34 – (-0,76) = 1,10 В. Из-за потерь напряжение, создаваемое элементом, будет несколько меньше, чем ΔЕ 0 . Если концентрации растворов отличаются от стандартных, равных 1 моль/л, то Е 0 ок  и Е 0 восст вычисляются по уравнению Нернста, а затем вычисляется э.д.с. соответствующего гальванического элемента.

Сухой элемент состоит их цинкового корпуса, пасты NH4Cl с крахмалом или мукой, смеси MnO2 с графитом и графитового электрода. В ходе его работы идет реакция: Zn + 2NH4Cl + 2MnO2 = [Zn(NH3)2]Cl + 2MnOOH.

Схема элемента: (-)Zn | NH4Cl | MnO2, C(+). Э.д.с. элемента – 1,5 В.

Аккумуляторы. Свинцовый аккумулятор представляет собой две свинцовые пластины, погруженные в 30%-ный раствор серной кислоты и покрытые слоем нерастворимого PbSO4. При заряде аккумулятора на электродах идут процессы:

PbSO4(тв) + 2ē → Рb(тв) + SO42-

PbSO4(тв) + 2H2O → РbO2(тв) + 4H+ + SO42- + 2ē

При разряде аккумулятора на электродах идут процессы:

РЬ(тв) + SO42- → PbSO4(тв) + 2ē

РbO2(тв) + 4H+ + SO42- + 2ē → PbSO4(тв) + 2Н2O

Суммарную реакцию можно записать в виде:

Для работы аккумулятор нуждается в регулярной зарядке и контроле концентрации серной кислоты, которая может несколько уменьшаться при работе аккумулятора.

 

6. Растворы

 

6.1. Концентрация растворов

Массовая доля вещества в растворе w равна отношению массы растворенного вещества к массе раствора: w = m в-ва /m р-ра или w = m в-вa /(V × ρ ), так как m р-ра = V p-pa  × ρр-ра .

Молярная концентрация с равна отношению числа молей растворенного вещества к объему раствора: с = n(моль)/V(л) или с = m/(М × V(л)).

Молярная концентрация эквивалентов (нормальная или эквивалентная концентрация) с э равна отношению числа эквивалентов растворенного вещества к объему раствора: с э = n (моль экв.)/V(л) или с э = m/(М э  × V(л)).

 

6.2. Электролитическая диссоциация

Электролитическая диссоциация – распад электролита на катионы и анионы под действием полярных молекул растворителя.

Степень диссоциации α – отношение концентрации диссоциированных молекул (сдисс) к общей концентрации растворенных молекул (соб): α = сдисс/соб.

Электролиты можно разделить на сильные (α ~ 1) и слабые.

Сильные электролиты (для них α ~ 1) – соли и основания, растворимые в воде, а также некоторые кислоты: HNO3, HCl, H2SO4, HI, HBr, HClO4 и другие.

Слабые электролиты (для них α << 1) – Н2O, NH4OH, малорастворимые основания и соли и многие кислоты: HF, H2SO3, H2CO3, H2S, CH3COOH и другие.

Ионные уравнения реакций. В ионных уравнениях реакций сильные электролиты записываются в виде ионов, а слабые электролиты, малорастворимые вещества и газы – в виде молекул. Например:

CaCO3↓ + 2HCl = CaCl2 + Н2O + CO2↑

CaCO3↓ + 2H+ + 2Cl¯ = Са2+ + 2Cl¯ + Н2O + CO2↑

CaCO3↓ + 2Н+ = Са2+ + Н2O + CO2↑

Реакции между ионами идут в сторону образования вещества, дающего меньше ионов, т. е. в сторону более слабого электролита или менее растворимого вещества.

 

6.3. Диссоциация слабых электролитов

Применим закон действия масс к равновесию между ионами и молекулами в растворе слабого электролита, например уксусной кислоты:

CH3COOH ↔ CH3COО¯ + Н+

Константы равновесия реакций диссоциации называются константами диссоциации. Константы диссоциации характеризуют диссоциацию слабых электролитов: чем меньше константа, тем меньше диссоциирует слабый электролит, тем он слабее.

Многоосновные кислоты диссоциируют ступенчато:

Н3PO4 ↔ Н+ + Н2PO4¯

Константа равновесия суммарной реакции диссоциации равна произведению констант отдельных стадий диссоциации:

Н3PO4 ↔ ЗН+ + PO43-

Закон разбавления Оствальда: степень диссоциации слабого электролита (а) увеличивается при уменьшении его концентрации, т. е. при разбавлении:

Влияние общего иона на диссоциацию слабого электролита: добавление общего иона уменьшает диссоциацию слабого электролита. Так, при добавлении к раствору слабого электролита CH3COOH

CH3COOH ↔ CH3COО¯ + Н+ α << 1

сильного электролита, содержащего общий с CH3COOH ион, т. е. ацетат-ион, например CH3COОNa

CH3COОNa ↔ CH3COО¯ + Na+ α = 1

концентрация ацетат-иона увеличивается, и равновесие диссоциации CH3COOH сдвигается влево, т. е. диссоциация кислоты уменьшается.

 

6.4. Диссоциация сильных электролитов

Активность иона а – концентрация иона, проявляющаяся в его свойствах.

Коэффициент активности f – отношение активности иона а к концентрации с: f = а/с или а = fc.

Если f = 1, то ионы свободны и не взаимодействуют между собой. Это имеет место в очень разбавленных растворах, в растворах слабых электролитов и т. д.

Если f < 1, то ионы взаимодействуют между собой. Чем меньше f, тем больше взаимодействие между ионами.

Коэффициент активности зависит от ионной силы раствора I: чем больше ионная сила, тем меньше коэффициент активности.

Ионная сила раствора  I зависит от зарядов z и концентраций с ионов:

I = 0,52Σс • z 2 .

Коэффициент активности зависит от заряда иона: чем больше заряд иона, тем меньше коэффициент активности. Математически зависимость коэффициента активности f от ионной силы I и заряда иона z записывается с помощью формулы Дебая-Хюккеля:

Коэффициенты активности ионов можно определить с помощью следующей таблицы:

 

6.5 Ионное произведение воды. Водородный показатель

Вода – слабый электролит – диссоциирует, образуя ионы Н+ и OH¯. Эти ионы гидратированы, т. е. соединены с несколькими молекулами воды, но для простоты их записывают в негидратированной форме

Н2O ↔ Н+ + OH¯.

На основании закона действия масс, для этого равновесия:

Концентрацию молекул воды [Н2O], т. е. число молей в 1 л воды, можно считать постоянной и равной [Н2O] = 1000 г/л : 18 г/моль = 55,6 моль/л. Отсюда:

К • [Н2O] = К(Н2O) = [Н+] • [OH¯] = 10-14 (22°C).

Ионное произведение воды – произведение концентраций [Н+] и [OH¯] – есть величина постоянная при постоянной температуре и равная 10-14 при 22°C.

Ионное произведение воды увеличивается с увеличением температуры.

Водородный показатель рН – отрицательный логарифм концентрации ионов водорода: рН = – lg[H+]. Аналогично: pOH = – lg[OH¯].

Логарифмирование ионного произведения воды дает: рН + рOH = 14.

Величина рН характеризует реакцию среды.

Если рН = 7, то [Н+] = [OH¯] – нейтральная среда.

Если рН < 7, то [Н+] > [OH¯] – кислотная среда.

Если рН > 7, то [Н+] < [OH¯] – щелочная среда.

 

6.6. Буферные растворы

Буферные растворы – растворы, имеющие определенную концентрацию ионов водорода. рН этих растворов не меняется при разбавлении и мало меняется при добавлении небольших количеств кислот и щелочей.

I. Раствор слабой кислоты НА, концентрация – скисл, и ее соли с сильным основанием ВА, концентрация – ссоли. Например, ацетатный буфер – раствор уксусной кислоты и ацетата натрия: CH3COOH + CHgCOONa.

рН = рК кисл + lg(с соли /с кисл ).

II. Раствор слабого основания ВOH, концентрация – сосн, и его соли с сильной кислотой ВА, концентрация – ссоли. Например, аммиачный буфер – раствор гидроксида аммония и хлорида аммония NH4OH + NH4Cl.

рН = 14 – рК осн – lg(с соли /с осн ).

 

6.7. Гидролиз солей

Гидролиз солей – взаимодействие ионов соли с водой с образованием слабого электролита.

Примеры уравнений реакций гидролиза.

I. Соль образована сильным основанием и слабой кислотой:

Na2CO3 + H2O ↔ NaHCO3 + NaOH

2Na+ + CO32- + H2O ↔ 2Na+ + HCO3¯ + OH¯

CO32- + H2O ↔ HCO3¯ + OH¯, pH > 7, щелочная среда.

По второй ступени гидролиз практически не идет.

II. Соль образована слабым основанием и сильной кислотой:

AlCl3 + H2O ↔ (AlOH)Cl2 + HCl

Al3+ + ЗCl¯ + H2O ↔ AlOH2+ + 2Cl¯ + Н+ + Cl¯

Al3+ + H2O ↔ AlOH2+ + Н+, рН < 7.

По второй ступени гидролиз идет меньше, а по третьей ступени практически не идет.

III. Соль образована сильным основанием и сильной кислотой:

KNO3 + H2O ≠

К+ + NO3¯ + Н2O ≠ нет гидролиза, рН ≈ 7.

IV. Соль образована слабым основанием и слабой кислотой:

CH3COONH4 + H2O ↔ CH3COOH + NH4OH

CH3COO¯ + NH4+ + H2O ↔ CH3COOH + NH4OH, рН = 7.

В ряде случаев, когда соль образована очень слабыми основаниями и кислотами, идет полный гидролиз. В таблице растворимости у таких солей символ – «разлагаются водой»:

Al2S3 + 6Н2O = 2Al(OH)3↓ + 3H2S↑

Возможность полного гидролиза следует учитывать в обменных реакциях:

Al2(SO4)3 + 3Na2CO3 + 3H2O = 2Al(OH)3↓ + 3Na2SO4 + 3CO2↑

Степень гидролиза h – отношение концентрации гидролизованных молекул к общей концентрации растворенных молекул.

Для солей, образованных сильным основанием и слабой кислотой:

[OH¯] = ch, рOH = – lg[OH¯], рН = 14 – рOH.

Из выражения следует, что степень гидролиза h (т. е. гидролиз) увеличивается:

а) с увеличением температуры, так как увеличивается K(H2O);

б) с уменьшением диссоциации кислоты, образующей соль: чем слабее кислота, тем больше гидролиз;

в) с разбавлением: чем меньше с, тем больше гидролиз.

Для солей, образованных слабым основанием и сильной кислотой

[Н+] = ch, рН = – lg[H+].

Для солей, образованных слабым основанием и слабой кислотой

 

6.8. Протолитическая теория кислот и оснований

Протолиз – процесс передачи протона.

Протолиты – кислоты и основания, отдающие и принимающие протоны.

Кислота – молекула или ион, способные отдавать протон. Каждой кислоте соответствует сопряженное с нею основание. Сила кислот характеризуется константой кислоты К к .

Н2CO3 + Н2O ↔ Н3O+ + HCO3¯

К к = 4 × 10-7

[Al(Н2O)6]3+ + Н2O ↔ [Al(Н2O)5OH]2+ + Н3O+

К к = 9 × 10-6

Основание – молекула или ион, способные принимать протон. Каждому основанию соответствует сопряженная с ним кислота. Сила оснований характеризуется константой основания К 0 .

NH3 × Н2O (Н2O) ↔ NH4+ + OH¯

К 0 = 1,8 ×10-5

Амфолиты – протолиты, способные к отдаче и к присоединению протона.

HCO3¯ + H2O ↔ Н3O+ + CO32-

HCO3¯ – кислота.

HCO3¯ + H2O ↔ Н2CO3 + OH¯

HCO3¯ – основание.

Для воды: Н2O+ Н2O ↔ Н3O+ + OH¯

K(H2O) = [Н3O+][OH¯] = 10-14 и рН = – lg[H3O+].

Константы К к и К 0 для сопряженных кислот и оснований связаны между собой.

НА + Н2O ↔ Н3O+ + А¯,

А¯ + Н2O ↔ НА + OH¯,

Отсюда

 

7. Константа растворимости. Растворимость

В системе, состоящей из раствора и осадка, идут два процесса – растворение осадка и осаждение. Равенство скоростей этих двух процессов является условием равновесия.

Насыщенный раствор – раствор, который находится в равновесии с осадком.

Закон действия масс в применении к равновесию между осадком и раствором дает:

Поскольку [AgClтв] = const,

К • [AgClтв] = K s (AgCl) = [Ag+] • [Cl¯].

В общем виде имеем:

Аm Bn (тв.) ↔ mA+n + n B-m

K s ( Am Bn ) = [А+n ]m  • [В-m ]n .

Константа растворимости K s (или произведение растворимости ПР) – произведение концентраций ионов в насыщенном растворе малорастворимого электролита – есть величина постоянная и зависит лишь от температуры.

Растворимость малорастворимого вещества s может быть выражена в молях на литр. В зависимости от величины s вещества могут быть разделены на малорастворимые – s < 10-4 моль/л, среднерастворимые – 10-4 моль/л ≤ s ≤ 10-2 моль/л и хорошо растворимые s >10-2 моль/л.

Растворимость соединений связана с их произведением растворимости.

Условие осаждения и растворения осадка

В случае AgCl: AgCl ↔ Ag+ + Cl¯

K s = [Ag+] • [CI¯]:

а) условие равновесия между осадком и раствором: [Ag+] • [Cl¯] = K s .

б) условие осаждения: [Ag+] • [Cl¯] > K s ; в ходе осаждения концентрации ионов уменьшаются до установления равновесия;

в) условие растворения осадка или существования насыщенного раствора: [Ag+] • [Cl¯] < K s ; в ходе растворения осадка концентрация ионов увеличивается до установления равновесия.

 

8. Координационные соединения

Координационные (комплексные) соединения – соединения с донорно-акцеп-торной связью.

Для K3[Fe(CN)6]:

ионы внешней сферы – 3К+,

ион внутренней сферы – [Fe(CN)6]3-,

комплексообразователь – Fe3+,

лиганды – 6CN¯, их дентатность – 1,

координационное число – 6.

Примеры комплексообразователей: Ag+, Cu2+, Hg2+, Zn2+, Ni2+, Fe3+, Pt4+ и др.

Примеры лигандов: полярные молекулы Н2O, NH3, CO и анионы CN¯, Cl¯, OH¯ и др.

Координационные числа: обычно 4 или 6, реже 2, 3 и др.

Номенклатура. Называют сначала анион (в именительном падеже), затем катион (в родительном падеже). Названия некоторых лигандов: NH3 – аммин, Н2O – акво, CN¯ – циано, Cl¯ – хлоро, OH¯ – гидроксо. Названия координационных чисел: 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Указывают степень окисления комплек-сообразователя:

[Ag(NH3)2]Cl – хлорид диамминсеребра(I);

[Cu(NH3)4]SO4 – сульфат тетрамминмеди(II);

K3[Fe(CN)6] – гексацианоферрат(III) калия.

Химическая связь.

Теория валентных связей предполагает гибридизацию орбиталей центрального атома. Расположение образующихся при этом гибридных орбиталей определяет геометрию комплексов.

Диамагнитный комплексный ион Fe(CN)64-.

Цианид-ион – донор

Ион железа Fe2+ – акцептор – имеет формулу 3d 6 4s 0 4p 0 . С учетом диамагнитности комплекса (все электроны спарены) и координационного числа (нужны 6 свободных орбиталей) имеем d 2 sp 3 -гибридизацию:

Комплекс диамагнитный, низкоспиновый, внутриорбитальный, стабильный (не используются внешние электроны), октаэд-рический (d 2 sp 3 -гибридизация).

Парамагнитный комплексный ион FeF63-.

Фторид-ион – донор.

Ион железа Fe3+ – акцептор – имеет формулу 3d 5 4s 0 4p 0 . С учетом парамагнитности комплекса (электроны распарены) и координационного числа (нужны 6 свободных орбиталей) имеем sp 3 d 2 -гибридизацию:

Комплекс парамагнитный, высокоспиновый, внешнеорбитальный, нестабильный (использованы внешние 4d-орбитали), октаэдрический (sp 3 d 2 -гибридизация).

Диссоциация координационных соединений.

Координационные соединения в растворе полностью диссоциируют на ионы внутренней и внешней сфер.

[Ag(NH3)2]NO3 → Ag(NH3)2+ + NO3¯, α = 1.

Ионы внутренней сферы, т. е. комплексные ионы, диссоциируют на ионы металла и лиганды, как слабые электролиты, по ступеням.

где K1, К2, К1_2 называются константами нестойкости и характеризуют диссоциацию комплексов: чем меньше константа нестойкости, тем меньше диссоциирует комплекс, тем он устойчивее.

 

II. НЕОРГАНИЧЕСКАЯ ХИМИЯ

 

1. Основные классы неорганических соединений

 

 

1.1. Оксиды

Оксиды – сложные вещества, состоящие из атомов кислорода в степени окисления -2 и атомов другого элемента.

Номенклатура: Fe2O3 – оксид железа(III), Cl2O – оксид хлора(I).

Классификация оксидов

Несолеобразующие (безразличные) оксиды: CO, SiO, NO, N2O.

Солеобразующие оксиды:

основные – оксиды металлов в степени окисления +1, +2,

амфотерные – оксиды металлов в степени окисления +2, +3, +4,

кислотные – оксиды металлов в степени окисления +5, +6, +7 и

оксиды неметаллов в степени окисления +1 – +7.

Получение оксидов

Горение простых веществ:

С + O2 = CO2

2Са + O2 = 2СаО

Горение (обжиг) сложных веществ:

CH4 + 2O2 = CO2 + 2Н2O

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

Разложение сложных веществ:

CaCO3 →t→ СаО + CO2

2Fe(OH)3 →t→ Fe2O3 + ЗН2O

Химические свойства оксидов

Основным оксидам (Na2O, CaO, CuO, FeO) соответствуют основания.

СаО + Н2O = Са(OH)2 (растворимы оксиды металлов IA– и IIА-групп, кроме Be, Mg)

CuO + Н2O ≠ (оксиды остальных металлов нерастворимы)

СаО + CO2 = CaCO3

СаО + 2HCl = CaCl2 + Н2O

Кислотным оксидам (CO2, Р2O5, СrO3, Mn2O7) соответствуют кислоты.

SO2 + Н2O = H2SO3 (кислотные оксиды, кроме SiO2, растворимы в воде)

SO2 + СаО = CaSO3

SO2 + 2NaOH = Na2SO3 + Н2O

Амфотерным оксидам (ZnO, Al2O3, Cr2O3, ВеО, РЬО) соответствуют амфотерные гидроксиды.

ZnO + H2O ≠ (амфотерные оксиды нерастворимы в воде)

ZnO + 2HCl = ZnCl2 + Н2O

ZnO + 2NaOH →t→ Na2ZnO2 + Н2O (при нагревании или сплавлении)

ZnO + 2NaOH + H2O = Na2[Zn(OH)4] (в разбавленном растворе)

 

1.2. Основания

Основания – сложные вещества, состоящие из атомов металла и гидроксиль-ных групп; основания – электролиты, образующие при диссоциации в качестве анионов только анионы гидроксила.

Номенклатура: Fe(OH)3 – гидроксид железа(III).

Классификация оснований:

– растворимые (щелочи) NaOH, KOH;

– нерастворимые Fe(OH)2, Mg(OH)2;

– амфотерные Zn(OH)2, Al(OH)3, Ве(OH)2, Сr(OH)3;

– однокислотные NaOH, KOH;

– двухкислотные Ва(OH)2, Zn(OH)2;

– трехкислотные Al(OH)3, Сr(OH)3.

Получение оснований

Получение щелочей:

2Na + 2Н2O = 2NaOH + Н2

Na2O + Н2O = 2NaOH

Получение нерастворимых и амфотер-ных оснований:

FeSO4 + 2NaOH = Fe(OH)2↓ + Na2SO4

AlCl3 + 3NaOH = Al(OH)3↓ + 3NaCl

Свойства щелочей:

NaOH → Na+ + OH¯ (α = 1, фенолфталеин – красный)

NaOH + HCl = NaCl + H2O (реакция нейтрализации)

2NaOH + CO2 = Na2CO3 + H2O

2NaOH + Zn(OH)2 = Na2[Zn(OH)4]

2NaOH + Al2O3 →t→ 2NaAlO2 + H2O

2NaOH + CuSO4 = Cu(OH)2↓ + Na2SO4

2NaOH + Zn + 2H2O = Na2[Zn(OH)4] + H2

2NaOH + 2Al + 6H2O = 2Na[Al(OH)4] + 3H2

2NaOH + Si + H2O = Na2SiO3 + 2H2

Свойства нерастворимых оснований:

Fe(OH)2 ↔ FeOH+ + OH¯ (α << 1);

FeOH+ ↔ Fe2+ + OH‾ (α << 1)

Fe(OH)2 + H2SO4 = FeSO4 + 2H2O

Fe(OH)2 →t→ FeO + H2O

Свойства амфотерных оснований:

Al3++ ЗOH¯ + Н2O ↔ Al(OH)3↓ + Н2O ↔ [Al(OH)4]¯ + Н+

Al(OH)3 + ЗHCl = AlCl3 + ЗН2O

Al(OH)3 + NaOH = Na[Al(OH)4]

2Al(OH)3 →t→ Al2O3 + ЗН2O

 

1.3. Кислоты

Кислоты – сложные вещества, состоящие из атомов водорода и кислотного остатка; кислоты – электролиты, образующие при диссоциации в качестве катионов только катионы водорода.

Номенклатура кислот и кислотных остатков:

Классификация кислот:

– одноосновные HCl

– двухосновные H2S

– трехосновные Н3PO4

– кислородсодержащие HNO3

– бескислородные HCl

Получение кислот

CO2 + Н2O = Н2CO3 (кроме SiO2)

Na2SiO3 + H2SO4 = Na2SO4 + H2SiO3↓

H2 + Cl2 = 2HCl

Химические свойства кислот

HCl → H+ + CI¯ (α =1) (лакмус – красный)

CH3COOH ↔ CH3COO¯ + H+ (α << 1)

Fe + 2HCl = FeCl2 + H2 (металл в ряду напряжений до Н)

Cu + HCl ≠ (не идет, металл в ряду напряжений после Н)

2HCl + CuO = CuCl2 + Н2O

2HCl + Cu(OH)2 = CuCl2 + 2Н2O

2HCl + ZnO = ZnCl2 + Н2O

3HCl + Al(OH)3 = AlCl3 + 3Н2O

2HCl + Na2CO3 = 2NaCl + H2O + CO2↑ (выделяется газ)

HCl + AgNO3 = AgCl↓ + HNO3 (образуется осадок)

 

1.4. Соли

Соли – сложные вещества, состоящие из атомов металла и кислотного остатка.

Соли – электролиты, образующие при диссоциации катионы металла или аммония и анионы кислотного остатка.

Номенклатура солей

Na2HPO4 – гидрофосфат натрия

Са(Н2PO4)2 – дигидрофосфат кальция

AlOHSO4 – гидроксид сульфат алюминия

KMgF3 – фторид калия магния

NaCl • NaF – фторид хлорид натрия

NaNH4HPO4 – гидрофосфат аммония натрия

Na2[Zn(OH)4] – тетрагидроксоцинкат натрия

Классификация солей

– средние – MgCl2, Na3PO4

– кислые – Na2HPO4, Ca(H2PO4)2

– основные – MgOHCl, (Al(OH)2)2SO4

– смешанные – NaCl • NaF, CaBrCl

– двойные – KMgF3, KAl(SO4)2

– комплексные – Na2[Zn(OH)4], K3[Cr(OH)6]

– кристаллогидраты – CuSO4 • 5H2O

Получение солей (на примере получения CuS0 4 )

Cu + 2H2SO4 конц = CuSO4 + SO2 + 2H2O

Cu + 2AgNO3 = Cu(NO3)2 + 2Ag

CuO + H2SO4 = CuSO4 + H2O

CuO + SO3 = CuSO4

Cu(OH)2 + H2SO4 = CuSO4 + 2H2O

CuCO3 + H2SO4 = CuSO4 + H2O + CO2

CuCl2 + Ag2SO4 = CuSO4 + 2AgCl↓

Химические свойства солей

NaHCO3 → Na+ + HCO3¯ (α = 1)

HCO3¯ ↔ H+ + CO32- (α << 1)

MgOHCl → MgOH+ + CI¯ (α = 1)

MgOH+ ↔ Mg2+ + OH¯ (α << 1)

NaHSO4 → Na+ + Н+ + SO4¯ (α = 1)

CuSO4 + Fe = Cu + FeSO4 (Fe до Cu в ряду напряжений)

Pb + ZnCl2 ≠ (Pb после Zn в ряду напряжений)

CuSO4 + 2NaOH = Cu(OH)2↓ + Na2SO4 (осадок)

CuSO4 + H2S = CuS↓ + H2SO4 (осадок)

CuSO4 + BaCl2 = BaSO4↓ + CuCl2 (осадок)

Разложение некоторых солей при нагревании

Ca(HCO3)2 →t→ CaCO3↓ + H2O + CO2 (при кипячении воды)

CaCO3 →t→ CaO + CO2 (роме устойчивых карбонатов щелочных металлов)

2NaNO3 →t→ 2NaNO2 + O2 (металл до Mg в ряду напряжений)

2Pb(NO3)2 →t→ 2РbO + 4NO2 + O2 (металл от Mg до Cu в ряду напряжений)

2AgNO3 →t→ 2Ag + 2NO2 + O2 (металл после Cu в ряду напряжений)

NH4Cl →t→ NH3 + HCl (при охлаждении идет в противоположном направлении)

NH4NO3 →t→ N2O + 2Н2O (получение «веселящего» газа)

NH4NO2 →t→ N2 + 2H2O (получение азота в лаборатории)

(NH4)2Cr2O7 →t→ N2 + Cr2O3 + 4Н2O (реакция «вулкан»)

4KClO3 →400 °C→ KCl + 3KClO4

2KClO3 →t, MnO 4 → 2KCl + 3O2

2КMnO4 →t→ К2MnO4 + MnO2 + O2

Связь между классами соединений

Металл ↔ основный оксид ↔ основание ↔ соль

Неметалл ↔ кислотный оксид ↔ кислота ↔ соль

 

2. IА-группа

 

Щелочные металлы Li, Na, К, Rb, Cs, Fr.

Атомы этих элементов имеют электронную формулу ns 1 . Они являются сильными восстановителями. Их активность растет от лития к цезию. Для них характерна степень окисления +1. В природе щелочные металлы находятся в виде хлоридов, сульфатов, карбонатов, силикатов и т. д.

Щелочные металлы мягкие, легко режутся ножом, на свежем срезе имеют серебристую окраску. Все они легкие и легкоплавкие металлы с хорошей электропроводностью. В парообразном состоянии атомы щелочных металлов образуют молекулы Э2, например Na2.

 

2.1. Получение и химические свойства щелочных металлов

Получение

2NaCl →электролиз расплава→ 2Na + Cl2

KCl + Na →800ºС→ К + NaCl

Горение в кислороде

4Li + O2 →t→ 2Li2O

2Na + O2 →t→ Na2O2

К + O2 →t→ KO2

Реакции с другими неметаллами

2Na + Cl2 = 2NaCl

2Na + H2 →t→ 2NaH

2К + S = K2S

6Li + N2 = 2Li3N

Реакции с водой и разбавленными кислотами

2Na + 2Н2O = 2NaOH + H2↑

2Na + 2HCl = 2NaCl + H2↑

 

2.2. Получение и химические свойства соединений щелочных металлов

Оксиды. Оксиды щелочных металлов являются активными основными оксидами.

4Li + O2 →t→ 2Li2O

Na2O2 + 2Na →t→ 2Na2O

Na2O + Н2O = 2NaOH

Na2O + CO2 = Na2CO3

Na2O(тв) + Al2O3(тв) →t→ 2NaAlO2

Na2O + 2HCl = 2NaCl + H2O

Гидроксиды. Гидроксиды щелочных металлов – растворимые основания, щелочи. Их степень диссоциации увеличивается от LiOH к CsOH.

NaOH → Na+ + OH¯ (α ≈ 1)

2NaOH + CO2 = Na2CO3 + Н2O

2NaOH + H2SO4 = Na2SO4 + 2H2O

2NaOH + Zn + 2H2O = Na2[Zn(OH)4] + H2

2NaOH + ZnO →t→ Na2ZnO2 + H2O

NaOH + Al(OH)3 = Na[Al(OH)4]

3NaOH + FeCl3 = Fe(OH)3↓ + 3NaCl

Гидриды. Гидриды щелочных металлов – восстановители.

NaH + Н2O = NaOH + Н2

NaH + HCl = NaCl + H2

NaH + Cl2 →t→ NaCl + HCl

Пероксиды и надпероксиды. Являются окислителями.

Na2O2 + 2Н2O = 2NaOH + H2O2

Na2O2 + 2HCl = 2NaCl + H2O2

2Na2O2 + 2CO2 = 2Na2CO3 + O2

Na2O2 + 2KI + 2H2SO4 = Na2SO4 + I2 + K2SO4 + 2H2O

Na2O2 + CO →t→ Na2CO3

2KO2 + 2H2O = 2KOH + H2O2 + O2

2KO2 + CO →t→ K2CO3 + O2

Соли. Хорошо растворяются в воде. Соли лития окрашивают пламя горелки в карминово-красный цвет, соли натрия – в желтый цвет, соли калия – в светло-фиолетовый цвет. Соли щелочных металлов со слабыми кислотами гидролизуются, создавая щелочную среду.

Na2CO3 + H2O ↔ NaHCO3 + NaOH

2Na+ + CO32- + H2O ↔ CO3¯ + OH¯ + 2Na+

CO32- + H2O ↔ CO3¯ + OH¯

 

3. IIА-группа

 

Элементы IIА-группы имеют электронную формулу ns 2 . Все они являются металлами, сильными восстановителями, несколько менее активными, чем щелочные металлы. Для них характерна степень окисления +2 и валентность II. Щелочноземельные металлы: Са, Sr, Ba, Ra. В природе элементы IIА-группы находятся в виде солей: сульфатов, карбонатов, фосфатов, силикатов. Элементы IIА-группы представляют собой легкие серебристые металлы, более твердые, чем щелочные металлы.

 

3.1. Получение и химические свойства простых веществ

Элементы IIА-группы – менее активные восстановители, чем щелочные металлы. Их восстановительные свойства увеличиваются от бериллия к радию. Кислород воздуха окисляет Са, Sr, Ba, Ra при обычной температуре. Mg и Be покрыты оксидными пленками и окисляются кислородом только при нагревании:

CaCl2  →электролиз расплава→ Са + Cl2

2Са + O2 →t→ 2СаО

2Mg + O2 →t→ 2MgO

Са + Cl2 = CaCl2

Са + Н2 →t→ СаН2

Са + 2С →t→ СаС2

Са + 2Н2O = Са(OH)2 + H2↑

Mg + 2Н2O(хол.) ≠

Mg + 2Н2O(гор.) →t→ Mg(OH)2 + H2↑

Mg + 2HCl = MgCl2 + H2↑

4Mg + 10HNO3(pазб.) = 4Mg(NO3)2 + NH4NO3 + 3H2O

 

3.2. Получение и химические свойства соединений

Оксиды

Оксид бериллия – амфотерный оксид. Оксид магния – нерастворимый основный оксид. Оксид кальция – растворимый основный оксид.

CaCO3 →t→ СаО + CO2

2Са + O2 →t→ 2СаО

ВеО + Н2O ≠

ВеО + 2HCl = ВeCl2 + Н2O

ВеО + 2NaOH →t→ Na2BeO2 + Н2O

MgO + Н2O ≠

MgO + 2HCl = MgCl2 + Н2O

MgO + NaOH ≠

СаО + Н2O = Са(OH)2

СаО + CO2 = CaCO3

СаО + 2HCl = CaCl2 + Н2O

Гидроксиды

Гидроксид бериллия – амфотерное основание. Гидроксид магния – нерастворимое основание. Гидроксиды щелочноземельных металлов – щелочи.

Ве(OH)2↓ + 2HCl = ВeCl2 + 2Н2O

Ве(OH)2↓ + 2NaOH = Na2[Be(OH)4]

Ве(OH)2 →t→ ВеО + Н2O

Mg(OH)2↓+ 2HCl = MgCl2 + 2Н2O

Mg(OH)2↓ + NaOH ≠

Mg(OH)2 →t→ MgO + H2O

Ba(OH)2 + 2HCl = BaCl2 + 2H2O

Ba(OH)2 + CO2 = BaCO3↓ + H2O

Ba(OH)2 + H2SO4 = BaSO4↓ + 2H2O

Гидриды

Имеют восстановительные свойства.

СаН2 + 2Н2O = Са(OH)2 + 2Н2

СаН2 + 2HCl = CaCl2 + 2Н2

Пероксиды

ВaO2 + 2Н2O = Ва(OH)2 + Н2O2

ВaO2 + 2HCl = ВaCl2 + Н2O2

2ВaO2 + 2CO2 = 2ВaCO3 + O2

Соли

Содержание ионов Са2+ и Mg2+ обуславливает жесткость воды: временную, если есть гидрокарбонаты Са и Mg, и постоянную, если в воде есть хлориды или сульфаты Са и Mg.

CaCl2 + Na2CO3 = CaCO3↓ + 2NaCl

Са(HCO3)2 + Са(OH)2 = 2CaCO3↓ + 2Н2O

Са(HCO3)2 →t→ CaCO3↓ + Н2O + CO2↑

CaCO3↓ + H2O + CO2 = Са(HCO3)2

CaCO3 + 2HCl = CaCl2 + Н2O + CO2↑

 

4. IIIА-группа

 

Элементы IIIА-группы имеют электронную формулу ns 2 np 1 . Они являются значительно менее активными восстановителями, чем щелочноземельные металлы. Для них характерна степень окисления +3 и валентность III. В группе сверху вниз возрастают металлические свойства элементов, увеличиваются восстановительные свойства их атомов. Увеличиваются основные свойства гидроксидов и уменьшаются их кислотные свойства.

Соединения Тl3+ являются сильными окислителями и восстанавливаются до соединений Тl+.

 

4.1. Химические свойства бора и его соединений

4В + 3O2 →t→ 2В2O3

В2O3 + ЗН2O = 2Н3ВO3

Н3ВO3 →t→ HBO2 →t→ Н2В4O7 →t→ В2O3

4Н3ВO3 + 2NaOH = Na2B4O7 + 7H2O

Na2B4O7 + H2SO4 + 5H2O = Na2SO4 + 4Н3ВO3

B(OH)3 + 3C2H5OH →H 2 SO 4 (конц.) → B(OC2H5)3 + 3H2O

 

4.2. Химические свойства алюминия и его соединений

2Al2O3 →электролиз расплава→ 4Al + 3O2

4Al + 3O2 = 2Al2O3 (металл покрыт оксидной пленкой)

2Al + 6Н2O = 2Al(OH)3 + ЗН2 (без оксидной пленки)

2Al + 6HCl = 2AlCl3 + ЗН2

2Al + 2NaOH + 6Н2O = 2Na[Al(OH)4] + ЗН2

8Al + 3Fe3O4 →t→ 9Fe + 4Al2O3

Оксид алюминия – амфотерный оксид

Al2O3 + Н2O ≠

Al2O3 + 6HCl = 2AlCl3 + ЗН2O

Al2O3 + 2NaOH →t→ 2NaAlO2 + Н2O

Гидроксид алюминия – амфотерный гидроксид.

AlCl3 + 3NH4OH = Al(OH)3↓ + 3NH4Cl

AlCl3 + 3NaOH = Al(OH)3↓ + 3NaCl

Al(OH)3↓ + NaOH = Na[Al(OH)4]

Al(OH)3↓ + 3HCl = AlCl3 + 3H2O

2Al(OH)3 →t→ Al2O3 + 3H2O

Соли алюминия гидролизуются. Некоторые из них (Al2S3, Al2(CO3)3) полностью разлагаются водой.

Al2S3 + 6Н2O = 2Al(OH)3↓ + 3H2S↑

Al2(CO3)3 + ЗН2O = 2Al(OH)3↓+ 3CO2↑

 

5. IVA-группа

 

Элементы IVA-группы имеют электронную формулу ns 2 np 2 . Углерод и кремний являются неметаллами, германий, олово, свинец – металлами. Для элементов характерны степени окисления +4, +2, 0, -4 и валентность IV. В возбужденном состоянии атомы имеют конфигурацию ns 1 np s , в этом состоянии для них характерна sp 3 -гибридизация.

 

5.1. Свойства углерода и его соединений

Характерные степени окисления углерода, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Свойства углерода

2С + O2(недостаток) →t→ 2CO

С + O2(избыток) →t→ CO2

С + CO2 →t→ 2CO

С + CuO →t→ Cu + CO

4С + Fe3O4 →t→ 3Fe + 4CO

ЗС + СаО →t→ СаС2 + CO

2С + Са →t→ СаС2

ЗС + 4Al →t→ Al4С3

С + 4НNO3(конц.) →t→ CO2 + 4NO2 + 2Н2O

Свойства оксида углерода (II)  – угарного газа

2CO + O2 →t→ 2CO2

ЗCO + Fe2O3 →t→ 2Fe + ЗCO2

CO + CuO →t→ Cu + CO2

CO + H2O →t, катализатор→ CO2 + Н2

CO + NaOH →t, p→ HCOONa

Свойства оксида углерода(IV)  – углекислого газа

CaCO3 + 2HCl = CaCl2 + Н2O + CO2↑

CaCO3 →t→ СаО + CO2

CO2 + Н2O ↔ Н2CO3 ↔ H+ + HCO3¯ ↔ 2Н+ + CO32-

CO2 + Са(OH)2 = CaCO3↓ + Н2O

CO2 + Н2O + CaCO3↓ = Са(HCO3)2

CO2 + 2Mg →t→ С + 2MgO

Свойства карбонатов и гидрокарбонатов

NaOH + CO2 = NaHCO3

2NaOH + CO2 = Na2CO3 + H2O

Са(HCO3)2 →100 °C→ CaCO3↓ + Н2O + CO2↑

CaCO3 →1000 °C→ СаО + CO2

2NaHCO3 →t→ Na2CO3+ Н2O + CO2↑

NaHCO3+ CH3COOH = CH3COONa + Н2O + CO2↑

CaCO3 + Н2O + CO2 = Са(HCO3)2

Са(HCO3)2 + Са(OH)2 = CaCO3↓ + 2Н2O

Na2CO3 + H2O ↔ NaHCO3 + NaOH

NaHCO3 + (Н2O) ↔ NaOH + (Н2O) + CO2

Свойства карбидов

СаС2 + 2Н2O = Са(OH)2 + С2Н2

Al4С3 + 12HCl = 4AlCl3 + ЗCH4

 

5.2. Получение и свойства кремния и его соединений

Простое вещество

SiO2 + 2Mg →t→ Si + 2MgO

Si + O2 →t→ SiO2

Si + 2F2 = SiF4↑

Si + 2Mg →t→ Mg2Si

Si + 2KOH + 2H2O = K2SiO3 + 2H2

Силан SiH4

Mg2Si + 4HCl = 2MgCl2 + SiH4↑

SiH4 + 2O2 = SiO2 + 2Н2O (самовоспламенение на воздухе)

Оксид кремния (IV)

SiO2 + H2O ≠

SiO2 + 2NaOH →t, сплавление→ Na2SiO3 + Н2O

SiO2 + 6HF = H2[SiF6] + 2H2O

Кремниевая кислота и силикаты. Кремниевая кислота имеет полимерное строение и состав xSiO2 • yH2O. H2SiO3 – условная формула, такого соединения не выделено.

Na2SiO3 + 2HCl = H2SiO3↓ + 2NaCl

Na2SiO3 + 2Н2O + 2CO2 = 2NaHCO3 + H2SiO3↓

H2SiO3 →t→ SiO2 + H 2O

 

5.3. Получение и свойства соединений олова и свинца

Гидроксиды олова и свинца имеют амфо-терные свойства. При этом в степени окисления элемента +2 в гидроксидах преобладают основные свойства, а в степени окисления +4 – кислотные. Соединения Sn2+ имеют восстановительные свойства, а соединения РЬ4+ – окислительные:

SnCl2 + 2NaOH = Sn(OH)2↓ + 2NaCl

Sn(OH)2↓ + 2HCl = SnCl2 + 2H2O

Sn(OH)2↓ + 2NaOH = Na2[Sn(OH)4]

SnCl4 + 4NH4OH = H2SnO3↓ + 4NH4Cl + H2O

H2SnO3↓ + 2NaOH + H2O = Na2[Sn(OH)6]

H2SnO3↓ + 4HCl = SnCl4 + 3H2O

SnCl2 + 2FeCl3 = 2FeCl2 + SnCl4

PbO2 + 4HCl = PbCl2 + Cl2↑ + 2H2O

 

6. VA-группa

 

Элементы VA-группы имеют электронную формулу ns 2 np s . Азот, фосфор и мышьяк являются неметаллами, висмут и сурьма имеют металлические свойства. Наиболее характерные степени окисления: +5, +3, 0, -3. Оксиды Э2O5 имеют кислотные свойства, свойства оксидов Э2O3: кислотные – для N и Р, амфотерные – для As и Sb, основные – для Bi.

 

6.1. Получение и свойства азота и его соединений

Характерные степени окисления азота, соответствующие им электронные формулы, химические свойства и примеры соединений приведены в таблице.

Простое вещество

NH4NO2 →t→ N2 + 2H2O

N2 + 6Li = 2Li3N

N2 + 3Ca →t→ Ca3N2

N2 + O2 →t→ 2NO

Соединения азота (-3)

N2 + ЗН2 →t, p, катализатор→ 2NH3

Ca3N2 + 6H2O = ЗСа(OH)2 + 2NH3

2NH4Cl + Са(OH)2 →t→ CaCl2 + 2NH3 + 2Н2O

NH3 + Н2O ↔ NH3 • Н2O ↔ NH4+ + OH¯

NH3 + HCl = NH4Cl

4NH3 + CuSO4 = [Cu(NH3)4]SO4

2NH3 • H2O + AgCl = [Ag(NH3)2]Cl + 2H2O

4NH3 • H2O + Ag2O = 2[Ag(NH3)2]OH + 3H2O

4NH3 + 3O2 = 2N2 + 6H2O

4NH3 + 5O2 →Pt, t→ 4NO + 6H2O

2NH3 + 3CuO →t→ 3Cu + N2 + 3H2O

NH4Cl + NaOH = NaCl + NH3 + H2O

NH4Cl →t→ NH3 + HCl

NH4NO2 →t→ N2 + 2H2O

(NH4)2CO3 →t→ 2NH3 + H2O + CO2

NH4NO3 →t→ N2O + 2H2O

NH4NO2 →t→ N2 + 2H2O

(NH4)2Cr2O7 →t→ N2 + Cr2O3 + 4H2O

Оксиды азота

2N2O →t→ 2N2 + O2

2HNO2 = NO2 + NO + H2O

2NO2 + Н2O(хол.) = HNO2 + HNO3

2NO2 + 2NaOH = NaNO3 + NaNO2 + H2O

3NO2 + H2O(rop.) = 2HNO3 + NO

4NO2 + O2 + 2H2O = 4HNO3

N2O3 = NO + NO2

2N2O5 = 2NO2 + O2

N2O5 + H2O = 2HNO3

N2O5 + 2NaOH = 2NaNO3 + H2O

Соединения азота (+3)

Ba(NO2)2 + H2SO4(разб.) = BaSO4↓ + 2HNO2 (на холоду)

NO2 + NO + H2O = 2HNO2 (на холоду)

2HNO2 = NO2 + NO + H2O

2HNO2 + 2HI = I2 + 2NO + 2H2O

5NaNO2 + 3H2SO4 + 2KMnO4 = 2MnSO4 + 5NaNO3 + K2SO4 + 3H2O

2NaNO2 + 2H2SO4 + 2KI = I2 + 2NO + K2SO4 + Na2SO4 + 2H2O

Соединения азота (+5)

N2 + 3H2 →t, p, катализатор→ 2NH3

4NH3 + 5O2 →Pt, t→ 4NO + 6H2O

2NO + O2 = 2NO2

4NO2 + O2 + 2H2O = 4HNO3

NaNO3 + H2SO4(конц.) = HNO3 + NaHSO4

4HNO3 →hv → 4NO2 + O2 + 2H2O

Cu + 4HNO3(конц.) = Cu(NO3)2 + 2NO2 + 2H2O

3Cu + 8HNO3(разб.) = 3Cu(NO3)2 + 2NO + 4H2O

4Ca + 10HNO3(конц.) = 4Ca(NO3)2 + N2O + 5H2O

4Са + 10HNO3(разб.) = 4Ca(NO3)2 + NH4NO3 + 3H2O

HNO3(конц.) пассивирует на холоду Al, Fe, Cr.

Fe + 6HNO3 (конц.) →t→ Fe(NO3)3 + 3NO2 + 3H2O

Fe + 4HNO3 (разб.) = Fe(NO3)3 + NO + 2H2O

ЗР + 5HNO3(разб.) + 2Н2O = 3H3PO4 + 5NO

S + 6HNO3 (конц.) = H2SO4 + 6NO2 + 3H2O

2KNO3 →t→ 2KNO2 + O2 (металлы до Mg в ряду напряжений)

2Cu(NO3)2 →t→ 2CuO + 4NO2 + O2 (металлы от Mg до Cu)

2AgNO3 →t→ 2Ag + 2NO2 + O2 (металлы после Cu в ряду напряжений)

4Fe(NO3)2 →t→ 2Fe2O3 + 8NO2 + O2

 

6.2. Получение и свойства фосфора и его соединений

Простое вещество (Р4 – белый фосфор, Р – красный фосфор)

2Са3(PO4)2 + 10C + 6SiO2 →t→ Р4 + 6CaSiO3 + 10CO

4Р + 5O2 →t→ Р4О10

Р4 + 6Са →t→ 2Са3Р2

Фосфин РН3

Zn3P2 + 6HCl = 2PH3↑ + 3ZnCl2

Са3Р2 + 6Н2O = 2PH3↑ + 3Ca(OH)2

2РН3 + 2O2 = Н3PO4

РН3 + HI= PH4I (на холоду)

Фосфористая кислота Н3PO3 (Н2РHO3 – двухосновная кислота)

Р4O6 + 6Н2O = 4Н3PO3

Н3PO3 + NaOH = NaH2PO3 + H2O (NaHPHO3 – кислая соль)

Н3PO3 + 2NaOH = Na2HPO3 + H2O (Na2PHO3 – средняя соль)

Фосфорные кислоты : метафосфорная НPO3 (Нn (PO3)n , где n = 3, 4), дифосфорная – Н4Р2O7, ортофосфорная – Н3PO4.

Р4 + 5O2 = Р4О10

Р4О10 →Н 2 O, 0 °C → НPO3  →Н 2 O, 20 °C → Н4Р2O7 →Н 2 O, 10 °C → Н3PO4

Н3PO4 →t→ Н4Р2O7 →t→ НPO3

Н3PO4 + NH3 = NH4H2PO4

Н3PO4 + NaOH = NaH2PO4 + H2O

 

Н3PO4 + 2NaOH = Na2HPO4 + 2H2O

Н3PO4 + 3NaOH = Na3PO4 + 3H2O

Ca3(PO4)2 + 3H2SO4 = 3CaSO4 + 2H3PO4

Са3(PO4)2 + 2H2SO4 = Са(Н2PO4)2 + 2CaSO4

2Са3(PO4)2 + 10C + 6SiO2 →t→ Р4 + 6CaSiO3 + 10CO

 

7. VIA-группа

 

VIA-группу образуют четыре неметалла: кислород, сера, селен, теллур, называемые халькогенами, и радиоактивный металл полоний. Атомы элементов VIA-группы имеют электронную формулу ns 2 np 4 . Для них характерны степени окисления -2, 0, +4, +6. У атома кислорода отсутствуют 2d-орбитали, поэтому его валентность равна двум. Наличие d-орбиталей у атомов других элементов позволяет им иметь валентности два, четыре или шесть.

 

7.1. Кислород и его соединения

Кислород – самый распространенный элемент земной коры. Кислород представляет собой газ без цвета, без вкуса, без запаха. Возможные степени окисления кислорода, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Получение и свойства кислорода

Кислород может быть получен при сжижении и разделении воздуха.

2КMnO4 →t→ К2MnO4 + MnO2 + O2

2KClO3 →t→ 2KCl + 3O2

(NaOH) + 2Н2O →электролиз раствора→ 2Н2 + O2

O2 + 2F2 = OF2

2Са + O2 = 2СаО

S + O2 = SO2

2С2Н2 + 5O2 = 4CO2 + 2Н2O

4FeS2 + 11O2 →t→ 2Fe2O3 + 8SO2

4NH3 + 3O2 = 6Н2O + 2N2

4NH3 + 5O2 →p, t, Pt→ 4NO + 6Н2O

Получение и свойства озона O 3

3O2 →hv→ 2O3

O3 = O2 + О

KI + Н2O + O3 = I2 + 2KOH + O2

Свойства пероксида водорода

ВaO2 + H2SO4 = BaSO4↓ + Н2O2 (на холоду)

2Н2O2 →MnO 2 → 2Н2O + O2

2KMnO4 + 3H2SO4 + 5Н2O2 = 5O2 + 2MnSO4 + K2SO4 + 8H2O

2KI + H2SO4 + H2O2 = I2 + K2SO4 + 2Н2O

Н2O2 + O3 = 2O2 + Н2O

 

7.2. Сера и ее соединения

Характерные степени окисления серы, соответствующие им электронные формулы, химические свойства и примеры соединений приведены в таблице.

Чистая сера – хрупкое кристаллическое вещество желтого цвета. Сера имеет несколько модификаций: ромбоэдрическую и призматическую, также пластическую (аморфную). Аллотропия серы обусловлена различной структурой кристаллов, построенных из восьмиатомных молекул S8. В расплаве серы существуют молекулы S8, S6, в парах серы – молекулы S6, S4, S2.

Получение и свойства серы

FeS2 →t→ FeS + S

SO2 + 2H2S = 3S + 2H2O

S + O2 →t→ SO2

Fe + S →t→ FeS

Hg + S = HgS

S + 6HNO3(конц.) = H2SO4 + 6NO2 + 2H2O

Получение и свойства соединений серы (-2)

FeS + 2HCl = FeCl2 + H2S

H2S ↔ H+ + HS¯ ↔ 2H+ + S2-

2H2S + O2 (недостаток) = 2S↓ + 2H2O

2H2S + 3O2 (избыток) →t→ 2SO2 + 2H2O

2H2S + SO2 = 3S↓ + 2H2O

H2S + I2 = S↓+ 2HI

5H2S + 3H2SO4 + 2KMnO4 = 5S↓ + 2MnSO4 + K2SO4 + 8H2O

3H2S + 4H2SO4 + K2Cr2O7 = 3S↓ + Cr2(SO4)3 + K2SO4 + 7H2O

2NaOH + H2S = Na2S + 2H2O

Na2S + 2H2O ↔ NaHS + NaOH

Al2S3 + 6H2O = 2Al(OH)3↓ + 3H2S↑

3Na2S + Cr2(SO4)3 + 6H2O = 2Cr(OH)3↑ + 3H2S↑+ 3Na2SO4

Получение и свойства соединений серы (+4)

S + О2 →t→ SO2

4FeS2 + 11O2 →t→ 2Fe2O3 + 8SO2

SO2 + Н2O ↔ H2SO3 ↔ Н+ + HSO3¯ ↔ 2Н+ + SO32-

Na2SO3 + 2HCl = 2NaCl + H2O + SO2↑

SO2 + NaOH = NaHSO3

SO2 + 2NaOH = Na2SO3 + H2O

H2SO3 + 2H2S = 3S↓ + 3H2O

2SO2 + O2 →p, t, Pt → 2SO3

H2SO3 + Cl2 + H2O = H2SO4 + 2HCl

5SO2 + 2H2O + 2KMnO4 = 2H2SO4 + 2MnSO4 + K2SO4

Получение и свойства соединений серы (+6)

4FeS2 + 11O2 →t→ 2Fe2O3 + 8SO2

2SO2 + O2 →p, t, V 2 O 5 → 2SO3

H2O + SO3 = H2SO4

H2SO4 + SO3 = H2SO4  • SO3 = H2S2O7 (олеум)

H2S2O7 + H2O = 2H2SO4

Fe + H2SO4 (разб.) = FeSO4 + H2

Cu + H2SO4 (разб.) ≠

H2SO4(конц.) + H2O = H2SO4  • H2O + Q

Концентрированная серная кислота пассивирует на холоду Al, Fe, Cr.

2Fe + 6H2SO4 (конц.) →t→ Fe2(SO4)3 + 3SO2 + 6Н2O

Cu + 2H2SO4 (конц.) →t→ CuSO4 + SO2 + 2Н2O

3Zn + 4H2SO4 (конц.) = 3ZnSO4 + S + 4H2O

4Ca + 5H2SO4 (конц.) = 4CaSO4 + H2S + 4H2O

2H2SO4 (конц.) + S →t→ 3SO2 + H2O

2H2SO4 (конц.) + С →t→ 2SO2 + CO2 + 2H2O

 

8. VIIA-группa

 

Атомы галогенов, образующих VIIA-группу, имеют электронную конфигурацию ns 2 np 5 . Все галогены являются активными неметаллами, окислителями. Их активность уменьшается в ряду F > Cl > Br > I > At. Характерные степени окисления галогенов: -1, 0, +1, +3, +5, +7. Однако у фтора, наиболее активного неметалла, есть лишь степени окисления -1 и 0. F2 и Cl2 – газы, Br2 – жидкость, I2 – твердое вещество. С увеличением радиуса атомов галогенов растет объем их атомов и молекул, а также их поляризуемость. Это приводит к увеличению сил межмолекулярного взаимодействия (сил Ван дер Ваальса) и повышению температур плавления и кипения простых веществ.

HF, HCl, HBr, HI при растворении в воде образуют кислоты (HF – слабую, HCl, HBr и HI – сильные). В HF имеются сильные водородные связи. В ряду HCl – HBr – HI сила кислот несколько увеличивается в связи с увеличением поляризуемости молекул, пропорциональной их объему.

Электронная формула атома водорода 1s1. С галогенами его объединяет способность принимать один электрон и образовывать стабильную электронную оболочку 1s2. Поэтому часто водород располагают вместе с галогенами в VIIA-группе.

 

8.1. Водород и его соединения

Водород – наиболее распространенный элемент во Вселенной. Водород – легкий газ без цвета, без запаха. Возможные степени окисления водорода, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

CH4 + 2Н2O →t, катализатор→ 4Н2 + CO2

Zn + 2HCl = ZnCl2 + Н2

(NaOH) + 2Н2O →электролиз раствора→ 2Н2 + O2

Н2 + 2Na →t→ 2NaH

Н2 + Са →t→ СаН2

2Н2 + O2 = 2Н2O

Н2 + Cl2 →hv→ 2HCl

ЗН2 + N2 →t, p, катализатор→ 2NH3

NaH + Н2O = NaOH + Н2

СаН2 + 2HCl = CaCl2 + 2Н2

 

8.2. Вода

Молекулы воды связаны водородными связями: nH2O = (Н2O)n , поэтому вода жидкая в отличии от ее газообразных аналогов H2S, H2Se и Н2Те.

Кислород в молекуле воды находится в состоянии sp 3 -гибридизации, две связи О—Н и две неподеленные пары кислорода располагаются тетраэдрически, угол между связями О—Н равен 104,5°, поэтому молекула воды полярная. Вода является хорошим растворителем для веществ с ионными или полярными связями.

2Na + 2Н2O = 2NaOH + Н2

Fe + 4Н2O →t→ Fe3O4 + 4Н2

Ag + Н2O ≠

Н2O + СаО = Са(OH)2

Н2O + Al2O3 ≠

N2O3 + Н2O = 2HNO2

2CuSO4 + 2Н2O ↔ (CuOH)2SO4 + H2SO4

H2SO4(конц.) + H2O = H2SO4  • H2O

CuSO4 + 5H2O = CuSO4 • 5H2O

 

8.3. Фтор и его соединения

Фтор является наиболее активным неметаллом, сильным окислителем.

F2 + Н2 = 2HF

2F2 + 2Н2O = 4HF + O2

F2 + 2NaCl = 2NaF + Cl2

4HF + SiO2 = SiF4↑ + 2Н2O

 

8.4. Хлор и его соединения

Хлор – тяжелый газ желто-зеленого цвета, с резким запахом.

2NaCl + 2Н2O →электролиз раствора→ Н2 + Cl2 + 2NaOH

2KMnO4 + 16HCl = 2KCl + 2MnCl2 + 5Cl2 + 8Н2O

MnO2 + 4HCl = Cl2 + MnCl2 + 2Н2O

Cl2 + Н2 →hv→ 2HCl

CH4 + Cl2 →hv→ CH3Cl + HCl

С2Н4 + Cl2 = С2Н4Cl2

Cl2 + 2KBr = 2KCl + Br2

Cl2 + Н2O = HCl + HClO (реакция диспропорционирования)

HClO = HCl + О (атомарный кислород – окислитель)

Cl2 + 2KOH = KCl + KClO +Н2O

2Cl2 + 2Са(OH)2 = CaCl2 + Са(ClO)2 + 2Н2O

Смесь CaCl2 и Са(ClO)2 – хлорная, или белильная, известь.

ЗCl2 + 6KOH →100 °C→ 5KCl + KClO3 + ЗН2O

KClO3 – хлорат калия, или бертолетова соль.

4KClO3 →400 °C→ KCl + ЗKClO4

2KClO3 →v→2KCl + 3O2

Сила кислот растет в ряду:

HClO → HClO2 → HClO3 → HClO4.

2HCl + Fe = FeCl2 + H2↑

2HCl + CuO = CuCl2 + H2O

3HCl + Al(OH)3 = AlCl3 + 3H2O

HCl + AgNO3 = AgCl↓ + HNO3

HCl + NH3 = NH4Cl

 

8.5. Бром, иод и их соединения

Бром – темно-бурая жидкость с резким запахом, а иод – кристаллическое вещество темного цвета. Изменение фазового состояния галогенов обусловлено увеличением межмолекулярного – дисперсионного взаимодействия, связанного с увеличением размеров и поляризуемости молекул галогенов в ряду хлор → бром → иод.

2NaBr + Cl2 = 2NaCl + Br2

2NaI + Cl2 = 2NaCl + I2

2Al + ЗBr2 = 2AlBr3

2Al + 3I2 = 2AlI3

Br2 + Н2 ↔ 2HBr

I2 + Н2 ^ 2Ш

AgNO3 + NaBr = AgBr↓ + NaNO3

AgNO3 + NaI = AgI↓+ NaNO3

I2 + 2Na2S2O3 = 2NaI + Na2S4O6

10KI + 8H2SO4 + 2KMnO4 = 5I2 + 2MnSO4 + 6K2SO4 + 8H2O

 

9. d-Элементы

 

В атомах d-элементов (переходных элементов) заполняется электронами d-под-уровень предвнешнего уровня. На внешнем уровне атомы d-элеметов имеют, как правило, два s-электрона. Близость строения валентных уровней атомов переходных элементов определяет их общие свойства. Все они являются металлами, имеют высокую прочность, твердость, высокую электро– и теплопроводность. Многие из них электроположительны и растворяются в минеральных кислотах, однако среди них есть металлы, не взаимодействующие обычным способом с кислотами. Большинство переходных металлов имеют переменную валентность. Максимальная валентность, как и максимальная степень окисления, как правило, равно номеру группы, в которой находится данный элемент.

 

9.1. Хром и его соединения

Хром представляет собой ковкий тягучий металл серо-стального цвета. Электронная формула атома хрома 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 .

Характерные степени окисления хрома, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Получение и свойства хрома

FeO • Cr2O3 + 4CO →t→ Fe + 2Cr + 4CO2 (Fe + 2Cr) – феррохром

Сr2O3 + 2Al →t→ 2Сr + Al2O3 – метод алюминотермии

Хром пассивируется на холоду концентрированными азотной и серной кислотами.

Сr + 2HCl = СrCl2 + Н2

СrCl2 + 2NaOH = Cr(OH)2↓ + 2NaCl

Свойства соединений хрома (+2) и хрома (+3)

Гидроксид хрома(II) сразу окисляется кислородом воздуха.

4Сr(OH)2 + O2 + 2Н2O = 4Сr(OH)3

СrCl3 + 3NaOH = Cr(OH)3↓ + 3NaCl

Cr(OH)3↓ + 3Na(OH) = Na3[Cr(OH)6]

Cr2O3 + 2NaOH →t→ 2NaCrO2 + H2O

Cr(OH)3↓ + 3HCl = CrCl3 + 3H2O

2Cr(OH)3 →t→ Cr2O3 + 3H2O

2CrCl3 + 3Cl2 + 16KOH = 2K2CrO4 + 12KCl + 8H2O

2Na3Cr(OH)6 + 3Br2 + 4NaOH = 2Na2CrO4 + 6NaBr + 8H2O

Свойства соединений хрома (+6)

CrO3 + Н2O = H2CrO4

2CrO3 + H2O = H2Cr2O7

Желтый раствор хромата калия устойчив в щелочной среде, оранжевый раствор дихромата калия – в кислой среде.

К2Сr2O7 + 2KOH = 2К2СrO4 + Н2O

2K2CrO4 + H2SO4 = K2SO4 + K2Cr2O7 + Н2O

(NH4)2Cr2O7 →t→ Cr2O3 + N2 + 4Н2O

Дихромат калия – окислитель в кислой среде.

К2Сr2O7 + 4H2SO4 + 3Na2SO3 = Cr2(SO4)3 + 3Na2SO4 + K2SO4 + 4H2O

K2Cr2O7 + 4H2SO4 + 3NaNO2 = Cr2(SO4)3 + 3NaNO3 + K2SO4 + 4H2O

K2Cr2O7 + 7H2SO4 + 6KI = Cr2(SO4)3 + 3I2 + 4K2SO4 + 7H2O

K2Cr2O7 + 7H2SO4 + 6FeSO4 = Cr2(SO4)3 + 3Fe2(SO4)3 + K2SO4 + 7H2O

 

9.2. Марганец и его соединения

Марганец – серебристо-белый твердый и хрупкий металл. Характерные степени окисления марганца, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Получение и свойства марганца

FeO • Mn2O3 + 4CO →t→ Fe + 2Mn + 4CO2 (Fe + 2Mn) – ферромарганец

Mn2O3 + 2Al →t→ 2Mn + Al2O3 – метод алюминотермии

Mn + 2HCl = MnCl2 + Н2

Mn + 2H2SO4 (конц.) = MnSO4 + SO2 + 2Н2O

ЗMn + 8HNO3 (разб.) = 3Mn(NO3)2 + 2NO + 4Н2O

Свойства соединений марганца (+2)

MnSO4 + 2NaOH = Mn(OH)2↓ + Na2SO4

Mn(OH)2↓ + 2NaOH ≠

Mn(OH)2↓ + H2SO4 = MnSO4 + 2H2O

2Mn(OH)2↓ + O2 = MnO2↓ + 2H2O

Mn(OH)2↓ + 2NaOH + Br2 = MnO2↓ + 2NaBr + 2H2O

Mn(OH)2↓ →t→ MnO + H2O↑

2Mn(NO3)2 + 16HNO3 + 5NaBiO3 = 2HMnO4 + 5Bi(NO3)3 + 5NaNO3 + 7H2O

3MnCl2 + 2KClO3 + 12NaOH →сплавление→ 3Na2MnO4 + 2KCl + 6NaCl + 6H2O

Свойства соединений марганца (+4)

MnO2 – устойчивый амфотерный оксид, сильный окислитель.

MnO2 + 4HCl = MnCl2 + Cl2 + 2Н2O

3MnO2 + KClO3 + 6KOH →сплавление→ 3K2MnO4 + KCl + 3H2O↑

Свойства соединений марганца (+6)

Соединения устойчивы лишь в сильнощелочной среде.

К2MnO4 + 8HCl = MnCl2 + 2Cl2 + 2KCl + 4Н2O

Свойства соединений марганца (+7)

Сильные окислители в кислой среде.

2KMnO4 + 3H2SO4 + 5Na2SO3 = 2MnSO4 + 5Na2SO4 + K2SO4 + 3H2O

2KMnO4 + H2O + 3Na2SO3 = 2MnO2 + 3Na2SO4 + 2KOH

2KMnO4 + 2KOH + Na2SO3 = 2K2MnO4 + Na2SO4 + H2O

2KMnO4 + 8H2SO4 + 10FeSO4 = 2MnSO4 + 5Fe2(SO4)3 + K2SO4 + 8H2O

2KMnO4 + 8H2SO4 + 10KI = 2MnSO4 + 5I2 + 6K2SO4 + 8H2O

2KMnO4 + 3H2SO4 + 5NaNO2 = 2MnSO4 + 5NaNO3 + K2SO4 + 3H2O

2KMnO4 →t→ K2MnO4 + MnO2 + O2↑

 

9.3. Железо и его соединения

Железо является вторым после алюминия металлом по распространенности в природе. Характерные степени окисления железа, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Соединения железа (+8) малохарактерны.

Получение и свойства железа

3Fe2O3 + CO →t→ 2Fe3O4 + CO2

Fe3O4 + CO →t→ 3FeO + CO2

FeO + CO →t→ Fe + CO2

3Fe3O4 + 8Al →t→ 9Fe + 4Al2O3

Fe + I2 →t→ FeI2

2Fe + ЗCl2 →t→ 2FeCl3

4Fe + 3O2 + 2Н2O = 4FeO(OH)↓ (коррозия на воздухе)

Fe + 2HCl = FeCl2 + Н2

Fe + H2SO4 (разб.) = FeSO4 + H2

Fe + 4HNO3 (разб.) = Fe(NO3)3 + NO + 2H2O

Концентрированные серная и азотная кислоты пассивируют железо на холоду. При нагревании реакция идет.

2Fe + 6H2SO4(конц.) →t→ Fe2(SO4)3 + 3SO2 + 6Н2O

Fe + 6НNO3(конц.) →t→ Fe(NO3)3 + 3NO2 + 3H2O

Свойства соединений железа (+2)

FeO + Н2O ≠

FeO + H2SO4 = FeSO4 + H2O

FeSO4 + 2NaOH = Fe(OH)2↓ + Na2SO4

Гидроксид железа(II) сразу окисляется кислородом воздуха.

4Fe(OH)2↓ + 2Н2O + O2 = 4Fe(OH)3↓

Fe(OH)2↓ + H2SO4 = FeSO4 + 2Н2O

Fe(OH)2↓ + 2NaOH *

FeSO4 + 6KCN = K4[Fe(CN)6] + K2SO4

FeSO4 + K3[Fe(CN)6] = KFe[Fe(CN)6]↓ + K2SO4

Свойства соединений железа (+3 )

FeCl3 + 3NaOH = Fe(OH)3↓ + 3NaCl

Fe(OH)3↓ + 3HCl = FeCl3 + 3H2O

Fe(OH)3↓ + NaOH ≠ не идет в разбавленном растворе

Fe(OH)3↓ + NaOH →сплавление→ NaFeO2 + 2H2O

FeCl3 + 2HI = 2FeCl2 + I2 + 2HCl

FeCl3 + 6KCN = K3[Fe(CN)6] + 3KCl

FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6]↓ + 3KCl

FeCl3 + 3KCNS = Fe(SCN)3 + 3KCl

Свойства соединений железа (+6)

Феррат калия – окислитель.

Fe2O3 + 3KNO3 + 4KOH →сплавление→ 2K2FeO4 + 3KNO2 + 2H2O

4K2FeO4 + 10H2SO4(разб.) = 2Fe2(SO4)3 + 3O2↑ + 4K2SO4 + 10H2O

 

9.4. Медь и ее соединения

Медь – мягкий красный металл, хорошо проводит теплоту и электрический ток.

Получение и свойства меди

2CuS + 3O2 →t→ 2CuO + 2SO2

CuO + CO →t→ Cu + CO2

Cu + 2HCl + Н2O2 = CuCl2 + 2Н2O

Cu + 2H2SO4(конц.) = CuSO4 + SO2 + 2Н2O

Cu + 4НЖ)3(конц.) = Cu(NO3)2 + 2NO2 + 2H2O

3Cu + 8HNO3(разб.) = 3Cu(NO3)2 + 2NO + 4H2O

4Cu + O2(недостаток) →200 °C→ 2Cu2O

2Cu + O2(избыток) →500 °C→ 2CuO

2Cu + H2O + CO2 + O2 = (CuOH)2CO3↓ (малахит)

Свойства соединений меди(I)

2Cu2O + O2  →500 °C→ 4CuO

Cu2O + CO →t→ 2Cu + CO2

Cu2O + 4(NH3  • Н2O) (конц.) = 2[Cu(NH3)2]OH + 3H2O

Свойства соединений меди(II)

CuO + 2HCl = CuCl2 + Н2O

CuSO4 + 2NaOH = Cu(OH)2↓ + Na2SO4

Cu(OH)2↓ →t→ CuO↓ + Н2O

Cu(OH)2↓ + H2SO4 = CuSO4 + 2H2O

Cu(OH)2↓ + NaOH ≠ не идет в растворе

Cu(OH)2↓ + 2NaOH (конц.) →t→ Na2[Cu(OH)4]

CuSO4 + 4(NH3 • H2O) = [Cu(NH3)4]SO4 + 4Н2O

[Cu(NH3)4]SO4 + Na2S = CuS↓ + Na2SO4 + 4NH3

2CuSO4 + 2H2O ↔ (CuOH)2SO4 + H2SO4

2CuSO4 + 4KI = 2CuI↓ + I2 + 2K2SO4

2Cu(NO3)2 →t→ 2CuO + 4NO2 + O2

 

9.5. Серебро и его соединения

3Ag + 4HNO3 (разб.) = 3AgNO3 + NO↑ + 2H2O

2AgNO3 + 2NaOH = Ag2O↓ + H2O + 2NaNO3

AgNO3 + HCl = AgCl↓ + HNO3

AgCl↓ + 2(NH3 • H2O) = [Ag(NH3)2]Cl + 2H2O

[Ag(NH3)2]Cl + 2HNO3 = AgCl↓ + 2NH4NO3

Ag2O + 4(NH3  • Н2O) (конц.) = 2[Ag(NH3)2]OH + 3H2O

2[Ag(NH3)2]OH + CH3CHO + 2H2O = 2Ag↓ + CH3COONH4 + 3(NH3  • H2O)

 

9.6. Цинк и его соединения

Получение и свойства цинка

2ZnS + 3O2 →t→ 2SO2 + 2ZnO

ZnO + CO →t→ Zn + CO2

Zn + 2HCl = ZnCl2 + H2↑

Zn + H2SO4 (разб.) = ZnSO4 + H2↑

4Zn + 5H2SO4 (конц.) = 4ZnSO4 + H2S↑ + 4H2O

Zn + 4НHNO3(конц.) = Zn(NO3)2 + 2NO2↑ + 2H2O

4Zn + 10HNO3(оч. разб.) = 4Zn(NO3)2 + NH4NO3 + 3H2O

Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2↑

Свойства соединений цинка

ZnSO4 + 2NaOH = Zn(OH)2↓ + Na2SO4

Zn(OH)2↓ + H2SO4 = ZnSO4 + 2H2O

Zn(OH)2↓ + 2NaOH = Na2[Zn(OH)4]

Na2[Zn(OH)4] + 2HCl = Zn(OH)2↓ + 2NaCl + 2H2O

Na2[Zn(OH)4] + 4HCl = ZnCl2 + 2NaCl + 4H2O

Zn(OH)2↓ + 6NH4OH = [Zn(NH3)6](OH)2 + 6H2O

2ZnSO4 + 2H2O ↔ (ZnOH)2SO4 + H2SO4

 

III. Аналитическая химия

 

1. Теоретические основы аналитической химии

Чувствительность аналитической реакции. Предел обнаружения, или открываемый минимум, (m) – наименьшая масса вещества, открываемая данной реакцией по данной методике. Измеряется в микрограммах (1 мкг = 10– 6 г).

Предельная концентрация (clim) – наименьшая концентрация определяемого вещества, при которой оно может быть обнаружено в растворе данной реакцией по данной методике. Выражается в г/мл.

Предельное разбавление (Vlim) – объем раствора с предельной концентрацией, в котором содержится 1 г определяемого вещества. Предельное разбавление выражается в мл/г.

Минимальный объем предельно разбавленного раствора (Vmin) – наименьший объем (мл) раствора определяемого вещества, необходимый для его обнаружения данной реакцией.

m = Clim • Vmin • 106,

Вычисление рН водных растворов

сильных кислот: рН = – lga(H+) = – lg (c(H+) / f(Н+))

сильных оснований: рН = 14 + lga(OH¯) = 14 + lg (c(OH¯) f(OH¯))

слабых кислот: рН = – ½(рKкислоты – lgc) = – ½Kкислоты – ½lgc

слабых оснований: рН = 14 – ½рKоснования + ½lgc

солей, образованных сильным основанием и слабой кислотой: рН = 7 + ½pKкислоты + ½lgcсоли

солей, образованных слабым основанием и сильной кислотой: рН = 7 – ½Kоснования – lgcсоли

солей, образованных слабым основанием и слабой кислотой: рН = 7 + ½pKкислоты + ½pKоснования

кислого буферного раствора:

щелочного буферного раствора:

Вычисление буферной емкости. Емкость буферного раствора определяется количеством сильной кислоты или сильного основания, которое необходимо добавить к 1 л буферного раствора, чтобы изменить его значение рН на единицу.

Гетерогенное равновесие: осадок – насыщенный раствор малорастворимого соединения. Гетерогенное равновесие между осадком малорастворимого соединения и его ионами в насыщенном водном растворе может быть представлено следующим уравнением:

Ktm Ann ↓ ↔ mKtn + + nAnm -

[Ktn +] = m s; [Anm - ] = n • s

Константа равновесия обратимой реакции осаждения-растворения называется произведением растворимости K s (или ПР) и выражается следующим образом:

K s = a (Ktn + )m  a (Anm - )n = (f(Ktn + ) x [Ktn + ])m  • (f(Anm- )[Anm - ])n = (ms) m (ns) n • f (Ktn + )m • f(Ann - )n = n n m m s m+n  • f (Ktn + )m • f(Anm - )n , или K s = n n • m m • s m + n

Растворимость – это свойство вещества образовывать гомогенные системы с растворителем. Молярная растворимость малорастворимого вещества (s), моль/л, выражается следующим образом:

Зная молярную растворимость соединения Ktm Ann , легко вычислить его растворимость в г/л ρ по формуле:

ρ = s • M(Ktm Ann )

Массу малорастворимого вещества в любом объеме можно рассчитать по формуле:

m(Ktm Ann ) = s(Ktm Ann ) • M(Ktm Ann ) x V р-ра

Условие образования и растворения осадка. Осадок не образуется или растворяется, если произведение концентраций ионов осадка в растворе меньше величины произведения растворимости.

[Ktn + ]m [Anm - ]n < K s (Ktm Ann )

Осадок образуется или выпадает, если произведение концентраций ионов осадка в растворе больше величины произведения растворимости.

[Ktn + ]m [Anm - ]n > K s (Ktm Ann ).

Равновесия в окислительно-восстановительных системах. Для обратимой окислительно-восстановительной реакции

Oх + nē ↔ Red

Равновесный потенциал Eox/red со стандартным потенциалом редокс-пары Eox/red и активностью окисленной и восстановленной формы связан уравнением Нернста:

где R – универсальная газовая постоянная, равная 8,314 Дж/моль К, Т – температура по шкале Кельвина, К, T – число Фарадея, равное 96485 Кл/моль, а(Ох) – активность окисленной формы, a(Red) – активность восстановленной формы.

При подстановке в уравнение значений универсальной газовой постоянной, числа Фарадея, температуры Т = 298 К и замены натурального логарифма на десятичный получается уравнение для расчета значения равновесного электродного потенциала редокс-пары при 25°C:

Если в окислительно-восстановительных реакциях принимают участие ионы водорода, то уравнение Нернста выглядит следующим образом:

Если окисленная или восстановленная форма окислительно-восстановительной полуреакции является малорастворимым соединением, то в формулу для вычисления равновесного потенциала такой системы входит величина произведения растворимости этого соединения.

Если в окислительно-восстановительной полуреакции окисленной формой является комплексное соединение OxLm , характеризующееся константой устойчивости β(OxLm ), то равновесный окислительно-восстановительный потенциал вычисляется по уравнению:

Направление и глубина протекания окислительно-восстановительных реакций. Обратимая окислительно-восстановительная реакция

аОх1 + bRed1 ↔ аОх2 + bRed2 протекает в прямом направлении, если ΔЕ 0 = Е 0 Ox1/Red2 – Е 0 Ox2/Red1 > 0, И В обратном направлении, если ΔЕ 0 < 0.

Глубина протекания реакции, т. е. степень превращения исходных веществ в продукты реакции, определяется константой равновесия.

Для окислительно-восстановительной реакции константа равновесия с потенциала-

ми участвующих в реакции редокс-пар связана уравнением:

 

2. Качественные реакции катионов

 

Кислотно-основная классификация катионов

I группа: Li+, NH4+, Na+, K+

групповой реагент – отсутствует.

Свойства соединений: хлориды, сульфаты и гидроксиды растворимы в воде.

II группа: Ag+, Hg22+, Pb2+

групповой реагент – HCl (с(HCl) = 2 моль/л).

Свойства соединений: хлориды не растворимы в воде.

III группа: Са2+, Ва2+, Sr2+, Pb2+

групповой реагент – H2SO4 (c(H2SO4) = 2 моль/л).

Свойства соединений: сульфаты не растворимы в воде.

IV группа: Al3+, Cr3+, Zn2+, As(III), As(IV), Sn2+

групповой реагент – NaOH (c(NaOH) = 2 моль/л), избыток.

Свойства соединений: гидроксиды растворимы в избытке NaOH.

V группа: Bi3+, Fe2+, Fe3+, Mn2+

групповой реагент – NH3 (конц.).

Свойства соединений: гидроксиды нерастворимы в избытке NaOH и NH3.

VI группа: Cd2+, Co2+, Cu2+, Ni2+

групповой реагент – NH4OH (конц.).

Свойства соединений: гидроксиды нерастворимы в избытке NaOH, но растворимы в избытке NH3.

 

2.1. I аналитическая группа

Ион: Li +

1. Реактив, условия: Na2HPO4, конц. NH3.

Уравнение реакции:

3LiCl + Na2HPO4 = Li3PO4↓ + 2NaCl +HCl

Наблюдения: белый осадок.

2. Реактив, условия: Na2CO3, рН ≈ 7

Уравнение реакции: 2LiCl + Na2CO3 = Li2CO3↓ + 2NaCl

Наблюдения: белый осадок.

Ион: NH 4 +

1. Реактив, условия: NaOH, газовая камера.

Уравнение реакции:

NH4Cl + NaOH = NaCl + Н2O + NH3↑

Наблюдения: запах аммиака, фенолфталеиновая бумага краснеет.

2. Реактив, условия: реактив Несслера (смесь K2[HgI4] и KOH)

Уравнение реакции:

NH3 + 2K2[HgI4] + ЗKOH = [OHg2NH2]I↓ + 7KI + 2Н2O

Наблюдения: красно-бурый осадок.

Ион: Na +

1. Реактив, условия: K[Sb(OH)6], насыщенный раствор, холод, рН ≈ 7, мешают NH4+, Li+

Уравнение реакции:

NaCl + K[Sb(OH)6] = Na[Sb(OH)6]↓ + KCl

Наблюдения: белый осадок.

2. Реактив, условия: Zn(UO2)3(CH3COO)8, предметное стекло, CH3COOH, мешает Li+

Уравнение реакции:

NaCl + Zn(UO2)3(CH3COO)8 + CH3COOK + 9Н2O = NaZn(UO2)3(CH3COO)9 9Н2O↓ + KCl

Наблюдения: желтые кристаллы октаэд-рической и тетраэдрической форм.

Ион: К +

1. Реактив, условия: Na3[Co(NO2)6], слабо-кислая среда, мешают NH4+, Li+.

Уравнение реакции:

2KCl + Na3[Co(NO2)6] = K2Na[Co(NO2)6]↓ + 2NaCl

Наблюдения: желтый осадок.

2. Реактив, условия: NaHC4H4O6, рН ≈ 7, мешает NH4+.

Уравнение реакции: 2KCl + NaHC4H4O6 = K2C4H4O6↓ + NaCl + HCl

Наблюдения: белый осадок.

 

2.2. II аналитическая группа

Ион: Ag +

1. Реактив, условия: HCl, NH3 • Н2O

Уравнения реакций:

AgNO3 + HCl = AgCl↓ + HNO3

AgCl↓ + 2NH3 • H2O = [Ag(NH3)2]Cl + 2H2O

[Ag(NH3)2]Cl + 2HNO3 = AgCl↓ + 2NH4NO3

Наблюдения: белый осадок, растворимый в избытке аммиака и выпадающий вновь при добавлении азотной кислоты (использовать спец. слив!).

2. Реактив, условия: К2СrO4, рН = 6,5–7,5.

Уравнение реакции:

2AgNO3 + K2CrO4 = Ag2CrO4↓ + 2KNO3 Наблюдения: кирпично-красный осадок.

Ион: Hg 2 +

1. Реактив, условия: HCl, NH3 • Н2O

Уравнения реакций:

Hg2(NO3)2 + 2HCl = Hg2Cl2↓ + 2HNO3

Hg2Cl2↓ + 2NH3 • H2O = [HgNH2]Cl↓ + Hgi↓ + NH4Cl + 2H2O

Наблюдения: белый осадок, при добавлении аммиака – чернеет (использовать спец. слив!).

2. Реактив, условия: Cu (металл.)

Уравнение реакции:

Hg2(NO3)2 + Cu = Hg↓ + Cu(NO3)2

Наблюдения: образование амальгамы.

Ион: РЬ 2+

1. Реактив, условия: HCl

Уравнение реакции:

Pb(NO3)2 + 2HCl = РЬCl2↓ + 2HNO3

Наблюдения: белый осадок, растворимый в горячей воде.

2. Реактив, условия: KI

Уравнение реакции:

РЬCl2 + 2KI = РCl2↓ + 2KCl

Наблюдения: ярко-желтый осадок.

 

2.3. III аналитическая группа

Ион: Ва 2+

1. Реактив, условия: H2SO4

Уравнение реакции:

ВaCl2 + H2SO4 = BaSO4↓ + 2HCl

Наблюдения: белый осадок, нерастворимый в HNO3.

2. Реактив, условия: К2СrO4 или К2Сr2O7

Уравнение реакции:

ВaCl2 + К2СrO4 = ВаСrO4↓ + 2KCl

Наблюдения: желтый осадок, нерастворимый в CH3COOH, растворимый в HNO3.

Ион: Са 2+

1. Реактив, условия: H2SO4 и С2Н5OH

Уравнение реакции:

CaCl2 + H2SO4 + 2Н2O = CaSO4 • 2H2O↓ + 2HCl

Наблюдения: белые кристаллы гипса.

2. Реактив, условия: (NH4)2C2O4

Уравнение реакции:

CaCl2 + (NH4)2C2O4 = СаС2O4↓ + 2NH4Cl

Наблюдения: белый осадок, нерастворимый в CH3COOH, растворимый в HNO3.

Ион: Sr 2+

1. Реактив, условия: «гипсовая вода»

Уравнение реакции:

SrCl2 + CaSO4 →t→ SrSO4↓ + CaCl2

Наблюдения: белый осадок.

 

2.4. IV аналитическая группа

Ион: Al 3+

1. Реактив, условия: ализарин С14Н6O2(OH)2, NH3 • Н2O (NH4Cl)

Уравнения реакций:

AlCl3 + 3NH3 • H2O = Al(OH)3↓ + 3NH4Cl

Наблюдения: Розовый лак на фильтровальной бумаге.

2. Реактив, условия: алюминон, CH3COOH

Уравнение реакции: алюминон с Al(OH)3 образует красный лак, которому приписывается следующая формула:

Наблюдения: розовый лак.

Ион: Сr 3+

Реактив, условия: NaOH, H2O2, нагревание, амиловый спирт, H2SO4

Уравнение реакции:

2СrCl3 + 10NaOH + ЗН2O2 = 2К2СrO4 + 6NaCl + 8Н2O

Наблюдения: желтый раствор, при добавлении амилового спирта, H2SO4 наблюдается синее кольцо.

Ион: Zn 2+

Реактив, условия: дитизон С6Н5—NH—N=C(SH)—N=N—C6H5 (дифенилкарбазон), CHCl3, рН = 2,5-10, мешают Pb2+, Cd2+, Sn2+

Уравнения реакций:

Наблюдения: соль красного цвета, растворимая в хлороформе (CHCl3).

Ион: AsO 3 3-

Реактив, условия: AgNO3

Уравнение реакции:

Na3AsO3 + 3AgNO3 = Ag3AsO3↓ + 3NaNO3

Наблюдения: желтый аморфный осадок, растворим в концентрированном растворе аммиака и в азотной кислоте (использовать спец. слив!).

Ион: AsO 4 3-

1. Реактив, условия: магнезиальная смесь (MgCl2 + NH4Cl + NH3), мешает PO43-

Уравнение реакции:

NH4Cl + MgCl2 + Na3AsO4 = NH4MgAsO4↓ + 3NaCl

Наблюдения: белый кристаллический осадок (использовать спец. слив!).

2. Реактив, условия: AgNO3

Уравнение реакции:

Na3AsO4 + 3AgNO3 = Ag3AsO4↓ + 3NaNO3

Наблюдения: осадок шоколадного цвета (использовать спец. слив!).

3. Реактив, условия: (NH4)2S или H2S, конц. HCl

Уравнение реакции:

5H2S + 2Na3AsO4 + 6HCl = As2S5↓ + 8Н2O + 6NaCl

Наблюдения: осадок желтого цвета (использовать спец. слив!).

Ион: Sn 2+

1. Реактив, условия: Bi(NO3)3, pH > 7

Уравнения реакций:

SnCl2 + NaOH = Sn(OH)2↓ + 2NaCl

Sn(OH)2 + 2NaOH(изб.) = Na2[Sn(OH)4] + 2NaCl

3Na2[Sn(OH)4] + 2Bi(NO3)3 + 6NaOH = 2Bi + 3Na2[Sn(OH)6] + 6NaNO3

Наблюдения: осадок черного цвета.

2. Реактив, условия: HgCl2, конц. HCl

Уравнения реакций:

SnCl2 + 2HCl = H2[SnCl4]

H2[SnCl4] + 2HgCl2 = H2[SnCl6] + Hg2Cl2↓

Наблюдения: осадок белого цвета, который постепенно чернеет вследствие образования металлической ртути.

 

2.5. V аналитическая группа

Ион: Bi 3+

1. Реактив, условия: Na2[Sn(OH)4], pH >7

Уравнение реакции:

2Bi(NO3)3 + 3Na2[Sn(OH)4] + 6NaOH = 2Bi↓ + 3Na2[Sn(OH)6] + 6NaNO3

Наблюдения: осадок черного цвета.

2. Реактив, условия: KI, рН < 7

Уравнение реакции:

Bi(NO3)3 + 3KI = Bil3↓ + 3KNO3

Наблюдения: осадок черного цвета, растворяется в избытке KI с образованием оранжевого раствора K[BiI4]. При разбавлении водой опять выпадает черный осадок BiI3, который затем гидролизуется с образованием оранжевого осадка ВiOI.

Ион: Fe 2+

1. Реактив, условия: K3[Fe(CN)6]

Уравнение реакции:

FeSO4 + K3[Fe(CN)6] = KFe[Fe(CN)6]↓ + K2SO4

Наблюдения: темно-синий осадок турн-булевой сини.

Ион: Fe 3+

1. Реактив, условия: K4[Fe(CN)6]

Уравнение реакции:

FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6]↓ + ЗKCl

Наблюдения: темно-синий осадок берлинской лазури.

2. Реактив, условия: NH4CNS, мешают ионы NO2¯

Уравнение реакции:

FeCl3 + 3NH4CNS = Fe(CNS)3 + 3NH4Cl

Наблюдения: кроваво-красный раствор.

Ион: Mn 2+

1. Реактив, условия: NaBiO3(крист.), HNO3

Уравнение реакции:

2Mn(NO3)2 + 14HNO3 + 5NaBiO3 = 2HMnO4 + 5Bi(NO3)3 + 5NaNO3 + 7H2O

Наблюдения: малиново-фиолетовая окраска раствора.

 

2.6. VI аналитическая группа

Ион: Cd 2+

1. Реактив, условия: NH4OH

Уравнения реакций:

Cd(NO3)2 + 2NH4OH = Cd(OH)2↓ + 2NH4NO3

Cd(OH)2↓ + 4NH4OH = [Cd(NH3)4](OH)2 + 2H2O

Наблюдения: осадок белого цвета, растворим в избытке водного раствора аммиака.

2. Реактив, условия: (NH4)2S, pH > 0,5

Уравнение реакции:

Cd(NO3)2 + (NH4)2S = CdS↓ + 2NH4NO3

Наблюдения: желто-оранжевый осадок.

Ион: Со 2+

Реактив, условия: NH4CNS, изоамиловый спирт (смесь изоамилового спирта с эфиром), мешают ионы Fe3+. Для удаления мешающих ионов Fe3+ добавляют NH4F.

Уравнение реакции:

СоCl2 + 4NH4CNS = (NH4)2[Co(SCN)4] + 2NH4CNS

Наблюдения: слой органических реагентов окрашен в синий цвет.

Ион: Cu 2+

Реактив, условия: NH3 Н2O, избыток

Уравнение реакции:

CuSO4 + 4NH3 H2O = [Cu(NH3)4]SO4 + 4Н2O

Наблюдения: темно-синий раствор.

Ион: Ni 2+

Реактив, условия: диметилглиоксим C4H8N2O2 (реактив Чугаева), KOH, рН ≈ 9-10

Уравнение реакции:

2C4H8N2O2 + Ni2+ = Ni(C4H6N2O2)2 + 2H+

Наблюдения: розовый осадок.

 

3. Качественные реакции анионов

 

Кислотно-основная классификация анионов

I группа: SO42-, CO32-, PO43-, SiO32-

групповой реагент – Ba(NO3)2

II группа: CI¯, S2-

групповой реагент – AgNO3

III группа: NO3¯, MoO42-, WO42-, VO3¯, CH3COO¯

групповой реагент – отсутствует

 

3.1. I аналитическая группа

Ион: SO 4 2-

1. Реактив, условия: Ba(NO3)2

Уравнение реакции:

SO42- + Ba(NO3)2 = BaSO4↓ + 2NO3¯

Наблюдения: белый осадок, нерастворим в HNO3.

Ион: CO 3 2-

1. Реактив, условия: Ba(NO3)2

Уравнения реакций:

CO32- + Ba(NO3)2 = ВaCO3↓ + 2NO3¯

ВaCO3↓ + 2Н+ = Ва2+ + CO2↑ + Н2O

Наблюдения: белый осадок, легко растворимый в соляной, азотной и уксусной кислотах с выделением оксида углерода(IV) CO2.

2. Реактив, условия: минеральные кислоты (HCl, HNO3, H2SO4), известковая вода (Са(OH)2).

Уравнения реакций:

CO32- + 2H+ = CO2↑ + Н2O

Са(OH)2 + CO2 = CaCO3↓ + Н2O

Наблюдения: выделение газа, помутнение известковой воды.

Ион: PO 4 3-

1. Реактив, условия: Ba(NO3)2

Уравнение реакции:

Na3PO4 + Ba(NO3)2 = Ba3(PO4)2↓ + 2NaNO3

Наблюдения: белый осадок, растворимый в минеральных кислотах.

2. Реактив, условия: молибденовая жидкость, раствор молибдата аммония (NH4)2MoO4 в азотной кислоте, NH4NO3

Уравнение реакции:

PO43- + 3NH4+ + 12МоO42- + 24Н+ = (NH4)3[P(Mo3O10)4]↓ + 12Н2O

Наблюдения: желтый кристаллический осадок.

Ион: SiO 3 2-

1. Реактив, условия: разбавленные растворы кислот.

Уравнение реакции:

SiO32- + 2H+ = H2SiO3↓

Наблюдения: образование геля кремниевой кислоты.

2. Реактив, условия: соли аммония (NH4Cl, или (NH4)2SO4, или NH4NO3).

Уравнение реакции:

SiO32- + 2NH4+ + (2Н2O) = H2SiO3↓ + 2NH3 + (2Н2O)

Наблюдения: образование геля кремниевой кислоты.

 

3.2. II аналитическая группа

Ион: Cl¯

Реактив, условия: AgNO3, NH4OH, HNO3.

Уравнения реакций:

Ag+ + CI¯ = AgCl↓

AgCl↓ + 2NH4OH = [Ag(NH3)2]Cl + 2H2O

[Ag(NH3)2]Cl + 2HNO3 = AgCl↓ + 2NH4NO3

Наблюдения: белый осадок, растворим в NH4OH, образуется в HNO3.

Ион: S 2-

1. Реактив, условия: разбавленные растворы кислот, фильтровальная бумага, смоченная ацетатом свинца РЬ2(CH3COО)2.

Уравнения реакций:

S2- + 2Н+ = H2S↑

H2S↑ + Pb2+ + 2CH3COО¯ = PbS↓ + 2CH3COOH

Наблюдения: резкий запах, почернение фильтровальной бумаги, смоченной ацетатом свинца.

2. Реактив, условия: соли сурьмы(III), Sb2S3

Уравнение реакции:

3S2- + 2Sb3+ = Sb2S3↓

Наблюдения: оранжевый осадок.

3. Реактив, условия: соли кадмия(II), Cd(NO3)2

Уравнение реакции: S2- + Cd2+ = CdS↓

Наблюдения: желтый осадок.

 

3.3. III аналитическая группа

Ион: NO 3 ¯

Реактив, условия: дифениламин (C6H5)2NH в H2SO4 (конц.)

Наблюдения: темно-синее окрашивание на стенках пробирки.

Ионы: МoO 4 2- , WO 4 2- , VO 3 ¯

Реактив, условия: дифениламин (C6H5)2NH в H2SO4 (конц.)

Наблюдения: темно-синее окрашивание на стенках пробирки.

Ион: VO 3 ¯

1. Реактив, условия: Н2O2, эфир. Уравнение реакции:

VO3¯ + Н2O2 = VO4¯ + Н2O

Наблюдения: окрашивание органической фазы в оранжевый цвет.

2. Реактив, условия: лигнин (газетная бумага)

Наблюдения: лигнин, содержащийся в газетной бумаге, восстанавливает ион VO3¯ до низших степеней окисления, которые окрашивают газетную бумагу в черно-зеленый цвет.

Ион: CH 3 COО¯

Реактив, условия: H2SO4 (конц.)

Уравнение реакции:

CH3COО¯ + Н+ = CH3COOH

Наблюдения: запах уксуса.

 

4. Количественный анализ

 

4.1. Титриметрический (объемный) анализ

Молярная концентрация с э = n э /V, где n э – количество вещества эквивалентов, моль; V– объем раствора, л; единица измерения концентрации – моль/л.

Количество вещества эквивалента (n э ) n э = m/M э = c э  V, где m – масса вещества, г; M э – молярная масса эквивалента, г/моль, V – объем раствора, л.

Закон эквивалентов: n э (А) = n э (В) или

Титр – количество граммов растворенного вещества, содержащегося в 1 мл раствора.

Титр по определяемому веществу – количество граммов определяемого вещества, которое реагирует с 1 мл титранта.

Прямое титрование – простейший прием титрования, заключающийся в том, что к определенному объему раствора определяемого вещества (А) по каплям приливают титрант (рабочий раствор) вещества (В).

Обратное титрование – процесс титрования, при котором к определенному объему раствора определяемого вещества (А) приливают точно известный объем титранта (В1), взятого в избытке. Избыток не вошедшего в реакцию вещества (В1) оттитровывают раствором другого титранта (В2) точно известной концентрации.

Заместительное титрование. Процесс титрования, при котором к определяемому веществу (А) прибавляют вспомогательное вещество (Р), реагирующее с ним с выделением эквивалентного количества нового вещества (А1), которое оттитровывают соответствующим титрантом (В). Таким образом, вместо непосредственного титрования определяемого вещества (А) титруют его заместитель (А1). Так как количества A и A1 эквивалентны, то количество вещества эквивалента определяемого вещества n э (А) равно количеству вещества эквивалента титранта n э (В):

 

4.2. Метод нейтрализации

Уравнение реакции: Н+ + OH¯ → Н2O или Н3O+ + OH¯ → 2Н2O.

Основные титранты (рабочие растворы): растворы сильных кислот (HCl или H2SO4) и сильных оснований (NaOH или KOH).

Установочные вещества (или первичные стандарты): тетраборат натрия Na2B4O7 × 10 Н2O, карбонат натрия Na2CO3, щавелевая кислота Н2С2O4 • 2Н2O, янтарная кислота Н2С4Н4O4.

Индикаторы: кислотно-основные индикаторы (см. таблицу).

Характеристики некоторых индикаторов приведены в таблице.

Некоторые примеры кислотно-основного титрования

Титрование сильной кислоты сильным основанием

HCl + NaOH → NaCl + Н2O

Н+ + OH¯ → Н2O

В точке эквивалентности образуется соль сильной кислоты и сильного основания, которая не подвергается гидролизу. Реакция среды будет нейтральной (рН = 7). В данном случае индикатором может служить лакмус.

Титрование слабой кислоты сильным основанием

CH3COOH + NaOH → CH3COONa + Н2O

CH3COOH + OH¯ – > CHgCOO¯ + Н2O

Образующаяся соль слабой кислоты и сильного основания в растворе подвергается гидролизу:

CH3COO¯ + HOH → CH3COOH + OH¯

Точка эквивалентности в этом случае будет находиться в щелочной среде, поэтому следует применять индикатор, меняющий окраску при рН < 7, например фенолфталеин.

Титрование слабого основания сильной кислотой

NH4OH + HCl → NH4Cl + Н2O

NH4OH + Н+ → NH4+ + Н2O

Образующаяся соль в растворе подвергается гидролизу:

NH4+ + HOH → NH4OH + Н+

Точка эквивалентности будет находиться в кислой среде, поэтому можно применять индикатор, меняющий свою окраску при рН < 7, например метилоранж.

 

4.3. Метод комплексонометрии

Комплексонометрия – титриметриче-ский метод анализа, основанный на реакциях комплексообразования определяемых ионов металлов с некоторыми органическими веществами, в частности с комплексонами.

Комплексоны – аминополикарбоновые кислоты и их производные (соли).

В титриметрическом анализе широко используется один из представителей класса комплексонов – динатриевая соль этилендиаминтетрауксусной кислоты (Ма2Н2ЭДТА). Этот комплексон часто называют также трилоном Б или комплексном III:

или [Na 2 H 2 ЭДTA]

Трилон Б со многими катионами металлов образует прочные, растворимые в воде внутрикомплексные соединения (хелаты). При образовании хелата катионы металла замещают два атома водорода в карбоксильных группах трилона Б и образуют координационные связи с участием атомов азота аминогрупп.

Уравнение реакции: Ме2+ + Н2ЭДТА2- → [МеЭДТА]2- + 2Н+

Основные титранты (рабочие растворы): трилон Б, MgSO4, CaCl2

Установочные вещества (или первичные стандарты): MgSO4, CaCl2

Индикаторы: металлохромные индикаторы, эриохром черный Т

При рН = 7-11 анион этого индикатора (HInd2-) имеет синюю окраску. С катионами металлов (Са2+, Mg2+, Zn2+ и др.) в слабощелочном растворе в присутствии аммиачного буфера (рН = 8-10) он образует комплексные соединения винно-красного цвета по схеме:

При титровании исследуемого раствора трилоном Б:

Константы нестойкости комплексов равны соответственно:

Kн([CaInd]¯) = 3,9 • 10-6

Kн([СаЭДТА]2-) = 2,7 • 10-11

Kн([MgInd]¯) = 1,0 •1 0-7

Kн([MgЭДTA]2-) = 2,0 • 10-9

 

4.4. Жесткость воды. Определение жесткости воды

Гидрокарбонатная (временная) жесткость обусловлена присутствием в воде бикарбонатов кальция и магния: Са(HCO3)2 и Mg(HCO3)2. Она почти полностью устраняется при кипячении воды, так как растворимые гидрокарбонаты при этом разлагаются с образованием нерастворимых карбонатов кальция и магния и гидроксо-карбонатов магния:

Са(HCO3)2 = CaCO3↓ + CO2↑ + H2O

Mg(HCO3)2 = MgCO3↓ + CO2↑ + H2O

2Mg(HCO3)2 = (MgOH)2CO3↓ + 3CO2↑ + H2O

Постоянная жесткость воды обусловлена присутствием в ней преимущественно сульфатов и хлоридов кальция и магния и при кипячении не устраняется.

Сумма величин временной и постоянной жесткости составляет общую жесткость воды:

Жобщ. = Жвр. + Жпост.

Существуют различные способы определения жесткости воды: определение временной жесткости с помощью метода нейтрализации; комплексонометрический метод определения общей жесткости.

Гидрокарбонатная жесткость воды определяется титрованием воды раствором соляной кислоты в присутствии метилового оранжевого, так как рН в точке эквивалентности находится в области перехода окраски этого индикатора.

Са(HCO3)2 + 2HCl → CaCl2 + 2Н2CO3

Mg(HCO3)2 + 2HCl → MgCl2 + 2H2CO3

До начала титрования рН раствора гидрокарбонатов кальция и магния больше 7 за счет гидролиза солей с участием аниона слабой кислоты. В точке эквивалентности раствор имеет слабокислую реакцию, обусловленную диссоциацией слабой угольной кислоты:

Н2CO3 ↔ HCO3¯ + Н+

Жвр (Н2O) = сэ(солей) • 1000 (ммоль/л).

Общая жесткость воды (общее содержание ионов кальция и магния) определяется с использованием метода комплексонометрии.

Жпост (Н2O) = сэ(солей) • 1000 (ммоль/л).

 

4.5. Методы редоксиметрии

Методы редоксиметрии, в зависимости от используемых титрантов, подразделяются на:

1) перманганатометрию. Титрант – раствор перманганата калия КMnO4. Индикатор – избыточная капля титранта;

2) иодометрию. Титрант – раствор свободного иода I2 или тиосульфата натрия Na2S2O3. Индикатор – крахмал.

Вычисление молярных масс эквивалентов окислителей и восстановителей

При вычисления молярных масс эквивалентов окислителей и восстановителей исходят из числа электронов, которые присоединяет или отдает в данной реакции молекула вещества. Для нахождения молярной массы эквивалента окислителя (восстановителя) нужно его молярную массу разделить на число принятых (отданных) электронов в данной полуреакции.

Например, в реакции окисления сульфата железа(II) перманганатом калия в кислой среде:

2KMnO4 + 10FeSO4 + 8H2SO4 = 2MnSO4 + 5Fe2(SO4)3 + K2SO4 + 8H2O

1 | MnO4¯ + 8Н+ + 5ē → Mn2+ + 4H2O

5 | Fe2+ – ē → Fe3+

ион MnO4¯ как окислитель принимает пять электронов, а ион Fe2+ как восстановитель отдает один электрон. Поэтому для расчета молярных масс эквивалентов окислителя и восстановителя их молярные массы следует разделить на пять и на один соответственно.

M3(Fe2+) = M(Fe2+) = 55,85 г/моль.

В реакции окисления сульфита натрия перманганатом калия в нейтральной среде:

2KMnO4 + 3Na2SO3 + Н2O → 2MnO2 + 3Na2SO4 + 2KOH

2 | MnO4¯ + 2Н2O + Зē → MnO2 + 4OH¯

3 | SO32- + 2OH¯ + 2ē → SO42- + Н2O

ион MnO4¯ принимает только три электрона, а ион восстановителя SO32- отдает два электрона, следовательно:

Молярные массы эквивалентов окислителей и восстановителей зависят от условий проведения реакций и определяются, исходя из соответствующих полуреакций.

 

4.6. Фотоколориметрия

Фотоколориметрия – оптический метод анализа, который рассматривает взаимодействие вещества с электромагнитным излучением в видимой области: длина волны (λ) 380–750 нм; волновое число (v) 2,5 104 – 1,5 • 104 см-1; энергия излучения (Е) 1—10 эВ.

Поглощенное световое излучение количественно описывается законом Бугера–Ламберта-Бера:

где А – поглощение вещества, или его оптическая плотность; Т – пропускание образца, т. е. отношение интенсивности света, прошедшего через образец, к интенсивности падающего света, I/I 0 ; с – концентрация вещества (обычно моль/л); l – толщина кюветы (см); ε – молярная поглощательная способность вещества или молярный коэффициент поглощения [л/(моль см)].

Расчет молярного коэффициента поглощения проводят по формуле:

ε = А/( с Ь ).

 

IV. Органическая химия

 

1. Алканы

Алканы (предельные углеводороды, парафины) – ациклические насыщенные углеводороды общей формулы Сn H2n+2 . В соответствии с общей формулой алканы образуют гомологический ряд.

Первые четыре представителя имеют полусистематические названия – метан (CH4), этан (С2Н6), пропан (С3Н8), бутан (С4Н10). Названия последующих членов ряда строятся из корня (греческие числительные) и суффикса -ан: пентан (С5Н12), гексан (С6Н14), гептан (С7Н16) и т. д.

Атомы углерода в алканах находятся в sp 3 -гибридном состоянии. Оси четырех sp 3 - орбиталей направлены к вершинам тетраэдра, валентные углы равны 109°28 .

Пространственное строение метана:

Энергия С—С связи Е с —с = 351 кДж/моль, длина С—С связи 0,154 нм.

Связь С—С в алканах является ковалентной неполярной. Связь С—Н – ковалентная слабополярная.

Для алканов, начиная с бутана, существуют структурные изомеры (изомеры строения), различающиеся порядком связывания между атомами углерода, с одинаковым качественным и количественным составом и молекулярной массой, но различающихся по физическим свойствам.

Способы получения алканов

1. СnH2n+2 →400–700 °C→ СpH2p+2 + СmH2m,

n = m + p.

Крекинг нефти (промышленный способ). Алканы также выделяют из природных источников (природный и попутный газы, нефть, каменный уголь).

(гидрирование непредельных соединений)

3. nCO + (2n + 1)Н2 → СnH2n+2 + nH2O (получение из синтез-газа (CO + Н2))

4. (реакция Вюрца)

5. (реакция Дюма) CH3COONa + NaOH →t→ CH4 + Na2CO3

6. (реакция Кольбе)

Химические свойства алканов

Алканы не способны к реакциям присоединения, т. к. в их молекулах все связи насыщены, для них характерны реакции радикального замещения, термического разложения, окисления, изомеризации.

1. (реакционная способность убывает в ряду: F2 > Cl2 > Br2 > (I2 не идет), R3C• > R2CH• > RCH2• > RCH3•)

2. (реакция Коновалова)

3. CnH2n+2 + SO2 + ½O2 →hν→ CnH2n+1SO3H – алкилсульфокислота

(сульфоокисление, условия реакции: облучение УФ)

4. CH4 →1000 °C→ С + 2Н2; 2CH4 →t>1500 °C→ С2Н2 + ЗН2 (разложение метана – пиролиз)

5. CH4 + 2Н2O →Ni, 1300 °C→ CO2 + 4Н2 (конверсия метана)

6. 2СnH2n+2 + (Зn+1)O2 → 2nCO2 + (2n+2)Н2O (горение алканов)

7. 2н-С4Н10 + 5O2 → 4CH3COOH + 2Н2O (окисление алканов в промышленности; получение уксусной кислоты)

8. н-С4Н10 → изо-С4Н10 (изомеризация, катализатор AlCl3)

 

2. Циклоалканы

Циклоалканы (циклопарафины, нафтены, цикланы, полиметилены) – предельные углеводороды с замкнутой (циклической) углеродной цепью. Общая формула Сn H2n .

Атомы углерода в циклоалканах, как и в алканах, находятся в sp 3 -гибридизованном состоянии. Гомологический ряд циклоалканов начинает простейший циклоалкан – циклопропан С3Н6, представляющий собой плоский трехчленный карбоцикл. По правилам международной номенклатуры в циклоалканах главной считается цепь углеродных атомов, образующих цикл. Название строится по названию этой замкнутой цепи с добавлением приставки «цикло» (циклопропан, циклобутан, циклопентан, циклогексан и т. д.).

Структурная изомерия циклоалканов связана с различной величиной цикла (структуры 1 и 2), строением и видом заместителей (структуры 5 и 6) и их взаимным расположением (структуры 3 и 4).

Способы получения циклоалканов

1. Получение из дигалогенопроизводных углеводородов

2. Получение из ароматичесих углеводородов

Химические свойства циклоалканов

Химические свойства циклоалканов зависят от размера цикла, определяющего его устойчивость. Трех– и четырехчленные циклы (малые циклы), являясь насыщенными, резко отличаются от всех остальных предельных углеводородов. Циклопропан, циклобутан вступают в реакции присоединения. Для циклоалканов (С5 и выше) вследствие их устойчивости характерны реакции, в которых сохраняется циклическая структура, т. е. реакции замещения.

1. Действие галогенов

2. Действие галогеноводородов

С циклоалканами, содержащими пять и более атомов углерода в цикле, галогеново-дороды не взаимодействуют.

3.

4. Дегидрирование

 

3. Алкены

Алкены (непредельные углеводороды, этиленовые углеводороды, олефины) – непредельные алифатические углеводороды, молекулы которых содержат двойную связь. Общая формула ряда алкенов СnН2n.

По систематической номенклатуре названия алкенов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса – ан на – ен: этан (CH3—CH3) – этен (CH2=CH2) и т. д. Главная цепь выбирается таким образом, чтобы она обязательно включала в себя двойную связь. Нумерацию углеродных атомов начинают с ближнего к двойной связи конца цепи.

В молекуле алкена ненасыщенные атомы углерода находятся в sp 2 -гибридизации, а двойная связь между ними образована σ– и π-связью. sp 2 -Гибридные орбитали направлены друг к другу под углом 120°, и одна негибридизованная 2р-орбиталь, расположена под углом 90° к плоскости гибридных атомных орбиталей.

Пространственное строение этилена:

Длина связи С=С 0,134 нм, энергия связи С=С Е с=с = 611 кДж/моль, энергия π-связи Еπ = 260 кДж/моль.

Виды изомерии: а) изомерия цепи; б) изомерия положения двойной связи; в) Z, Е (cis, trans) – изомерия, вид пространственной изомерии.

Способы получения алкенов

1. CH3—CH3 →Ni, t→ CH2=CH2 + H2 (дегидрирование алканов)

2. С2Н5OH →H,SO 4 , 170 °C→ CH2=CH2 + Н2O (дегидратация спиртов)

3. (дегидрогалогенирование алкилгалогенидов по правилу Зайцева)

4. CH2Cl—CH2Cl + Zn → ZnCl2 + CH2=CH2 (дегалогенирование дигалогенопроизводных)

5. HC≡CH + Н2 →Ni, t→ CH2=CH2 (восстановление алкинов)

Химические свойства алкенов

Для алкенов наиболее характерны реакции присоединения, они легко окисляются и полимеризуются.

1. CH2=CH2 + Br2 → CH2Br—CH2Br

(присоединение галогенов, качественная реакция)

2. (присоединение галогеноводородов по правилу Марковникова)

3. CH2=CH2 + Н2 →Ni, t→ CH3—CH3 (гидрирование)

4. CH2=CH2 + Н2O →H + → CH3CH2OH (гидратация)

5. ЗCH2=CH2 + 2КMnO4 + 4Н2O → ЗCH2OH—CH2OH + 2MnO2↓ + 2KOH (мягкое окисление, качественная реакция)

6. CH2=CH—CH2—CH3 + КMnO4 →H + → CO2 + С2Н5COOH (жесткое окисление)

7. CH2=CH—CH2—CH3 + O3 → Н2С=O + CH3CH2CH=O формальдегид+пропаналь → (озонолиз)

8. С2Н4 + 3O2 → 2CO2 + 2Н2O (реакция горения)

9. (полимеризация)

10. CH3—CH=CH2 + HBr →перекись→ CH3—CH2—CH2Br (присоединение бро-моводорода против правила Марковникова)

11. (реакция замещения в α-положение)

 

4. Алкины

Алкины (ацетиленовые углеводороды) – ненасыщенные углеводороды, имеющие в своем составе тройную С≡С связь. Общая формула алкинов с одной тройной связью СnН2n-2. Простейший представитель ряда алкинов CH≡CH имеет тривиальное название ацетилен. По систематической номенклатуре названия ацетиленовых углеводородов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса –ан на -ин: этан (CH3—CH3) – этин (CH≡CH) и т. д. Главная цепь выбирается таким образом, чтобы она обязательно включала в себя тройную связь. Нумерацию углеродных атомов начинают с ближнего к тройной связи конца цепи.

В образовании тройной связи участвуют атомы углерода в sp-гибридизованном состоянии. Каждый из них имеет по две sp-гибридных орбитали, направленных друг к другу под углом 180°, и две негибридных p-орбитали, расположенных под углом 90° по отношению друг к другу и к sp-гибридным орбиталям.

Пространственное строение ацетилена:

Виды изомерии: 1) изомерия положения тройной связи; 2) изомерия углеродного скелета; 3) межклассовая изомерия с алкадиенами и циклоалкенами.

Способы получения алкинов

1. СаО + ЗС →t→ СаС2 + CO;

СаС2 + 2Н2O → Са(OH)2 + CH≡CH (получение ацетилена)

2. 2CH4 →t>1500 °C→ HC = CH + ЗН2 (крекинг углеводородов)

3. CH3—CHCl2 + 2KOH →в спирте → HC≡CH + 2KCl + Н2O (дегалогенирова-ние)

CH2Cl—CH2Cl + 2KOH →в спирте → HC≡CH + 2KCl + Н2O

Химические свойства алкинов

Для алкинов характерны реакции присоединения, замещения. Алкины полиме-ризуются, изомеризуются, вступают в реакции конденсации.

1. (гидрирование)

2. HC≡CH + Br2 → CHBr=CHBr;

CHBr=CHBr + Br2 → CHBr2—CHBr2 (присоединение галогенов, качественная реакция)

3. CH3—С≡CH + HBr → CH3—CBr=CH2;

CH3—CBr=CH2 + HBr → CH3—CBr2—CHg (присоединение галогеноводородов по правилу Марковникова)

4. (гидратация алинов, реация Кучерова)

5.(присоединение спиртов)

6.(присоединение карбоновых ислот)

7. CH≡CH + 2Ag2O →NH 3 → AgC≡CAg↓ + H2O (образование ацетиленидов, качественная реакция на концевую тройную связь)

8. CH≡CH + [О] →КMnO 4 → HOOC—COOH → HCOOH + CO2 (окисление)

9. CH≡CH + CH≡CH → CH2=CH—С≡CH (катализатор – CuCl и NH4Cl, димеризация)

10. 3HC≡CH →C, 600 °C→ С6Н6 (бензол) (циклоолигомеризация, реакция Зелинского)

 

5. Диеновые углеводороды

Алкадиены (диены) – непредельные углеводороды, молекулы которых содержат две двойные связи. Общая формула алкадиенов СnН2n_2. Свойства алкадиенов в значительной степени зависят от взаимного расположения двойных связей в их молекулах.

Способы получения диенов

1. (метод СВ. Лебедева)

2. (дегидратация)

3. (дегидрирование)

Химические свойства диенов

Для сопряженных диенов характерны реакции присоединения. Сопряженные диены способны присоединять не только по двойным связям (к C1 и С2, С3 и С4), но и к концевым (С1 и С4) атомам углерода с образованием двойной связи между С2 и С3.

 

6. Ароматические углеводороды

Арены, или ароматические углеводороды, – циклические соединения, молекулы которых содержат устойчивые циклические группы атомов с замкнутой системой сопряженных связей, объединяемые понятием ароматичности, которая обуславливает общие признаки в строении и химических свойствах.

Все связи С—С в бензоле равноценны, их длина равна 0,140 нм. Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф. Кекуле), а все они выровнены (дел окал изованы).

формула Кекуле

Гомологи бензола – соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R): С6Н5—R, R—С6Н4—R. Общая формула гомологического ряда бензола СnН2n_6 (n > 6). Для названия ароматических углеводородов широко используются тривиальные названия (толуол, ксилол, кумол и т. п.). Систематические названия строят из названия углеводородного радикала (приставка) и слова «бензол» (корень): С6Н5—CH3 (метилбензол), С6Н5—С2Н5 (этилбензол). Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Для дизамещен-ных бензолов R—С6Н4—R используется также и другой способ построения названий, при котором положение заместителей указывают перед тривиальным названием соединения приставками: орто– (o-) – заместители соседних атомов углерода кольца (1,2-); мета– (м-) – заместители через один атом углерода (1,3-); пара– (п-) – заместители на противоположных сторонах кольца (1,4-).

Виды изомерии (структурная): 1) положения заместителей для ди-, три– и тетра-замещенных бензолов (например, о-, м- и п-ксилолы); 2) углеродного скелета в боковой цепи, содержащей не менее 3 атомов углерода; 3) заместителей (R), начиная с R=С2Н5.

Способы получения ароматических углеводородов

1. С6Н12 →Pt, 300 °C→ С6Н6 + ЗН2 (дегидрирование циклоалканов)

2. н-С6Н14 →Cr 2 O 3 , 300 °C → С6Н6 + 4Н2 (дегидроциклизация алканов)

3. ЗС2Н2 →С, 600 °C→ С6Н6 (циклотримеризация ацетилена, реакция Зелинского)

Химические свойства ароматических углеводородов

По химическим свойствам арены отличаются от предельных и непредельных углеводородов. Для аренов наиболее характерны реакции, идущие с сохранением ароматической системы, а именно реакции замещения атомов водорода, связанных с циклом. Другие реакции (присоединение, окисление), в которых участвуют делокали-зованные С-С связи бензольного кольца и нарушается его ароматичность, идут с трудом.

1. C6H6 + Cl2 →AlCl 3 → C6H5Cl + HCl (галогенирование)

2. C6H6 + HNO3 →H 2 SO 4 → C6H5—NO2 + H2O (нитрование)

3. С6Н6 →H 2 SO 4 → С6Н5—SO3H + H2O (сульфирование)

4. С6Н6 + RCl →AlCl 3 → С6Н5—R + HCl (алкилирование)

5. (ацилирование)

6. С6Н6 + ЗН2 →t, Ni→ С6Н12 циклогексан (присоединение водорода)

7. (1,2,3,4,5,6-гексахлороциклогексан, присоединение хлора)

8. С6Н5—CH3 + [О] → С6Н5—COOH кипячение с раствором КMnO4 (окисление алкилбензолов)

 

7. Галогеноуглеводороды

Галогеноуглеводородами называются производные углеводородов, в которых один или несколько атомов водорода заменены на атомы галогена.

Способы получения галогеноуглеводородов

1. CH2=CH2 + HBr → CH3—CH2Br (гидрогалогенирование ненасыщенных углеводородов)

CH≡CH + HCl → CH2=CHCl

2. CH3CH2OH + РCl5 → CH3CH2Cl + POCl3 + HCl (получение из спиртов)

CH3CH2OH + HCl → CH3CH2Cl + Н2O (в присутствии ZnCl2, t°C)

3. а) CH4+ Cl2 →hv→ CH3Cl + HCl (галогенирование углеводородов)

б)

Химические свойства галогеноуглево-дородов

Наибольшее значение для соединений этого класса имеют реакции замещения и отщепления.

1. CH3CH2Br + NaOH (водн. р-р) → CH3CH2OH + NaBr (образование спиртов)

2. CH3CH2Br + NaCN → CH3CH2CN + NaBr (образование нитрилов)

3. CH3CH2Br + NH3 → [CH3CH2NH3]+Br ↔—HBr↔ CH3CH2NH2 (образование аминов)

4. CH3CH2Br + NaNO2 → CH3CH2 NO2 + NaBr (образование нитросоединений)

5. CH3Br + 2Na + CH3Br → CH3—CH3 + 2NaBr (реакция Вюрца)

6. CH3Br + Mg → CH3MgBr (образование магнийорганических соединений, реактив Гриньяра)

7. (дегидрогалогенирование)

 

8. Спирты

Спиртами называются производные углеводородов, в молекулах которых содержится одна или несколько гидроксильных групп (—OH), связанных с насыщенными атомами углерода. Группа —OH (гидроксильная, оксигруппа) является в молекуле спирта функциональной группой. Систематические названия даются по названию углеводорода с добавлением суффикса -ол и цифры, указывающей положение гидроксигруппы. Нумерация ведется от ближайшего к OH-группе конца цепи.

По числу гидроксильных групп спирты подразделяются на одноатомные (одна группа —OH), многоатомные (две и более групп —OH). Одноатомные спирты: метанол CH3OH, этанол С2Н5OH; двухатомный спирт: этилен-гликоль (этандиол-1,2) HO—CH2—CH2—OH; трехатомный спирт: глицерин (пропантриол-1,2,3) HO—CH2—CH(OH)—CH2—OH. В зависимости от того, с каким атомом углерода (первичным, вторичным или третичным) связана гидроксигруппа, различают спирты первичные R—CH2—OH, вторичные R2CH—OH, третичные R3C—OH.

По строению радикалов, связанных с атомом кислорода, спирты подразделяются на предельные, или алканолы (CH3CH2—OH), непредельные, или алкенолы (CH2=CH—CH2—OH), ароматические (С6Н5CH2—OH).

Виды изомерии (структурная изомерия): 1) изомерия положения OH-группы (начиная с С3); 2) углеродного скелета (начиная с С4); 3) межклассовая изомерия с простыми эфирами (например, этиловый спирт CH3CH2OH и диметиловый эфир CH3—О—CH3). Следствием полярности связи О—Н и наличия неподеленных пар электронов на атоме кислорода является способность спиртов к образованию водородных связей.

Способы получения спиртов

1. CH2=CH2 + Н2O/Н+ → CH3—CH2OH (гидратация алкенов)

2. CH3—CHO + Н2 →t, Ni→ С2Н5OH (восстановление альдегидов и кетонов)

3. C2H5Br + NaOH (водн.) → С2Н5OH + NaBr (гидролиз галогенопроизводных)

ClCH2—CH2Cl + 2NaOH (водн.) → HOCH2—CH2OH + 2NaCl

4. CO + 2Н2 →ZnO, CuO, 250 °C, 7 МПа→ CH3OH (получение метанола, промышленность)

5. С6Н12O6 →дрожжи→ 2С2Н5OH + 2CO2 (брожение моноз)

6. 3CH2=CH2 + 2KMnO4 + 4Н2O → 3CH2OH—CH2OH - этиленгиликоль + 2KOH + 2MnO2 (окисление в мягких условиях)

7. а) CH2=CH—CH3 + O2 → CH2=CH—CHO + Н2O

б) CH2=CH—CHO + Н2 → CH2=CH—CH2OH

в) CH2=CH—CH2OH + Н2O2 → HOCH2—CH(OH)—CH2OH (получение глицерина)

Химические свойства спиртов

Химические свойства спиртов связаны с наличием в их молекулу группы  —OH. Для спиртов характерны два типа реакций: разрыв связи С—О и связи О—Н.

1. 2С2Н5OH + 2Na → Н2 + 2C2H5ONa (образование алкоголятов металлов Na, К, Mg, Al)

2. а) С2Н5OH + NaOH ≠ (в водном растворе не идет)

б) CH2OH—CH2OH + 2NaOH → NaOCH2—CH2ONa + 2Н2O

в) (качественная реакция на многоатомные спирты – образование ярко-синего раствора с гидроксидом меди)

3. а) (образование сложных эфиров)

б) С2Н5OH + H2SO4 → С2Н5—О—SO3H + Н2O (на холоду)

в)

4. а) С2Н5OH + HBr → С2Н5Br + Н2O

б) С2Н5OH + РCl5 → С2Н5Cl + POCl3 + HCl

в) С2Н5OH + SOCl2 → С2Н5Cl + SO2 + HCl (замещение гидроксильной группы на галоген)

5. С2Н5OH + HOC2H5 →H 2 SO 4 , <140 °C → C2H5—O—C2H5 + H2O (межмолекулярная гидротация)

6. С2Н5OH →H 2 SO 4 , 170 °C → CH2=CH2 + H2O (внутримолекулярная гидротация)

7. а) (дегидрирование, окисление первичных спиртов)

б) (дегидрирование, окисление вторичных спиртов)

 

9. Фенолы

Фенолами называются производные аренов, в которых один или несколько атомов водорода ароматического кольца замещены на гидроксильные группы. По числу гидроксильных групп в ароматическом кольце различают одно– и многоатомные (двух– и трехатомные) фенолы. Для большинства фенолов используются тривиальные названия. Структурная изомерия фенолов связана с различным положением гидроксильных групп.