Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной

Сасскинд Леонард

Глава 10. Браны в основании вселенской машины Руба Голдберга

 

 

Теперь мы переходим к сути вопроса. Апелляции к той или иной форме антропного принципа с целью объяснить устройство Вселенной не новы. По-настоящему новой идеей, взорвавшей научное сообщество, вызвавшей ожесточённые споры среди физиков и явившейся причиной написания этой книги, стала идея о том, что ландшафт теории струн содержит огромное число разнообразных долин. Более ранние теории, такие как КЭД (теория фотонов и электронов) и КХД (теория кварков и глюонов), господствовавшие на протяжении всего XX века, описывали очень скучные ландшафты. Стандартная модель, как бы она ни была сложна, содержит только один вариант вакуума. Эти теории не оставляли нам вариантов выбора вакуума, в котором мы живём.

Причину такой скудности разнообразия вакуумов в старых теориях понять нетрудно. Она состояла не в том, что квантовые теории поля с богатым ландшафтом были математически невозможны. Добавив в Стандартную модель сотню-другую ненаблюдаемых полей, таких как поле Хиггса, можно было бы сгенерировать гигантский ландшафт. Причина единственности вакуума Стандартной модели кроется также и не в какой-то особенной математической элегантности, о чём я уже говорил в главе 4. Она скорее в том, что все эти теории выдвигались с целью описания отдельных эмпирических закономерностей нашего собственного мира. Они были созданы на основе экспериментальных данных и лишь описывали, но не объясняли, наш собственный вакуум. Эти теории замечательно выполняли ту работу, для которой они были разработаны, но не более того. Имея перед собой такие ограниченные цели, теоретики не видели причин для добавления в теорию кучи дополнительных структур только для того, чтобы разнообразить ландшафт. Большинство физиков XX века, за исключением таких провидцев, как Андрей Линде и Александр Виленкин, сочли бы богатый ландшафт недостатком, а не преимуществом.

До недавнего времени струнные теоретики были ослеплены этой старой парадигмой, требующей, чтобы вакуум, описываемый теорией, был единственным.

Несмотря на то что существует по крайней мере миллион различных многообразий Калаби – Яу, которые могут быть использованы для компактификации дополнительных измерений, присутствующих в теории струн, ведущие исследователи продолжают надеяться, что им удастся найти некий математический принцип, на основании которого они смогли бы исключить все лишние варианты, кроме одного. Но, несмотря на все усилия, потраченные на поиск этого принципа выбора единственного вакуума, ничего подобного так и не появилось. Говорят, что надежда умирает последней, но в последнее время всё большее число теоретиков начинают подозревать, что правильная теория может оказаться совсем не тем, на что они надеялись. Эта теория претендует на то, чтобы её рассматривали как «теорию разнообразия», а не как «теорию единственности».

Что, если теория струн, производящая богатый и разнообразный ландшафт, как раз и является искомой теорией? Для ответа на вопрос необходимо рассмотреть невероятно сложные крошечные свёрнутые геометрии, скрывающие дополнительные шесть или семь пространственных измерений. Но прежде чем мы погрузимся в эти сложности, я хотел бы продемонстрировать одну из них на более простом примере. Этот пример, собственно, и послужил источником вдохновения для появления термина «Ландшафт».

Термин «Ландшафт» возник не из теории струн и не из космологии. Когда я впервые использовал его в 2003 году для описания большого количества вакуумов теории струн, я заимствовал его из более старой области науки: из физики и химии больших молекул. Возможные конфигурации больших молекул, состоящих из сотен или тысяч атомов, уже давно описывались как ландшафты или – иногда – как энергетические ландшафты. Ландшафт теории струн имеет гораздо больше общего с «конфигурационным пространством» больших молекул, чем с бедными ландшафтами квантовой теории поля. Я задержусь на этом моменте, прежде чем вернуться к теории струн.

Начнём с одного атома. Для того чтобы описать положение атома в пространстве, необходимо задать три числа, а именно координаты атома: x, y и z. Если вам не нравятся x, y и z, можете использовать вместо них долготу, широту и высоту. Таким образом, возможные конфигурации одного атома – это точки в обычном трёхмерном пространстве.

Простейшая система, которую можно построить из атомов, – это двухатомная молекула: молекула, состоящая из двух атомов. Чтобы задать положения двух атомов, нужны шесть чисел: x1, y1, z1 и x2, y2, z2. Индексы 1 и 2 обозначают набор координат первого и второго атома соответственно. Эти шесть чисел задают две точки в трёхмерном пространстве, но мы можем также представить себе, что они задают положение одной точки в шестимерном пространстве. Такое шестимерное пространство является ландшафтом, описывающим двухатомную молекулу.

Теперь представим себе молекулу, состоящую из 1000 атомов. Для неорганической химии это огромная молекула, но для органической, а тем более для биохимии молекулы такого размера – вполне обычное дело. Как описать положение всех атомов в такой молекуле? Вопрос отнюдь не академический: биохимики и биофизики, пытающиеся понять, как происходит сворачивание белковой молекулы в пространственную структуру и как происходит денатурация белка, придумали понятие молекулярного ландшафта.

Очевидно, что для указания положений 1000 атомов необходимо 3000 чисел, которые мы можем представить как координаты точки на 3000-мерном ландшафте – ландшафте всевозможных состояний молекулы.

Набор атомов обладает потенциальной энергией, которая изменяется, когда атомы изменяют своё взаимное расположение. Например, потенциальная энергия двухатомной молекулы увеличится, если атомы приблизятся друг к другу. Будучи предоставлены сами себе, атомы стремятся расположиться так, чтобы потенциальная энергия системы была минимальной. Несомненно, визуализировать потенциальную энергию 1000 атомов очень трудно, но общий принцип неизменен: потенциальная энергия молекулы меняется по мере того, как мы перемещаемся по ландшафту. В главе 3 мы представляли потенциальную энергию как высоту. Наш ландшафт имеет сложный рельеф с горами, долинами, горными хребтами и равнинами. Перемещаясь по этому сложному ландшафту, мы в конце концов придём к стабильной конфигурации молекулы, соответствующей локальному минимуму потенциальной энергии, то есть окажемся на дне одной из долин.

Более всего поражает воображение огромное количество этих долин: оно растёт экспоненциально с ростом числа атомов. Для крупных молекул количество отдельных локальных долин исчисляется не миллионами и даже не миллиардами. Ландшафт 1000-атомной молекулы содержит порядка 10100 долин. Какое же отношение всё это имеет к ландшафту вакуума в теории струн? Ответ заключается в том, что как молекулы, так и компактификации теории струн имеют огромное число «движущихся частей», или более строго – степеней свободы. Некоторые из этих «частей» уже встречались нам ранее. Модули компактификации являются числами, которые определяют размеры и формы различных геометрических особенностей многообразий Калаби – Яу. В этой главе мы займёмся исследованием некоторых из «движущихся частей», чтобы понять, почему ландшафт теории струн настолько сложный и разнообразный.

 

D-браны

В главе 8 я рассказал, как Эд Виттен в 1995 году выдвинул идею объединения множества теорий струн в одну большую M(астер) – теорию. Но у новой теории была одна серьёзная проблема: теория требовала введения новых объектов, которых не существовало в прежних теориях струн. Получалось, что каждая из теорий струн должна была содержать неизвестные ранее объекты, глубоко скрытые в недрах её математического аппарата. Фундаментальные струны в одной версии теории являлись совершенно иными объектами, нежели фундаментальные струны в другой версии. Но, изменяя модули, можно перебраться через ландшафт одной версии теории к другой, при этом объекты A одной теории превратятся в объекты Б другой. Одним из примеров является превращение мембран М-теории в струны теории типа IIa. Идея Виттена была привлекательной и даже убедительной, но характер новых объектов и их место в математическом каркасе теории оставались полной загадкой до тех пор, пока Джозеф Полчински не обнаружил браны.

Джо Полчински выглядит очень молодо и ведёт себя как «свой в доску парень». Говоря о еде, Джо однажды заметил: «Существует только два вида блюд: те, которые едят с шоколадным соусом, и те, которые едят с кетчупом». Но мальчишеская внешность скрывает один из самых глубоких и мощных умов, атаковавших физические проблемы за последние полвека. Ещё до того, как Виттен представил свою М-теорию, Джо экспериментировал с новой идеей в теории струн. Скорее в порядке математической игры, нежели серьёзного исследования он предположил, что в пространстве могут существовать особые места, в которых струны обрываются. Представьте, как ребёнок дёргает скакалку в разные стороны, создавая бегущие волны. Волны распространяются к дальнему концу скакалки, но то, что происходит с ними дальше, зависит от того, закреплён второй конец скакалки или свободен. До Полчински считалось, что открытые струны всегда имеют свободные концы, «болтающиеся» в пространстве. Новая идея Джо состояла в том, что в пространстве могут существовать особые «якоря», удерживающие свободные концы струн от колебаний. Якорем может быть просто точка в пространстве: это более или менее напоминает ситуацию, когда второй конец скакалки удерживается от колебаний сильной рукой старшего товарища. Но существуют и другие варианты. Предположим, что конец скакалки прикреплён к кольцу, которое может скользить вверх и вниз вдоль вертикальной штанги. Конец как бы частично зафиксирован, но в какой-то мере может свободно двигаться. Хотя прикреплённый к штанге конец может свободно скользить по ней, это движение возможно только вдоль штанги. «Почему бы не применить аналогию скакалки и штанги к теории струн? – рассуждал Полчински. – Почему бы не существовать особым линиям в пространстве, к которым прикреплены свободные концы струн? Подобно скакалке, скользящей вдоль штанги, конец струны мог бы свободно скользить вдоль линии, причём сами линии могут быть и кривыми. Но точкой и линией не исчерпываются все возможности. Конец струны может быть присоединён к поверхности – своего рода мембране. Свободно скользя в любом направлении вдоль поверхности мембраны, конец струны в то же время не может её покинуть».

Эти точки, линии и поверхности, на которых может заканчиваться струна, нужно было как-то назвать. Джо придумал для них название «браны Дирихле», или просто D-браны. Дирихле был французским математиком XIX века, не имевшим ничего общего с теорией струн. Но 150 лет назад он изучал математику волн, в частности законы отражения волн от стационарных объектов. По справедливости, новые объекты должны были бы называться бранами Полчински, но термин «P-браны» уже был занят струнными теоретиками для объектов другого вида.

Джо – мой хороший друг. В течение 25 лет мы тесно сотрудничали в ряде физических проектов. Впервые я услышал о D-бранах за чашкой кофе в Межгалактическом кафе Квакенбуша в Остине, в Техасе. Кажется, это было в 1994 году. Идея показалась мне забавной, но не революционной. Я был не одинок в недооценке значения D-бран. В те времена они не входили в список первоочередных дел теоретиков, и думаю – даже в список первоочередных дел самого Джо. Ситуация кардинально изменилась в 1995 году, когда после лекции Виттена D-браны буквально взорвали мозги теоретиков.

Вы спросите: «Как D-браны связаны с лекцией Виттена?» Спустя несколько месяцев после неё, в ноябре, Джо написал статью, которая имела огромные последствия во всех областях теоретической физики. Новые объекты, необходимые Виттену, оказались именно D-бранами Джо. Вооружённые D-бранами физики получили, наконец, возможность завершить виттеновский проект по замене нескольких, на первый взгляд различных, теорий на одну, но с множеством решений.

 

Браны любых размерностей

Что такого особенного в струнах? Что такого в одномерной энергетической нити, что вселяет в теоретиков уверенность в том, что эти нити являются строительными блоками всей материи? Чем больше мы узнаём о теории струн, тем более некоторые из нас убеждаются в том, что в струнах нет ничего особенного. В восьмой главе мы столкнулись с Магической Мистической Математической одиннадцати-Мерной М-теорией. Эта теория вообще не содержит струн. В ней есть мембраны, 5-браны и гравитоны, но не струны. Как мы видели, струны появляются только при компактификации М-теории, и даже тогда они являются не более чем предельными случаями мембран, которые становятся похожими на струны, когда размер компактифицируемого измерения становится достаточно малым. Иными словами, Теория Струн – лишь теория струн в некоторых ограниченных регионах Ландшафта.

В мире с пространственными измерениями существуют три типа объектов, которые струнные теоретики называют бранами. Самый простой из них – точечная частица. Поскольку точка не имеет размера ни в каком направлении, принято считать точку 0-мерным пространством. Жизнь на точке очень скучна: ведь у вас нет ни одного направления для исследования. Струнные теоретики относятся к точечной частице как к 0-бране, где 0 обозначает размерность объекта. На их жаргоне 0-браны, к которым прикреплены концы струн, называются D0-бранами.

За 0-бранами идут 1-браны, или струны. Струна имеет протяжённость только в одном направлении. Живущие на струнах по-прежнему очень ограниченны в своих возможностях, но в их распоряжении имеется по крайней мере одно измерение, пригодное для заселения. В теории струн существуют два вида 1-бран: оригинальные струны и D1-струны – и те и другие являются одномерными объектами, на которых могут заканчиваться обычные струны.

И наконец, в трёхмерном пространстве могут существовать 2-браны, или мембраны, напоминающие резиновые листы. Жизнь на 2-бране бесконечно разнообразна, но всё таки не так интересна, как в трёхмерном пространстве. На самом деле мы могли бы назвать наш мир трёхмерной 3-браной, но в отличие от 0, 1 и 2-бран мы не можем перемещать 3-брану в пространстве, поскольку она и есть пространство. Но предположим, что мы бы жили в мире с четырьмя пространственными измерениями. Дополнительное пространственное направление предоставило бы 3-бране свободу перемещения. В мире с четырьмя пространственными измерениями могут существовать 0, 1, 2 и 3-браны.

А как насчёт 9 + 1-мерного мира теории струн? Вполне возможно, что в нём могут существовать браны всех размерностей: от 0-бран до 8-бран. Но возможность сама по себе ещё не означает, что этот мир действительно содержит такие объекты. Это зависит от основных «кирпичиков» материи и от того, как они «соединены» между собой. С другой стороны, это означает, что у нас есть достаточно измерений, чтобы обеспечить возможность существования таких бран. А десяти пространственных измерений М-теории достаточно, чтобы включить ещё один вид бран – 9-браны.

Но опять-таки, из одного лишь факта, что в десяти пространственных измерениях можно сконструировать десять различных видов бран, ещё не следует, что М-теория на самом деле содержит все эти типы бран в качестве возможных объектов. В действительности М-теория – это теория гравитонов, мембран и 5-бран. Других видов бран в ней нет. Объяснение, почему это так, увело бы нас слишком далеко в дебри высшей математики и суперсимметричной общей теории относительности, но нам туда и не нужно: достаточно просто знать, что 11-мерная супергравитация (в смысле: 10 + 1-мерная) – это теория мембран и 5-бран, взаимодействующих путём обмена гравитонами.

Каждая десятимерная теория струн имеет собственный набор D-бран. Одна из версий, так называемая теория струн типа IIa, имеет чётно-мерные браны: D0, D2, D4, D6 и D8-браны. Теория типа IIb содержит нечётно-мерные браны: D1, D3, D5, D7 и D9-браны.

Подобно тому как к одной штанге можно прикрепить несколько скакалок, на D-бране может оканчиваться любое количество струн. Более того, одна струна может прикрепляться к D-бране обоими концами, подобно тому как скакалка может быть прикреплена обоими концами к одной и той же штанге. Эти концы струны будут свободно двигаться вдоль браны, но не смогут оторваться от неё. Они являются как бы осуждёнными на пожизненное заключение на D-бране.

Подобные струны интересны тем, что они ведут себя так же, как элементарные частицы. Возьмём, к примеру, D3-браны. Короткие струны, прикреплённые обоими концами к бране, имеют возможность свободно перемещаться по всему трёхмерному объёму D3-браны. Они могут соединяться вместе, образуя более крупную струну, вибрировать и снова рассоединяться. Они перемещаются и взаимодействуют как частицы, для объяснения поведения которых были состряпаны предыдущие теории струн. Только теперь эти частицы живут на бране.

D-брана представляет собой модель мира с элементарными частицами, поведение которых похоже на поведение настоящих элементарных частиц. Единственное, что отсутствует на D-бране, – это гравитация. Так происходит из-за того, что гравитон – это замкнутая струна, не имеющая концов, а струна, не имеющая концов, не может заканчиваться на бране и, соответственно, не может на ней жить.

Может ли реальный мир (если не принимать в расчёт гравитацию) электронов, фотонов и всех других элементарных частиц, а также атомов, молекул, людей, звёзд и галактик целиком помещаться на бране? Для большинства теоретиков, работающих над этой проблемой, подобная возможность представляется весьма вероятной.

 

Браны и компактификация

Из бран можно сделать всё что угодно. Возьмите D2-брану – мембрану – и сверните её в 2-сферу. Получится поверхность шара. Беда в том, что поверхностное натяжение мембраны быстро сожмёт этот шар в точку. Вместо сферы можно было бы попробовать свернуть из D2-браны тор, но он точно так же быстро сколлапсирует.

Но теперь представьте себе брану, которая простирается от одного конца Вселенной до другого. Самым простым примером для визуализации является бесконечная D1-брана, протянутая через всю Вселенную подобно бесконечному канату. Бесконечная D-брана не может сжаться и сколлапсировать. Вы можете представить себе двух космических гигантов, держащих эту брану за концы, но так как D-брана бесконечна, гиганты тоже находятся бесконечно далеко.

Нет никакой необходимости ограничиваться D1-бранами: бесконечный лист, растянутый по всей Вселенной, тоже является стабильным, только на этот раз нам потребуется много гигантов, которые будут удерживать края этого листа по всему периметру, но, опять же, они будут бесконечно далеко. Бесконечная мембрана могла бы представлять собой мир элементарных частиц, фантастическую Флатландию, являющуюся двумерным аналогом нашей собственной Вселенной. Вы могли бы подумать, что существа, обитающие на мембране, не способны прийти к выводу о существовании других измерений, но это не совсем правильно. Подсказкой служат свойства гравитационных сил. Вспомните, что гравитационное взаимодействие вызывается обменом гравитонами между объектами. Но гравитоны – это замкнутые струны, не имеющие концов, поэтому у них нет никаких причин оставаться на бране. Напротив, они свободно движутся через всё пространство. Они по-прежнему остаются переносчиками гравитационного взаимодействия между объектами, расположенными на бране, но при этом могут путешествовать через дополнительные измерения, возвращаясь затем обратно на брану. Гравитация, подобно космическому откровению из научно-фантастического романа, расскажет существам плоской земли о существовании иных измерений и о том, что эти существа находятся в заключении на двумерной поверхности.

Ненаблюдаемые измерения гравитации в действительности будет очень легко обнаружить. Массивные тела, сталкиваясь, излучают гравитоны точно так же, как заряженные электроны, сталкиваясь, излучают фотоны. Но практически все излучаемые гравитоны будет улетать в космос, никогда не возвращаясь на брану. Улетая с браны, гравитоны будут уносить с собой энергию. Энергия будет постоянно диссипировать с браны. Флатландцы обнаружат, что не вся энергия преобразуется в тепло, что часть потенциальной или химической энергии просто исчезает.

Теперь представьте, что пространство имеет больше измерений, чем наши обычные три. Бесконечные D3-браны могут быть растянуты через пространство таким же образом, как и D2– или D1-браны. На 3-бране могут существовать все обычные вещи нашего мира, за исключением одной: гравитация будет вести себя неправильно. Законы гравитации будут отражать тот факт, что гравитон движется через пространство большей размерности, чем три. Гравитация будет как бы «разбавлена», «растворена» в дополнительных измерениях. Результаты для нашего мира окажутся катастрофическими. Сила тяжести будет гораздо слабее, и галактики, звёзды и планеты не будут удерживаться ею на своих орбитах. Более того, гравитация будет настолько слаба, что даже не сможет удержать нас на поверхности Земли.

Но давайте возьмём эти дополнительные измерения – те, которые мы не можем исследовать, но через которые может проходить гравитон, – и свернём их в микроскопически малое компактное пространство. Три обычные пространственные измерения образуют бесконечную комнату, но дополнительные измерения упираются в «стены», «потолки» и «полы». Точки на противоположных стенах или на потолке и на полу соответствуют друг другу так же, как я описал в главе 8.

Чтобы лучше представить себе это, вернёмся к примеру, в котором мы компактифицировали трёхмерное пространство путём сворачивания одного измерения. Начнём с бесконечной комнаты, каждой точке потолка которой была сопоставлена точка на полу непосредственно под точкой на потолке. Но теперь на полу есть ковёр, который простирается до бесконечности во всех направлениях. Ковёр является D-браной. Представьте себе ковёр-брану, который поднимается вертикально вверх. Он медленно отрывается от пола, как волшебный ковёр в сказках «Тысячи и одной ночи», продолжает подниматься и поднимается до тех пор, пока не коснётся потолка. И в этот момент: «Абра-швабра-кадабра!» – и ковёр мгновенно возникает на полу.

До сих пор гравитоны не были привязаны к ковру-бране, но теперь они не могут улететь слишком далеко: для их движения остаётся слишком мало места в дополнительном измерении. И если дополнительное измерение микроскопически мало, то очень трудно определить, находится гравитон на бране или где-то рядом. В результате гравитационные силы будут практически неотличимы от случая, когда гравитоны вообще не покидают брану. И разумеется, не обнаружится ничего принципиально нового, если заменить мембрану D3-браной в пространстве более высокой размерности. D3-брана в девятимерном пространстве теории струн оказалась бы очень похожей на наш мир, если бы дополнительные шесть измерений были компактифицированы.

Многие струнные теоретики уверены, что мы действительно живём в мире-бране, плавающем в пространстве с шестью дополнительными измерениями. И, возможно, существуют другие браны, плавающие по соседству на ничтожно малом расстоянии, но невидимые для нас, потому что фотоны, излучаемые на нашей бране, не могут её покинуть и попасть на соседнюю, и точно так же фотоны, излучаемые на соседней бране, не могут попасть на нашу. Невидимость соседних бран вовсе не означает невозможность их обнаружения. Гравитоны, представляющие собой замкнутые струны, способны преодолеть промежуток между бранами. Не проявляются ли они в форме влияния той самой тёмной материи, гравитационное притяжение которой удерживает звёзды в галактиках в нашей Вселенной? D-браны Полчински раскрывают перед нами все возможные варианты новых измерений. С нашей точки зрения, Вселенная, состоящая из множества бран, мирно сосуществующих бок о бок, является всего лишь одним из возможных вариантов Ландшафта. Невероятно сложные пространства Калаби – Яу, сотни модулей, мировые браны, потоки (о них мы ещё поговорим) – Вселенная начинает выглядеть подобно миру, который может понравиться разве что матери Руба Голдберга. Хочется перефразировать реплику знаменитого физика-экспериментатора Исидора Исаака Раби: «Ну и кто заказал все эти вещи?»

Однако мы ещё не исчерпали все хитроумные механизмы, из которых может состоять машина Руба. Вот ещё один: браны могут не только плавать в компактифицированном пространстве, но и быть обёрнутыми вокруг одного из компактифицированных измерений. Простейший пример – D1-брана, обёрнутая вокруг бесконечного цилиндра. Это будет выглядеть так же, как обёрнутая вокруг цилиндра струна, за исключением того, что место струны займёт D1-брана. С большого расстояния такой объект будет выглядеть как точечная частица на одномерной линии. Или предположим, что компактифицированное пространство представляет собой обычную 2-сферу. Можно попробовать обернуть струну или D1-брану вокруг экватора сферы как пояс вокруг Шалтая-Болтая. Но ведь пояс может и соскользнуть со сферического Шалтая. Струна или D1-брана, обёрнутая вокруг сферы, нестабильна, она не останется на ней надолго. По образному выражению Сидни Коулмана: «Нельзя заарканить баскетбольный мяч».

Теперь перейдём к тору, представляющему собой поверхность бублика. Можно ли обернуть D1-брану вокруг тора так, чтобы она осталась стабильной? Да, и не единственным способом. Существует два способа «опоясать» бублик. Один из них – продеть пояс сквозь дырку. Попробуйте сами: возьмите бублик, проденьте пояс… или галстук через дырку и завяжите. Он уже не сможет соскользнуть. Можете ли вы придумать второй способ опоясать тор?

Решающим фактором оказывается топология тора. Топология – это раздел математики, позволяющий отличать сферы от торов или более сложных пространств. Интересным расширением понятия тора является поверхность с двумя дырками. Возьмите комок глины и слепите из него шар. Поверхность шара является сферой. Теперь проделайте в этом шаре сквозное отверстие: получится бублик, поверхность которого является тором. Проделайте в комке ещё одно отверстие. Вы получите фигуру, поверхность которой является обобщением тора. Новую фигуру можно опоясать уже тремя разными способами. Математики называют сферу поверхностью рода 0, тор – поверхностью рода 1, а тор с двумя дырками – поверхностью рода 2. Очевидно, что, проделав множество отверстий, можно получить поверхность любого рода. Чем выше род поверхности, тем большим количеством способов можно обернуть вокруг неё брану.

Шесть из девяти размерностей, которыми оперирует теория струн, скрыты путём компактификации. Шестимерное пространство устроено гораздо более сложно, чем двумерное. Многомерные версии бубликов позволяют обернуть вокруг них не только D1-брану, но и D2, D3, D4, D5 и D6-браны, причём сотнями различных способов.

До сих пор мы оперировали одной отдельно взятой браной. Но на самом деле мы можем взять целую стопку бран. Вернёмся к ковру в бесконечной комнате. Что мешает нам постелить в ней два ковра, один на другой? Можно положить друг на друга множество ковров, как на персидском базаре. И точно так же, как ковры могут свободно парить друг над другом, стопка D-бран может разделяться на отдельные свободно плавающие браны. Но браны больше похожи на липкие ковры – если соединить их вместе, они «слипаются», образуя составную брану, что даёт огромное количество вариантов конструирования машины Руба Голдберга. Например, можно расположить несколько стопок ковров на разных расстояниях от пола, что оставляет простор для конструирования миров с самыми разнообразными свойствами. Оказывается, что при помощи пяти ковров, склеенных по два и по три, можно сконструировать мир с Законами Физики, очень похожими на Стандартную модель!

Способ расположения бран в компактифицированном пространстве является новым свободным параметром для добавления модулей при подсчёте разнообразных вариантов конструкции Вселенной. На расстояниях, для которых размером компактифицированных измерений можно пренебречь, браны проявляются как дополнительные скалярные поля, определяющие Ландшафт.

 

Потоки

Потоки появились как одна из самых важных составляющих Ландшафта. Они более, чем что-либо другое, делают Ландшафт невероятно огромным. Потоки являются несколько более абстрактными и труднопредставимыми сущностями, чем браны. Они играют огромную роль в теории струн, но по сути очень просты. «На расстоянии» они выглядят как ещё одна разновидность скалярных полей. Наиболее известными примерами потоков являются электрические и магнитные поля Фарадея и Максвелла. Фарадей не был математиком, но обладал великим даром визуализации. Он буквально видел электромагнитные поля в своих экспериментальных установках. В картине мира Фарадея магнитное поле представлялось в виде линий, вытекающих из северного полюса магнита и втекающих в южный. В каждой точке пространства эти линии, называемые ещё силовыми линиями, указывают направление магнитного поля, а плотность линий (то, насколько близко они расположены друг к другу) определяет напряжённость поля.

Точно так же представлял себе Фарадей и электрические поля: в виде линий, исходящих из положительных зарядов и входящих в отрицательные. Представьте себе воображаемую сферу, окружающую изолированный положительный заряд с выходящими из него во все стороны и уходящими в бесконечность линиями. Все силовые линии неизбежно должны пересекать окружающую заряд сферу. Вот вам простейший пример потока поля через поверхность.

Мерой этого потока Фарадей считал количество проходящих сквозь поверхность силовых линий. Если бы он знал математический анализ, он бы описал поток как интеграл от величины напряжённости поля по поверхности, но идея количества силовых линий оказалась даже более удачной, чем мог предположить Фарадей. Поток через поверхность является одной из тех вещей, о которых квантовая механика говорит нам, что они квантуются. Квант потока не может быть разделён на более мелкие части точно так же, как и фотон. Из-за того, что поток не может меняться непрерывно, представление его в виде конечного целого числа линий является более правильным, чем представление в виде поверхностного интеграла.

Обычно электрические и магнитные поля представляются как векторы в трёхмерном пространстве, но возможно также и представление этих полей как потоков в шести дополнительных свёрнутых измерениях. Несмотря на то что математическое описание потока в шестимерном пространстве очень сложно, вы можете по-прежнему представлять его себе как набор силовых линий или силовых поверхностей, намотанных замысловатым образом на пространство Калаби – Яу и проходящих сквозь дырки в многомерных бубликах.

Для более глубокого понимания поведения потоков в пространстве Калаби – Яу необходимо хорошо разбираться в современной геометрии и топологии, но наиболее важные выводы достаточно просты. Как и в случае с магнитными и электрическими полями, потоки, текущие через многомерные дырки от бубликов, квантованы. Они всегда представляют собой произведение некоего элементарного потока на целое число. Это означает, что для полного задания потока необходимо всего лишь задать набор целых чисел, сообщающих, сколько элементарных единиц потока проходит через каждую дырку.

Как много чисел понадобится для описания потока в пространстве Калаби – Яу? Это зависит от того, сколько дырок в этом пространстве. Пространство Калаби – Яу гораздо сложнее простого тора и обычно содержит несколько сотен дырок. Каждой дырке в описании потока соответствует одно целое число. Эти несколько сотен целых чисел, определяющих поток, являются частью общего описания положения точки на Ландшафте.

 

Конифолдные сингулярности

Итак, сейчас наш типичный набор чисел, описывающий размер и форму компактного пространства, содержит несколько сотен модулей, описывающих взаимное расположение бран, и ещё несколько сотен чисел, описывающих потоки. Что ещё можно добавить к нашей машине Руба Голдберга?

Вообще-то много чего, но чтобы не раздувать эту книгу до гигантских размеров, я расскажу только про конифолдную сингулярность. Поверхность футбольного мяча – это сфера. Если вы игнорируете текстуру материала и швы, то можете считать эту сферу гладкой. Поверхность мяча для игры в американский футбол, наоборот, гладкая везде, за исключением концов, где она собирается в коническую вершину. Бесконечно острый выступ на гладкой поверхности называется сингулярностью. У мяча для игры в американский футбол примером такой сингулярности служат концы мяча, сходящиеся на конус. Сингулярность такого типа называется конической сингулярностью.

Сингулярности в пространствах высоких размерностей – места, где пространство перестаёт быть гладким, – являются более сложными. Они имеют более запутанную топологию. Конифолды представляют собой одну из таких сингулярностей, которая может существовать в пространстве Калаби – Яу. Как несложно понять из названия, она похожа на вершину конуса.

Для наших популяризаторских целей достаточно представлять себе конифолды как заострённые конические выступы на поверхности.

Наиболее интересные результаты получаются, если совместить конифолды и потоки в одном и том же пространстве Калаби – Яу. Поток, действуя на любую неоднородность поверхности, стремится вытянуть её, делая похожей на рыло муравьеда. Если таких неоднородностей много, то под действием потоков вскоре всё пространство Калаби – Яу покрывается конифолдными сингулярностями, становясь похожим на шестимерного морского ежа.

Теперь у Руба Голдберга достаточно деталей. Насколько же сумасшедшую машину сможет он построить? Вариантов – море, но мне хотелось бы описать один из них, называемый конструкцией ККЛТ. К., К., Л. и Т. начали с пространства Калаби – Яу. Существуют миллионы различных способов начать с пространства Калаби – Яу. Безразлично, какой из этих способов выбрать. Где-то в этом пространстве имеется похожая на рыло муравьеда конифолдная сингулярность. Затем ККЛТ заполнили все возможные дырки потоками: по целому числу потоков на каждую дырку. Это означало, что они задали около 500 различных параметров: модулей и потоков. В результате получилась долина на Ландшафте, но не такая, о которой мы говорили ранее. Получилась Долина Смерти – но не потому, что она получилась горячей, а потому, что она оказалась расположенной ниже «уровня моря». Её высота оказалась отрицательной, что, в свою очередь, означало, что энергия вакуума и, как следствие, космологическая постоянная оказались отрицательными – плохой знак для нашей Вселенной. Вместо расширения Вселенной отрицательная космологическая постоянная приведёт к её сжатию, причём очень быстрому сжатию.

Но у ККЛТ был припасён ещё один механизм для машины Руба Голдберга. Они добавили в неё анти-браны. D-браны похожи на частицы. И подобно тому, как каждая частица имеет свою античастицу, каждая брана имеет свою анти-брану. И точно так же, как частица аннигилирует, встречая свою античастицу, браны и анти-браны, встречаясь, аннигилируют с высвобождением огромного количества энергии. Но ККЛТ поместили в свою конструкцию только анти-браны.

Как оказалось, анти-брана испытывает на себе действие силы, которая тянет её в сторону вершины конифолдной сингулярности, а масса этой добавленной в конструкцию анти-браны добавляет в систему достаточно энергии, чтобы сделать высоту долины положительной. Таким образом, намешав всего понемногу, ККЛТ добились того, что созданный ими ландшафт обладал очень маленькой положительной космологической постоянной, – у них получилась первая в своём роде конструкция, напоминающая нашу реальную Вселенную.

ККЛТ-машина Руба Голдберга

Важность обнаруженной ККЛТ долины, однако, не в том, что она напоминает нашу собственную Вселенную. В ней отсутствует Стандартная модель физики элементарных частиц, и в своём первоначальном виде она не содержит ингредиентов, необходимых для описания инфляции. Её важность состоит в том, что она оказалась первой успешной попыткой отойти от суперсимметричных равнин и найти долину, располагающуюся «над уровнем моря». Она послужила доказательством того, что ландшафт теории струн может содержать долины с небольшой положительной космологической постоянной.

Конструкция ККЛТ напоминает своей сложностью машину Руба Голдберга, но она имеет одну особенность, которую сам Руб никогда бы себе не позволил. Один из её компонентов выполняет сразу две задачи. Анти-браны не только приносят в систему дополнительную энергию и делают космологическую постоянную положительной, они выполняют ещё одну очень важную работу. Наш мир, мир, в котором мы живём, не суперсимметричен. В нём отсутствуют безмассовые фермионные суперпартнёры фотонов и бозонные близнецы электронов. До того, как авторы засунули анти-браны в горло конифолдам, система ККЛТ всё ещё оставалась суперсимметричной. Но анти-брана искривляет суперсимметричное зеркало, приводя к нарушению суперсимметрии. Это очень не по-голдберговски – использовать одну и ту же деталь для выполнения двух различных функций.

ККЛТ-точка на ландшафте не является нашим миром. Но не так уж и сложно встроить в неё Стандартную модель, добавив ещё несколько бран. Пять дополнительных D-бран, расположенных где-нибудь в стороне от анти-браны, обеспечат необходимую функциональность нашей машины.

 

Дискретуум Буссо и Полчински

ККЛТ нашли не одну, а довольно обширный набор долин. Полчински и молодой аспирант из Стэнфордского университета Рафаэль Буссо к тому времени уже изложили основную идею в своей статье, которая была проигнорирована большинством физиков. Чтобы понять, как компактификация может привести к огромному количеству вакуумов, Буссо и Полчински сосредоточились на одной из возможных геометрий Калаби – Яу и задались вопросом: «Как много существует различных способов заполнить потоками сотни дырок от бублика?»

Предположим, что многообразие Калаби – Яу обладает топологией, достаточно сложной, чтобы содержать 500 дырок от бублика, сквозь которые можно пропустить потоки. Поток, текущий сквозь каждую дырку, выражается целым числом. Таким образом, для описания этих потоков нам понадобится 500 целых чисел.

Теоретически нет никаких ограничений на величину этих чисел, но на практике хотелось бы иметь не слишком большие потоки, текущие через каждую дырку. Слишком большие потоки привели бы к нежелательным последствиям, так как они стремились бы растянуть многообразие. Поэтому давайте введём некоторые ограничения. Пусть каждый поток выражается числом, не превосходящим 9. Тогда величина любого потока будет целым числом от 0 до 9. Как много вариантов мы получим?

Фрагмент многообразия Калаби – Яу

Начнём с простого примера. Пусть у нас есть только одна дырка вместо пятисот. Если величина потока, текущего через эту дырку, может принимать значения от 0 до 9, то мы получим всего десять вариантов: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Суть в том, что каждый из этих вариантов определяет свой собственный вакуум – среду со своими собственными индивидуальными законами природы и со своей собственной энергией вакуума. И хотя десять разных вакуумов – это много с точки зрения квантовой теории поля XX века, это крайне мало с точки зрения перспективы объяснить 119 нулей после запятой в значении энергии вакуума. Так что продолжим.

Предположим теперь, что у нас есть две дырки, через каждую из которых может проходить поток, имеющий значение от 0 до 9. Количество различных вариантов возрастёт до 102, или до 100. Это уже лучше, но всё же ещё весьма скромно. Но обратите внимание, что каждый раз, когда мы добавляем новую дырку, количество возможных вариантов возрастает в десять раз. Шесть дырок дадут нам миллион вариантов, двенадцать дырок – триллион. Многообразие с 500 дырками будет обладать огромным числом возможных конфигураций: 10500. Кроме того, каждая долина в этом невообразимом списке будет иметь свою собственную энергию вакуума, и никакие две долины не будут похожи друг на друга.

Представим все возможные значения космологической константы графически. Возьмите лист бумаги и проведите горизонтальную линию. В середине этой линии поставьте метку «0», а у правого конца – метку «1». Точка «1» будет обозначать энергию вакуума, равную 1 Единице. После нанесите на эту прямую равномерно ещё 10500 меток… Даже очень острым карандашом вам вряд ли удастся нанести больше 1000 меток, прежде чем они начнут налезать друг на друга, сливаясь в непрерывную полосу.

Наверное, лучше было взять лист бумаги побольше. Но даже лист бумаги величиной с Эмпайр-стейт-билдинг позволит вам нанести не более нескольких миллионов меток. Взяв лист бумаги размером с Галактику, вы сможете нанести порядка 1024 меток. Ни одно из этих чисел даже не близко к 10500. Даже если расстояние между соседними метками будет порядка планковской длины, а лист бумаги – размером с известную Вселенную, вам удастся расположить на нём не более 1060 меток. Число 10500 настолько велико, что я не могу себе представить способ изобразить его графически.

Множество всех возможных чисел в заданном диапазоне, включая дробные и иррациональные, называется континуумом. Но метки на нашей прямой не образуют континуум: хотя плотность их и невообразимо велика, они остаются дискретными метками. Для описания такого невероятно большого и плотного набора значений струнные теоретики Буссо и Полчински придумали слово дискретуум, обозначающее дискретное множество, настолько плотное, что на практике его трудно отличить от континуума.

Но самое главное, что среди множества случайно выбранных значений космологической постоянной будет огромное количество, попадающее в крошечное «окно жизни», рассчитанное Вайнбергом. Таким образом, нет никакой необходимости в точной настройке космологической постоянной – хотя количество вариантов, попадающих в окно жизни, будет невероятно мало по сравнению с общим числом вариантов – примерно 1 на 10120, само по себе это число будет очень большим – порядка 10380.

Невероятный рост Ландшафта за годы, прошедшие с момента создания теории струн, был постоянной причиной головной боли у большинства струнных теоретиков. В те далёкие и счастливые дни, когда Ландшафт состоял всего лишь из одной точки или, на худой конец, из количества точек, которые можно было пересчитать по пальцам одной руки, теоретики были вне себя от радости, обнаружив, что несколько известных на тот момент теорий были в действительности всего лишь разными решениями одной теории. Но когда Ландшафт начал разрастаться с угрожающей быстротой, теоретики пришли в ужас. Невообразимо большой Ландшафт означает существование огромного количества различных решений. Но я надеюсь, что спустя некоторое время те же теоретики начнут воспринимать Ландшафт как единую и наиболее важную и убедительную особенность их теории. Можно задаться вопросом: «Не подменяем ли мы одну неразрешимую проблему другой? Нам больше нет необходимости спрашивать себя, почему космологическая постоянная так тонко настроена. Возможно, и вправду Ландшафт настолько разнообразен, что мы можем найти на нём всё, что бы мы ни искали. Но какой физический принцип обеспечивает выбор нашей пригодной для жизни долины из 10500 других?» Ответ, к которому мы придём в следующей главе, состоит в том, что никакого принципа нет, а сам вопрос является некорректным.