Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной

Сасскинд Леонард

Глава 5. Гром с небес

 

 

Вселенная Александра Фридмана

Упоминание одна тысяча девятьсот двадцать девятого года заставляет вздрагивать тех, кто достаточно стар, чтобы помнить рушащиеся один за другим банки, эпидемию самоубийств на Уолл-стрит, крах ипотечного кредитования, безработицу. Это была Великая депрессия. Но не всё было плохо в этом году. В то время как фондовый рынок лопнул, как проткнутый воздушный шарик, в солнечной Калифорнии Эдвин Хаббл открыл Большой взрыв – взрыв, из которого родилась вся известная нам Вселенная. Вопреки тому, что ещё в 1917 году предполагал Эйнштейн, Вселенная меняется и расширяется со временем. По данным Хаббла выходило, что все далёкие галактики разбегаются от нас, как если бы они были выстрелены из гигантской пушки, способной стрелять во всех направлениях и из каждого места пространства одновременно. Хаббл обнаружил, что Вселенная не просто меняется, она расширяется, как надувающийся шар.

Хаббл использовал для измерения движения галактик давно известную технику. Свет от галактики направлялся в спектроскоп, который разлагал его в спектр. Исаак Ньютон делал то же самое ещё в XVII веке, пропуская солнечный свет через треугольную призму. Призма – это простейший спектроскоп, разлагающий солнечный свет на все цвета радуги. Ньютон справедливо заключил, что белый свет представляет собой совокупность красного, оранжевого, жёлтого, зелёного, голубого, синего и фиолетового цветов. Сегодня мы знаем, что каждому цвету спектра соответствует свет определённой длины волны.

Если внимательно посмотреть на спектр света звезды, то можно увидеть тонкие тёмные спектральные линии, расположенные поперёк радужной полоски.

Линии поглощения

Эти таинственные линии – более тёмные, чем остальной спектр, – называются линиями поглощения. Они указывают на то, что где-то между нами и источником света находится что-то, что поглощает свет строго определённой длины волны, не оказывая влияния на весь остальной спектр. Что же может быть причиной этого странного явления? Квантовое поведение электронов.

Согласно модели атома, придуманной Нильсом Бором, электроны в атоме располагаются на определённых дискретных орбитах. Ньютоновская механика разрешает электрону обращаться по любой орбите на любом расстоянии от ядра, но квантовая механика накладывает на движение электрона ограничения, подобные правилам движения транспортных средств по полосам. Двигаясь между полосами, транспортное средство нарушает правила дорожного движения; двигаясь между разрешёнными орбитами, электрон нарушает правила квантовой механики. Каждой орбите соответствует своя энергия, поэтому при переходе электрона с одной орбиты на другую его энергия изменяется. Когда электрон перескакивает с более высокой орбиты на более низкую, он излучает фотон, уносящий избыток энергии. И наоборот, чтобы перескочить с более низкой орбиты на более высокую, электрону требуется поглотить фотон.

Обычно электрон находится на самой нижней из разрешённых орбит, не занятой другими электронами (вспомните принцип запрета Паули, не позволяющий двум электронам находиться в одном и том же квантовом состоянии). Но в случае столкновения атома с другой частицей электрон может получить часть энергии этого столкновения и перейти на новую орбиту, расположенную дальше от ядра. Атом в таком состоянии называется возбуждённым. Спустя короткое время электрон испускает фотон и возвращается на свою прежнюю орбиту. Свет, излучаемый в таком процессе, имеет строго определённую длину волны, зависящую от типа атома. Таким образом, каждый химический элемент имеет собственную уникальную «подпись» – набор спектральных линий, обусловленный квантовыми переходами электронов в атомах этого элемента.

Если фотон, падающий на атом, имеет энергию, соответствующую энергии разрешённого перехода в атоме, то может произойти обратный процесс: фотон будет поглощён, а электрон, получив дополнительную энергию, перейдёт на более высокую разрешённую орбиту. При прохождении света звезды через водород, из которого состоит звёздная атмосфера, атомы водорода поглощают фотоны, имеющие длину волны, соответствующую разности энергий между разрешёнными орбитами электронов, оставляя в спектре изучения звезды тёмные линии. Если в атмосфере звезды присутствуют гелий, углерод и другие химические элементы, то каждый из них оставит свою собственную уникальную подпись в виде набора тёмных линий в спектре. Изучая спектры излучения звёзд, учёные определяют их химический состав. Но в отношении задачи, которую решал Хаббл, нас интересует не химический состав звёзд, а их скорости относительно наблюдателя. Ключ к определению скоростей звёзд спрятан в зависимости расположения спектральных линий в свете звезды от скорости, с которой звезда приближается или удаляется от земного наблюдателя. Это ключ называется эффектом Доплера.

Если вы слышали сирену полицейской машины, проносящейся мимо вас, значит, вы знакомы с эффектом Доплера. Звук высокого тона типа «иииии» в момент проезда машины мимо вас переходит в более низкий звук «ууууу». При приближении машины звуковые волны, исходящие от неё, следуют более часто, а при удалении, наоборот, становятся более редкими. Поскольку длина волны и частота тесно связаны, вы слышите изменяющийся звук «иииииууууу». Более того, обладая музыкальным слухом, вы можете оценить, с какой скоростью движется автомобиль, на основании разности частот звучания сирены во время его приближения и удаления.

Но эффект Доплера способен не только развлекать пешеходов. Для астрономов он является не чем иным, как ключом к структуре и истории Вселенной. Эффект Доплера имеет место для всех типов волн: звуковых волн, волн в кристаллах и даже для волн на поверхности воды. Попробуйте пошевелить пальцами в воде, свесив руку за борт медленно движущейся лодки. Вы увидите, что волны, распространяющиеся вперёд по направлению движения, образуют более тесную группу, чем волны, распространяющиеся назад.

Волны от источника, движущегося вправо

К счастью для астрономов, свет, излучаемый движущимися объектами, тоже подвержен эффекту Доплера. Лимон, ракетой улетающий прочь от наблюдателя, изменит свой цвет в красную сторону и станет похожим на апельсин или даже помидор, если только он движется достаточно быстро. Если же лимон полетит с такой же скоростью на вас, то сможет ввести вас в заблуждение, показавшись лаймом или гигантской черничиной. Это происходит потому, что свет от источника, удаляющегося от наблюдателя, испытывает красное смещение, а свет приближающегося к наблюдателю источника – фиолетовое смещение. Точно так же как изменяется цвет лимона, изменяется и цвет галактик. Таким образом, измеряя величину смещения линий в спектре галактики, можно определить, с какой скоростью она движется относительно Земли.

Хаббл использовал эффект Доплера для определения скоростей огромного количества галактик. Он сравнивал спектр света каждой галактики со спектром эталонного лабораторного источника. Если бы Вселенная, как полагал Эйнштейн, была статичной, то линии одних и тех же элементов в обоих спектрах полностью совпадали бы. Но то, что обнаружил Хаббл, удивило всех. Свет почти всех далёких галактик испытывал красное смещение. В этом не было никаких сомнений. Одни галактики двигались быстрее, другие медленнее, но все они, за исключением нескольких самых близких к нам, удалялись от Земли. Это не могло не озадачить Хаббла. Сделанное им открытие означало, что в будущем галактики должны разлететься на ещё большие расстояния, но ещё более неожиданным был логичный вывод, что в прошлом галактики находились гораздо ближе друг к другу, а в какой-то момент, возможно, даже составляли одно целое!

Хаббл также сумел грубо определить расстояния до различных галактик и обнаружил закономерность: чем дальше от Земли располагалась галактика, тем с большей скоростью она удалялась. Ближайшие галактики удалялись медленно, но самые далёкие неслись прочь от нас с умопомрачительной скоростью. На приведённом графике из статьи Хаббла по горизонтальной оси отложено расстояние до галактик, а по вертикальной – скорость удаления. Каждая галактика представлена на графике отдельным чёрным квадратиком. Хаббл нашёл удивительным, что все точки лежат вблизи прямой линии.

Данные Хаббла

Это означает, что скорость удаления не просто зависит от расстояния, а зависит от него линейно. Галактика, находящаяся вдвое дальше от нас, удаляется с вдвое большей скоростью. Эта была новая неожиданная закономерность, новый космологический закон – закон Хаббла: Галактики удаляются от нас со скоростями, пропорциональными расстояниям до них. Или в более строгой формулировке: Галактики удаляются друг от друга со скоростью, равной произведению расстояния между ними на постоянную величину – постоянную Хаббла.

На самом деле открытый Хабблом закон не был такой уж неожиданностью. Ещё в 1922 году русский математик Александр Фридман, изучив опубликованную в 1917 году работу Эйнштейна, написал статью, в которой высказал утверждение, что Эйнштейн ошибался, считая Вселенную статической. Если Вселенная изменяется со временем, то введения космологической постоянной для обеспечения её устойчивости не требуется. Вселенная Фридмана точно так же, как и вселенная Эйнштейна, представляла собой замкнутую и ограниченную 3-сферу, но она была не статичной, а расширялась с течением времени подобно надуваемому воздушному шарику. Возьмите воздушный шарик и нарисуйте на нём галактики, более или менее равномерно распределённые по поверхности. А теперь начните медленно надувать шарик. Вы увидите, как по мере того, как шарик увеличивается в размерах, увеличиваются и расстояния между любыми двумя нарисованными на поверхности шарика галактиками. Ни одна галактика не выглядит привилегированной, расположенной в центре расширения. С точки зрения наблюдателя, находящегося в любой галактике, все остальные галактики движутся прочь от него. Это ключевой момент Вселенной Фридмана.

Обратите особое внимание, что нарисованные на шарике галактики будут удаляться друг от друга тем быстрее, чем большее расстояние на поверхности шарика их разделяет. Причём скорости их удаления будут пропорциональны расстояниям между ними, то есть закон Хаббла соответствует закону расширения поверхности раздувающейся сферы. К несчастью, Фридман умер в 1925 году, не увидев ни открытия Хаббла, подтверждавшего его теорию, ни той роли, которую сыграла его работа в будущем развитии космологии.

Рассмотрим некоторые из положений фридмановской космологии.

 

Космологический принцип и три геометрии

Пару лет назад меня пригласили в Южную Африку для чтения курса лекций в одном из университетов. Будучи там, мы с женой совершили поездку в Национальный парк Крюгер. Этот парк занимает огромные просторы велда и служит домом для большинства крупных млекопитающих континента. Это было потрясающе. Каждое утро и каждый вечер мы садились в лендровер и отправлялись смотреть и фотографировать дикую природу. Мы видели бегемотов и носорогов, африканских буйволов и прайд львов, пожирающих антилопу, а также разъярённого слона. Но лично для меня самым сильным впечатлением оказался вид южного неба в тёмную безлунную ночь. Южное небо гораздо богаче северного, к которому я привык, а в парке Крюгер почти полностью отсутствует световое загрязнение. Вид млечного пути, протянувшегося через всё небо, был просто потрясающим. Но чувство необъятности нашей Галактики обманчиво. Вся она вместе со всеми видимыми звёздами является лишь крошечным островком в безбрежном океане пространства, однородно заполненного сотнями миллиардов галактик, которые можно увидеть только в крупные телескопы. И даже эта наблюдаемая часть Вселенной – лишь крошечный фрагмент гораздо большего космоса.

Согласно моему словарю, слово однородный означает одинаковый по структуре или составу. Применительно к овсяной каше слово «однородная» означает: «без комков». Конечно, если вы посмотрите на овсянку через увеличительное стекло, она вряд ли будет выглядеть однородной. Суть в том, что когда вы называете что-то однородным, необходимо сделать уточнение: на каком размере проявляется эта однородность. Хорошо перемешанная овсянка является однородной на размерах больше, чем четверть сантиметра. Пшеничное поле фермера Брауна в Канзасе однородно на характерных размерах больше, чем несколько метров.

Ну… не совсем так. Овсянка однородна на размерах от четверти сантиметра до размера кастрюли. Пшеничное поле фермера Брауна однородно на размерах больше нескольких метров, но меньше нескольких километров. На размерах больше нескольких километров сельская местность начинает напоминать лоскутное одеяло. Таким образом, правильнее будет сказать, что пшеничное поле фермера Брауна однородно на размерах от нескольких метров до километра.

Для невооружённого глаза африканское ночное небо выглядит крайне неоднородным. Млечный Путь узкой светлой полосой прорезает более тёмный фон. Невозможно, находясь в чаще, разглядеть за деревьями лес. Но взгляд через большой телескоп открывает нам миллиарды галактик, которые в целом равномерно распределены по наблюдаемой части Вселенной. Согласно астрономам, Вселенная выглядит однородной и изотропной на расстояниях от ста миллионов до как минимум пятнадцати миллиардов световых лет. Верхний предел в пятнадцать миллиардов световых лет, безусловно, занижен: он обусловлен всего лишь нашей неспособностью заглянуть дальше.

Возвращаясь к своему словарю, я нахожу в нём следующее определение слова «изотропный»: одинаковый во всех направлениях; инвариантный относительно направления. «Изотропный» не то же самое, что «однородный». Приведу пример. Однажды, во время погружения с аквалангом на одном из коралловых рифов в Красном море я увидел огромную стаю узких длинных рыб, однородно заполнявших большой объём. Но по какой-то необъяснимой причине, пока я находился слишком близко, все рыбы были повёрнуты в одну и ту же сторону. Косяк был однородным на определённом масштабе, но он определённо не был изотропным. Любой фрагмент косяка выглядел точно так же, как и любой другой фрагмент этого же косяка, но этого нельзя было сказать про направление, в котором смотрели рыбы.

Космологи и астрономы предполагают, что Вселенная является однородной и изотропной: независимо от того, в каком месте Вселенной вы находитесь и в каком направлении смотрите, вы видите одно и то же. Я имею в виду не близлежащие детали, а крупномасштабные особенности Вселенной. Космологи называют это предположение «космологическим принципом». Конечно, от того, что мы назвали его принципом, оно автоматически не стало истинным. Первоначально это была просто гипотеза, но всё более тщательные и разнообразные наблюдения убедили астрономов и космологов, что Вселенная действительно однородна и изотропна на масштабах от нескольких сотен миллионов до, по крайней мере, нескольких десятков миллиардов световых лет. О свойствах Вселенной на ещё больших расстояниях мы ничего не можем сказать, потому что четырнадцать миллиардов световых лет – это предел наших наблюдательных возможностей. Независимо от того, насколько большой телескоп мы возьмём, мы не сможем увидеть объект на расстоянии больше четырнадцати миллиардов световых лет. Причина состоит в том, что возраст самой Вселенной составляет около четырнадцати миллиардов лет. За это время свет может пройти расстояние не более четырнадцати миллиардов световых лет. Свет от более далёких объектов просто ещё не успел до нас добраться. На самом деле ставка на то, что Вселенная является однородной и изотропной на расстояниях, превышающих размеры наблюдаемой части Вселенной, может и сыграть, но, подобно сельской местности, Вселенная может оказаться похожей на больших расстояниях на лоскутное одеяло: лоскутное одеяло, сшитое из карманных вселенных.

Пока же примем как рабочее предположение господствующую точку зрения, что космологический принцип справедлив вплоть до самых больших расстояний. Оно подводит нас к интересному вопросу: какая геометрия пространства совместима с космологическим принципом? Под геометрией пространства я имею в виду форму пространства. Начнём с двумерных примеров. 2-сфера является частным случаем геометрии. Помимо сферы пространство может иметь форму эллипсоида, груши и банана.

Из всех перечисленных объектов однородна и изотропна только сфера. Она, подобно окружности, обладает совершенной симметрией: каждая точка сферы ничем не отличается от другой точки сферы. Эллипсоид, хотя и не так совершенен, как сфера, всё ещё остаётся достаточно симметричной фигурой. Например, зеркальное отражение эллипсоида ничем не отличается от оригинала. Но уже далеко не каждый участок поверхности эллипсоида неотличим от других. Груша или банан ещё менее симметричны.

Одним из способов описания поверхности является указание её кривизны. Кривизна сферы абсолютно однородна. Говоря математическим языком, сфера является пространством с однородной положительной кривизной. Эллипсоид тоже обладает всюду положительной кривизной, однако его кривизна меняется от одного места поверхности к другому. Например, вытянутый эллипсоид, форма которого напоминает подводную лодку, имеет бо́льшую кривизну на концах и меньшую посередине. Из всех примеров одна только сфера имеет всюду постоянную кривизну.

Сферы, эллипсоиды и поверхности фруктов замкнуты и ограниченны – это означает, что они имеют конечную площадь, но не имеют краёв. Но следует признать, что никто не знает, конечна ли Вселенная, ведь до сих пор не нашлось космического Магеллана, который совершил бы круговселенское путешествие. Поэтому вполне возможно, что Вселенная продолжается неограниченно далеко, и в этом случае она бесконечна и безгранична.

В том случае, если мы считаем Вселенную бесконечной, возможны две однородные и изотропные геометрии Вселенной. Первая, очевидно, представляет собой бесконечное плоское пространство. Представьте себе бесконечный во всех направлениях плоский лист бумаги. На бесконечной плоскости нет никаких выделенных точек, о которых можно было бы сказать, что они находятся ближе к центру или ближе к краю. Но в отличие от сферы, плоскость не имеет кривизны, или, говоря математическим языком, кривизна плоскости равна нулю. Итак, мы знаем две однородные геометрии: сфера с положительной кривизной и плоскость с нулевой кривизной. Остаётся ещё третий вариант: гиперболоид с отрицательной кривизной. Чтобы вообразить поверхность с отрицательной кривизной, представьте себе кусок водопроводной трубы, согнутый под прямым углом. С внешней стороны «локтя» поверхность металла имеет положительную кривизну, как сфера. Кривизна же поверхности на внутренней стороне изгиба отрицательна.

Конечно же, колено водопроводной трубы неоднородно. Внутренняя сторона колена геометрически не похожа на внешнюю, потому что их кривизны имеют разные знаки. Лучшим примером поверхности с отрицательной кривизной служит поверхность седла: представьте себе седло, поверхность которого неограниченно поднимается вверх спереди и сзади от седока и неограниченно спускается вниз справа и слева, – и вы получите представление о бесконечной поверхности, имеющей всюду отрицательную кривизну.

Все три поверхности – сфера, плоскость и гиперболоид – однородны. Более того, все три поверхности имеют аналоги в трёхмерном пространстве: 3-сфера, обычное трёхмерное евклидово пространство и более трудное для представления трёхмерное гиперболическое пространство.

Теперь, когда мы представляем себе три стандартных типа космологии, предположим, что каждая из поверхностей представляет собой резиновую плёнку (или резиновый шарик для случая сферы) с нарисованными на ней галактиками. Начав равномерно растягивать плёнку, мы убедимся, что расстояния между двумя любыми галактиками будут изменяться, следуя закону Хаббла. Теперь у вас есть примерное представление о трёх возможных однородных и изотропных космологических моделях. Космологи обозначают эти модели числом k, принимающим значения 1, 0 и –1 соответственно для положительной кривизны (сферы), нулевой кривизны (плоскости) и отрицательной кривизны (гиперболоида).

Три геометрии

Так всё же: конечна Вселенная, как предполагал Эйнштейн, или она безгранична и бесконечна и заполнена бесконечным числом звёзд и галактик? Этот вопрос мучил космологов на всём протяжении XX века, и ответ на него так и не был найден. В конце этой главы я расскажу об одном открытии и о том, как оно может повлиять на окончательный ответ.

 

Три судьбы

Около месяца назад, когда я сидел дома и работал над этой книгой, меня отвлёк стук в дверь. На пороге стояли три очень аккуратно одетых молодых человека и протягивали мне книжицу религиозного содержания. Обычно я не утруждаю себя общением с бродячими проповедниками, но, увидев название буклета, я не мог устоять перед соблазном задать им несколько вопросов. На титульном листе было написано: «Подготовился ли ты к концу Вселенной?» Когда я спросил у них, откуда они узнали подробности конца Вселенной, они ответили, что современные учёные подтвердили библейскую легенду об Армагеддоне и что конец Вселенной научно предопределён.

Это было, в общем, правдой. Современные учёные действительно предсказывают, что Вселенная – по крайней мере, та Вселенная, которую мы знаем, – рано или поздно завершит своё существование. Это предсказывают все разумные космологические теории. Когда и как это случится, зависит от исходных предположений, положенных в основу той или иной теории, но все теории сходятся в одном: по крайней мере в ближайшие десять миллиардов лет нам опасаться нечего.

По большому счёту, существуют два основных сценария конца света. Чтобы лучше понять их, представьте себе камень, брошенный вертикально вверх. Забудем про сопротивление воздуха и для пущей наглядности подбросим камень с поверхности маленького астероида. Судьба камня будет зависеть от того, достаточно ли притяжения астероида, чтобы удержать его около себя. В первом случае камень остановится в верхней точке своей траектории и упадёт обратно на поверхность астероида. Во втором случае он навсегда покинет астероид и улетит в мировое пространство. Исход зависит от того, больше или меньше скорости убегания начальная скорость камня. Скорость убегания, в свою очередь, зависит от массы астероида: чем больше масса, тем больше скорость убегания.

Согласно общей теории относительности, судьба Вселенной очень напоминает судьбу этого камня. Галактики (и всё прочее вещество Вселенной) были выстрелены во все стороны в результате Большого взрыва и теперь разлетаются прочь друг от друга. Между тем гравитация стремится вернуть их обратно. Другими словами, Вселенная раздувается подобно воздушному шарику, но гравитация замедляет это расширение. Будет расширение продолжаться бесконечно или гравитация в конце концов остановит его и обратит вспять? Ответ на этот вопрос аналогичен ответу на вопрос о судьбе камня, брошенного с поверхности астероида. Если масса Вселенной окажется достаточной для того, чтобы остановить расширение, то после этого галактики начнут сближаться, пока не исчезнут в ходе страшного и горячего Большого коллапса. С другой стороны, если масса Вселенной недостаточно велика, чтобы остановить расширение, оно будет продолжаться до бесконечности. В этом случае конец Вселенной будет не столь драматическим – она превратится в чрезвычайно разреженную холодную материю.

И у Вселенной и у камня есть третья возможность. Если скорость камня в точности равна скорости убегания, то скорость его удаления будет уменьшаться, стремясь в пределе к нулю. То же можно сказать и о Вселенной. В этом случае она будет расширяться вечно со всё уменьшающейся и в конечном итоге стремящейся к нулю скоростью.

 

Геометрия судьбы

Три возможные геометрии и три возможные судьбы – есть ли между ними связь? Да, есть. Теория гравитации Эйнштейна (без космологической постоянной) устанавливает связь между геометрией пространства и содержащимися в этом пространстве массами. Распределение масс в пространстве определяет его геометрию. Ньютоновское изречение «масса является источником гравитационного поля» в эйнштейновской теории гравитации следует заменить на другое: «масса искривляет пространство». В этом и кроется искомая связь между тремя геометриями и тремя судьбами. Детали этой связи описываются сложным тензорным исчислением и римановой геометрией, но итоговые выводы (без учёта космологической постоянной) оказываются достаточно простыми.

1. Если средняя плотность Вселенной достаточно велика, чтобы остановить расширение и обратить его вспять, то это приведёт к искривлению пространства и замыканию его в 3-сферу. В этом случае Вселенная оказывается замкнутой и ограниченной, и её судьба – финальное Большое схлопывание. На техническом жаргоне финальное состояние Вселенной в этом сценарии описывается термином сингулярность. Указанный случай носит название закрытой Вселенной, или Вселенной с k = 1.

2. Если средняя плотность Вселенной меньше, чем необходимо для того, чтобы «закрыть» Вселенную, то она будет расширяться бесконечно. В этом случае искривление пространства приведёт к гиперболической геометрии. Гиперболическая Вселенная, как уже сказано, расширяется бесконечно. Такая Вселенная называется открытой Вселенной, или Вселенной с k = –1.

3. Наконец, если средняя плотность Вселенной такова, что Вселенная балансирует на острие ножа между открытой и закрытой, геометрия пространства соответствует плоскому евклидовому пространству, а сама Вселенная бесконечно расширяется со всё уменьшающейся скоростью, стремящейся со временем к нулю. Такая Вселенная называется плоской Вселенной, или Вселенной с k = 0.

Итак, что же нас ждёт? Кто говорит, мир от огня Погибнет, кто от льда. А что касается меня, Я за огонь стою всегда. Но если дважды гибель ждёт Наш мир земной, – ну что ж, Тогда для разрушенья лёд Хорош, И тоже подойдёт.

Когда я спросил трёх молодых миссионеров, какая же смерть нас ждёт: горячая или холодная, они ответили, что всё зависит от меня. Вполне вероятно, что меня ждёт горячая смерть, если я не изменю своё отношение к богу.

Физики и космологи не имеют определённого мнения в отношении вида окончательной расплаты. На протяжении десятилетий они пытались определить, какая из трёх судеб будет править бал последних дней Вселенной. Первый, наиболее очевидный способ выяснить это – направить наши телескопы во все уголки Вселенной и подсчитать полную массу всего, что можно увидеть: звёзд, галактик, гигантских пылевых облаков и прочей материи, какую только можно разглядеть непосредственно или вычислить её существование. Достаточно ли гравитационного притяжения всей этой материи, чтобы остановить расширение?

Мы знаем, с какой скоростью Вселенная расширяется сегодня. Хаббл установил, что скорости далёких галактик пропорциональны расстоянию до них, а коэффициентом пропорциональности является постоянная Хаббла. Это число является хорошей мерой скорости расширения: чем больше значение постоянной Хаббла, тем быстрее галактики удаляются друг от друга. Размерность постоянной Хаббла – скорость, делённая на расстояние. Астрономы обычно измеряют постоянную Хаббла в километрах в секунду на мегапарсек. Что такое километр в секунду, понятно любому. Один километр в секунду – это три скорости звука, или три Маха. Мегапарсеки менее известны широкой публике. Это единица расстояния, принятая в космологии. Один мегапарсек приблизительно равен трём миллионам световых лет или тридцати триллионам триллионов километров – чуть больше, чем расстояние до ближайшей к нам галактики Андромеды.

Значение постоянной Хаббла неоднократно измерялось и уточнялось за прошедшие годы и было предметом оживлённых дебатов. Астрономы соглашались с тем, что значение постоянной Хаббла лежит в диапазоне от 50 до 100 километров в секунду на мегапарсек, но только в самое последнее время её значение было более или менее точно определено в 75 (км/с)/Мпк. Смысл этого числа состоит в том, что галактики, отстоящие друг от друга на один мегапарсек, разлетаются с относительной скоростью в 75 км/с. Галактики, разделённые расстоянием в два мегапарсека, разлетаются с относительной скоростью 150 км/с.

По земным стандартам скорость в 75 км/с выглядит умопомрачительно высокой. Мне понадобилось бы всего десять минут, чтобы, двигаясь с такой скоростью, совершить кругосветное путешествие. Но с точки зрения физиков или астрономов это небольшая скорость. Например, наша Солнечная система движется вокруг центра Галактики с вдесятеро большей скоростью. А по сравнению со скоростью света 75 км/с – это просто улиточья скорость.

В соответствии с законом Хаббла галактика Андромеды должна удаляться от нас со скоростью 50 км/с, но в действительности она приближается к нам. Она находится слишком близко, чтобы хаббловское расширение превалировало над гравитационным притяжением между нашей Галактикой и галактикой Андромеды. Однако закон Хаббла никогда не рассматривался как точный закон, описывающий взаимное движение близкорасположенных галактик. Когда мы рассматриваем галактики, находящиеся достаточно далеко друг от друга, чтобы избежать взаимного притяжения, закон работает очень хорошо.

Несмотря на то что расширение Вселенной происходит медленно, данные наблюдений указывают на то, что её плотность недостаточна, чтобы повернуть расширение вспять.

Зная скорость расширения, несложно, используя уравнения Эйнштейна, вычислить значение средней плотности Вселенной, необходимое для того, чтобы остановить расширение. Это значение составляет 10–25 кг на кубический метр. При такой средней плотности Вселенная будет балансировать на острие ножа между сферической и гиперболической геометриями. 10–25 кг/м3 – это примерно 50 протонов на кубический метр. Небольшого увеличения средней плотности будет достаточно, чтобы скрутить Вселенную в 3-сферу и повернуть историю от Большого взрыва к Большому сжатию. Если плотность в точности равна указанному выше критическому значению, то Вселенная будет плоской (то есть k = 0).

Астрономы наблюдают материю в виде звёзд и газово-пылевых облаков, словом, всю материю во Вселенной, которая излучает или рассеивает свет. Если предположить, что Вселенная однородна, то можно подсчитать массу всей светящейся материи в окрестностях нашей галактики и определить среднюю плотность космического вещества. Она оказывается удивительно мала: всего один протон на кубический метр: в 50 раз меньше, чем необходимо для того, чтобы замкнуть Вселенную. Из наблюдений получается, что мы живём в открытой бесконечной Вселенной с отрицательной кривизной (k = –1), и она будет продолжать своё расширение вечно.

Но космологи и астрономы всегда были очень осторожны в своих выводах. В отличие от физики, где ошибка в 50 раз является позором, в астрономии такая точность предварительной оценки до недавнего времени была в порядке вещей. Оценка может запросто оказаться завышенной или заниженной в десять или даже в сто раз. Учитывая, что плотность может иметь любое значение, тот факт, что она оказалась так близко (по меркам астрономов) к критическому значению, заставил космологов отнестись к этому результату с подозрением. И они оказались правы в своей подозрительности.

Существует ещё один, более прямой и надёжный, способ определения массы галактики помимо оценки на основе количества излучаемого ею света. Для этого необходимо использовать ньютоновский закон всемирного тяготения. Давайте вернёмся к камню и астероиду. Но теперь, вместо того чтобы бросать камень вертикально вверх, запустим его по круговой орбите вокруг астероида. Гравитация астероида удерживает камень на орбите. Измерив скорость камня и радиус его орбиты, можно на основе закона всемирного тяготения определить массу астероида. Аналогичным образом, путём измерения скоростей звёзд, обращающихся на периферии галактики, астрономы могут вычислять массы галактик. И что же они видят?

Все галактики оказываются тяжелее, чем предполагалось. Грубо говоря, каждая галактика имеет массу, примерно в 10 раз большую, чем суммарная масса составляющих галактику звёзд и межзвёздных газово-пылевых облаков. Происхождение недостающих 9/10 массы остаётся загадкой. Почти наверняка эта масса принадлежит не обычной материи, состоящей из протонов, нейтронов и электронов. Космологи называют её тёмной материей, поскольку она не излучает свет. Эта призрачная материя не только не излучает, но и не рассеивают свет и вообще никак не проявляет себя, кроме как своим гравитационным полем. Такая вот странная вещь – эта современная наука. Со времён Дальтоне вся материя считалась предметом изучения обычной химии. Но теперь дело поворачивается так, что 90 % всей материи во Вселенной оказывается тем, о чём мы ничего не знаем.

Пока астрономы медленно переваривали новые данные, пытаясь убедить себя в том, что тёмной материи на самом деле не существует, физики были заняты введением в теорию всё новых видов элементарных частиц на все случаи жизни. Самым первыми были нейтрино, затем суперпартнёры, но ими, конечно же, не исчерпывается перечень гипотетических частиц, по той или иной причине вводимых в теорию. Никто не знает, что такое тёмная материя, но скорее всего, окажется, что она состоит из новых тяжёлых элементарных частиц, которые мы пока не обнаружили. Возможно, этими частицами будут неидентичные суперпартнёры – близнецы обычных частиц: бозонные партнёры нейтрино или даже фермионные партнёры фотонов. Не исключено, что мы обнаружим совершенно неожиданный класс элементарных частиц, о которых теоретики ещё даже не начали думать. Какими бы они ни были, они должны быть тяжёлыми, чтобы создавать достаточное гравитационное поле, но при этом не должны иметь электрического заряда, иначе они бы рассеивали или излучали свет. Это все, что мы пока знаем. Частицы тёмной материи должны окружать нас, беспрепятственно пролетая сквозь Землю и даже сквозь наши тела, но мы не в состоянии их видеть, чувствовать или обонять. Лишённые электрического заряда, эти частицы не способны напрямую взаимодействовать с нашими органами чувств. Вероятно, построив очень чувствительные детекторы, мы сможем узнать больше об этих загадочных объектах, но пока достаточно знать, что именно они делают галактики в 10 раз тяжелее, чем мы предполагали.

Вопрос о том, является ли Вселенная открытой и бесконечной или закрытой и конечной, как призрак преследует астрономов столько времени, сколько существуют астрономия. Закрытая Вселенная с конечным количеством галактик, звёзд и планет ещё как-то интуитивно понятна, но открытая Вселенная практически непостижима. Имея в своём распоряжении достаточно материи, мы очень близко подошли к тому, чтобы «закрыть» Вселенную, – «танталически» близко. Изначально мы находились почти в двух порядках от критической плотности, теперь – менее чем в одном порядке: наблюдаемая средняя плотность Вселенной всего в пять раз меньше критической, но вместе с тем мы гораздо более уверены, что знаем практически обо всей массе, составляющей Вселенную. Могли ли мы недостаточно аккуратно измерить постоянную Хаббла? Если она на самом деле окажется в два или три раза меньше, то средняя плотность вещества будет уже очень недалека от закрытия Вселенной. Слишком много зависит от ответа на этот вопрос, поэтому хотелось бы закрыть все возможные дыры в рассуждениях.

Астрономы уточняют значение постоянной Хаббла на протяжении последних 80 лет, используя всё более и более сложные инструменты. Сегодня кажется весьма маловероятным, что истинное значение постоянной Хаббла может настолько отличаться от измеренного, чтобы позволить закрыть Вселенную. Остановившись на этом, мы могли бы заключить, что средняя плотность Вселенной недостаточна для того, чтобы закрыть её, – но мы рассмотрели ещё не все факторы.

Существует другой способ определить, является Вселенная открытой, закрытой или плоской. Представьте себе очень большой треугольник в пространстве, треугольник космических масштабов. Чтобы быть уверенными, что его стороны являются прямыми, мы построим треугольник при помощи световых лучей. Космический геодезист может измерить углы треугольника, и если он не забыл евклидову геометрию, то сумма углов будет равна 180 градусам или двум прямым углам. Древние греки были в этом абсолютно уверены. Они не могли представить, что пространство может быть устроено каким-либо другим образом.

Однако современные геометры знают, что правильный ответ зависит от геометрии пространства. Если пространство плоское, как считал Евклид, то сумма углов треугольника действительно будет равна 180 градусам. С другой стороны, если пространство представляет собой сферу, то сумма углов треугольника окажется больше 180 градусов. Несколько сложнее представить себе треугольник в пространстве с отрицательной кривизной, сумма углов которого будет всегда меньше 180 градусов.

Отправка космических геодезических партий на миллиарды световых лет в разные углы огромного космического треугольника невозможна, и даже если бы мы смогли осуществить такой проект, он занял бы миллиарды лет, необходимых для достижения геодезистами конечных точек, и ещё столько же для получения от них результатов. Но изобретательность астрофизиков не имеет границ, и хотите – верьте, хотите – нет, они нашли способ выполнить необходимые измерения, не покидая Земли. Я вернусь к истории о том, как они это сделали, после того, как расскажу о космическом микроволновом фоне, или реликтовом излучении. Пока же скажу, что результаты их измерений свидетельствуют о том, что пространство Вселенной, по-видимому, плоское! Углы треугольника складываются согласно Евклиду. Или, по крайней мере, их сумма не отличается от 180 градусов в пределах точности эксперимента.

А теперь, дорогой читатель, вы, наверное, уже сами поняли, что тут что-то глубоко неправильно. Судите сами: у нас есть два способа определить, является Вселенная открытой, закрытой или плоской, и два противоречащих друг другу ответа. Количество массы во Вселенной, по-видимому, в пять раз меньше, чем необходимо, чтобы закрыть Вселенную и даже чтобы сделать её плоской. Но космическая геодезическая съёмка оставляет мало сомнений в том, что геометрия Вселенной – плоская.

 

Возраст Вселенной и старейшие звёзды

Представьте себе космический кинофильм, в котором перед зрителем разворачивается история Вселенной от момента её рождения в результате Большого взрыва до настоящего времени. Но вместо того, чтобы смотреть этот фильм как принято – с начала до конца, мы запустили его задом наперёд. Вместо расширения Вселенной мы увидим на экране её сжатие. Галактики будут подчиняться обращённому закону Хаббла – их скорости по-прежнему будут пропорциональны расстоянию между ними, только вместо того, чтобы удаляться, они будут сближаться. Попробуем проследить за одной из удалённых галактик по мере её приближения к нам. Используя обращённый закон Хаббла, мы можем прикинуть её скорость. Допустим, галактика находится в одном мегапарсеке от нас. Закон Хаббла говорит, что в этом случае скорость, с которой галактика приближается к нам, составит 75 километров в секунду. Зная расстояние до галактики и скорость, с которой она приближается, можно без труда вычислить время, через которое она свалится нам на голову. Я сделаю это за вас. Ответ: через 15 миллиардов лет – в предположении, что скорость приближения галактики всё это время остаётся постоянной.

А что, если мы возьмём галактику, находящуюся на расстоянии не один, а два мегапарсека? Закон Хаббла говорит нам, что её скорость приближения будет вдвое больше, и она преодолеет расстояние за те же 15 миллиардов лет. Таким образом, как мы видим, все галактики за 15 миллиардов лет сбегутся вместе и слипнутся в один недифференцированный комок.

Но галактики не движутся всё время с одной и той же скоростью, как мы предположили при нашем расчёте. При расширении Вселенной скорости галактик со временем уменьшаются из-за того, что гравитационное поле тормозит их движение. Значит, при просмотре нашего фильма задом наперёд движение галактик будет ускоряться, как и должно быть в действительности, ведь гравитационное поле тянет галактики друг к другу. Это означает, что до столкновения галактик пройдёт меньше времени, чем мы предположили. Когда космологи проделали более точные вычисления (для расширяющейся Вселенной), они пришли к выводу, что с момента, когда все галактики составляли единую плотную массу, прошло около 10 миллиардов лет. Это может означать, что всего 10 миллиардов лет назад водород и гелий начали образовывать первоначальные уплотнения, из которых в конце концов сформировались галактики. Следовательно, возраст Вселенной составляет 10 миллиардов лет.

Определение возраста Вселенной не обошлось без трудностей. Первоначально Хаббл недооценил расстояния между галактиками в десять раз и пришёл к выводу, что время, прошедшее с момента начала расширения, не превышает одного миллиарда лет. Но во времена Хаббла на основании содержания радиоактивных изотопов уже был определён возраст горных пород, самые древние из которых оказались старше двух миллиардов лет. Однако даже после уточнения шкалы расстояний всё равно оставалась одна досадная нестыковка. Астрофизики, изучавшие свойства звёзд в нашей Галактике, пришли к выводу, что старейшие из них старше Вселенной. Возраст самых старых звёзд составляет около 13 миллиардов лет, а Вселенной, как я уже говорил, – только 10 миллиардов. Выходило, что дети-звёзды на три миллиарда лет старше их матери-Вселенной!

Короче говоря, во Вселенной обнаружились три большие проблемы. Во-первых, противоречивые свидетельства относительно геометрии пространства: открытое оно, закрытое или плоское. Во-вторых, Вселенная оказалась моложе, чем самые старые звёзды. И в-третьих, мать всех проблем: отличается ли значение космологической постоянной от нуля, как первоначально считал Эйнштейн, и если нет, то почему? Зададим ещё один вопрос: связаны ли между собой эти проблемы? Разумеется, связаны.

 

Решение

Одним из возможных решений перечисленных выше проблем может оказаться исправление общей теории относительности. И некоторые физики, ухватившись за это предположение, с энтузиазмом принялись вносить изменения в теорию, которые проявлялись бы в виде возникновения дополнительных сил на больших расстояниях. Лично я не нахожу ничего конструктивного в таких попытках. Обычно они чрезвычайно надуманные, часто нарушают фундаментальные принципы и, на мой взгляд, без них можно обойтись.

Можно ещё предположить, что астрономы слишком переоценивают точность получаемых ими данных. Вы можете делать ставки против экспериментальных данных, противоречащих общим ожиданиям. Сырые данные почти всегда неточны, и дальнейшие эксперименты обычно подтверждают это. В этом случае я бы поставил против астрономических данных, а не против теории. Но, боюсь, я бы проиграл. По мере того как точность наблюдений растёт, новые результаты только подтверждают тот факт, что наблюдения противоречат теории. Что-то тут действительно глубоко неправильно.

Тем не менее есть одна возможность, которая не лежит на поверхности. А что, если значение космологической постоянной всё же отлично от нуля? Что, если величайшая ошибка Эйнштейна на самом деле была одним из его величайших открытий? Может ли космологическая постоянная разрешить наши противоречия?

Когда мы вычисляли, достаточно ли наблюдаемой массы Вселенной, чтобы сделать её плоской или закрытой, мы полностью проигнорировали возможность существования энергии вакуума. В мире с ненулевой космологической постоянной это было бы ошибкой. Уравнения Эйнштейна говорят, что на кривизну пространства влияют все виды энергии. Энергия и масса эквивалентны, поэтому энергия вакуума тоже должна учитываться при расчёте средней плотности Вселенной. Обычная и тёмная материя вместе составляют около 30 % массы, необходимой, чтобы сделать Вселенную плоской или закрыть её. Очевидный выход – восполнить недостающие 70 % за счёт космологической постоянной. Это будет означать, что плотность энергии вакуума примерно в два с половиной раза больше суммарной плотности обычной и тёмной материи, или около 30 масс протона на кубический метр.

Поскольку космологическая постоянная добавляет силу отталкивания к закону всемирного тяготения, её наличие должно влиять на характер расширения Вселенной. В начальной фазе расширения влияние космологической постоянной практически не заметно, но по мере увеличения расстояния между галактиками сила отталкивания, создаваемая космологической постоянной, становится сопоставимой с силой притяжения. В конце концов космологическая постоянная способна привести к хаббловскому расширению Вселенной со всё увеличивающейся скоростью.

Обратим наш кинофильм вспять. Теперь галактики падают друг на друга, но сила отталкивания между ними ослабевает с уменьшением расстояния, а значит, наша оценка относительных скоростей галактик окажется завышенной, особенно для конечной стадии падения. Если не учесть вклад энергии вакуума, оценка времени, необходимого для падения всех галактик в общую кучу, окажется заниженной. Другими словами, если бы в закон тяготения действительно входила космологическая постоянная, а мы бы не знали об этом, то наш расчёт привёл бы к возрасту Вселенной меньшему, чем на самом деле. И в самом деле, если мы добавим к общей массе Вселенной энергию вакуума, эквивалентную 30 массам протона на кубический метр, то вместо прежних 10 миллиардов лет получим оценку возраста Вселенной в 14 миллиардов лет. А этот возраст уже прекрасно согласуется с данными наблюдений, поскольку он на миллиард лет превышает возраст самых старых звёзд.

Эти доводы в пользу существования ненулевой космологической постоянной настолько важны, что я хочу их повторить. Итак, предположение о существовании небольшой космологической постоянной, добавляющей 70 % к энергии Вселенной, решает две крупнейшие загадки космологии. Во-первых, этой дополнительной энергии достаточно, чтобы сделать Вселенную плоской, что снимает противоречие между наблюдаемой нулевой кривизной пространства и тем фактом, что известной массы Вселенной недостаточно, чтобы сделать её плоской.

Второй парадокс, снимаемый космологической постоянной, – возраст самых старых звёзд, которые оказываются старше Вселенной. Удивительно, что добавка тех же самых семидесяти процентов энергии вакуума, которые необходимы для того, чтобы сделать Вселенную плоской, приводит к тому, что Вселенная оказывается на миллиард лет старше самых старых звёзд.

 

Сверхновые I типа

В последние десятилетия нам удалось значительно повысить точность датировки основных событий в жизни Вселенной. Сегодня мы знаем историю Вселенной очень подробно. В этом нам помог особый класс событий, называемых вспышками сверхновых I типа. Вспышка сверхновой – это космический катаклизм, в ходе которого умирающая звезда коллапсирует под действием собственного гравитационного поля, превращаясь в нейтронную звезду и освобождая колоссальное количество энергии. В максимуме вспышки сверхновая сияет, как целая галактика. Поэтому вспышки сверхновых легко регистрируются даже в самых удалённых галактиках.

Все сверхновые представляют интерес для науки, но вспышки сверхновых I типа имеют одну существенную особенность. Они происходят в тесных двойных системах, где один из компонентов представляет собой обычную звезду, а второй является белым карликом. Белый карлик – умирающая звезда, массы которой недостаточно, чтобы сколлапсировать в нейтронную звезду.

В тесной двойной системе часть вещества обычной звезды постепенно перетекает на белый карлик, медленно увеличивая его массу. Как только масса белого карлика достигнет определённого предела, при котором он уже не может оставаться стабильным, белый карлик коллапсирует в нейтронную звезду; этот процесс сопровождается вспышкой сверхновой I типа. Поскольку финальный коллапс и сопровождающая его вспышка происходят при достижении белым карликом строго определённой массы, считается, что энергия, выделяемая при вспышке, всегда одна и та же и не зависит от начальных масс белого карлика или его компаньона. Поэтому астрономы уверены, что все сверхновые I типа имеют одну и ту же светимость. Это позволяет астрономам определять расстояния до сверхновых I типа с высокой точностью.

Скорость галактики, в которой вспыхнула сверхновая, можно определить по доплеровскому смещению спектральных линий. А зная точные расстояния до галактик и их скорости, мы можем с высокой точностью вычислить значение постоянной Хаббла. Но особенность далёких галактик состоит в том, что свет, который мы сегодня регистрируем на земле, был излучён ими в далёком прошлом. Если расстояние до галактики составляет 5 миллиардов световых лет, значит, мы видим эту галактику такой, какой она была 5 миллиардов лет назад. Когда мы измеряем постоянную Хаббла для такой галактики, мы получаем то её значение, которое было 5 миллиардов лет назад.

Исследуя галактики, находящиеся на различных расстояниях, мы тем самым изучаем историю изменения постоянной Хаббла. Иными словами, сверхновые I типа позволяют нам многое узнать об истории Вселенной на различных этапах её эволюции. А самое главное, это позволяет нам сравнивать историю реальной Вселенной с математическими моделями, включающими и не включающими космологическую постоянную. Результаты не оставляют сомнений: расширение Вселенной ускоряется под влиянием космологической постоянной. Для таких физиков, как я, это потрясающий поворот судьбы, способный радикально изменить наш взгляд на мир: после полувековых попыток объяснить, почему энергия вакуума должна быть равна нулю, вдруг узнать, что она не ноль! Первые сто девятнадцать десятичных знаков космологической постоянной оказываются равны нулю, и вдруг в сто двадцатом появляется отличная от нуля цифра. Ещё более интересно, что её значение оказалось почти тем, которое предсказал Вайнберг, основываясь на антропном принципе!

 

Свет творения

Из-за того, что свет движется с конечной скоростью, большие телескопы, позволяющие заглянуть на огромные расстояния, показывают нам далёкое прошлое. Мы видим Солнце таким, каким оно было 8 минут назад, ближайшую звезду – такой, какой она была 4 года назад. Когда свет от ближайшей к нам галактики Андромеды, который мы видим сегодня, начал своё путешествие продолжительностью в два миллиона лет, наши далёкие предки только-только освоили прямохождение.

Самый древний свет, который мы регистрируем на Земле, начал своё путешествие 14 миллиардов лет назад. Этот свет возник, когда не существовало ещё не только Земли, но даже самых старых звёзд во Вселенной, а водород и гелий ещё не начали образовывать сгущения, из которых впоследствии сформировались галактики. Температура и плотность вещества Вселенной были в то время столь большими, что все атомы находились в ионизованном состоянии. Это был самый ранний момент творения, который мы способны увидеть, по крайней мере, используя электромагнитное излучение.

Представьте Вселенную в виде набора концентрических сферических оболочек, в самом центре которого находится Земля. Разумеется, никаких концентрических оболочек на самом деле нет, но ничто не запрещает нам разделить окружающее нас пространство таким способом. Каждая следующая оболочка находится от нас дальше предыдущей, и каждую следующую оболочку мы видим в более ранний момент времени, чем предыдущую. Проникая взглядом всё дальше и дальше, мы как бы видим историю Вселенной в виде запущенного задом наперёд кинофильма.

Чем дальше мы смотрим, тем более плотно населённая галактиками Вселенная предстаёт нашему взгляду. В запущенном задом наперёд вселенском кино вещество становится всё более плотным, будто бы гигантский поршень спрессовывает его всё сильнее и сильнее. Этим поршнем, разумеется, является гравитация. Кроме того, по мере сжатия меняются свойства материи: она становится всё горячее по мере того, как увеличивается её плотность. Сегодня средняя температура Вселенной всего 3 градуса выше абсолютного нуля, или –270 °C. Но по мере того, как мы углубляемся в прошлое, температура Вселенной растёт – сначала до комнатной, потом до температуры кипения воды и, наконец, достигает температуры солнечной поверхности.

Температура Солнца настолько высока, что составляющие его атомы покидают солнечную фотосферу в результате интенсивного теплового движения. Атомные ядра при этой температуре остаются нетронутыми, но наиболее слабо связанные электроны отрываются от атомов и образуют вместе с потерявшими их ионами проводящий электричество газ, называемый плазмой.

Электропроводящие материалы, как правило, непрозрачны. Свободно движущиеся электроны с лёгкостью поглощают или рассеивают свет. Именно интенсивное рассеяние света плазмой делает солнечную фотосферу непрозрачной. Однако по мере удаления от центра Солнца наступает такой момент, когда температура и плотность солнечного вещества падают настолько, что вещество становится прозрачным. В этом состоит причина, по которой мы видим резкую границу солнечного диска.

Теперь отправимся в путешествие назад во времени и в глубины Вселенной, пока не достигнем оболочки, условия в которой сравнимы с условиями в солнечной фотосфере. Что же получается: самый древний свет, который мы регистрируем, излучается гигантской, похожей на солнечную поверхность, состоящей из горячей плазмы оболочкой, окружающей нас со всех сторон. Наблюдаемая сфера, соответствующая данному моменту, называется поверхностью последнего рассеяния. К сожалению, из-за непрозрачности плазмы это – самый удалённый объект, который можно наблюдать в электромагнитном спектре. Мы не можем заглянуть за эту поверхность, точно так же как не можем заглянуть внутрь солнечной фотосферы.

Непосредственно после Большого взрыва каждый кусочек поверхности последнего рассеяния был таким же горячим, как и поверхность Солнца. Естественно, возникает вопрос: «Почему, глядя на ночное небо, мы не видим окружающей нас сияющей сферы, состоящей из горячей плазмы?» Или, другими словами: «Почему всё ночное небо не светится так же ярко, как поверхность Солнца?» От ужасной перспективы быть зажаренными заживо нас спас эффект Доплера. Из-за хаббловского расширения плазма, излучающая этот свет, удаляется от нас с огромной скоростью. Используя закон Хаббла, мы можем рассчитать скорость удаления поверхности последнего рассеяния, и она окажется всего лишь на ничтожную величину меньше скорости света. Это означает, что испускаемый ею свет испытывает колоссальное красное смещение – далеко за инфракрасную часть спектра, в область микроволнового излучения. Здесь играет ключевую роль один из первых открытых квантово-механических законов: энергия фотона зависит от его длины волны, и фотон микроволнового излучения имеет в 1000 раз меньшую энергию, чем фотон видимого света. По этой причине фотоны, излучаемые поверхностью последнего рассеяния, достигают нас, имея не более 1/1000 своей первоначальной энергии. Они не регистрируются сетчаткой нашего глаза и могут быть обнаружены только при помощи радиотелескопов.

Существует ещё один способ понять, как происходит уменьшение энергии космического излучения к тому моменту, когда оно достигает нас. На поверхности последнего рассеяния было очень жарко: примерно так же жарко, как на поверхности Солнца. Излучённые этой поверхностью фотоны заполнили пространство, образуя своего рода фотонный газ, и он, как и все газы, расширяясь, охлаждается. Благодаря расширению Вселенной со времени Большого взрыва фотонный газ остыл настолько, что потерял большую часть своей энергии. Сегодня реликтовое излучение (микроволновый космический фон) очень холодное, его температура меньше чем на 3 градуса отличается от абсолютного нуля. Приведённые два объяснения потери мощности реликтовым излучением математически полностью эквивалентны.

Георгий Гамов – тот самый Гамов, который написал книгу «Раз, два, три… бесконечность», вдохновившую стольких детей моего поколения заняться наукой, был первым учёным, предложившим гипотезу Большого взрыва. Вскоре двое его молодых коллег, Ральф Альфер и Роберт Герман, выдвинули идею о реликтовом излучении, оставшемся от эпохи горячей Вселенной. Они даже предсказали температуру этого излучения – 5 градусов выше абсолютного нуля, что всего лишь на два градуса отличается от наблюдаемого значения. Но физики того времени не верили, что столь слабое излучение когда-либо удастся зарегистрировать. И они ошибались, ибо уже в 1963 году микроволновый космический фон был обнаружен.

В то время принстонский космолог Роберт Дикке разрабатывал эксперимент, который позволил бы измерить космический микроволновый фон, оставшийся от Большого взрыва. Пока он строил свой детектор, двое молодых учёных из Лаборатории Белла провели именно тот эксперимент, который планировал Дикке. Арно Пензиас и Роберт Вильсон сканировали небо вовсе не в поисках реликтового излучения, а с исключительно утилитарными целями в ходе работы над телекоммуникационными технологиями. Им никак не удавалось идентифицировать странный микроволновый фон, который мешал работать системам связи. Согласно легенде, они предполагали, что источником фона является птичий помёт.

Принстонский университет и Лаборатория Белла находятся недалеко друг от друга в центральной части Нью-Джерси, и словно по воле судьбы Дикке случайно узнал о проблемах Пензиаса и Вильсона и догадался, что они «слышат» микроволновое эхо Большого взрыва! Дикке связался с учёными из Лаборатории Белла и изложил им свою версию наблюдаемого явления. Впоследствии Пензиас и Вильсон получили за открытие микроволнового фона Нобелевскую премию. Это была действительно рука судьбы, потому что будь Принстонский университет и Лаборатория Белла дальше друг от друга, Дикке, возможно, закончил бы свой эксперимент и оказался первым, сделавшим это открытие.

Детектор Пензиаса и Вильсона был грубой громоздкой конструкцией, установленной на крыше Лаборатории Белла. Современные детекторы микроволнового излучения обладают высокой чувствительностью и сложными цепями обработки сигнала и устанавливаются, как правило, на космических аппаратах, находящихся далеко за пределами земной атмосферы. Эти детекторы способны избирательно улавливать реликтовое излучение, исходящее с одного направления, и с их помощью была построена детальная карта микроволнового фона.

Одной из самых ярких особенностей карты реликтового излучения является отсутствие на ней ярких особенностей. Реликтовое излучение в очень высокой степени изотропно. При взгляде на карту, кажется, что в начале времён Вселенная была почти идеально однородной и изотропной. Приходящее с поверхности последнего рассеяния реликтовое излучение практически одинаково в любой точке неба. Этот факт чрезвычайной степени изотропности реликтового излучения несколько озадачивает и требует объяснения.

Какой бы гладкой ни была Вселенная в это раннее время, она не могла быть идеально гладкой. В ней обязательно должны были присутствовать небольшие изначальные неоднородности, которые в последующем послужили затравками для формирования галактик. Если бы эти «зёрна» были слишком малы, галактики не смогли бы сформироваться, но если бы они были слишком велики, всё вещество сконденсировалось бы на них и рухнуло в чёрные дыры. Космологи абсолютно уверены, что под этим унылым однородным фоном скрываются семена будущих галактик. Более того, они даже вычислили, насколько велики должны быть первоначальные неоднородности, чтобы привести к возникновению наблюдаемых сегодня галактик: разница между интенсивностью микроволнового фона в разных направлениях должна быть примерно в сто тысяч раз меньше, чем его средняя интенсивность.

Каким же образом, спросите вы, зарегистрировать на Земле столь исчезающе малый контраст? Ответ в том, что нужно заниматься этим не на Земле. На Земле слишком большой уровень засорённости эфира всевозможными электрическими и радиопередающими устройствами. Правда, самые первые эксперименты по обнаружению вариаций фона реликтового излучения были всё же проведены на Земле, но детектор был помещён на стратостат, запускаемый с Южного полюса. Южный полюс хорошо подходит для этой цели по ряду причин, не последней из которых является то, что стратостат не улетит слишком далеко от точки запуска. Преобладающие ветра, конечно же, унесут стратостат в кругосветное путешествие, но это путешествие не будет очень длинным, если вы находитесь на Южном полюсе. Поэтому эксперимент был назван «Бумеранг»!

Высоко над Южным полюсом детекторы микроволнового излучения измеряли его интенсивность в двух направлениях и автоматически вычисляли разницу. Теоретики затаили дыхание – но никто не знал точно, выйдет ли что-нибудь интересное из этой затеи. Возможно, небо останется унылым, однородным и серым, и им придётся вернуться к чертёжным доскам и заняться редизайном теории формирования галактики. Все, кто имел хотя бы какой-нибудь интерес к космологии, ждали вердикта присяжных. Приговор оправдал все чаяния адвокатов. Теоретики были правы. Космическая овсянка действительно оказалась комковатой, и относительная величина этих комков была именно такой, какая предсказывалась: 10–5 – одна стотысячная.

Космическое пространство – ещё лучшее место для измерения фона космического микроволнового излучения. Данные, полученные с орбитального космического аппарата Wilkinson Microwave Anisotropy Probe, часто называемого WMAP (дабл-ю-мап), оказались настолько точными, что позволили не только подтвердить существование неоднородностей величиной в 10–5, но и привели к открытию колебательных движений огромных осциллирующих пузырей горячей плазмы, образующей поверхность последнего рассеяния.

Открытие этих огромных пузырей синхронно движущейся плазмы вовсе не было неожиданностью. Космологи давно предсказывали, что расширение Вселенной приведёт к началу образования плазменных комков, вибрирующих подобно церковным колоколам. Всё начинается с маленьких сгустков, соединяющихся друг с другом по мере расширения. Затем они объединяются в ещё более крупные сгустки, осциллирующие с меньшей частотой и т. д., формируя прекрасно предсказуемую симфонию. Подробные расчёты показывают, что в каждый конкретный момент времени крупнейшие осциллирующие сгустки должны иметь строго определённый размер. Таким образом, когда WMAP «увидел» эти колеблющиеся капли, космологи уже представляли, какой размер должны иметь самые крупные из них.

Знания о размере крупнейших осциллирующих сгустков дали нам в руки выигрышный билет: теперь стало возможным построить гигантский космический треугольник и измерить кривизну пространства. Вот как это было сделано.

Предположим, что вы знаете размер объекта и расстояние до него. В этом случае вы можете предсказать, под каким углом будет виден этот объект на небесной сфере. Возьмём Луну. Диаметр Луны составляет около 3500 километров, а расстояние до Луны – 384 000 километров. Зная это, я без труда вычислю, что лунный диск будет виден на небе под углом примерно в полградуса. По удивительному совпадению Солнце в 400 раз больше Луны, но при этом оно находится в 400 раз дальше. В результате Солнце и Луна видны на небе как диски одинаковой величины под углом в полградуса. Если бы мы посмотрели с Луны на Землю, которая имеет диаметр 12 800 километров, то есть почти в четыре раза больше Луны, то увидели бы земной диск под углом примерно в два градуса.

Проделывая эти вычисления, я предположил, что пространство плоское. Представьте, что диаметр Луны – это одна из сторон треугольника. Две другие стороны образованы прямыми линиями, проведёнными от крайних точек диаметра Луны к наблюдателю.

Если пространство между Землёй и Луной плоское, то мои вычисления верны. Но если пространство искривлено, то ситуация меняется. Например, в случае положительной кривизны пространства угол, под которым будет видна Луна с Земли, окажется больше половины градуса, если же кривизна пространства отрицательна, то соответствующий угол будет меньше, чем полградуса.

Теперь предположим, что мы независимым способом измерили диаметр Луны и расстояние до неё. Тогда на основании видимого углового размера Луны можно сделать заключение о кривизне пространства. С очень высокой степенью точности пространство между Землёй и Луной оказывается плоским.

Вернёмся к нашим космическим геодезистам. Мы знаем, что наибольший размер осциллирующих пузырей в момент времени, соответствующий образованию реликтового излучения, составляет порядка 200 000 световых лет. Пузыри большего размера в тот момент ещё не начали образовываться.

Сегодня источник космического микроволнового излучения находится от нас на расстоянии около 10 миллиардов световых лет, но в то время, когда это излучение только начало своё путешествие, расстояние от того места, где мы сейчас находимся, до поверхности последнего рассеяния было в тысячу раз меньше, то есть 10 миллионов световых лет. Этого достаточно для вычисления угла, под которым должен наблюдаться диаметр наибольших пузырей WMAP, если пространство является плоским. Этот угол будет порядка двух градусов, то есть пузыри должны быть такого же углового размера, как Земля с Луны. Если же пространство не является плоским, то угловой размер пузырей покажет нам, в какую сторону оно искривлено.

Что же показали данные WMAP? Они показали правоту Евклида! Пространство – плоское.

Позвольте мне сделать небольшое лирическое отступление. Путём измерения треугольников на поверхности Земли можно показать, что она имеет форму сферы. Но на практике, до тех пор пока треугольники, которые мы строим, не слишком велики, мы обнаруживаем, что результаты наших измерений оказываются такими, как будто Земля плоская. Очевидно, что Колумб не мог бы убедить короля Испании в том, что Земля круглая, нарисовав несколько треугольников во дворе королевского дворца. Ему потребовалось бы построить треугольник со сторонами, по крайней мере, в несколько сотен километров, и даже тогда результаты измерений суммы углов отличались бы от 180 градусов на очень малую величину. Все, что мог сказать Колумб на основании своих геодезических изысканий, – это то, что Земля очень большая.

То же самое верно и в отношении космических геодезистов: всё, что они могут сказать, – это то, что Вселенная выглядит плоской на масштабах от 10 до 20 миллиардов световых лет. Это означает, что если Вселенная конечна, то она простирается гораздо дальше, чем мы можем видеть.

Итак, что же мы знаем? Обычной материи, образующей звёзды и газово-пылевые облака, недостаточно для того, чтобы сделать Вселенную плоской. По первоначальным данным её было в 50 раз меньше, чем нужно. Но космология уже давно стала точной количественной наукой, и по сегодняшним меркам обычная материя – это ещё не всё, что есть во Вселенной. Без других, скрытых от прямого наблюдения, форм материи Вселенная будет открытой и с отрицательной кривизной. Но количество материи во Вселенной примерно в 10 раз больше, чем мы непосредственно наблюдаем, и эта тёмная материя проявляет себя своим гравитационным полем. В состав тёмной материи могут входить новые элементарные частицы, которые вряд ли взаимодействуют с обычным веществом. Эти частицы должны заполнять галактики, беспрепятственно пролетая сквозь звёзды, планеты и даже сквозь нас. Но и их недостаточно, чтобы сделать Вселенную плоской или закрытой. Поскольку Вселенная плоская, то в ней должен присутствовать ещё один вид массы или энергии, пронизывающей всё пространство.

Возраст Вселенной оказывается слишком мал, если только история её расширения не отличается от вычисляемой на основе предположения, что в ней существует только обычная и тёмная материя. Единственное общепринятое на сегодня объяснение состоит в признании существования ненулевой космологической постоянной, ускоряющей расширение Вселенной. Совершенно неожиданно факт ускоренного расширения Вселенной был подтверждён наблюдениями вспышек сверхновых I типа, которые, как в пущенном задом наперёд кинофильме, разворачивают перед нами историю эволюции Вселенной. Самое лучшее объяснение парадокса возраста Вселенной состоит во введении в уравнения Эйнштейна космологической постоянной, значение которой совпадает с предсказанным Вайнбергом на основе антропного принципа.

Данные о космическом микроволновом фоне неопровержимо свидетельствуют, что ранняя Вселенная была чрезвычайно однородна. Кроме того, эти данные позволяют нам построить гигантский космический треугольник, результаты измерения которого говорят о том, что пространство Вселенной плоское. Из этого следует, что Вселенная гораздо больше, чем её наблюдаемая часть, и что её расширение ускоряется под влиянием очень малой космологической постоянной.

 

Инфляция

В Соединённых Штатах стали привычными шутки на тему того, как коммунистическая пропаганда уверяла, что всё, что когда-либо было изобретено на земле, было изобретено в России: радио, телевидение, лампочка накаливания, самолёт, абстрактная живопись и даже бейсбол. Однако в области физики некоторые из этих шуток оказались правдой. Советские физики так долго пребывали в изоляции от остального научного мира, что многие из их чрезвычайно важных открытий остались неизвестными на Западе, например замечательная гипотеза о начале расширения Вселенной. Более четверти века тому назад молодой космолог Алексей Старобинский сформулировал теорию, называемую инфляционной. Инфляция – возможно, важнейшее космологическое открытие после Большого взрыва, но только несколько советских учёных в то время смогли оценить эту потрясающую идею. Никто в Соединённых Штатах ничего не знал об инфляционной теории, пока значительно позже молодой «пост-док» в моём университете не переоткрыл её.

Свежеиспечённый доктор философии Алан Гут, специалист в области высокоэнергетической теоретической физики, работал в то время в Стэнфордском центре линейного ускорителя (Stanford Linear Accelerator Center, SLAC). Когда я впервые встретился с ним в 1980 году, он был ярким молодым физиком, написавшим несколько работ по текущим проблемам. В то время только несколько специалистов в области элементарных частиц разбирались в космологии. Я входил в их число, поскольку двумя годами ранее работал с Савасом Димопулосом над проблемой преобладания в природе частиц над античастицами. Мой друг Боб Вагнер тогда спросил меня, имеется ли у теории элементарных частиц какое-нибудь объяснение преобладания материи над антиматерией. У нас с Димопулосом была правильная идея, но мы были полными профанами в космологии, настолько, что путали размер горизонта с масштабным фактором. Это всё равно, как если бы автомеханик не мог отличить рулевого колеса от ведущего. Но под крылом Боба мы быстро ликвидировали свою безграмотность и в конце концов написали первую за пределами СССР статью о барионном синтезе. Вы будете смеяться, но барионный синтез тоже был открыт в СССР. И сделал это ещё за 12 лет до нас не кто иной, как Андрей Сахаров.

В общем, я уже кое-что знал о космологии, когда Алан пришёл в SLAC. Хотя мы и были дружны, я не знал, что он тоже ею интересуется. То есть я не знал этого, пока он не провёл семинар о чём-то, что он назвал «инфляционной космологией». Думаю, что я был одним из двоих или троих слушателей, кто смог по-настоящему оценить эту идею.

Алан дал ответ на один из сложнейших вопросов: «Почему Вселенная настолько огромная и плоская и настолько однородная?» Чтобы понять, в чём сложность этого вопроса, вернёмся к реликтовому излучению и посмотрим на две различные точки на небе. В те времена, когда реликтовое излучение рождалось горячей плазмой, эти две точки находились на определённом расстоянии друг от друга. Фактически если на небесной сфере эти точки разделяет угловое расстояние в несколько градусов, то в момент рождения реликтового излучения физическое расстояние между ними было настолько большим, что ни свет, ни любой другой сигнал не мог дойти от одной точки до другой. Вселенная в то время насчитывала около полумиллиона лет, так что если точки разделяло расстояние более полумиллиона световых лет, вещество в одной точке не могло взаимодействовать с веществом в другой. Но если вещество в этих точках никогда не взаимодействовало, то что сделало эти два места так похожими одно на другое? Иными словами, каким образом Вселенная ухитрилась стать настолько однородной, чтобы интенсивность реликтового излучения была почти одинаковой во всех направлениях?

Чтобы прояснить это место, вернёмся к аналогии, представляющей Вселенную в виде надувающегося воздушного шарика. Представьте себе шарик в сдутом состоянии, сморщенный, как чернослив. По мере надувания шарика морщины начинают расправляться. Первыми расправляются мелкие морщины, затем более крупные. Для разглаживания морщины заданного размера необходимо определённое время, требуемое для того, чтобы разглаживающая её волна прошла расстояние, равное размеру морщины. В случае Вселенной это время, которое требуется свету, чтобы преодолеть расстояние, равное размеру разглаживаемой неоднородности.

Если в эпоху генерации реликтового излучения большие морщины не успевали разгладиться, то мы должны видеть их отпечатки на небесной сфере в виде неоднородностей реликтового фона. Но мы не видим никаких морщин на небе. Что же сделало Вселенную такой гладкой? Не скрывается ли за непрозрачной плазмой поверхности последнего рассеяния недоступная нашему взгляду длинная предыстория, в ходе которой были разглажены все морщины? Именно эту предысторию и описывает инфляционная теория.

Объяснение Аланом плоскости и гладкости ранней Вселенной оказалось очень простым (точно таким же, как и объяснение Старобинского). Вселенная была надута, как воздушный шарик, только это был не совсем обычный воздушный шарик. Обычный воздушный шарик, если его сильно надуть, лопнет. Вселенная Алана раздувалась экспоненциально и за очень короткое время стала невероятно огромной. Инфляционная стадия, образно выражаясь, предшествовала обычной космологии. К тому времени, как начался процесс, который мы называем Большим взрывом, Вселенная уже достигла невероятных размеров. И в процессе инфляционной стадии расширения все морщины и неоднородности разгладились настолько, что сделали Вселенную чрезвычайно гладкой.

Я знал, что эта идея очень хороша, но я даже не представлял, насколько она хороша. Я думаю, что даже Алан не догадывался, насколько она хороша. И уж конечно, никто не мог и предположить, что в течение последующих 25 лет инфляционная теория будет занимать центральное место в космологической «стандартной модели».

Чтобы понять механизм, ответственный за инфляционную стадию, следует разобраться, как ведёт себя Вселенная с положительной космологической постоянной. Вспомните, что положительная космологическая постоянная ответственна за появление отталкивающей силы, пропорциональной расстоянию. Эта сила заставляет галактики разбегаться друг от друга, а это происходит, только если шар, на котором они нарисованы, – то есть само пространство, – раздувается.

Энергия вакуума, или, что то же самое, масса вакуума, имеет необычные свойства. Плотность обычного вещества, такого, из которого состоят галактики, уменьшается по мере расширения Вселенной. Средняя плотность обычного вещества во Вселенной составляет примерно один протон на кубический метр. Предположим, что через какое-то количество миллиардов лет радиус Вселенной удвоился, в то время как общее количество протонов в ней не изменилось. В этом случае средняя плотность вещества во Вселенной уменьшится в восемь раз. Если удвоить радиус Вселенной ещё раз, то среднее число протонов в кубическом метре уменьшится ещё в восемь раз и составит 1/64 от современной величины. То же самое верно и в отношении тёмной материи.

Но энергия вакуума ведёт себя совершенно по-другому. Она является свойством пустого пространства, и когда пустое пространство расширяется, оно остаётся всё тем же пустым пространством, и плотность энергии вакуума в нём не изменяется. Независимо от того, сколько раз вы удвоите размер Вселенной, плотность энергии вакуума останется той же самой и создаваемая ею сила отталкивания не уменьшится!

Обычная материя, напротив, редеет и в конце концов перестаёт оказывать сколько-нибудь заметный эффект на замедление расширения. На определённом этапе расширения плотность всех видов энергии будет ничтожно мала, за исключением плотности энергии вакуума. Когда это произойдёт, не останется ничего, что могло бы противодействовать отталкивающей силе энергии вакуума, и Вселенная будет расширяться экспоненциально. Если бы космологическая постоянная была достаточно велика, чтобы удвоить размер Вселенной за одну секунду (сейчас это не так), через две секунды Вселенная стала бы уже вчетверо больше, через три секунды – в восемь раз больше, через четыре – в 16 раз, через пять – в 32 раза и т. д. Предметы, находившиеся рядом с нами, будут подобно ракетам разлетаться во все стороны со скоростью, во много раз превышающей скорость света.

Реальная Вселенная сейчас находится на самой ранней стадии такого экспоненциального расширения. Но это не должно слишком сильно вас беспокоить, потому что величина космологической постоянной такова, что размер Вселенной удвоится лишь в течение десятков миллиардов лет. Но представьте себе, что по неизвестной причине в очень ранней Вселенной космологическая постоянная была намного больше, чем сегодня, возможно, на сотню порядков. Это может выглядеть странным мысленным экспериментом, но вспомните, насколько трудно было понять, почему сегодня космологическая постоянная так смехотворно мала. А если сделать её на 100 порядков больше, то она приобретёт, по крайней мере с позиции физиков-теоретиков, своё нормальное значение.

Если космологическая постоянная в те доисторические времена была так велика, она должна была привести к тому, что размеры Вселенной удваивались за ничтожную долю секунды, а за одну секунду Вселенная должна была увеличиться от размеров протона до размеров, во много раз превышающих наблюдаемую ныне часть Вселенной. Это и есть та инфляция, которую описали Старобинский и Гут.

Читатель может задаться вопросом, на каком основании я столь лицемерно позволяю себе говорить о различных космологических постоянных в начале и в конце истории Вселенной, то есть в инфляционную эпоху и в нынешнюю. В конце концов, разве постоянная не должна быть постоянной? Давайте остановимся и вспомним о ландшафте. Космологическая постоянная в данном месте ландшафта является не чем иным, как высотой местности. Один рисунок фрагмента ландшафта объяснит это красноречивее тысячи слов. На этом рисунке приведена очень упрощённая модель ландшафта, похожего на тот, что существует в нашей ближайшей окрестности. Маленький шарик представляет Вселенную, которая катится в поисках долины, где энергия вакуума является минимальной.

Относительно широкое и высокое плато, оканчивающееся глубокой долиной почти нулевой высоты (где и начинается инфляция Гута), представляет неизвестное нам прошлое Вселенной, которая изображена в виде шарика. Как Вселенная оказалась на этом плато – отдельный вопрос. Плато очень пологое, поэтому первоначально Вселенная катится по нему очень медленно. Пока Вселенная остаётся на плато, плотность энергии вакуума (высота плато) остаётся практически неизменной. Иначе говоря, высоту можно рассматривать в качестве космологической постоянной.

Уверен, вы уже догадались, что по мере движения по плато Вселенная расширяется, поскольку энергия вакуума велика и положительна. Если плато достаточно плоское и Вселенная катится по нему медленно, она удвоит свои размеры много раз, прежде чем скатится вниз в долину. Это и есть эпоха инфляционного расширения, только в более современной форме, чем впервые описанная Старобинским и Гутом. Если Вселенная удвоит свои размеры сто или более раз на протяжении этой стадии, то она вырастет до таких неимоверных масштабов, что будет всюду гладкой и однородной, как того и требуют данные наблюдений реликтового излучения.

В конце концов скольжение по плато приведёт Вселенную на его край, откуда она скатится в долину, где и останется вплоть до настоящего времени. Если высота низшей точки долины не совсем нулевая, то в течение последующего длительного времени Вселенная будет иметь небольшую космологическую постоянную. Если по счастливому стечению обстоятельств космологическая постоянная в долине окажется достаточно мала и прочие фундаментальные константы тоже подобраны аккуратно, то в этом кармане сформируются галактики, звёзды и планеты и, возможно, возникнет жизнь. Если нет, то карман останется стерильным. Во всех известных мне космологических моделях присутствует этот процесс скатывания Вселенной из области с большой космологической постоянной в область с малой. Может ли кто-нибудь серьёзно сомневаться в том, что в истории и географии Вселенной есть что-то ещё, кроме этого краткого эпизода и этого крошечного кармана?

Но погодите! Кое-что неправильно в этой картинке. Если Вселенная на инфляционной стадии расширяется настолько сильно, то следует ожидать, что она будет невероятно однородной. Морщины расправятся настолько сильно, что не останется вообще никаких неоднородностей фона реликтового излучения. Но мы уже знаем, что без небольших неоднородностей не смогли бы сформироваться галактики и Вселенная осталась бы гладкой на неопределённый срок. Мы, похоже, переложили гомогенизатора в нашу овсяную кашу.

Решение этой головоломки содержит столь радикальную и удивительную идею, что поначалу возникает соблазн отбросить её как «журавля в небе». Но она выдержала испытание временем и в настоящее время представляет собой один из краеугольных камней современной космологии. И опять честь первооткрывателя принадлежала молодому советскому космологу Вячеславу Муханову, изучавшему работы Старобинского. История повторяется: теория Муханова оставалась неизвестной за пределами СССР, пока её независимо не переоткрыли несколько групп, работавших в США.

Квантовая механика и её волнующие открытия обычно рассматриваются как нечто, описывающее явления микромира, но никак не мира галактик и явлений космического масштаба. И вот теперь выясняется, что если не все, то некоторые из галактик и других крупномасштабных структур являются остатками первичных квантовых флуктуаций, которые растянуты до космических масштабов неудержимо расширяющейся на инфляционной стадии Вселенной и усилены безжалостной гравитацией.

Представление Вселенной в виде точки на космическом Ландшафте слишком упрощённо. Как и все прочие квантовые поля, поле Хиггса тоже подвержено квантовой дрожи. Квантовая механика утверждает, что все поля флуктуируют в пространстве от точки к точке. Никакая инфляция не способна полностью сгладить квантовые флуктуации, которые присущи любому полю. Это верно и для нашего сегодняшнего вакуума, и было верно в эпоху быстрого экспоненциального расширения. Но быстрая инфляция делает с этими колебаниями нечто, что никогда не происходит (в заметной степени) в нашей сегодняшней медленно расширяющейся Вселенной, – она разглаживает старые морщины, но на их месте тут же возникают новые. Новые морщины возникают поверх старых и в свою очередь тоже растягиваются в течение всего времени расширения Вселенной. К моменту завершения инфляционной фазы, когда Вселенная начинает падать в долину, накопленные квантовые морщины формируют узор из вариаций плотности, из которого в конечном итоге образуются галактики.

Эти замороженные квантовые морщины отпечатываются на поверхности последнего рассеяния, приводя к наблюдаемым небольшим изменениям фона реликтового излучения. Обнаружение связи между квантовой теорией, описывающей микромир, и крупномасштабными астрономическими структурами макромира является одним из величайших достижений космологии.

Заканчивая эту главу, я хочу сформулировать два наиболее важных вывода, которые вытекают из космологических наблюдений в течение последнего десятилетия. Во-первых, мы узнали шокирующую новость: космологическая постоянная действительно существует. Её первые 119 десятичных знаков равны нулю, но в 120-м разряде появляются значащие цифры!

Во-вторых, выяснилось, что инфляционная теория имеет наблюдательное подтверждение в виде изменений космического микроволнового фонового излучения. Очевидно, что Вселенная в течение некоторого периода времени расширялась экспоненциально, а это, в свою очередь, означает, что вся Вселенная на много, много порядков больше, чем наблюдаемая нами её часть.

Эти два великих открытия выглядят весьма тревожными. Если мы запустим руку в мешок, наполненный случайными числами, и вытащим оттуда пригоршню фундаментальных физических констант, то среди них с почти стопроцентной вероятностью не окажется ни малой космологической постоянной, ни подходящего времени инфляционной фазы. Оба числа требуют невероятно точной настройки. Как мы уже видели ранее, Вселенная выглядит так, будто была специально спроектирована для нас.

Но об этом в следующей главе.