Укрощение бесконечности. История математики от первых чисел до теории хаоса

Стюарт Иэн

Глава 8. Система мира

 

 

Изобретение исчисления

Самым значительным прорывом в истории математики можно считать исчисление, независимо открытое примерно в 1680 г. Исааком Ньютоном и Готфридом Лейбницем. Лейбниц первым опубликовал свой труд, но Ньютон – подталкиваемый патриотично настроенными друзьями – заявил о своем первенстве и обвинил Лейбница в плагиате. Этот конфликт почти на 100 лет разорвал связи между английскими математиками и учеными с континента, и в итоге в проигрыше оказались англичане.

 

Система мира

Хотя Лейбниц скорее мог бы претендовать на первенство в открытии исчисления, Ньютон превратил его в главную технику зарождающейся отрасли науки – классической физики, позже ставшей главным инструментом в познании человечеством мира природы. Сам Ньютон назвал свою теорию «Система мира». Пожалуй, звучит не очень скромно, зато точно определяет предмет. До Ньютона представления людей о законах природы в основном исходили из идей Галилея о движении тел, в частности параболической траектории полета пушечного ядра, а также открытой Кеплером эллиптической формы орбиты Марса в небесах. После Ньютона математические формулы пронизали почти все области физического мира: движение земных и небесных тел, потока воздуха и воды, передачи тепла, света, звука, силу тяготения.

Тем более любопытно, что в главном опубликованном Ньютоном труде, «Математические начала натуральной философии», исчисление не упоминается вообще. Он посвящен изящному применению геометрии в стиле, заданном древними греками. Но внешность порой обманчива: неопубликованные документы, известные как «Портсмутские бумаги», доказывают, что во время работы над «Началами» Ньютон сформировал представление об идее исчисления. Очень похоже, что ученый использовал методы исчисления в большинстве своих открытий, однако предпочел не распространяться о них. Его наработки были опубликованы уже после его смерти, в книге «Метод флюксий и бесконечных рядов», в 1732 г.

 

Исчисление

Что такое исчисление? Метод, изобретенный Ньютоном и Лейбницем, проще понять, ознакомившись с более ранними идеями. Исчисление – это математика мгновенных изменений: насколько быстро изменяется определенная величина в это самое мгновение. Вот пример из физики: поезд движется по рельсам; как быстро он едет прямо сейчас? Исчисление делится на две главные ветви. Дифференциальное исчисление обеспечивает методы измерения скорости изменений и в большинстве случаев приложимо к геометрии, в частности при нахождении касательных к кривым. Интегральное исчисление подразумевает противоположное действие: исходя из скорости изменения некой величины, оно позволяет найти саму величину. Геометрические приложения интегрального исчисления включают способы вычисления площадей и объемов. Пожалуй, самым значительным открытием как раз и стала эта неожиданная связь между двумя внешне независимыми геометрическими вопросами: нахождение касательных к кривым и нахождение площадей.

Геометрический смысл производной

Исчисление неразрывно связано с функциями – действиями, когда берется некое исходное число и определяется другое, связанное с ним. Как правило, такое действие описывается формулой, где данному числу, обозначенному как x (возможно, с некими дополнительными условиями), вводится в соответствие число f(x). В качестве примеров можно привести функцию квадратного корня f(x) = √x (в этом случае x должно быть неотрицательным числом) и квадратную функцию f(x) = x2 (в этом случае для x нет никаких условий).

Первой ключевой идеей исчисления является дифференцирование, т. е. взятие производной функции. Производная – это скорость изменения функции f(x), сравниваемая с изменением x, т. е. скорость изменения f(x) относительно x.

Геометрически скорость изменения – это тангенс угла наклона графика f в точке х. К нему можно приблизиться, определив угол наклона секущей – линии, пересекающей график в двух наиболее близких точках, соответствующих x, и x + h, где h невелико. Угол наклона секущей равен:

Теперь предположим, что h – очень малая величина. Тогда секущая приблизится к касательной на графике в точке x. Так что в определенном смысле необходимый угол наклона – производная f в точке x – будет пределом для этого выражения, поскольку h становится сколько угодно малым.

Попробуем произвести это вычисление для простого примера, f(x) = x2. Получаем:

А поскольку h становится всё меньше, угол наклона 2x + h всё ближе к 2x. Производная f – это функция g, равная g(x) = 2x.

Здесь главный концептуальный вопрос в том, что мы подразумеваем под пределом. У математиков ушел почти век на то, чтобы дать ему логичное определение.

Другой ветвью исчисления стало интегральное. Этот процесс проще всего представить как обратный дифференцированию. Интеграл g, описанный формулой

является любой функцией f(x), производная которой – g(x). Например, поскольку производная f(x) = x2 есть g(x) = 2x, интеграл от g(x) = 2x равен f(x) = x2.

 

Необходимость в исчислении

Толчок к изобретению исчисления дали два направления. В области чистой математики дифференциальное исчисление эволюционировало из методов поиска касательной к кривой, а интегральное исчисление – из методов расчета площадей плоских фигур и объемов тел. Но главный стимул для исчисления пришел от физиков – в связи с укреплявшимся убеждением в том, что природа имеет свои законы. По причинам, до сих пор не полностью нам понятным, большинство фундаментальных законов природы включают в себя переменные. А значит, их можно исследовать и понять только с помощью исчисления.

В эпохи, предшествовавшие Возрождению, самую точную модель движения Солнца, Луны и планет удалось создать Птолемею. В его системе Земля оставалась неподвижной, а все остальные тела – в частности, Солнце – вращались вокруг по некоему набору (реальных или воображаемых – на усмотрение рассуждающего) окружностей. Последние преобразовались в сферы в работах древнегреческого астронома Гиппарха. Его сферы вращались вокруг гигантских осей, часть из которых были связаны с другими сферами и двигались по ним. Этот вид взаимосвязей казался необходимым для моделей планетарных орбит. Причем некоторые планеты, такие как Венера, Меркурий и Марс, на первый взгляд имели сложные орбиты, включавшие петли. Другие – Юпитер и Сатурн (остальные планеты тогда еще не были открыты) – вели себя более прилично, но даже они временами выкидывали странные штуки, известные еще древним вавилонянам.

Мы уже обсуждали систему Птолемея, известную как эпициклы, где окружности заменяли сферы, но сохранялась единая схема движения. Модель Гиппарха не была достаточно точной по сравнению с фактическими наблюдениями, а модель Птолемея отлично отражала все данные астрономов. Это сделало ее единственно «верной» на тысячу лет. Его труды, переведенные на арабский язык в «Альмагесте», служили астрономам многих культур.

 

Вера против науки

Но даже «Альмагест» не отражал всех передвижений планет. Вдобавок он был довольно сложен. Примерно в 1000 г. н. э. некоторые арабские и европейские мыслители стали задаваться вопросом, не следует ли объяснить дневное движение Солнца вращением Земли, а кое-кто даже пошел дальше и предположил, что Земля сама вращается вокруг Солнца. Но в то время эти идеи так и остались домыслами.

В эпоху Возрождения научный подход к описанию мира всё больше укоренялся среди передовых мыслителей, и во многом причиной тому были сами религиозные догмы. В то время католическая церковь безраздельно владела умами приверженцев и диктовала им свой взгляд на устройство Вселенной. И дело было не только в том, что христианскому богу приписывалось как само ее сотворение, так и всё, что происходило в ней каждый день. Церковь считала, что единственно верное толкование законов природы можно искать только в Библии, в буквальном смысле. Земля должна была считаться центром всего, непоколебимой основой, вокруг которой вращаются небеса. А человек, как вершина творения, провозглашался причиной создания остальной Вселенной.

Ни одно научное наблюдение не показало до сих пор признаков существования невидимого, непознаваемого творца. Но те же наблюдения поколебали убеждения в том, что Земля – центр Вселенной. И это стало причиной великого противостояния, в котором лишились жизни многие невинные люди, причем зачастую самыми жестокими и варварскими способами.

ИОГАНН КЕПЛЕР 1571–1630

Кеплер родился в семье наемника и дочери трактирщика. Когда в 18 лет он остался без отца (скорее всего, тот погиб в войне между Нидерландами и Священной Римской империей), им с матерью пришлось перебраться к деду, в его трактир. Юноша очень рано продемонстрировал математические способности и в 1589 г. был принят стипендиатом для занятий астрономией под руководством Михаэля Мёстлина в Университете Тюбингена. Здесь он досконально изучил систему Птолемея. В тот период астрономов больше интересовало точное вычисление орбит всех планет, никто не задавался общими вопросами о том, почему они движутся так, а не иначе. Но Кеплера с самого начала завораживали незримые тропы, по которым перемещаются небесные тела, а не предсказуемые сочетания эпициклов. Как только ему удалось познакомиться с системой Коперника, Кеплер поверил, что это и есть единственно верная идея, а не только математическая уловка.

Работа с Браге. В своей книге «Тайна мироздания» (Mysterium Cosmographicum, 1596) Кеплер попытался сопоставить орбитам пяти известных тогда планет (сферу Земли он выделял особо) различные платоновы тела (правильные многогранники). Эта странная модель не идеально сочеталась с фактическими наблюдениями, и Кеплер написал ведущему астроному Тихо Браге. Тот взял его к себе помощником по математической части, чтобы вычислить точную орбиту Марса. После смерти Браге Кеплер продолжал работу над этой проблемой. Браге оставил множество данных, и Кеплер, не жалея сил, пытался уложить их в разумную орбиту. Свой труд, под конец занявший около тысячи страниц, он называл «моей войной с Марсом». Полученная им орбита оказалась настолько точной, что расхождение с современными данными составляет всего несколько минут, накопившихся за прошедшие столетия.

Трудные времена. 1611-й был плохим годом. У Кеплера умер семилетний сын. Следом ушла жена. Император Рудольф, не притеснявший протестантов, отрекся от престола, и Кеплеру пришлось покинуть Прагу. В 1613 г. он женился во второй раз, и вопрос, который возник у него во время свадебных торжеств, привел к написанию книги «Новая стереометрия винных бочек» (1615).

В 1619 г. ученый опубликовал продолжение «Тайны мироздания». Эта книга отражает богатство новой математики, в ней много рисунков, похожих на плиточные узоры, а также многогранников. Во время работы над книгой ему сообщили, что его мать обвинили в колдовстве. При помощи факультета права Университета Тюбингена женщину удалось освободить, отчасти благодаря тому, что дознаватели не успели прибегнуть к предписанным в таком случае пыткам.

 

Коперник

Масла в огонь подлили в 1543 г., когда польский ученый Николай Коперник опубликовал поразительную, оригинальную и в чем-то еретическую книгу «О вращении небесных сфер». Как и Птолемей, для точности он использовал эпициклы. В отличие от Птолемея, в центр он поместил Солнце, а все остальные небесные тела, в том числе Земля (за исключением Луны), вращались вокруг него. Только Луна ходила вокруг Земли.

Главная причина такого радикального предположения Коперника была вполне прагматичной: вместо 77 эпициклов Птолемея у него оставалось всего 34. Среди эпициклов Птолемея встречалось много повторяющихся окружностей: то и дело обнаруживались фигуры одного и того же размера и скорости вращения, описывающие многие отдельные тела. Коперник обнаружил, что если все эти эпициклы приписать Земле, достаточно всего одного из них. Сейчас мы интерпретируем это в терминах движения планет относительно Земли. Если мы ошибочно предположим, что Земля неподвижна, как может показаться неискушенному наблюдателю, то ее движение вокруг Солнца как раз и придется переносить на другие планеты при помощи того самого дополнительного эпицикла.

Еще одним преимуществом теории Коперника стало то, что он придал всем планетам равный статус. Птолемею понадобились различные механизмы, чтобы описать движение планет, внутренних и внешних. Теперь же единственным отличием оставалось то, что внутренние планеты ближе к Солнцу, чем Земля, а остальные – дальше. Всё это выглядит очень логично и стройно – но было безоговорочно отвергнуто всеми учеными по многим причинам, не только религиозным.

Теория Коперника оказалась сложной, непривычной, а его книга – трудной для прочтения. Тихо Браге, один из лучших астрономов того времени, обнаружил несовпадения между гелиоцентрической теорией Коперника и отдельными мелкими данными, не совпадавшими и с теорией Птолемея. Он попытался найти разумный компромисс.

 

Кеплер

Когда Браге умер, его научное наследие досталось Кеплеру, который потратил многие годы на поиск закономерностей в изобилии данных. Кеплер был последователем мистической пифагорейской традиции и пытался притянуть к имевшимся у него данным откровенно искусственные объяснения. Самой известной из этих бесплодных попыток найти закономерности в небесах стало его изящное, но ошибочное описание пространственного расположения планет с точки зрения платоновых тел. В его время ученым были известны шесть планет: Меркурий, Венера, Земля, Марс, Юпитер и Сатурн. Кеплер задался вопросом, нельзя ли описать расстояния от них до Солнца с помощью геометрической модели. Более того, он задумался, почему планет именно шесть. Он обнаружил, что они явно оставляют место еще для пяти промежуточных форм, а поскольку геометрия описывала ровно пять правильных тел, это и ограничивает число планет шестью. Он предложил для них шесть сфер, где каждая несет орбиту на своем экваторе. А между ними, точно снаружи от одной сферы и внутри следующей, он разместил пять правильных тел в таком порядке:

Все числа хорошо совпадали, особенно если учесть ограниченные возможности астрономов того времени. Но существовало 120 различных способов разместить пять правильных тел, так что пространство в промежутках могло иметь разные размеры. Ничего удивительного, что один из этих вариантов оказался поразительно близок к реальности. Позже открытие новых планет нанесло роковой удар по всей теории, превратив ее в очередную тупиковую ветвь.

Теория Кеплера о расположении планетарных орбит

Однако в ходе своих исследований Кеплер открыл несколько законов, благодаря которым мы заслуженно считаем его гением. Эти законы Кеплера ученый установил интуитивно, исходя из анализа данных, собранных Тихо Браге. Вот как они звучат.

1. Все планеты Солнечной системы обращаются по эллипсам.

2. За равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

3. Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет.

Движение планеты за равный промежуток времени

Самой оригинальной чертой работы Кеплера был отказ от классической окружности (якобы единственно возможной самой совершенной формы) в пользу эллипса. Этот шаг дался ученому с большим трудом, только когда он твердо убедился, что всё остальное не удовлетворяет его требованиям. У Кеплера не было оснований надеяться, что три закона будут точнее отражать реальность, чем гипотеза, основанная на платоновых телах, но это случилось. Три закона Кеплера имеют неоценимое значение для науки.

 

Галилей

Следующей выдающейся фигурой той эпохи стал Галилео Галилей, открывший математические формулы движения маятника и падающих тел. В 1589 г., занимая должность профессора математики в Пизанском университете, он проводил эксперименты по качению шара по наклонной плоскости, но не опубликовал результаты. Однако именно тогда он осознал важность контролируемого эксперимента для изучения законов природы: эта идея стала фундаментальной для науки. Он занимался астрономией и сделал несколько важных открытий, побудивших его признать теорию Коперника о гелиоцентрической планетарной системе. Это обострило его отношения с церковью, обвинившей ученого в ереси и посадившей под домашний арест.

В последние годы жизни, уже окончательно ослабев здоровьем, Галилей создал «Беседы и математические доказательства двух новых наук», где объясняется его работа по движению тел на наклонных плоскостях. Он утверждал, что расстояние, на которое прокатится с постоянным ускорением изначально неподвижное тело, пропорционально квадрату времени. Основой его закона стало более раннее открытие, что снаряд летит по параболе. В сочетании с законами Кеплера о движении планет это заложило основу новой области науки – механики, математического описания движения тел.

Вот так и вышло, что физико-астрономические предпосылки привели ученых к исчислениям. Далее мы познакомимся с их математической основой.

 

Изобретение исчисления

Изобретение исчисления стало результатом более ранних исследований внешне не связанных проблем, обладавших скрытыми общими чертами. Сюда входит определение мгновенной скорости движения объекта в любой заданный момент, определение касательной к кривой, измерение длины кривой, определение максимального и минимального значения переменных величин, нахождение площади любой фигуры на плоскости и объема любого тела в пространстве. Ряд важных идей и примеров были разработаны Ферма, Декартом и не столь известным англичанином, Исааком Барроу, но методы решения по-прежнему оставались частными для каждой отдельной задачи. Требовался обобщенный поход.

ГАЛИЛЕО ГАЛИЛЕЙ 1564–1642

Галилео был сыном Винченцо Галилея, преподавателя музыки, использовавшего эксперименты со струнами для подтверждения своей теории. В десять лет Галилео отдали на обучение в монастырь Валломброза с перспективой сделать его медиком. Но он не интересовался медициной и всё свое время посвящал математике и натуральной философии, которую позже мы назовем естественной наукой.

В 1589 г. Галилео занял пост профессора в Пизанском университете. В 1591 г. его пригласили на более высокооплачиваемое место в Университете Падуи, где он преподавал евклидову геометрию и астрономию студентам-медикам. В то время врачи широко прибегали к астрологии для лечения пациентов, и обе науки являлись обязательной частью программы обучения.

Узнав об изобретении телескопа, Галилео собрал для себя такой прибор. Он настолько поднаторел в этом, что поделился своими наработками с Венецианским сенатом, пообещав ему эксклюзивные права на прибор в обмен на повышение гонораров. В 1609 г. Галилей постоянно наблюдал за небом, и одно открытие следовало за другим: четыре луны Юпитера, отдельные звезды внутри Млечного Пути, горы на Луне. Козимо де Медичи, великий герцог Тосканы, был так впечатлен телескопом, что сделал Галилея своим первым математиком.

Он открыл существование пятен на Солнце и опубликовал свое открытие в 1612 г. К этому моменту собственные астрономические открытия убедили ученого в правоте теории Коперника, и в 1616 г. он публично выразил свое мнение в письме великой герцогине Кристине Лотарингской, утверждая, что теория Коперника отражает физическую реальность и это не просто практический способ упростить подсчеты.

На этот раз папа Павел V издал приказ инквизиции установить, верна или фальшива гелиоцентрическая теория, и инквизиторы признали ее ложью. Галилею приказали отказаться от теории, но на престол взошел новый папа, Урбан VIII, казавшийся более терпимым к этому открытию, и Галилей пренебрег запретом. В 1623 г. он опубликовал работу «Пробирных дел мастер» (итал. «Il Saggiatore»), посвятив ее Урбану. В этом труде мы находим его знаменитое утверждение, что Вселенная «написана на языке математики, и знаки ее – треугольники, окружности и другие геометрические фигуры, без которых нельзя понять ни единого из стоящих в ней слов и остается лишь блуждать в темном лабиринте».

В 1630 г. Галилей испросил позволения опубликовать новую книгу, «Диалог о двух системах мира», – сравнительный анализ геоцентрической и гелиоцентрической теорий. Когда в 1632 г. пришло разрешение на публикацию из Флоренции (но не из Рима!), он издал книгу. В ней утверждалось, что главным доказательством движения Земли являются морские приливы. Теория Галилея о приливах оказалась ошибочной, но церковные иерархи сочли этот труд настоящей бомбой под своей властью. Инквизиция запретила книгу, а Галилея призвали в Рим, на суд по обвинению в ереси. Ученого признали виновным, но пожизненное заключение заменили домашним арестом. Ему повезло по сравнению со многими другими еретиками, для которых сожжение у столба стало обычным наказанием. Под домашним арестом Галилей создал «Беседы», в которых изложил свою теорию движения небесных тел. Ее контрабандой удалось вывезти из Италии и напечатать в Голландии.

 

Лейбниц

Первый прорыв в этой области сделал Готфрид Вильгельм Лейбниц, юрист по профессии, посвятивший практически всю жизнь математике, логике, философии, истории и многим другим отраслям науки. Примерно в 1673 г. он начал работу над классической проблемой проведения касательной к кривой и обнаружил, что это обратная сторона проблемы измерения площадей и объемов. Последняя требовала найти кривую по заданной касательной, а первая подразумевала в точности обратное действие.

Воспользовавшись этой связью, в итоге Лейбниц сумел открыть то, что мы называем интегралами, используя сокращение omn (сокр. оmnia, лат. «всё»). В его бумагах можно найти такие формулы:

К 1675 г. он уже заменил omn на знак ∫, используемый и по сей день и представляющий собой вытянутую букву s, обозначающую сумму. Он работал с понятиями бесконечно малых приращений dx и dy для величин x и y и использовал их соотношение dy/dx для определения скорости изменения y как функции x. Получается, что если f – это функция, Лейбниц мог написать:

dy = f(x + dx) – f(x),

таким образом,

что и является обычной аппроксимацией секущей угла наклона касательной.

Лейбниц обнаружил, что это определение имеет свои недостатки. Если dy и dx не равны нулю, соотношение dy/dx будет не мгновенной скоростью изменения y, а лишь приближенным значением. Он попытался обойти эту проблему, предположив, что dy и dx – бесконечно малые числа. Бесконечно малым считается число, не равное 0, но меньшее, чем любое другое число, не равное 0. К несчастью, сразу ясно, что таких чисел не существует (половина от бесконечно малого тоже будет не равна 0 и будет еще меньше), и такой подход – не что иное, как игнорирование проблемы.

К 1676 г. Лейбниц знал, как интегрировать и дифференцировать любую степень x, составив формулу

dxn = nxn – 1dx,

которую сейчас мы пишем так:

В 1677 г. он вывел правила дифференцирования суммы, произведения и частного для двух функций, а к 1680-му – формулу длины дуги кривой и объема тела вращения как интегралов от различных связанных величин.

Нам известны все эти факты, а также относящиеся к ним даты из его неопубликованных записок, но впервые свои идеи о методах исчисления он опубликовал намного позже, в 1684 г. Якоб и Иоганн Бернулли сочли эти записи туманными, назвав их «скорее загадкой, чем объяснением». Но теперь понятно, что к тому моменту Лейбниц успел открыть значительную часть основ исчисления, с возможностью применить их для таких сложных кривых, как циклоида, и приблизиться к пониманию таких концепций, как кривизна. К несчастью, его записки слишком отрывочны и не поддаются прочтению.

 

Ньютон

Еще одним создателем методов исчисления считается Ньютон. Двое его друзей, Исаак Барроу и Эдмунд Галлей, отдавали должное таланту ученого и убеждали в необходимости опубликовать его труды. Ньютон же очень плохо переносил критику и когда в 1672 г. издал свои исследования природы света, то услышал много нелестного о своей работе, что надолго отбило у него охоту предавать огласке свои открытия. Но эпизодически он всё же отваживался издать некоторые работы и даже написал две книги. А для себя Ньютон продолжал развивать свои идеи о тяготении, и в 1684 г. Галлей снова попытался уговорить его опубликовать эти труды. Но для этого, помимо страха перед критикой, существовало и техническое препятствие. В своих рассуждениях ученый был вынужден объявить планеты точечными частицами с массой, не равной 0, но нулевыми размерами, что не соответствовало действительности и заведомо привлекло бы к нему нежелательное внимание критиков. Он хотел бы заменить эти невероятные точки на сферические тела, но не мог доказать, что силы взаимного тяготения между сферами такие же, как и между предельно малыми точками с равной массой.

Только в 1686 г. Ньютону удалось заполнить этот пробел, и в 1687 г. свет увидели «Математические начала натуральной философии». Они содержали множество свежих идей. Самыми важными стали математические формулы законов движения, расширяющие работы Галилея, и тяготения, основанные на законах Кеплера.

Главный закон движения по Ньютону (есть и дочерние, следующие из него) утверждал, что сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение. Иными словами, скорость является производной от положения тела, а ускорение – производная от скорости. Значит, даже для выражения закона Ньютона нам не обойтись без второй производной положения тела относительно времени, что в современном написании выглядит так:

Только Ньютон вместо этого над x ставил две точки: .

Закон тяготения утверждает, что все материальные частицы притягиваются друг к другу с силой, пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними. Так, сила тяготения между Землей и Луной станет сильнее в четыре раза, если Луна будет ближе к Земле в два раза, или в девять, если расстояние уменьшится втрое. И снова, поскольку речь идет о воздействии силы, здесь имеется вторая производная.

Ньютон вывел свой закон из трех законов Кеплера о движении планет. Опубликованный им труд стал высшим достижением классической евклидовой геометрии. Ньютон сознательно избрал этот способ подачи материала, поскольку тот был основан на знакомых математических понятиях, а значит, менее уязвим для критиков. И всё же многие аспекты «Начал» появились на свет исключительно благодаря неопубликованным методам исчисления, открытым Ньютоном.

Среди первых его работ в этой области есть статья под названием «Анализ с помощью уравнений с бесконечным числом членов», которую он распространил среди немногочисленных друзей в 1669 г. В современной терминологии он задается вопросом, как будет выглядеть уравнение для функции f(x), если площадь под графиком равна xm. (На самом деле вопрос касался более общих явлений, но давайте упростим.) К своему полному удовлетворению, он пришел к выводу, что ответ будет: f(x) = mxm − 1.

ИСААК НЬЮТОН 1642–1727

Ньютон рос на ферме в небольшой деревушке Вулсторп в графстве Линкольншир. Его отец скончался за два месяца до его рождения, и мать одна управлялась на ферме. Исаака отправили учиться в ближнюю школу, где он не выделялся особыми талантами, разве что отлично умел мастерить механические игрушки. Однажды он наполнил надувной шар горячим воздухом и испытал это средство воздухоплавания, посадив вместо пилота своего кота. Ни шар, ни кота никто больше не видел. Исаак поступил в Тринити-колледж в Кембриджском университете, где вполне успешно обучался по всем предметам – за исключением геометрии. Студентом он не производил впечатления будущего светила науки.

Чума

Позже, когда в 1665 г. великая эпидемия чумы опустошила Лондон и окрестности, студентов поспешно разослали по домам, пока мор не дошел до Кембриджа. Вернувшись на родительскую ферму, Ньютон стал серьезнее относиться к науке в целом и в частности к математике.

Тяготение

В 1665–1666 гг. он вывел свой закон тяготения, объясняющий движение планет, развил законы механики, чтобы проанализировать движения любого рода для всех физических тел, изобрел дифференциальное и интегральное исчисления, совершил важные открытия в оптике. Что характерно, он не спешил публиковать свои труды, но как ни в чем не бывало вернулся в колледж, получил степень магистра и стал членом Тринити-колледжа. Затем его избрали на должность Лукасовского профессора математики, а в 1669 г. подал в отставку предыдущий профессор, Барроу. Ньютон не прославился как преподаватель, на его лекциях было мало студентов.

Подход Ньютона к вычислению производных в основном напоминает подход Лейбница, только вместо dx он использовал o, а значит, его метод грешил той же логической проблемой: он давал приблизительный результат. Однако Ньютону удалось показать: если принять о за бесконечно малую величину, приближение станет намного точнее. И когда мы дойдем до предела, где o станет такой малой, какой нам угодно, ошибка исчезнет. Поэтому Ньютон утверждал, что его результат точен. Он изобрел новое слово «флюксия», чтобы подчеркнуть главную идею: величина стремится к 0, но никогда не достигает его.

В 1671 г. он создал более обширный труд, «Метод флюксий и бесконечных рядов». Первая книга, посвященная исчислению, так и не была опубликована вплоть до 1711 г., вторая увидела свет в 1736 г. Однако несомненно, что уже к 1671 г. Ньютон оперировал всеми основополагающими идеями исчисления.

Сановный противник этого метода епископ Джордж Беркли в 1734 г. в своей книге «Аналитик, или Рассуждение, адресованное неверующему математику» указывал, что это противоречит логике: делить числитель и знаменатель на о, если впоследствии о будет равно 0. В итоге вся процедура сводится к тому, что дробь на самом деле выглядит как 0/0, а это, как всем известно, полная бессмыслица. Ньютон возражал, что он не уменьшает о до нуля, он исследует результаты того, что она сколь угодно близко подходит к 0, не становясь ему равной, и вообще его метод исследует флюксии, а не числа.

Математики пытались найти выход в аналогиях с физикой: Лейбниц прибегал к определениям «дух утонченности» и противоположному ему «дух логики», но по сути Беркли был прав. Ученым потребовался век, чтобы обнаружить убедительные ответы на его возражения, найдя для интуитивно открытого «приближения к пределу» строгое определение. Тогда-то исчисление преобразилось в более искусную науку – математический анализ. Но на протяжении этих 100 лет никого, кроме Беркли, так и не обеспокоили логические изъяны, и исчисление развивалось невзирая на них.

Метод процветал, потому что Ньютон был прав, но лишь через 200 лет его интуитивная концепция флюксий была сформулирована с безупречной логикой, в терминах пределов. К счастью для математиков, задержка с этим открытием не застопорила процесс развития науки в целом. Исчисление оказалось слишком востребованным и важным методом, чтобы отказаться от него из-за нескольких логических софизмов. Беркли в негодовании утверждал, что метод только кажется действенным, поскольку в нем различные ошибки взаимно компенсируют друг друга. Он был прав – однако понятия не имел о том, почему ошибки компенсируют друг друга. Ведь если это правда – то это и не ошибки вовсе!

С дифференцированием неразрывно связан обратный ему процесс – интегрирование. Интеграл от f(x), или ∫ f(x)dx, восстановит значение функции f(x) до ее дифференцирования. Определенный интеграл

это площадь под графиком между значениями x = a и x = b.

Определенный интеграл

Производные и интегралы решили проблемы, из-за которых буксовали исследования предшественников. Скорости, касательные, максимумы и минимумы можно было вычислить при помощи дифференцирования. Длины, площади и объемы поддавались вычислению с помощью интегрирования. Но и это не всё. Как ни удивительно, но оказалось, что и законы природы могут быть изложены на языке исчисления.

 

Англия в отстающих

По мере того как росла важность исчисления для передовой науки, рос и престиж ученого, стоявшего у ее истоков. Но кто был этим ученым?

Как мы видим, Ньютон стал задумываться над исчислением примерно с 1665 г., хотя ничего не публиковал на эту тему до 1687 г. Лейбниц, чьи идеи развивались примерно тем же путем, что и у Ньютона, начал исследовать исчисление в 1673 г. и первые труды в этой области издал в 1684 г. Оба работали независимо, но Лейбниц мог узнать о трудах Ньютона, когда побывал в Париже в 1672 г. и в Лондоне в 1673 г. В 1669 г. Ньютон отослал копию «Анализа» Барроу, а Лейбниц встречался со многими людьми, также знавшими Барроу и, возможно, имевшими представление об этой работе.

Когда Лейбниц опубликовал свою книгу в 1684 г., кое-кто из окружения Ньютона ужасно возмутился – вероятно, потому, что Ньютона опередили с публикацией прямо перед финишной чертой. Все они с запозданием осознали, что было поставлено на кон, – и дружно обвинили Лейбница в краже идей Ньютона.

ЧТО ИСЧИСЛЕНИЕ ДАЛО ИМ

Примером ранних попыток использовать исчисление для описания явлений природы можно считать вопрос о подвешенной цепи. Ответ всегда оставался спорным: одни ученые утверждали, что это парабола, а другие не соглашались. В 1691 г. Лейбниц, Кристиан Гюйгенс и Иоганн Бернулли опубликовали предполагаемые решения. Самое удовлетворительное принадлежало Бернулли. Для описания положения цепи он использовал дифференциальное уравнение, исходя из ньютоновой механики и законов движения. Как показало это уравнение, решением стала не парабола, а кривая, известная теперь под названием цепная линия , с уравнением:

y = k ( e x + e −x ),

где k  – константа.

Подвешенная цепь является графиком цепной линии

Зато несущие цепи на подвесных мостах имеют форму параболы. Эта разница возникает оттого, что цепи несут на себе и вес моста, и собственный. И снова это можно показать при помощи исчисления.

Клифтонский подвесной мост – парабола

Математики на континенте, особенно братья Бернулли, грудью встали на защиту Лейбница, полагая, что именно Ньютон был замешан в плагиате. На самом деле оба сделали свои открытия почти независимо друг от друга, как показали их неопубликованные рукописи. Добавило туману и то, что оба во многом опирались на предыдущую работу Барроу, который, вероятно, имел больше оснований для жалоб, чем любой из них.

Обвинения могли быть легко сняты, но вместо этого спор стал более ожесточенным; Иоганн Бернулли перенес свою неприязнь к Ньютону на всех англичан. Результатом стала катастрофа английской математики: англичане застряли в ньютоновском геометрическим стиле мышления, который сложно было использовать, а математики с континента использовали более формальный алгебраический метод и продвигали исчисление вперед быстрыми темпами. Поэтому большая часть заслуг в математической физике ушла к французам, немцам, швейцарцам и голландцам, а английская математика томилась в тихой заводи.

 

Дифференциальное уравнение – что это?

Важнейшей идеей, порожденной изобилием трудов об исчислении, стало существование и использование принципиально нового типа уравнений – дифференциальных уравнений. Алгебраические уравнения описывают неизвестную величину с разными степенями. Дифференциальные же гораздо более изощренны: они описывают различные производные от неизвестной функции.

Законы движения Ньютона говорят о том, что если y(t) – высота, на которой частица движется над поверхностью Земли, подвергаясь силе тяготения, то вторая производная d2y/dt2 пропорциональна воздействующей на нее силе g:

где m – масса. Это уравнение не определяет функцию y напрямую – оно показывает свойства ее второй производной. Чтобы найти саму y, необходимо решить дифференциальное уравнение. Дважды последовательно интегрируя, получим:

где b – исходная высота частицы, a – начальная скорость. Формула говорит нам, что график, описывающий изменение высоты y относительно времени t, представляет собой параболу, ветви которой направлены вниз. Это наблюдение сделал еще Галилей.

Параболическая траектория снаряда

ЧТО ИСЧИСЛЕНИЕ ДАЕТ НАМ

Современная наука изобилует дифференциальными уравнениями : они оказались наиболее распространенным способом моделирования законов природы. Например, без них не обходится построение траектории полета исследовательских космических зондов, таких как «Маринер», направленный на Марс, или два корабля «Пионер», исследовавших Солнечную систему и предоставивших ученым превосходные снимки Юпитера, Сатурна, Урана и Нептуна, или доставленные на Марс марсоходы «Спирит» и «Оппортьюнити» – шестиколесные роботы, исследовавшие Красную планету.

Марсоход «Спирит» (художественное воспроизведение, НАСА)

Еще один хороший пример – миссия «Кассини», нацеленная на изучение Сатурна и его лун. Среди сделанных в ее рамках открытий – существование морей из жидкого метана и этана на спутнике Сатурна Титане. Конечно, исчисление – далеко не единственный математический метод, примененный в космических исследованиях, но без него ни одна из миссий буквально не оторвалась бы от Земли.

Если вернуться на Землю, можно упомянуть любое воздушное судно, автомобиль, движущийся по дороге, подвесной мост или устойчивое к подземным толчкам здание, в создании которых исчисление сыграло важнейшую роль. Даже наше описание того, как относительно времени меняется популяция животных того или иного вида, исходит из дифференциальных уравнений. То же относится к описанию распространения эпидемий, где построенные с помощью исчисления модели помогают разработать эффективные меры подавления эпидемии. Недавно разработанные модели распространения ящура в Великобритании показали недостаточную эффективность принимаемых мер.

Работы Коперника, Кеплера, Галилея и других ученых Возрождения открыли нам математические закономерности, описывающие реальный мир. Одни модели со временем оказались ошибочными, и от них отказались, другие в точности отражали действительность и развивались дальше. Именно в те давние времена выражение «работает как часы» стало всё чаще применяться к нашей Вселенной. Как выяснилось, она живет по строгим, непреложным законам, несмотря на упорные возражения религиозных иерархов, особенно католической церкви.

Величайшим открытием Ньютона стало то, что законы природы проявляют себя не как закономерности некоторых величин, но как взаимоотношения между их производными. Законы природы написаны на языке исчисления, и здесь важны не значения физических переменных, а скорость, с которой они меняются. Это было величайшее прозрение, и оно породило революцию, завершившуюся появлением более-менее современного научного подхода, который навсегда изменил нашу планету.