Укрощение бесконечности. История математики от первых чисел до теории хаоса

Стюарт Иэн

Глава 10. Невозможные величины

 

 

Квадратные корни отрицательных чисел: возможно ли?

Математики различают несколько видов чисел с разными свойствами. Главное здесь не отдельные числа, а «сообщество», к которому они принадлежат, – иными словами, то, с кем они водят компанию.

Четыре из этих систем чисел хорошо нам знакомы: натуральные: 1, 2, 3, …; целые, куда также входит 0 и отрицательные не дробные; рациональные, включающие дроби вида p/q , где p и q  – целые числа, причем q не равно 0; и действительные числа, обычно представляемые десятичными дробями с бесконечным количеством знаков после запятой – что бы это ни значило. Они включают рациональные числа, в том числе периодические десятичные дроби, и иррациональные, такие как √2, e и π, у которых в цифрах после запятой нет повторяющихся последовательностей.

 

Целые числа

Само название подразумевает нечто единое; остальные создают впечатление, что упомянутые системы представляют собой некие ощутимые, действительные вещи: натуральные, рациональные и, конечно, вещественные. Эти названия отражают и в то же время поддерживают давно сложившееся мнение, что числа – неотъемлемая черта окружающего нас мира.

Многие уверены, что единственный способ сделать открытие в математике – изобрести новые числа. И это убеждение ложно: многие разделы математики вообще не имеют дела с числами, и, во всяком случае, цель любого исследования – изобретение новых теорем, а не чисел. Однако порой появляются и «новые числа». И одно из таких изобретений – «невозможное», или «мнимое», число – коренным образом изменило облик математики, наделив ее поистине невероятной мощью. Этим числом стал квадратный корень из –1. Древним математикам сама эта идея показалась бы чушью, потому что в их времена квадрат любого числа мог быть только положительным. А значит, отрицательные числа не могут иметь квадратных корней. Но попробуйте представить, что они есть. Что тогда будет?

Математикам понадобилось очень много времени, чтобы понять: числа – не более чем искусственно созданные изобретения человеческого разума. Они незаменимы для постижения окружающего мира, но в то же время являются его частью не более, чем любой из треугольников Евклида или вычислительная формула. На протяжении истории нашей культуры математики противились этой философской проблеме, пока не убедились, что мнимые числа незаменимы, полезны и даже в чем-то схожи с более привычными нам действительными.

 

Проблемы с кубическим уравнением

Революционные идеи в математике редко зарождаются в простом и на поверку очевидном контексте. Чаще всего им необходима сложная почва. Так вышло с квадратным корнем из –1. Сейчас мы обычно вводим это число в квадратном уравнении x2 + 1 = 0, решением для которого становится √–1 – что бы это ни значило. Первыми математиками, задавшимися вопросом, имеет ли это хоть какой-то смысл, стали алгебраисты эпохи Возрождения, пришедшие к проблеме квадратных корней из отрицательных чисел несколько необычным путем: в поисках решений для кубических уравнений.

Вспомним, как дель Ферро и Тарталья нашли решение для кубических уравнений, позже опубликованных Кардано в его труде «Великое искусство». В современных символах решение для кубического уравнения x3 + ax = b выглядит так:

Математики эпохи Возрождения описали это выражение словами, но методика вычислений была точно такой же.

Иногда эта формула работает безупречно, но порой чревата проблемами. Кардано заметил, что, когда формулу применяют к уравнению x3 = 15x + 4, с явным решением x = 4, результат выглядит так:

Но это выражение кажется не имеющим смысла, ведь у числа –121 не существует квадратного корня. Кардано зашел в тупик и написал Тарталье, попросив его объяснить это недоразумение, но Тарталья не уловил сути вопроса, и его ответ был невразумителен.

Решение проблемы нашел Рафаэль Бомбелли в своем трехтомном труде «Алгебра», изданном в Венеции в 1572 г. и в Болонье в 1579 г. Бомбелли не устраивали загадки и недоговоренности «Великого искусства» Кардано, и он взял на себя труд написать нечто более ясное. Он стал оперировать этим «нескладным» квадратным корнем, как если бы это было обычное число, отмечая:

и выводя из этого любопытную формулу:

Точно так же Бомбелли вывел формулу:

Теперь мы можем записать сумму двух кубических корней как

Итак, этот странный метод всё же привел нас к верному ответу – безупречно целому числу, хотя нам и пришлось манипулировать «невозможными» величинами.

Да, это всё очень интересно, но работает ли это?

 

Мнимые числа

В поисках ответа на этот вопрос математикам пришлось найти надежные пути рассуждений о квадратных корнях из отрицательных чисел и способы вычислений с их использованием. Первые ученые, в том числе Декарт и Ньютон, считали эти мнимые числа верным признаком того, что у задачи нет решения. Если вам надо найти число, чей квадрат равен –1, то формальное решение является мнимым числом, а значит, решения не существует. Но вычисления Бомбелли предполагают, что только мнимостью здесь не ограничиться. Эти числа можно использовать для поиска решения, они показывают, что оно существует.

В 1673 г. Джон Валлис изобрел простой способ представлять мнимые числа в виде точек на плоскости. Он исходил из привычного метода построения действительных чисел в виде прямой, расставив на ней положительные числа по правую сторону и отрицательные по левую.

Затем он ввел еще одну прямую, под прямым углом к первой, и уже на ней расположил мнимые числа.

Это похоже на алгебраический подход Декарта к геометрии с использованием координатных осей. Только здесь на одной оси мы видим действительные числа, а на второй – мнимые. Валлис несколько иначе выразил эту идею: его версия скорее была ближе к подходу Ферма, чем напоминала систему координат Декарта. Но основной принцип тот же. Оставшаяся плоскость соотносится с комплексными числами, состоящими из двух частей: одна действительная, другая мнимая. В декартовой системе координат мы отмеряем действительную часть вдоль вещественной прямой, а мнимую – параллельно мнимой линии. Иными словами, число 3 + 2i будет отложено на три единицы вправо от начала координат и на две единицы вверх.

Линия действительных чисел

Идея Валлиса решила проблему придания смысла мнимым числам, но никому не пришло в голову обратить на это внимание. И всё же медленно, но верно идея распространялась на уровне подсознания. Все больше математиков переставали беспокоиться, что √–1 не может занять место на действительной прямой, и понимали, что он разместится где-то в более просторном мире комплексной плоскости. Но были и такие, кто отвергал саму идею: в 1758 г. некто Франсуа Дэви де Фонсене категорически утверждал в своем труде, что совершенно не имеет смысла представлять, будто мнимые числа формируют линию, расположенную под прямым углом к линии действительных чисел. Но всё же больше было таких, кто искренне приветствовал идею Валлиса, понимая ее важность.

Две дублирующиеся линии с действительными числами, расположенные под прямым углом

Идея, что комплексная плоскость позволяет расширить вещественную прямую и дать приют мнимым числам, подразумевалась в работе Валлиса, хотя ее объяснение было несколько туманным. Более ясное изложение мы находим у норвежца Каспара Весселя в издании от 1797 г. Вессель был землемером, он стремился прежде всего представить геометрию плоскости с помощью чисел. И наоборот: его идеи можно рассматривать как способ представления комплексных чисел в терминах планиметрии. Но он опубликовал свою работу только в Дании, и она оставалась под спудом почти целый век, пока ее не перевели на французский. Французский математик Жан-Робер Арган опубликовал такой же способ представления комплексных чисел в 1806 г., а Гаусс открыл независимо от них то же самое в 1811 г.

Комплексная плоскость по Весселю

 

Комплексный анализ

Если бы комплексные числа так и остались полезны только для алгебры, им было бы суждено оставаться отвлеченным научным курьезом, занимающим исключительно математиков. Но по мере роста интереса к исчислению, который принял строгую форму математического анализа, люди стали замечать, что действительно интересное слияние вещественного анализа с комплексными числами – точнее, комплексный анализ – не только возможно, но и желательно. Действительно, для многих задач это существенно.

Это открытие выросло из первых попыток обдумать существование комплексных функций. Самые простые функции, такие как возведение в квадрат или в куб, зависят только от алгебраических операций, поэтому было легко определить их для комплексных чисел. Чтобы возвести в квадрат комплексное число, необходимо умножить его само на себя, и тот же прием годится для действительных чисел. Квадратные корни из комплексных чисел немного каверзнее, но приносят нам приятную награду за потраченные силы: каждое комплексное число имеет квадратный корень. И действительно, любое такое число, не равное 0, имеет ровно два квадратных корня (положительный и отрицательный, равные по модулю). Так мы обогатили действительные числа новым числом i, вдобавок обеспечив –1 квадратным корнем и определив квадратные корни для любого числа в расширенной системе комплексных чисел. А как быть с синусами, косинусами, экспонентами и логарифмами? На этом этапе они особенно интересны, но и более головоломны. Особенно логарифмы.

Как и число i само по себе, логарифмы комплексных чисел тут же превратились в очередную проблему. В 1702 г. Иоганн Бернулли исследовал процесс интегрирования, применив его к обратным полиномам второй степени. Он нашел изысканный способ решения этой задачи, когда у квадратного уравнения есть два действительных корня: r и s. Теперь мы можем переписать это подынтегральное выражение, используя так называемые простейшие дроби:

что приводит нас к интегралу

A ln ( x – r ) + B ln ( x – s ).

А что, если квадратное уравнение не имеет действительного корня? Как, например, проинтегрировать величину, обратную x2 + 1? Бернулли понимал, что раз уж вы занялись алгеброй комплексных чисел, трюк с простейшей дробью сработает и здесь, только в этом случае r и s будут комплексными числами. Например:

а интеграл этой функции принимает форму:

1 / 2 ln ( x + i ) + 1 / 2 ln ( x – i ).

Этот финальный шаг не совсем удовлетворителен, поскольку требует определения логарифма комплексного числа. Возможно ли сделать корректным такое утверждение?

Бернулли считал, что можно, и благодаря этой идее добился потрясающего эффекта. Той же позиции придерживался и Лейбниц. Однако математические детали всё еще требовали доработки. К 1712 г. оба ученых сошлись в споре по самой сути такого подхода. Забудем про комплексные числа, – что такое логарифм отрицательного действительного числа? Бернулли считал, что он тоже должен быть действительным, а Лейбниц утверждал, что он будет комплексным. Бернулли представил нечто вроде доказательства своей правоты: с помощью обычного вычислительного формализма уравнение

может быть проинтегрировано, получим

ln (- x ) = ln ( x ).

Однако Лейбница это не убедило, и он по-прежнему утверждал, что интегрирование будет верно только для положительного действительного x.

Этот узконаправленный спор был разрешен в 1749 г. Эйлером, и оказалось, что Лейбниц был прав. Бернулли забыл, что любой интеграл включает произвольную константу. И вместо полученного Бернулли выражения должно быть

ln (- x ) = ln ( x ) + c

для некой константы с. Но что это за константа? Если логарифм отрицательных (и комплексных) чисел должен иметь свойства логарифма действительных чисел, что и является целью всей игры, то верно, что

ln (- x ) = ln (–1 × x ) = ln (–1) + ln x ,

так что c = ln (–1). Затем Эйлер привел последовательность изящных преобразований, получив еще более явную формулу для с. Прежде всего он нашел способ манипулирования различными формулами, содержащими комплексные числа, придя к выводу, что они ведут себя очень похоже на действительные, и получил соотношение между тригонометрической функцией и экспоненциальной:

e i θ = cos θ + i sin θ.

Эта формула была предложена в 1714 г. Роджером Котсом. Установив, что θ = π, Эйлер получил превосходный результат:

e i π = –1,

связавший две основные математические константы: e и π. Вызывает восхищение как само существование этой связи, так и ее простота. Эта формула по праву считается одной из самых красивых формул всех времен.

Взяв логарифм, мы получаем:

ln (–1) = i π,

приоткрывая тайну этой непостижимой константы с из предыдущего текста: она равна iπ. В таком случае это мнимое число, т. е. Лейбниц был прав, а Бернулли ошибался.

Но и это еще не всё: ящик Пандоры едва успел открыться. Если принять, что θ = 2π, то

e 2 i π = 1.

Значит, ln (1) = 2iπ. Тогда уравнение x = x × 1 приводит к выводу:

ln x = ln x + 2 i π.

Тогда для любого целого n

ln x = ln x + 2 ni π.

На первый взгляд, бессмыслица: это означает, что 2niπ = 0 для любого n. Но есть и такой способ проинтерпретировать это выражение, что оно покажется осмысленным. В случае комплексных чисел логарифмическая функция многозначна. И действительно, кроме тех случаев, когда комплексное число z равно 0, функция ln z может принимать бесконечно много разных значений (когда z = 0, ее логарифм не определен).

ЧТО КОМПЛЕКСНЫЕ ЧИСЛА ДАЛИ ИМ

Действительные и мнимые части комплексной функции должны удовлетворять условиям Коши – Римана, что тесно связано с применением ДУЧП для гравитации, электричества, магнетизма и некоторых видов гидродинамики на плоскости. Это условие позволяет решать многие уравнения в математической физике – но только для двумерных систем.

Магнитное поле вокруг магнитного стержня, «увидеть» которое помогают железные опилки: комплексный анализ может быть использован при расчете таких полей

Математики привыкли пользоваться функциями, которые могут иметь несколько разных значений, и квадратный корень остается самым очевидным примером: здесь даже действительное число имеет два разных корня, положительный и отрицательный. Но бесконечно много значений? Это действительно странно.

 

Интегральная теорема Коши

Большой переполох в этой области учинило открытие, что вы можете заниматься исчислением – комплексным анализом – с комплексными функциями, а полученная в результате теория элегантна и полезна. Настолько полезна, что само логическое обоснование данной идеи перестало волновать кого бы то ни было. Когда что-то работает и вы понимаете, что без этого не обойтись, вы обычно не особо задаетесь вопросом, почему так получилось.

Два разных пути P и Q от –1 до 1 на комплексной плоскости

Использование комплексного анализа, судя по всему, стало осознанным выбором математического сообщества: это обобщение столь явное и убедительное, что любой математик, наделенный здравым смыслом, захотел бы увидеть, к чему это приведет. В 1811 г. Гаусс пишет письмо своему другу астроному Фридриху Бесселю, излагая свой подход к комплексным числам как к точкам на плоскости. Также он упоминает о некоторых глубинных результатах. Среди них – базовая теорема, заложившая фундамент комплексного анализа в целом. Сегодня она известна нам как интегральная теорема Коши, хотя Гаусс сформулировал ее гораздо раньше в своих неопубликованных работах.

ОГЮСТЕН ЛУИ КОШИ 1789–1857

Огюстен Луи Коши родился в Париже в самый разгар политических неурядиц. Друзьями его семьи были Лаплас и Лагранж, так что Коши с детских лет был знаком с миром высшей математики. Он поступил в Политехническую школу и закончил ее в 1807 г. В 1810 г. его пригласили работать инженером в Шербуре. Здесь он участвовал в подготовке планов вторжения Наполеона в Англию, но не оставил надежду заняться математикой и старательно штудировал «Небесную механику» Лапласа и «Теорию аналитических функций» Лагранжа. Несмотря на неудачные попытки получить академическую должность, Коши продолжил исследования в математике. Его знаменитая статья по интегрированию комплексных функций, давшая основу всему комплексному анализу, появилась в 1814 г. и наконец привела его к заветной цели: через год ему досталось место доцента по математическому анализу в Политехнической школе. Талантливый математик Коши опубликовал статью о волнах, принесшую ему в 1816 г. премию Академии наук. Он продолжил исследования в области комплексного анализа, и в 1829 г. в своем труде «Краткое изложение уроков о дифференциальном и интегральном исчислении» дал первое явное определение комплексной функции.

После революции 1830 г. Коши ненадолго эмигрировал в Швейцарию, а в 1831 г. стал профессором теоретической физики в Турине. Как преподаватель он проявил себя крайне неорганизованным. В 1833 г. он перебрался в Прагу, став преподавателем у внука Карла X. Однако принцу были одинаково противны как математика, так и физика, отчего Коши часто выходил из себя. Ученый вернулся в Париж в 1838 г., восстановился в качестве преподавателя в Академии, но не хотел преподавать, пока в 1848 г. не был низложен Луи-Филипп I. За свою научную карьеру Коши успел опубликовать 789 блестящих работ по математике.

Эта теорема касается определенных интегралов от комплексных функций, т. е. выражения:

где a и b – комплексные числа. В вещественном анализе это выражение можно оценить, найдя первообразную F(z) для f(z), т. е. такую функцию F(z), чтобы ее производная dF(z)/dz = f(z). Тогда определенный интеграл равен F(b) – F(a). В данном случае его величина зависит только от конечных точек a и b, а не от того, как вы движетесь от одной к другой.

В комплексном анализе, по словам Гаусса, всё иначе. Здесь величина интеграла может зависеть от пути, по которому переменная z движется от точки a к точке b. Поскольку комплексные числа формируют плоскость, их геометрия гораздо богаче, чем у вещественной прямой, и здесь очень важны дополнительные характеристики.

Например, представим, что вы интегрируете f(z) = 1/z от a = –1 до b = 1. Если упомянутый путь представляет собой полуокружность P, расположенную выше вещественной оси, то интеграл получается равным –πi. Но если путь представляет собой полуокружность Q, расположенную ниже вещественной оси, интеграл будет равен πi. Это две разные величины, и разница между ними равна 2πi.

По мнению Гаусса, разница появляется, потому что функция 1/z ведет себя плохо. Она делается бесконечной в зоне, ограниченной двумя путями, а именно в точке z = 0, которая является центром окружности, образованной двумя путями. «Я утверждаю теперь, что интеграл ‹…› сохраняет одно и то же значение, если внутри части плоскости, заключенной между двумя путями, представляющими переход, функция нигде не равна бесконечности. Это прекрасная теорема, и доказательство к ней я при случае предоставлю». Однако последнего Гаусс так и не сделал.

Теорема была вновь открыта другим ученым, Огюстеном Луи Коши, подлинным основателем комплексного анализа. Да, Гаусс высказал много блестящих идей, но они бесполезны, пока лежат под спудом. Коши опубликовал свою работу. Он постоянно публиковал что-то новое. Говорят, что журнал Comptes Rendus de l’Academie Française принял негласное правило (действующее по сей день) не принимать статьи длиннее четырех печатных страниц как раз ради того, чтобы не позволить Коши заполонить все страницы. Но даже это не обескуражило ученого: он стал писать больше коротких статей. Основные принципы комплексного анализа с удивительной скоростью вылетали из-под его неутомимого пера. И он оказался гораздо более простой, изящной и во многом более полной теорией, чем вещественный анализ.

Например, в вещественном анализе функция может быть дифференцируемой, а ее производная – нет. Она может быть дифференцируемой 23 раза, а на 24-й – нет. Она может быть дифференцируема столько раз, сколько вам угодно, но не может быть представлена степенным рядом. Ни одна из этих неприятностей не грозит вам в комплексном анализе. Если функция дифференцируема, ее можно дифференцировать сколько угодно раз; более того, она может быть представлена степенным рядом. Причина – в тесном взаимодействии с теоремой Коши и, возможно, тем фактом, который Гаусс всё же применил в своем тайном доказательстве: чтобы быть дифференцируемой, комплексная функция должна отвечать очень жестким стандартам, известным как условия Коши – Римана. Эти условия прямо приводят нас к результатам Гаусса, что интеграл между двумя точками может зависеть от выбранного пути. Соответственно, как отмечал Коши, интеграл по замкнутому пути не может не равняться 0. Он равен 0 при условии, что данная функция дифференцируема (в этом случае она не бесконечна) в любой точке на пути.

Была открыта теорема о вычетах, которая позволяет вычислить величину интеграла вокруг замкнутого пути, зависящую только от расположения этих точек, где функция становится бесконечной, а также поведение функции вблизи этих точек. В двух словах: сама структура комплексной функции определяется ее особыми точками, в которых она себя «плохо» ведет. А самые важные точки – полюсы, где функция становится бесконечной.

Квадратный корень из –1 ставил в тупик математиков на протяжении столетий. Хотя, похоже, такой величины и не было, она использовалась в расчетах. Были намеки на то, что сама по себе идея должна иметь какой-то смысл, поскольку может быть использована для получения достоверных результатов, которые сами по себе не связаны с квадратным корнем из отрицательного числа.

Поскольку успешное использование этой невозможной величины продолжало развиваться, математики стали активно ее применять. Ее статус оставался неопределенным, пока не стало очевидно существование логически последовательного расширения традиционной системы действительных чисел, в которой √–1 – не более чем новая грань числа, подчиняющаяся всем привычным законам арифметики.

ЧТО КОМПЛЕКСНЫЕ ЧИСЛА ДАЮТ НАМ

В наши дни комплексные числа широко применяются и в физике, и в инженерии. Простой пример – изучение колебаний – периодически повторяющихся движений. Вспомним колебания здания во время землетрясения, вибрации в движущемся автомобиле или передачу по проводам переменного тока.

Простейший и основной вид колебаний описывается выражением a cos ω t , где t  – время, a  – амплитуда колебаний, а ω – их частота. Удобно преобразовать эту формулу как действительную часть комплексной функции e i ω t . Использование комплексных чисел упрощает подсчеты, поскольку экспонента проще косинуса. Поэтому инженеры, изучающие колебания, предпочитают работать с комплексными экспонентами и обращаются к их действительной части только в самом конце вычислений.

Комплексные числа также определяют устойчивость стационарных состояний динамических систем и широко применяются в теории управления. Это отрасль науки, посвященная методам стабилизации систем, иначе остающихся нестабильными. Пример – использование контролируемых компьютером подвижных управляемых панелей, стабилизирующих в полете положение космического шаттла. Без такого приложения комплексного анализа шаттлы попадали бы с неба, как кирпичи.

Геометрически действительные числа образуют прямую, а комплексные – плоскость, причем вещественная прямая является одной из двух осей на этой плоскости. Алгебраически комплексное число – просто пара действительных чисел со своими формулами для выполнения над ними действий сложения или умножения.

В наши дни признанные полноправными комплексные числа быстро распространяются среди математиков, потому что значительно упрощают подсчеты, избавляя от необходимости отдельно рассматривать положительные и отрицательные числа. Сегодня комплексные числа наряду с исчислением комплексных функций постоянно применяются как привычный инструмент почти во всех отраслях технических наук.