Укрощение бесконечности. История математики от первых чисел до теории хаоса

Стюарт Иэн

Глава 11. Прочные основы

 

 

Что заставило ученых обратиться к исчислению

Около 1800 математиков и физиков превратили исчисление в незаменимый инструмент познания мира, и возникшие в этой области проблемы дали толчок к открытию принципиально новых концепций и методов (например, способов решения дифференциальных уравнений), превративших исчисление в самую яркую и многообещающую область математики. Красота и сила его неотразимы. Но критические замечания о недостатках его логического обоснования, высказанные епископом Беркли, остались без ответа. А поскольку ученые уже успели продвинуться в более сложные области, здание в целом делалось всё более уязвимым. Первые приверженцы использования бесконечных рядов, еще не отдавая себе отчета в их огромном значении для науки, выдавали как заведомо ошибочные идеи, так и гениальные открытия. Фурье-анализ не имел основ, и разные математики требовали доказательств противоречивых теорем. В ход пошли такие термины, как «бесконечно малая», без четких определений; без конца возникали логические парадоксы; даже такое понятие, как функция, становилось предметом спора. Безусловно, столь плачевная ситуация не могла длиться вечно.

Чтобы разобраться в этом хаосе, требовались ясная голова и непоколебимая готовность заменить интуитивные построения точным знанием, даже ценой понимания. Главными игроками на этом поле стали Бернард Больцано, Коши, Нильс Абель, Петер Дирихле и – более всех – Вейерштрасс. Благодаря их усилиям к 1900 г. даже самые сложные манипуляции с рядами, пределами, производными и интегралами стали выполняться без опаски, четко и без парадоксов. Появилась новая отрасль математической науки – анализ. Исчисление стало одним из центральных ее аспектов; получили логическое обоснование такие отвлеченные и фундаментальные концепции, как непрерывность и пределы, лежащие в основе идеи исчисления. А вот бесконечно малые величины были запрещены.

 

Фурье

Пока Фурье не взбаламутил омут, математики купались в приятной уверенности, будто они точно знают, что такое функция. Это был некий определенный процесс f, когда берут число х и получают другое, f(x). Эти числа х вполне логично зависят от f. Если, например, f(x) = 1/x, то x не может быть равно 0. Если f(x) = √x и мы имеем дело с действительными числами, то x должно быть положительным. Но когда дело дошло до точных определений, математики немного растерялись.

Как мы теперь понимаем, причиной затруднений было то, что они пытались свести сразу несколько различных свойств в единую концепцию функции: не просто сформулировать правило, по которому x связано с другим числом, f(x), но найти свойства, которыми обладает это правило: непрерывность, дифференцируемость, возможность быть выраженной в виде формулы и т. д.

В частности, они даже не были уверены, как трактовать функции, имеющие разрыв, например:

f ( x ) = 0, если x ≤ 0; f ( x ) = 1, если x > 0.

Эта функция внезапно скачет от 0 к 1, как только x минует 0. Все почему-то считают, что явной причиной такого прыжка становится изменение формулы: от f(x) = 0 к f(x) = 1. Интуитивно казалось, что это единственное объяснение появления такого скачка; что любая одинарная формула автоматически избавит нас от таких скачков, а значит, небольшое изменение x всегда повлечет за собой небольшое изменение f(x).

Еще одним источником трудностей стали комплексные числа, где – как мы уже видели – такие естественные функции, как квадратный корень, имеют два значения, а комплексные логарифмы – бесконечное множество таковых. Очевидно, что логарифм должен быть функцией, но когда есть бесконечное множество значений, по какому правилу мы получаем f(z) из z? Выходит, таких правил тоже должно быть бесконечно много, и все одинаково годные. Для разрешения всех этих умозрительных разногласий математикам предстояло переломать немало копий. И не кто иной, как Фурье, сумел разом решить их, предложив гениальный ход: расписать любую функцию через бесконечный ряд синусов и косинусов, открытый им в ходе изучения теплопроводности.

Благодаря своей интуиции ученого Фурье понял, что его метод должен быть универсален. Теоретически вы можете представить себе, что удерживаете температуру металлического стержня на значении 0° на одной половине, но при этом сохраняете 10°, или 50°, или сколько необходимо, на остальной его длине. Физиков до сих пор не интересовали разрывные функции, чьи формулы внезапно меняются. Они вообще не имели обыкновения работать с формулами. Мы прибегаем к ним для отображения физической реальности, но это всего лишь техника, наш образ мышления. Конечно, температура окажется иной на стыке этих двух зон, но математические модели всегда имеют какие-то допущения по отношению к физической реальности. Метод Фурье для тригонометрических рядов, приложенный к разрывной функции такого рода, судя по всему, принес ощутимые результаты. Стальные стержни действительно продемонстрировали точно такое распределение температуры, как предсказывало его уравнение теплопроводности, решенное с помощью тригонометрических рядов. В своей «Аналитической теории тепла» он четко описал свою позицию: «В общем, функция f(x) представляет последовательность значений, или ординат, каждая из которых произвольна. Мы не предполагаем, что эти ординаты подлежат общему закону. Они взаимодействуют между собой каждый раз по-своему».

Прямоугольная волна и некоторые ее Фурье-аппроксимации

Отважное утверждение; к сожалению, приведенное доказательство идеи не имело достаточно убедительной математической базы. Фактически оно оказалось еще более ошибочным, чем аргументы Эйлера или Бернулли. Если утверждение Фурье соответствовало истине, то его ряды в итоге могли стать общим законом для разрывных функций. Функция, приведенная выше, со значениями 0 и 1, имеет периодическую родственную прямоугольную волну. И эта волна характеризуется единственным рядом Фурье, причем вполне изящным, работающим одинаково надежно и там, где функция равна 0, и там, где она равна 1. Иными словами, функция, которая кажется представленной двумя разными законами, может быть переписана в рамках одного правила.

Мало-помалу математики XIX в. научились разделять разные концептуальные вопросы в этой сложнейшей области. Первым стало значение самого термина «функция». Вторым – разные способы представления функций: в виде формулы, степенного ряда, ряда Фурье и т. д. Третий вопрос – какими свойствами обладают функции. Четвертый – какое представление функции гарантирует эти свойства. Простой многочлен, например, определяет непрерывную функцию. А обычный ряд Фурье, судя по всему, нет.

Очень быстро анализ Фурье превратился в тест для самой идеи функции. Это обострило проблемы, и важность приобрели скрытые различия технических приемов. Не кто иной, как Дирихле, в 1837 г. предложил современное определение функции в статье, посвященной рядам Фурье. В результате он согласился с Фурье: переменная y является функцией другой переменной x, если для каждого значения x (в определенном диапазоне) задано единственное значение y. Он недвусмысленно утверждал, что здесь не нужны специальный закон или формула – достаточно, чтобы у можно было определить некой четко прописанной последовательностью математических действий, примененных к x. На тот момент должен был казаться экстремальным пример, приведенный им ранее, а именно в 1829 г.: функция f(x) принимает одно значение, когда x – рациональное число, и другое, когда x – иррациональное. Эта функция разрывная в каждой своей точке. (В наше время функции, подобные этой, рассматриваются как довольно невинные, так как возможно гораздо худшее поведение.)

Для Дирихле квадратный корень не был одной двузначной функцией. Это были две однозначные функции. Для действительного x это естественно – но не существенно: взять положительный квадратный корень как одну из них и отрицательный как другую. Для комплексных чисел нет очевидного естественного выбора, хотя какое-то число решений можно найти, чтобы облегчить жизнь.

 

Непрерывные функции

У математиков до сих пор есть привычка: несмотря на великое множество определений понятия «функция», они всё равно то и дело открывают у нее еще какие-то качества, выходящие за рамки определения. В частности, они предположили, что любая разумная формула, например многочлен, автоматически определяет непрерывную функцию. Однако они никогда не доказывали этого – и прежде всего потому, что не определили термин «непрерывная». По большей части данная область всё еще находилась под властью интуитивных построений, отнюдь не всегда правильных.

Первым начал серьезно разбираться в этом беспорядке священник из Богемии, философ и математик Бернард Больцано. Он подвел надежный логический фундамент под большинство основных идей исчисления; главным исключением было то, что он принял как данность существование действительных чисел. Он настаивал, что бесконечно малые и бесконечно большие величины не существуют, а значит, не могут быть использованы, как бы соблазнительно это ни выглядело. И он же дал первое вразумительное определение непрерывной функции. А именно: f непрерывна, если разница f(x + a) – f(x) может быть настолько малой, насколько мы пожелаем, если а тоже достаточно мала. Предыдущие авторы предпочитали формулировки вроде «если а сколь угодно малая величина, то f(x + a) – f(x) также сколь угодно мала». Но для Больцано а была всего лишь числом, подобным другим. Он рассуждал так: каким бы малым ни было f(x + a) – f(x), вы всё равно должны найти для него соответствующую величину а. Не было необходимости, чтобы одна и та же величина использовалась каждый раз.

Например, f(x) = 2x непрерывна, потому что 2(x + a) – 2x = 2a. Если вы хотите, чтобы 2а было меньше определенного числа, скажем 10–10, вам нужно сделать а меньше 10–10/2. Если вы возьмете более сложную функцию, скажем f(x) = x2, вычисления будут немного сложнее, потому что правильное значение а зависит от x так же, как и от выбранной нами величины, 10–10, но любой опытный математик решит эту задачу за пару минут. Пользуясь таким определением, Больцано доказал – впервые в истории, – что полиномиальная функция непрерывна. Но на протяжении 50 лет до этого никому не было дела. Больцано опубликовал свою работу в журнале, который вообще не мог попасть в руки математика – не то чтобы его заинтересовать. В наши дни господства интернета в это трудно поверить, но еще 50 лет назад средства коммуникации не шли ни в какое сравнение с нашими. Что уж говорить о периодике 180-летней давности?

В 1821 г. Коши пришел практически к тому же выводу, но использовал несколько путанную терминологию. Его определение непрерывности функции f заключалось в том, что разница между f(x) и f(x + а) бесконечно мала, если бесконечно мала величина а, что на первый взгляд кажется старым, плохо определенным подходом. Однако бесконечно малой величиной для Коши было не отдельное число, почему-то бесконечно малое, а постоянно убывающая последовательность чисел. Например, последовательность 0,1, 0,01, 0,001, 0,0001 и т. д. бесконечно мала в понимании Коши, но каждое отдельное число, например 0,0001, – обычное действительное число. Возможно, малое, но не бесконечно. Учитывая терминологию, мы видим, что концепция непрерывности Коши в точности повторяет Больцано.

Очередным критиком недостатков в изучении бесконечных процессов стал Абель, жаловавшийся на то, что ученые используют бесконечные ряды, не дав себе труда поинтересоваться, имеет ли смысл их сумма. Его критика оказалась действенной, и мало-помалу в хаосе стали намечаться черты некоего порядка.

ЧТО АНАЛИЗ ДАЛ ИМ

Расцвет математической физики в XIX в. был ознаменован открытием ряда важнейших дифференциальных уравнений. Не имея современных высокоскоростных компьютеров, способных находить численные решения, математики того времени изобрели для уравнений новые специальные функции. И они работают по сей день. Примером может служить уравнение Бесселя . Первым его вывел Даниил Бернулли, а позже обобщил Бессель. Вот оно:

Здесь обычные функции, такие как экспонента, синус, косинус или логарифм, не помогут найти решение. Но можно воспользоваться методами анализа в виде степенного ряда. Он определяет новые функции, так называемые функции Бесселя. Простейшая функция Бесселя обозначается как J k ( x ); но есть и другие. Степенные ряды позволяют вычислить J k ( x ) с необходимой точностью.

Функции Бесселя естественным образом возникают в задачах, связанных с кругами и цилиндрами, такими как колебание круглой мембраны, распространение электромагнитных волн в цилиндрическом волноводе, теплопроводность в цилиндрическом металлическом стержне и физика лазеров.

Интенсивность лазерного излучения описывается функцией Бесселя J1(x)

 

Пределы

Идеи Больцано дали толчок дальнейшему усовершенствованию. Он сделал возможным определение предела бесконечной последовательности чисел и, следовательно, ряда, который является суммой бесконечной последовательности. Так, его формализм подразумевает:

1 + 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + …

и т. д. до бесконечности. Это осмысленная сумма, и ее величина точно равна 2. Не чуть-чуть меньше, не бесконечно малой величине меньше 2, а ровно 2. Чтобы понять, как это работает, предположим, что у нас есть последовательность чисел:

a 0 , a 1 , a 2 , a 3 , …

и т. д. до бесконечности. Мы можем сказать, что an стремится к пределу a по мере того, как n стремится к бесконечности, если для любого числа ε > 0 существует такое число N, что разница между an и а меньше, чем ε, для любого n > N. (Символ ε, один из традиционно используемых математиками, – греческая буква эпсилон.) В этом определении все числа конечные – никаких бесконечно малых или бесконечно больших. В дополнение к бесконечному ряду выше взглянем на его конечные суммы:

a 0 = 1,

a 1 = 1 + 1 / 2 = 3 / 2 ,

a 2 = 1 + 1 / 2 + 1 / 4 = 7 / 4 ,

a 3 = 1 + 1 / 2 + 1 / 4 + 1 / 8 = 15 / 8

и т. д. Разница между an и 2 равна 1/2n. Чтобы сделать ее меньше ε, мы берем n > N = log2 (1/ε).

Ряд, имеющий конечный предел, называют сходящимся. Конечная сумма определяется как предел последовательности конечных сумм, полученных добавлением всё новых ее элементов. Если такой предел существует, ряд сходящийся. И производные, и интегралы – лишь разновидности пределов. Они существуют – иными словами, обретают математический смысл – при условии, что их пределы сходятся. Пределы, как отмечал Ньютон, – некая величина, которая позволяет определить, как некое другое число приближается к бесконечности или 0. Но при этом число не может достичь бесконечности или 0.

Сегодня исчисление в целом опирается на непоколебимый фундамент. Ранее его главным недостатком было то, что, прежде чем прибегнуть к поиску предела, никто не интересовался, есть ли вообще сходимость. Лучшим способом сделать это было бы доказательство еще нескольких более общих теорем о том, какие виды функций непрерывны, или дифференцируемы, или интегрируемы, и какие последовательности и ряды сходятся. Именно этим и занялись математики, и именно поэтому мы можем уже не тревожиться из-за нестыковок, отмеченным епископом Беркли. Поэтому мы больше не противимся использованию рядов Фурье: теперь можно точно определить, когда они сходятся, а когда нет, и уж, во всяком случае, четко понять, в каком смысле они сходятся. Существует достаточно возможностей выбрать тот ряд Фурье, который вам нужен.

 

Степенные ряды

Вейерштрасс открыл, что одинаковые идеи работают и с комплексными числами, и с действительными. Любое комплексное число z = x + iy имеет модуль , что, согласно теореме Пифагора, равно расстоянию от 0 до z на комплексной плоскости. Если мерить величину комплексного выражения с помощью его модуля, то определения предела, ряда и т. п., сформулированные для действительных чисел еще Больцано, тут же перенесутся в область комплексного анализа.

Вейерштрасс отметил, что один особый вид бесконечного ряда кажется особенно полезным. Он известен как степенной ряд и выглядит как многочлен бесконечной степени:

f ( z ) = a 0 + a 1 z + a 2 z 2 + a 3 z 3 + …,

где коэффициенты an – конкретные числа. Вейерштрасс углубился в исследование этого вопроса, стремясь полностью провести комплексный анализ степенных рядов. Результаты вышли блестящими.

Например, вы можете описать экспоненциальную функцию выражением:

e z = 1 + z + 1 / 2 z 2 + 1 / 6 z 3 + 1 / 24 z 4 + 1 / 120 z 5 + …,

где 2, 6, 24, 120 и т. д. являются факториалами – произведениями последовательности целых чисел (например, 120 = 1 × 2 × 3 × 4 × 5). Эвристически Эйлер уже выводил эту формулу, теперь же Вейерштрасс получил ее логическим путем. В очередной раз использовав страницы из книги Эйлера, он сумел преобразовать тригонометрические функции в экспоненциальные, определив:

cos θ = 1 / 2 ( e i θ + e – i θ ),

sin θ = 1 / 2 i ( e i θ  – e – i θ ).

Все стандартные свойства этих функций вытекают из их выражений в виде степенного ряда. Вы даже можете определить π и доказать, что eiπ = –1, как утверждал Эйлер. И из этого, в свою очередь, вытекает, что комплексные логарифмы ведут себя именно так, как описывал Эйлер. Всё это наполнилось смыслом. Комплексный анализ перестал быть загадочным продолжением вещественного анализа: он превратился в самостоятельный серьезный предмет. На поверку вышло, что подчас работать в комплексной области даже проще, чтобы выразить в конце вещественный результат.

По Вейерштрассу, все эти достижения были лишь началом – первым этапом грандиозной программы. Но главное – были получены правильные основания. Теперь математики могли без опасений продолжать строить всё более сложное здание нового раздела науки.

Вейерштрасса отличал поразительно светлый ум, открывавший ему путь в самых сложных хитросплетениях пределов, производных и интегралов. И он не сбивался с выбранного курса. Также он заранее видел потенциально трудные места. Одна из его самых удивительных теорем доказывала, что существует функция f(x) от действительной переменной x, непрерывная в любой точке, но не дифференцируемая ни в одной точке. Графиком такой функции является непрерывная кривая, но ее изгибы так прихотливы, что мы не можем провести ни одну касательную к ней. Его предшественники не верили в такую возможность, современники недоумевали, к чему ведет такая теорема. А его последователи развили теорему в самую захватывающую новую теорию ХХ в. – теорию фракталов.

Но об этом мы поговорим позже.

ГИПОТЕЗА РИМАНА

Самой известной нерешенной проблемой для всех математиков является гипотеза Римана: вопрос комплексного анализа, возникший в связи с простыми числами, отразился в итоге на всей математике.

Примерно в 1793 г. Гаусс предположил, что количество простых чисел, меньших х , приблизительно равно x /ln x . На самом деле он сделал более точное приближение, названное интегральным логарифмом. В 1737 г. Эйлер отметил многообещающую связь между теорией чисел и анализом: бесконечный ряд

1 + 2 – s + 3 – s + 4 – s + …

равен произведению, по всем простым р , следующего ряда:

1 + p – s + p –2 s + p –3 s + … = 1/(1 – p – s ).

Здесь мы должны взять s > 1, чтобы ряд сходился.

В 1848 г. Пафнутий Чебышёв добился некоторого прогресса в доказательстве предположения Гаусса, используя комплексную функцию, родственную рядам Эйлера и позже названную дзета-функцией ζ( z ). Роль ее полностью осветил Риман в 1859 г. в своей статье «On the Number of Primes Less Than a Given Magnitude» («О числе простых чисел, не превышающих заданной величины»). Он показал, что статистические свойства простых чисел тесно связаны с нулями дзета-функции, т. е. решениями z уравнения ζ( z ) = 0.

В 1896 г. Жак Адамар и Шарль де ла Валле-Пуссен использовали дзета-функцию для доказательства теоремы о распределении простых чисел. Главной трудностью было показать, что ζ( z ) не равна 0 для всех z вида 1 + it . Чем лучше мы контролируем расположение нулей дзета-функции, тем больше узнаем о простых числах. Риман предположил, что все нули, за исключением тривиальных (получающихся при z , равной отрицательным четным целым числам), расположены на критической прямой z = 1 / 2 + it .

В 1914 г. Харди доказал, что на этой прямой располагается бесконечное множество нулей. Мощные компьютерные данные позже подтвердили эту гипотезу. Себастьян Веденивский с помощью компьютерной программы ZetaGrid в 2001–2005 гг. удостоверил, что первые 100 миллиардов нулей лежат именно на критической прямой.

Гипотеза Римана отмечена номером 8 в знаменитом списке нерешенных кардинальных математических задач, составленном Давидом Гильбертом и содержащем 23 пункта. Кроме того, это одна из задач тысячелетия, за решение которой Математический институт Клея предлагает миллион долларов.

 

Прочные основы

Первопроходцы в области исчисления с кавалерийской отвагой оперировали бесконечностью. Эйлер предположил, что степенные ряды подобны многочленам, и использовал эту гипотезу с сокрушительным эффектом. Но в руках простых смертных такого рода наскоки легко могут привести к откровенной глупости. Даже сам Эйлер иногда высказывал неумные мысли. Например, он начал со степенного ряда 1 + x + x2 + x3 + x4 + …, чья сумма равна 1/(1 – x), положил x = –1 и вывел:

1-1 + 1–1 + 1–1 + … = 1 / 2 ,

что является бессмыслицей. Степенные ряды не сходятся, если x не расположен строго между –1 и 1, что прояснила теория Вейерштрасса.

И только беспощадная критика, подобная той, что высказал епископ Беркли, в итоге обогатила математику и поставила ее на прочную основу. Благодаря этому сложился принцип: чем сложнее твое построение, тем важнее заручиться для него безукоризненным основанием.

Модуль дзета-функции Римана

В наши дни большинство пользователей математики снова пренебрегают ее тонкостями, будучи уверенными в том, что знания, которые они применяют и которые им кажутся разумными, вероятно, имеют строгое обоснование. В этой самоуверенности их укрепили открытия Больцано, Коши и Вейерштрасса. Тем временем профессиональные математики продолжали разрабатывать строгие концепции бесконечности. Даже появилось движение, ратовавшее за возвращение концепции бесконечно малой величины (флюксии), известное как нестандартный анализ, который является совершенно строгим и технически полезным для некоторых других малоподатливых проблем. Здесь удалось избежать логических нестыковок, провозгласив бесконечно малые новым видом чисел, а не условным действительным числом. По духу это близко к тому, как думал Коши. Нестандартный анализ – удел узких специалистов, но, возможно, он станет методом будущего.

ЧТО АНАЛИЗ ДАЕТ НАМ

Анализ используется биологами для изучения динамики роста популяций различных организмов. Простым примером может служить логистическое отображение, или модель Ферхюльста – Пирла. Здесь изменение величины популяции x является функцией от времени t , моделируемой дифференциальным уравнением:

где константа М является «пропускной способностью», максимальной величиной популяции, которую может поддерживать окружающая среда.

Стандартный аналитический метод предлагает точное решение

которое называется логистической кривой. Соответственно модели численность популяции начинает расти очень быстро (экспоненциально), но по мере приближения величины популяции к половине пропускной способности кривая постепенно выравнивается, пока не достигает уровня пропускной способности.

Эта кривая не может точно отражать реальность, хотя достаточно четко воспроизводит поведение многих популяций. Более сложные модели такого типа представят данные, сильнее приближенные к реальности. Потребление человеком природных ресурсов также можно смоделировать в виде логистических кривых, обеспечивая возможность оценить потребности в этих ресурсах в будущем, а также сроки, на которые их хватит.

Мировое потребление нефти-сырца с 1900 по 2000 г.: сглаженная кривая – данные анализа, неровная кривая – реальные данные