Укрощение бесконечности. История математики от первых чисел до теории хаоса

Стюарт Иэн

Глава 15. Геометрия на резиновом листе

 

 

Количество переходит в качество

Все важные элементы евклидовой геометрии: прямые, углы, окружности, площади и т. д. – так или иначе связаны с измерением. Отрезок прямой имеет длину, угол – определенный размер, он может немного отличаться от прямого (90°), варьируя между 89 и 91°, окружности определяются с помощью их радиусов, площадь фигуры зависит от длины ее сторон. Скрытый элемент, благодаря которому работает геометрия Евклида в целом, – это длина, метрическая величина, которая остается неизменной при движениях и определяет евклидов эквивалент концепции движения – конгруэнтность.

 

Топология

Новые типы геометрии тоже оказались метрическими. В неевклидовой геометрии можно определять длину и угол, они просто имеют другие свойства, нежели длина и угол на евклидовой плоскости. С открытием проективной геометрии всё изменилось: проективные преобразования могут изменять длину, а также угол. Евклидова геометрия и два основных вида неевклидовой относительно жесткие. Проективная более гибкая, но даже здесь есть более тонкие инварианты, и в представлении Клейна это определяет геометрию как группу преобразований и соответствующих инвариантов.

На исходе XIX в. математики начали развивать еще более гибкую разновидность геометрии – столь гибкую, что она получила название «геометрия на резиновом листе». Нам более привычно иное наименование – топология. Это геометрия форм, которые можно исказить чрезвычайно запутанными способами. Прямые могут искривляться, сжиматься или растягиваться; окружности сжимают так, что они превращаются в треугольники или квадраты. Единственное, что имеет значение, – непрерывность. Трансформации, разрешенные в топологии, непременно должны быть непрерывными в смысле анализа. Грубо говоря, это значит, что если две точки изначально достаточно близки между собой, они и в итоге останутся близкими, – отсюда и образ резинового листа.

Здесь всё еще слышны отголоски привычного метрического образа мышления: «достаточно близкие» – метрическая концепция. Но к началу ХХ в. математики избавились и от них, и топологические преобразования обрели независимое существование. Это тут же повысило научный статус топологии, вплоть до того, что она заняла ведущую роль в математике, – хотя с самого начала производила впечатление очень странной и бессодержательной области. Если преобразования настолько гибкие, то что же тогда может быть инвариантом? На поверку выходит, что очень многое. Однако тип инварианта, который тогда вступил в игру, еще никогда не рассматривался в геометрии. Связность: сколько именно частей имеет этот объект? А отверстия: то ли видна петля, то ли туннель сквозь объект? Узлы – как они образовались и можно ли их распутать? С точки зрения тополога, и бублик, и чашка кофе идентичны (зато не идентичны бублик и стакан); однако оба отличаются от круглого мяча. Простой узел отличается от узла-восьмерки, но для доказательства этого потребовалось изобрести новый подход, и долгое время вообще никому не удавалось доказать, существуют ли узлы.

Кажется невероятным, чтобы нечто столь зыбкое и расплывчатое могло оказаться для нас столь важным. Но внешность обманчива. Непрерывность – одно из фундаментальных качеств мира природы, и любое сколь-нибудь серьезное исследование непрерывности приводит к топологии. Даже сегодня мы косвенно пользуемся топологией наряду со множеством других техник.

Вы не найдете примеров откровенной топологии у себя на кухне – по крайней мере явных. (Хотя иногда вы можете заметить ее элементы в хаотичной работе посудомоечной машины, использующей беспорядочные перемещения двух вращающихся лопастей для пущей эффективности процесса. Кроме того, наше понимание феномена хаоса зиждется на топологии.) Главными практическими потребителями топологии стали теоретики квантовых полей, – возможно, это не очень привычное использование слова «практический», но, несомненно, важная область физики. Другое приложение идей топологии демонстрирует молекулярная биология, где с помощью топологических концепций ученые исследуют изгибы и повороты молекулы ДНК.

В скрытом виде топология приносит информацию в математический мейнстрим в целом и способствует развитию других методов с более очевидным практическим применением. Это строгое исследование качественных геометрических характеристик – в противоположность количественным, таким как длина. Вот почему математики придают топологии такое значение, хотя вполне возможно, что остальной мир об этом не знает.

 

Многогранник и кенигсбергские мосты

Как полноправная наука топология обособилась только в 1900-х гг., но она уже проявлялась и ранее в математических исследованиях. Два вопроса в предыстории топологии были рассмотрены Эйлером: его формула для многогранника и решение задачи о кенигсбергских мостах.

В 1639 г. Декарт отметил любопытную черту нумерологии правильных тел. Взять, к примеру, куб. Это 6 граней, 12 ребер и 8 вершин. Сложите 8 и 6, и вы получите 14, на 2 больше, чем 12. А как насчет додекаэдра? У него 12 граней, 30 ребер и 20 вершин. И 12 + 20 = 32, что на 2 больше 30. То же повторяется у тетраэдра, октаэдра и икосаэдра. Та же особенность, судя по всему, присуща практически всем многогранникам. Если тело имеет F граней, Е ребер и V вершин, то F + V = E + 2, что можно переписать как

F – E + V = 2.

Декарт не опубликовал свое открытие, но записал его в своем манускрипте, прочитанном Лейбницем в 1675 г.

Эйлер первым опубликовал это соотношение в 1750 г. Он добавил доказательство в 1751 г. Его увлекли эти взаимоотношения, потому что он пытался разработать классификацию многогранников. В работе над классификацией ученому приходится учитывать любое общее свойство предметов, подобное этому.

Многогранник с отверстием

Существует ли формула, верная для всех многогранников? Не совсем так. Если наш многогранник имеет форму рамы для картины, с квадратным поперечным сечением и прямыми углами, то у него 16 граней, 32 ребра и 16 вершин, т. е. здесь F + V – E = 0. Причиной такого несоответствия оказывается наличие отверстия. Фактически если многогранник имеет g отверстий, то

F + V – E = 2 – 2 g .

Что же это – отверстие? Ответ найти труднее, чем кажется. Во-первых, речь идет о поверхности многогранника, а не о его сплошном внутреннем пространстве. В реальной жизни для того, чтобы сделать отверстие в чем-либо, мы внедряемся в его твердую сплошную внутренность, но приведенные выше формулы не имеют отношения к ней – только к граням, образующим его поверхность, заодно с их ребрами и вершинами. Всё, с чем мы имеем дело, лежит на поверхности. Во-вторых, единственный вид отверстий, влияющий на численные данные, – те, что пронзают тело насквозь, образуя туннель с двумя концами. Проще говоря, это не такое отверстие, которое может вырыть рабочий на дороге. В-третьих, такие отверстия могут не быть на поверхности, хотя отчасти именно поверхности очерчивают их. Отверстие существует только в качестве пустого места в бублике, но даже в этом случае вы покупаете твердую внутренность бублика.

ДОКАЗАТЕЛЬСТВО КОШИ ДЛЯ ФОРМУЛЫ ДЕКАРТА – ЭЙЛЕРА

Удалим одну грань и растянем поверхность тела на плоскости. Это уменьшит F на 1, т. е. теперь мы доказываем, что в результате плоская конфигурация для ребер, линий и точек удовлетворяет формуле F – E + V = 1. Чтобы этого достичь, сначала преобразуем все грани в треугольники, начертив, если надо, добавочные диагонали. Каждая из новых диагоналей оставит V неизменной, но увеличит и E , и F на 1, так что F – E + V не изменится. Теперь начнем удалять ребра начиная с наружных. Каждое из удалений уменьшает и F , и E , так что F – E + V cнова останется тем же. Когда вы закончите с удалением плоскостей, у вас останутся в случае тетраэдра три ребра и три вершины не имеющие замкнутых контуров. Одну за другой удалим крайние вершины заодно с ребрами, подходящими к ним. Теперь и E , и F уменьшатся на 1, и cнова F – E + V остается таким же. Этот процесс остановится только на последней вершине. Теперь F = 0, E = 0 и V = 1, так что F – E + V = 1, что и требовалось доказать.

Пример доказательства Коши

Наверное, проще исходить из определения, что значит «не отверстие». Многогранник не имеет отверстий, если его можно непрерывно деформировать, получая искривленные грани и ребра, пока он (вернее, его поверхность) не превратится в сферу. Для таких поверхностей F + V – E на самом деле всегда будет равно 2. И обратное утверждение верно: если F + V – E = 2, многогранник можно деформировать в сферу.

Непохоже, что многогранник в виде рамы для картины можно деформировать в сферу, – куда же денется отверстие? Для строгого доказательства этого мы не должны заглядывать дальше того факта, что для этого многогранника F + V – E = 0. Такое соотношение невозможно для поверхностей, способных деформироваться в сферу. Итак, числа многогранников описывают для нас важные особенности их геометрии, и последние могут быть топологическими инвариантами – неизменными при деформациях.

Сейчас формула Эйлера кажется нам замечательным намеком на очень полезную связь между комбинаторными аспектами многогранника, такими как количество граней, и его топологическими аспектами. Получается, что проще двигаться в обратном направлении.

Чтобы вычислить количество отверстий на поверхности, возьмем F + V – E – 2, разделим на 2 и изменим знак:

g = –( F + V – E  – 2)/2.

Курьезный вывод: теперь мы можем вычислить количество отверстий в многограннике, не давая определения отверстия.

Преимущество такой процедуры в том, что она естественна для многогранника, не требует визуального контакта с ним в окружающем трехмерном пространстве – того, как видят отверстие наши глаза. Необычайно разумный муравей, обитающий на поверхности многогранника, может решить, что там есть какое-то отверстие, даже если видит только поверхность. Эта естественная точка зрения присуща топологии. Она изучает форму предметов как таковую, саму по себе, а не как часть чего-то еще.

На первый взгляд задача о кенигсбергских мостах не имеет отношения к комбинаторике многогранников. Город Кенигсберг (ныне Калининград), некогда принадлежавший Пруссии, расположен по обоим берегам реки Преголя, на которой есть два острова. Те связаны с берегами и друг с другом семью мостами. Понятно, что жители Кенигсберга долго гадали, можно ли так проложить маршрут воскресной прогулки, чтобы только один раз пройти по каждому из мостов.

Задача о кенигсбергских мостах

Загадку в 1735 г. решил Эйлер; хотя правильнее будет сказать, он доказал, что здесь нет решения, и объяснил почему. Он использовал два важных приема: упростил задачу и сократил ее до самых элементарных требований, а затем обобщил ее, сравнив со всеми головоломками такого рода. Он указал, что для решения важны не размеры и форма островов, а то, как именно связаны между собой острова, берега и мосты. Всю проблему можно было изобразить простой схемой точек (вершин), соединенных линиями (ребрами), как это показано наложением на нашей карте.

Чтобы составить такую схему, мы расположим по одной вершине на каждом массиве суши: северный берег, южный берег и два острова. Соединим две вершины ребром всякий раз, когда есть мост, связывающий соответствующие фрагменты суши. Тогда мы получаем четыре вершины A, B, C и D и семь ребер, по одному для каждого моста.

Теперь задачу можно заменить более простым эквивалентом на схеме. Возможно ли найти на ней маршрут – связанную последовательность ребер, чтобы он включал по одному разу каждое ребро?

Эйлер определил два типа маршрутов: открытый, у которого начало и конец находятся в разных вершинах, и замкнутый, у которого начало и конец приходятся на одну вершину. Он доказал, что именно для этой схемы не существует маршрута ни одного из этих типов.

Ключом к загадке станет рассмотрение валентности каждой вершины: в данном случае это число сходящихся в ней ребер. Сперва рассмотрим вариант замкнутого маршрута. Здесь каждое ребро, приходящее к вершине, соединяется с другим – следующим, по которому маршрут покидает эту вершину. Если замкнутый маршрут возможен, количества ребер для каждой вершины должны, соответственно, быть четными. Иными словами, у всех вершин должна быть равная валентность. Но на схеме мы видим три вершины с валентностью 3 и одну с валентностью 5 – всё это нечетные числа. Значит, замкнутого маршрута не существует.

Те же критерии мы применяем к открытому маршруту, но здесь получится минимум две вершины с нечетной валентностью: одна в начале и другая в конце. Поскольку на схеме Кенигсберга есть четыре вершины с нечетной валентностью, открытого маршрута не существует.

Эйлер сделал еще один важный шаг – доказал, что эти необходимые условия для существования маршрута являются также достаточными при условии, что на диаграмме есть связь (т. е. две любые вершины связаны каким-либо путем). Это общее свойство доказать несколько труднее, и у Эйлера ушло некоторое время на поиски решения. Сейчас мы можем записать доказательство в нескольких строках.

 

Геометрические свойства плоских поверхностей

Два открытия Эйлера кажутся принадлежащими к весьма далеким друг от друга разделам математики, но при внимательном рассмотрении легко заметить общие для них детали. Они используют комбинаторику схем многогранников. Одно считает грани, ребра и вершины, а другое – валентности; одно выводит общие соотношения между тремя числами, другое ищет что-то общее в имеющихся маршрутах. Но они явно родственны по духу. И даже больше, причем эта особенность оставалась незамеченной на протяжении более чем столетия: оба являются инвариантами непрерывных преобразований. Само расположение вершин и ребер здесь не имеет значения: нам важно лишь то, как они связаны между собой. Обе проблемы покажутся одинаковыми, если мы нарисуем эту схему на резиновом листе, который потом деформируется. Единственный способ создать значимые различия – разрезать или разорвать этот лист и склеить потом его куски; но эта операция уничтожит саму непрерывность.

ЛЕНТА МЁБИУСА

Топология может преподнести сюрпризы. Самый известный из них – лента Мёбиуса (лист Мёбиуса). Чтобы ее получить, нужно взять длинную полоску бумаги и склеить ее противоположные концы, повернув один из них вполоборота. Без поворота мы получим обычный цилиндр. Различие между этими двумя поверхностями станет понятно, если мы попробуем их покрасить. У цилиндра мы легко сможем выкрасить наружную поверхность в красный цвет, а внутреннюю в синий. Но если вы начнете красить красным одну сторону ленты Мёбиуса и будете поступательно двигаться от окрашенной части к неокрашенной, окажется, что вы выкрасили в красный цвет всю ленту. Из-за полуоборота внутренняя поверхность соединилась с наружной.

Еще одно отличие проявится, если вы разрежете ленту пополам вдоль всей ее длины. Да, она разделится на две части, но они останутся связанными друг с другом.

Проблески общей теории первым заметил Гаусс, время от времени пытавшийся привлечь внимание коллег к необходимости некой теоретической базы для геометрических свойств схем. Он также изобрел новый топологический инвариант, который мы сейчас называем коэффициентом зацепления, для исследований магнетизма. Это число определяет, как одна замкнутая кривая обкручивается вокруг другой. Гаусс вывел формулу для подсчета коэффициента зацепления на основе аналитических выражений, описывающих кривые. Такой же инвариант, число оборотов (или индекс точки) для замкнутой кривой по отношению к точке, был использован в одном из доказательств Основной теоремы алгебры.

Наибольший вклад в становление топологии внесли студент Гаусса Иоганн Листинг и ассистент Август Мёбиус. Листинг учился у Гаусса в 1834 г., и в его труде «Предварительные исследования по топологии» впервые используется термин «топология». Сам Листинг сначала применял выражение «геометрия позиций», но его уже пустил в обиход Карл фон Штаудт для описания проективной геометрии, и Листингу пришлось искать другой вариант. Кроме того, Листинг искал способ обобщения формулы Эйлера для многогранников.

Мёбиус сумел четко обозначить важную роль непрерывных преобразований. Его нельзя было назвать самым продуктивным ученым, но он отличался чрезвычайно кропотливым подходом к любой исследуемой им теме. В частности, именно он обратил внимание на то, что у поверхности отнюдь не всегда есть две четко разделенные стороны, приведя в пример свою знаменитую ленту. Эту поверхность независимо друг от друга открыли и Мёбиус, и Листинг в 1858 г. Листинг опубликовал свое открытие в книге «Der Census Räumlicher Complexe» («Описание пространственной сложности»), а Мёбиус – в статье об исследовании свойств поверхностей.

Долгое время идеи Эйлера о многогранниках оставались в стороне от основных направлений математической мысли, но в какой-то момент несколько маститых ученых открыли новый подход к геометрии, который они назвали тогда analysis situs, т. е. анализ размещений. Под этим подразумевалась качественная теория форм как самостоятельная дисциплина, дополняющая более привычную тогда количественную теорию длин, углов, площадей и объемов. Этот взгляд делался всё более популярным по мере появления новых открытий в традиционных исследованиях основных направлений математики. Ключевым шагом стало открытие связей между комплексным анализом и геометрией поверхностей, сделанное Риманом.

 

Сфера Римана

Очевидный способ осмысления комплексной функции f состоит в том, чтобы интерпретировать ее как отображение из одной комплексной плоскости в другую. Базовая формула для такой функции, w = f(z), предлагает нам взять любое комплексное число z, применить к нему f и получить другое комплексное число w, связанное с z. Геометрически z принадлежит одной комплексной плоскости, а w – фактически второй, независимой копии комплексной плоскости.

Но эта точка зрения была не особо популярна среди ученых, и причиной тому стали так называемые сингулярности. Комплексные функции часто имеют такие интересные точки, в которых их регулярное, нормальное поведение становится странным. Например, функция f(z) = 1/z ведет себя очень предсказуемо во всех точках, за исключением 0. Когда z = 0, значение функции равно 1/0, что не имеет смысла для обычного комплексного числа, хотя с помощью некоторой доли воображения его можно представить как бесконечность (символ ∞.). Если z слишком близко подойдет к 0, 1/z окажется особенно большим. Бесконечность в этом смысле не число – это всего лишь термин, описывающий численный процесс: число становится сколь угодно большим. Гаусс уже отметил, что бесконечности такого рода создают новый тип поведения при комплексном интегрировании. Это оказалось существенным.

Риман счел полезным включить ∞ в ряд прочих комплексных чисел и нашел для этого красивый геометрический способ. Разместите единичную сферу так, чтобы она оказалась поверх комплексной плоскости. Теперь ассоциируйте точки на плоскости с точками на сфере с помощью стереографической проекции. Это значит соединить точку на плоскости с северным полюсом сферы и посмотреть, где эта линия будет пересекать сферу.

Сфера Римана и комплексная плоскость

Такая конструкция называется сферой Римана. Новая точка – своего рода северный полюс сферы: единственная точка, которая не соответствует какой-либо точке на комплексной плоскости, и будет являться бесконечностью. Поразительно, как прекрасно эта конструкция вписывается в стандартные расчеты в комплексном анализе, ведь теперь уравнение вроде 1/0 = ∞ обретает безукоризненный смысл. Точки, в которых комплексная функция f принимает значение ∞, называются полюсами, и на поверку выходит, что вы сможете больше выяснить о f, если знаете, где лежат ее полюса.

Одна лишь сфера Римана не привлекла бы столь пристального внимания ученых к топологическим аспектам комплексного анализа, но второе свойство сингулярности, под названием точка ветвления, сделало топологию незаменимой. Простейший пример – комплексная функция квадратного корня, f(z) = √z. Большинство комплексных чисел имеет два разных квадратных корня, как и действительные числа. Они различаются лишь знаком: один положительный, другой отрицательный, причем по модулю они равны. Например, квадратные корни из 2i равны 1 + i и –1 – i, почти как действительные квадратные корни из 4 равны 2 и –2. Но есть одно комплексное число с одним квадратным корнем: 0. Почему? Потому что + 0 и –0 равны.

Чтобы понять, почему 0 оказывается точкой ветвления для функции квадратного корня, представим cебе для начала точку 1 на комплексной плоскости и выберем один из двух квадратных корней. Явным выбором станет 1. Теперь постепенно перемещайте точку вокруг единичной окружности и по мере движения выбирайте для каждого положения точки тот из квадратных корней, который меняется непрерывно. К тому моменту, когда вы пройдете половину окружности до –1, квадратный корень пройдет лишь четверть окружности, до + i, поскольку √–1 = + i или – i. Продолжая путь по кругу, мы вернемся в исходную точку 1. Но квадратный корень, двигающийся с половинной скоростью, остановится только у –1. Чтобы вернуть его к исходному значению, точке придется пройти окружность полностью дважды.

Риман нашел способ справиться с такой разновидностью сингулярности: он удвоил сферу Римана до двух слоев. Они отделены друг от друга, за исключением точек 0 и ∞ – второй точки ветвления. В них слои сливаются – или, наоборот, разветвляются от одиночного слоя при 0 и ∞. Возле двух этих особых точек геометрия слоев выглядит как винтовая лестница: необычно то, что если вы подниметесь на два полных оборота по этой лестнице, то окажетесь там, откуда начали. Геометрия этой поверхности говорит нам очень многое о функции квадратного корня, и та же идея остается верной для других комплексных функций.

Сфера

Тор

Тор с двумя отверстиями

Описание поверхности смутное, и возникает вопрос: что у нее за форма? Вот здесь и вступает в игру топология. Мы можем непрерывно деформировать винтовую лестницу во что-то более легкое для визуализации. Специалисты по комплексному анализу открыли, что топологически всякая поверхность Римана является либо сферой, либо тором, либо тором с двумя отверстиями, либо тором с тремя отверстиями и т. д. Число отверстий g известно как род поверхности, и это то же g, которое встречалось нам в обобщенной формуле Эйлера для поверхностей.

 

Ориентируемые поверхности

Понятие рода оказалось важным для многих глубинных вопросов в комплексном анализе, что вынудило ученых обратить внимание на топологию поверхностей. Постепенно стало ясно, что существует второй класс поверхностей, отличных от торов с g отверстиями, но тесно с ними связанный. Отличие в том, что торы с g отверстиями – ориентируемые поверхности; интуитивно это означает, что они имеют две четко различающиеся стороны. Они наследуют это свойство от комплексной плоскости, имеющей верхнюю и нижнюю стороны, поскольку винтовые лестницы соединяются так, что это различие сохраняется. Если вместо этого вы соедините два лестничных пролета так, чтобы пол одного из них повернулся вверх, то стороны, ранее бывшие раздельными, соединятся.

О возможности соединения такого рода первым заговорил Мёбиус, чья лента имела одну сторону и один край. Клейн пошел дальше, концептуально склеив в круглый диск края ленты Мёбиуса, чтобы избавиться от края. Получившаяся поверхность, в шутку прозванная бутылкой Клейна, имеет только одну сторону и вовсе не имеет краев. Если мы попытаемся изобразить ее в привычном трехмерном пространстве, ей придется пройти себя насквозь. Но в качестве абстрактной поверхности (или поверхности, помещенной в четырехмерное пространство) она не пронзит себя.

Теперь теорему о торах с g отверстиями можно переформулировать так: любая ориентируемая поверхность (или конечное пространство без границ) топологически эквивалента сфере с g дополнительными отверстиями (где g может быть равно 0). Есть соответствующая классификация и для неориентируемых (односторонних) поверхностей: они могут быть образованы поверхностью под названием проективная плоскость путем добавления g отверстий. Бутылка Клейна как раз и является проективной поверхностью с одним отверстием.

Комбинация этих двух результатов называется теоремой о классификации поверхностей. Она позволяет описать в топологическом эквиваленте любую возможную поверхность (или конечное пространство без границ). С доказательством этой теоремы топология двумерных пространств – поверхностей – может считаться вполне изученной. Это, конечно, не значит, что на любой вопрос о поверхностях теперь легко найти ответ, но по крайней мере это дает хороший задел для исследований новых сложных проблем. В любом случае, теорема о классификации поверхностей – чрезвычайно важный инструмент двумерной топологии.

Бутылка Клейна. Видимое самопересечение – не более чем иллюзия, возникающая из-за трехмерности изображения

ЖЮЛЬ-АНРИ ПУАНКАРЕ 1854–1912

Анри Пуанкаре родился во французском Нанси. Его отец Леон был профессором медицины в Университете Нанси, его мать звали Эжени Лануа. Его кузен, Раймон Пуанкаре, стал французским премьер-министром и даже занимал пост президента страны во время Первой мировой войны. Анри отлично успевал по всем предметам в школе, особенно выделяясь в математике. Прекрасная память и способность легко представить себе объемное изображение даже самой сложной формы помогали компенсировать его слабое зрение: ученик едва различал классную доску, не говоря уж о том, что на ней было написано.

Его первой должностью был пост преподавателя в университете города Кан в 1879 г., но уже в 1881 г. он удостоился гораздо более денежного и престижного места в Парижском университете. Там он стал одним из ведущих математиков своего времени. Он работал систематически – каждый день по четыре часа, разбитых на два двухчасовых промежутка, утром и вечером. Но полет его мысли не поддавался столь строгой организации, и зачастую он принимался писать статью, не имея даже представления о том, к чему приведет его новое исследование и как оно закончится. Его отличала высочайшая интуиция, и лучшие идеи приходили часто в те моменты, когда он размышлял о чем-то постороннем.

Среди своих современников он, несомненно, был самым выдающимся математиком, сделавшим немало важных открытий в теории комплексного переменного, дифференциальных уравнений, неевклидовой геометрии и топологии – которую отчасти и создал. Он много занимался прикладными исследованиями в области электричества, сопротивления материалов, оптики, термодинамики, теории относительности, квантовой теории, астрономии и космологии.

Он завоевал главный приз в конкурсе, объявленном в 1887 г. королем Швеции и Норвегии Оскаром II. Темой была объявлена «задача трех тел» – исследование движения гравитационно взаимодействующих трех тел. В поданную на конкурс работу закралась ошибка, которую удалось быстро исправить. В результате были открыты возможности того, что сейчас известно под названием «хаос»: беспорядочное, непредсказуемое движение в системе, подчиняющейся детерминированным законам. Также он опубликовал несколько чрезвычайно популярных и известных книг: «Наука и гипотеза» (1901), «Ценность науки» (1905), «Наука и метод» (1908).

Тем, кто хочет научиться мыслить в понятиях топологии, часто помогает представление об изучаемом пространстве как о единственном существующем предмете. Вовсе ни к чему пытаться вписать его в окружающее пространство. Это позволяет полностью сосредоточиться на внутренних свойствах пространства. Представьте на минуту мелкое существо, обитающее, так сказать, на топологической поверхности. Как может такая козявка, не имея представления обо всем окружающем ее пространстве, пытаться понять, на чем она обитает? Как прикажете ей давать характеристики такой поверхности «изнутри»? К 1990 г. стало ясно, что единственный способ ответить на этот вопрос – представить существование на этой поверхности замкнутых петель и способы их деформации. Например, на сфере любая замкнутая петля может непрерывно деформироваться до точки – стянувшись в нее. Окружность, вращающаяся вокруг экватора, может постепенно смещаться к северному полюсу, делаясь всё меньше, пока не совпадет с самим полюсом.

И наоборот, всякая поверхность, не эквивалентная сфере, содержит петли, которые не могут быть деформированы до точки. Они проходят сквозь отверстие, и то не дает им стягиваться. Итак, сфера может быть определена как единственная поверхность, в которой всякая замкнутая петля может стянуться до точки.

 

Топология в трех измерениях

Естественным шагом после плоскостей – двумерных топологических пространств – становится трехмерное пространство. Теперь объектами изучения станут многообразия в понимании Римана, за исключением того, что понятия расстояния игнорируются. В 1904 г. Анри Пуанкаре, один из величайших математиков всех времен, пытался понять свойства трехмерных многообразий. Он открыл ряд методов для достижения этой цели. Один из них, гомология, изучает взаимоотношения между областями в многообразиях и их границами. Другой – гомотопия – отслеживает изменения, происходящие с замкнутыми петлями в многообразиях в процессе их деформации.

Гомотопия тесно связана с методами, отлично служившими при изучении плоскостей, и Пуанкаре искал аналогичные результаты для трехмерного пространства. Так он пришел к одному из самых важных вопросов математики.

Он помнил о свойстве сферы как единственной поверхности, у которой всякая замкнутая петля может стянуться. Работает ли это свойство в трех измерениях? На первых порах он предположил, что да. Это казалось очевидным, и ученому даже не пришло в голову, что он делает необоснованное допущение. Позже ему стало ясно, что одна из правдоподобных версий этого утверждения откровенно ошибочна, а другая тесно связанная с нею формулировка может оказаться верной, несмотря на сложности с доказательством. Он задал вопрос, впоследствии названный гипотезой Пуанкаре. Если трехмерное многообразие (без границ, или конечного пространства, и т. д.) обладает тем свойством, что всякая замкнутая петля в нем может стянуться до точки, то такое многообразие топологически должно быть эквивалентно 3-сфере (естественному аналогу обычной сферы).

Последовавшие попытки доказать теорему завершились успешными обобщениями для четырех и более измерений. Топологи продолжали работу с изначальной гипотезой Пуанкаре, в трех измерениях, – без успеха.

В 1980-х гг. Уильям Тёрстон высказал идею, которая могла бы превзойти гипотезу Пуанкаре, будучи более амбициозной. Его гипотеза геометризации пошла дальше, обобщая свойства всех трехмерных многообразий, а не только тех, где всякая замкнутая петля может стянуться. Отправной точкой стала новая интерпретация классификации поверхностей в терминах неевклидовой геометрии.

Тор можно получить, взяв квадрат в евклидовой плоскости и отождествив его противоположные края. Тогда он плоский – с нулевой кривизной. У сферы имеется постоянная положительная кривизна. Тор с двумя или более отверстиями может быть представлен как поверхность с постоянной отрицательной кривизной. Иными словами, топология поверхностей может быть заново интерпретирована в терминах геометрии трех типов: одного евклидова и двух неевклидовых, точнее, собственно евклидовой геометрии, эллиптической геометрии (положительная кривизна) и гиперболической (отрицательная кривизна; геометрия Лобачевского).

Может ли быть нечто аналогичное в трех измерениях? Тёрстон указывал на ряд осложнений: оказывается, здесь задействовано не три, а восемь типов геометрий. И уже нет возможности использовать какую-то одну из них для данного многообразия: последнее должно быть разбито на несколько частей, чтобы для каждой использовать свою геометрию. Он сформулировал свою гипотезу геометризации: всегда есть систематический способ разбить трехмерное многообразие на части, каждая из которых соответствует одной из восьми геометрий.

ЧТО ТОПОЛОГИЯ ДАЛА ИМ

Один из простейших топологических инвариантов был открыт Гауссом. При исследованиях электрических и магнитных полей его заинтересовало, как могут быть связаны две замкнутые петли. Он изобрел коэффициент зацепления, который обозначает, сколько раз одна петля оборачивается вокруг другой. Если число зацеплений не равно 0, петли не могут быть разделены с помощью топологического преобразования. Однако данный инвариант не помогает достоверно определить, когда две соединенные петли невозможно разделить, ведь в некоторых случаях инвариант связывания равен 0, однако петли разделить невозможно.

Слева: петли с коэффициентом зацепления 3. Справа: эти связи нельзя разделить топологически, хотя их коэффициент зацепления равен 0

Он даже составил аналитическую формулу для такого числа, взяв интеграл подходящей величины вдоль соответствующей кривой. Открытия Гаусса положили начало такой современной отрасли математики, как алгебраическая топология.

Теперь гипотеза Пуанкаре становится ее прямым следствием, поскольку условие, что все петли стягиваются, исключает семь геометрий, оставляя только геометрию постоянной положительной кривизны – трехмерной гиперсферы.

Альтернативный подход предлагает геометрия Римана. В 1982 г. Ричард Гамильтон открыл в этой области новые приемы, основанные на математических идеях, которые были использованы Альбертом Эйнштейном для обоснования общей теории относительности. По Эйнштейну, пространство-время можно считать изогнутым, а кривизна описывает силу притяжения. Она измеряется так называемым тензором кривизны, который имеет более простого родственника, известного как тензор Риччи (назван в честь его изобретателя Грегорио Риччи-Курбастро). Изменения в геометрии Вселенной, связанные со временем, описываются уравнениями Эйнштейна, где говорится, что кривизна пропорциональна силе тензора. В результате гравитационные искривления Вселенной стараются со временем выпрямиться, и уравнения Эйнштейна количественно описывают эту идею.

Тот же фокус можно проделать и с использованием версии кривизны Риччи, и мы получим ту же модель поведения: поверхность, подчиняющаяся уравнениям для потока Риччи, естественным путем стремится к упрощению своей геометрии, более справедливо распределяя свою кривизну. Гамильтон показал, что гипотеза Пуанкаре для двумерного пространства может быть доказана с помощью потока Риччи – на основании того, что поверхность, на которой все петли стягиваются, упрощает саму себя по мере того, как следует потоку Риччи, так что в конце получается идеальная сфера. Гамильтон также предложил обобщить этот подход для трехмерного пространства и даже добился определенного успеха в своих исследованиях, пока не натолкнулся на ряд трудностей.

 

Перельман

В 2002 г. Григорий Перельман произвел сенсацию, выложив несколько своих статей на arXiv – сайте, созданном физиками и математиками для нерецензируемых публикаций и подчас даже еще не законченных исследований. Так ученые могли избежать проволочек из-за реферирования, неизбежных при официальной публикации своих открытий. Ранее этой же цели служили периодически издававшиеся на бумаге неофициальные препринты. На первый взгляд статьи Перельмана посвящены потоку Риччи, но на самом деле становится понятно, что если открытия автора верны, они послужат доказательством гипотезы геометризации, которую сформулировал Пуанкаре.

Основную идею предложил еще Гамильтон. Возьмите произвольное трехмерное многообразие, снабдите его понятием расстояния так, чтобы можно было применить поток Риччи, и позвольте многообразию следовать потоку, упрощая себя. Главным возможным осложнением становятся особенности, которые возникнут там, где многообразие сжимается, когда оно перестает быть гладким. При сингулярности предложенный метод не работал. Свежая идея состояла в том, чтобы устранить эти сингулярности, тем самым открыть появившиеся отверстия и удалить все препятствия для потока. Если многообразию удастся упростить самое себя полностью после того, как появилось только конечное число сигулярностей, каждая часть будет поддерживать только одну из восьми геометрий, и операции, обратные вырезанию (хирургия, или перестройка Морса), покажут нам, как снова склеить эти части в целое и восстановить многообразие.

Гипотеза Пуанкаре стала столь знаменитой по другой причине: она была включена в список восьми математических задач тысячелетия, составленных Институтом Клея, и за их решение – подкрепленное вескими доказательствами – можно получить приз в миллион долларов. Но у Перельмана оказалась своя особая причина не желать этой награды – вернее, не желать никакой награды, кроме самого решения, поэтому ученый и не имел особого стимула расшифровать свои малопонятные наброски на arXiv в нечто более достойное публикации.

ГРИГОРИЙ ПЕРЕЛЬМАН род. 1966

Перельман родился в 1966 г. в стране, называвшейся тогда СССР. Он выиграл золотую медаль, набрав 100 %-ный результат в школьной Международной олимпиаде по математике. Перельман работал и в США, и в Институте Стеклова в Санкт-Петербурге, но так и не получил преподавательской должности. Его замкнутый и неуживчивый характер стал очередным дополнением к расхожему представлению о математиках как о людях не от мира сего. Остается только пожалеть, что его история усиливает стереотип эксцентричного математика.

Эксперты в этой области науки были вынуждены предлагать свои версии развития его идеи, стараясь заполнить пробелы в его логике и в итоге добившись результата, приемлемого в качестве доказательства. Некоторые из таких исследований были опубликованы, и понятная и четкая версия доказательства Перельмана одобрена сообществом топологов. В 2006 г. ему присудили медаль Филдса за исследования в этой области, но и от этого приза ученый отказался. Как видим, не всех манит мировая слава.

 

Топология и реальный мир

Топологию изобрели, поскольку математика не могла функционировать без нее; это было вызвано решением ряда основных вопросов в областях вроде комплексного анализа. Она решает вопрос «Какова форма этого предмета?» в очень простом, но глубоком виде. Более привычные геометрические понятия, такие как длина, теперь можно было рассматривать как дополнительные свойства к основной информации, полученной с помощью топологии.

Когда-то было высказано несколько первых топологических идей, но лишь к середине XIX в. топология стала полноправной областью математической науки со своими сущностью и влиянием, когда у математиков сложилось достаточно полное представление о топологии плоскостей, или двумерных форм. Расширение исследований на более многомерные пространства приняло бурный характер в конце XIX – начале XX в., во многом благодаря работам Анри Пуанкаре. Дальнейшие важные шаги были совершены в 1920-х гг. Новый взлет в этой области приходится на 1960-е, хотя по иронии судьбы именно тогда топология окончательно ушла от привычной нам прикладной науки.

Разбив аргументы традиционных критиков чистой математики в ХХ в., развившаяся в результате теория стала неотъемлемой частью многих областей математической физики. Ученым удалось справиться даже с самой ее неразрешимой проблемой, а именно гипотезой Пуанкаре. Сейчас уже ясно, что главными препятствиями для развития топологии всегда становились ее внутренние противоречия, лучше всего решаемые с помощью абстрактных понятий. Ее связям с реальным миром пришлось подождать, пока не были до конца отработаны основные техники исследования.

ЧТО ТОПОЛОГИЯ ДАЕТ НАМ

В 1956 г. Джеймс Уотсон и Френсис Крик открыли тайну строения двойной спирали молекулы ДНК – основы, на которой записывается и хранится генетическая информация. Сегодня топология узлов используется для понимания того, как распутать две нити спирали, определяющих схему развития всякого живого организма.

Спираль ДНК напоминает двужильную веревку, где одна жила виток за витком закручена вокруг другой. При делении генетическая информация попадает в обе новые клетки благодаря тому, что пряди спирали расплетаются и копируются, чтобы потом образовать пару. Любой, кому приходилось расплетать достаточно длинный обрезок обычной веревки, знает, как это трудно: нити норовят закрутиться в узлы в ответ на любую попытку их разделить. В случае ДНК всё еще хуже: сами спирали свернуты, как будто канат смотан в катушку. Представьте себе километровые нити, закрученные в подобие теннисного мяча, и вы получите отдаленное представление о сложной структуре ДНК в клетке.

Генетической биохимии остается лишь искать способы сплетать и расплетать эти нити достаточно точно, аккуратно и быстро: на них держится сама жизнь! Но как этого добиться? Биологи научились с помощью ферментов разрезать цепочку ДНК на куски, достаточно короткие для подробных исследований. Любой сегмент ДНК представляет собой сложный молекулярный узел, причем один и тот же узел может стать неузнаваемым после неких манипуляций, искажающих его вид.

Новые техники в изучении узлов открывают и новые направления атаки для молекулярных генетиков. И здесь топология узлов уже выходит за границы чистой математики, превращаясь в важный практический инструмент для биологов. Недавно была открыта математическая модель взаимосвязи между оборотами спирали ДНК и количеством образуемых ею суперклубков.

Узлы нитей ДНК