Год: 1973. Место: военно-морская база Скарамангас под Афинами.

Все взгляды сфокусированы на фанерной модели древнеримского судна, выполненной в натуральную величину. На этой модели сфокусированы лучи солнца, отраженные от 70 покрытых медью зеркал, расположенных в 50 м от нее и имеющих размер 1 м в ширину и 0,5 м в высоту.

Проходит несколько секунд, и корабль вспыхивает.

Греческий ученый Иоаннис Саккас в наши дни воссоздает легендарный сюжет из истории древнегреческой науки. Во II в. римский писатель Лукиан писал, что при осаде Сиракуз около 214–212 гг. до н. э. инженер и математик Архимед изобрел устройство, которое позволяло уничтожать вражеские корабли при помощи огня. Существовало ли вообще это устройство и если существовало, то как работало, совершенно неясно. Рассказ Лукиана, в принципе, может быть всего лишь отсылкой к обычной практике использования горящих стрел или обстрела пылающими тряпками из катапульты, но трудно представить себе причину, по которой эту тактику следовало представлять как новое изобретение. В VI в. Анфимий из Тралл в трактате «Пылающие стекла» предположил, что Архимед тогда воспользовался огромной линзой. Но согласно самой распространенной легенде Архимед использовал гигантское зеркало или, может быть, систему зеркал, расположенных по дуге и образующих грубый параболический отражатель.

Парабола – это U-образная кривая, хорошо известная греческим геометрам. Архимед, безусловно, знал о свойстве ее фокуса: все прямые, параллельные оси параболы, отражаясь от ее внутренней части, проходят через одну и ту же точку, которая называется фокусом параболы. Понимал ли кто-нибудь в то время, что параболическое зеркало точно так же сфокусирует свет (и жар) солнца, менее очевидно, поскольку представления греков о свойствах света были рудиментарными. Но, как показывает эксперимент Саккаса, на самом деле Архимеду не понадобилось бы громоздкое параболическое сооружение. Множество солдат, вооруженных отражающими щитами и независимо друг от друга направляющих их так, чтобы отраженные каждым щитом лучи солнца попадали на одну и ту же часть вражеского корабля, добились бы не меньшего эффекта.

Практическая применимость того, что часто называют «лучами смерти Архимеда», с давних времен служит предметом горячих споров. Философ Рене Декарт, пионер в оптике, не верил, что такой прием мог сработать. Эксперимент Саккаса показывает, что все же мог, хотя фанерная модель корабля была хлипкой и к тому же окрашена краской на основе смолы, так что поджечь ее было несложно. С другой стороны, во времена Архимеда корабли обязательно смолили, смола обеспечивала герметичность и защиту корпуса. В 2005 г. группа студентов Массачусетского технологического института повторила эксперимент Саккаса; в конечном итоге им удалось поджечь деревянную модель корабля – но только после того, как мишень на протяжении 10 минут неподвижно стояла под направленными на нее сфокусированными лучами солнца. Они попробовали проделать то же самое еще раз для телешоу «Разрушители легенд». Сюжет снимался в Сан-Франциско, а в качестве мишени было использовано старое рыболовное судно; участникам удалось местами обуглить дерево, кое-где даже появились языки пламени, но целиком судно не загорелось. «Разрушители легенд» сделали вывод, что вся эта история – миф.

* * *

Архимед был человеком энциклопедических знаний: астрономом, инженером, изобретателем, математиком, физиком. Вероятно, он был величайшим ученым (воспользуемся современным понятием) своего времени. Помимо значительных математических открытий Архимед сделал несколько изобретений, поражающих своим разнообразием – Архимедов винт для поднятия воды, систему для поднятия тяжестей на основе канатов и блоков (аналог современных талей), – и открыл Архимедов принцип плавания тел и закон рычага (хотя само устройство появилось намного раньше). Ему приписывают также создание еще одной военной машины – когтя. Он будто бы использовал это устройство, напоминающее подъемный кран, в битве при Сиракузах; с его помощью он поднимал вражеские корабли из воды и топил их. Авторы документального телефильма 2005 г. «Супероружие древнего мира» построили собственную версию этой машины, и она работала. В древних текстах можно найти множество других заманчивых упоминаний о теоремах и изобретениях, приписываемых Архимеду. Среди них механический вычислитель движения планет – что-то вроде знаменитого антикитерского механизма, датируемого примерно 100 г. до н. э. и найденного среди обломков кораблекрушения в 1900–1901 гг.; разгадать его назначение и принцип действия удалось лишь недавно.

Мы очень мало знаем об Архимеде. Родился он в Сиракузах – историческом городе на Сицилии, расположенном ближе к южной оконечности восточного побережья острова. Город был основан в 734 или 733 г. до н. э. греческими колонистами, по преданию, под предводительством полумифического Архия, после того как тот покинул Коринф и удалился в изгнание. Если верить Плутарху, Архий был влюблен в прекрасного юношу Актеона и, не добившись от него взаимности, попытался похитить предмет своей страсти; в ходе завязавшейся борьбы Актеон был разорван на куски. Мольбы отца юноши Мелисса, просившего о справедливости, остались без ответа, поэтому он взобрался на верхушку храма Посейдона, призвал этого бога отомстить за его сына – и бросился вниз, на скалы. После этого драматического события случились сильная засуха и голод, и местный оракул возвестил, что только возмездие может умилостивить Посейдона. Архий понял смысл послания и добровольно отправился в изгнание, чтобы избежать принесения в жертву; он отправился на Сицилию и основал Сиракузы. Позже прошлое все же настигло его, и Телеф, который мальчиком тоже какое-то время был предметом страсти Архия, убил его.

Земля была плодородна, местные жители дружелюбны, и вскоре Сиракузы стали самым процветающим и могущественным греческим городом на всем Средиземноморье. В трактате «Псаммит», или «Исчисление песчинок», Архимед говорит, что его отцом был астроном Фидий. Если верить «Сравнительным жизнеописаниям» Плутарха, то он был дальним родственником тирана Сиракуз Гиерона II. Считается, что в юности Архимед учился в египетском городе Александрия, расположенном в дельте Нила, где встречался с Кононом Самосским и Эратосфеном Киренским. Это подтверждают, в частности, утверждения Архимеда о том, что Конон был его другом; кроме того, вводные части его книг «Послание к Эратосфену о методе» и «Задача о быках» обращены к Эрастофену.

О смерти Архимеда тоже ходят легенды, в свое время мы доберемся и до них.

* * *

Математическая репутация Архимеда зиждется на книгах, которые уцелели и дошли до нас – все в более поздних копиях. «Квадратура параболы», написанная в форме письма к другу Архимеда Досифею, содержит 24 теоремы о параболах, последняя из которых дает площадь параболического сегмента, выраженную через площадь связанного с ним треугольника. Парабола вообще занимает видное место в трудах Архимеда. Это один из типов конических сечений – семейства кривых, игравшего значительную роль в греческой геометрии. Чтобы получить коническое сечение, нужно разрезать плоскостью двойной конус, образованный при соединении вершинами двух одинаковых конусов. Существует три основных типа конических сечений: эллипс – замкнутый овал, парабола – U-образная кривая и гипербола – две U-образные кривые, расположенные «спина к спине».

Работа «О равновесии плоских фигур» состоит из двух отдельных книг. В ней устанавливаются фундаментальные закономерности того, что мы сегодня называем статикой, – той области механики, где анализируются условия, при которых тело остается в покое. Дальнейшее развитие этой темы образует фундамент всего строительного искусства и дает возможность рассчитать силы, действующие на структурные элементы зданий и мостов, и гарантировать, что они действительно сохранят покой и не будут ни вспучиваться, ни рушиться.

Первая книга посвящена в основном закону рычага, который Архимед формулирует так: «Два груза находятся в равновесии на расстояниях, обратно пропорциональных их весам». Одно из следствий этого состоит в том, что длинный рычаг увеличивает малую силу. Плутарх сообщает нам, что Архимед драматически усилил это утверждение в письме к царю Гиерону: «Дайте мне точку опоры, и я переверну Землю». Конечно, для этого ему потребовался бы невероятно длинный и идеально жесткий рычаг, но главный недостаток рычага состоит в том, что, хотя приложенная сила увеличивается, дальний конец рычага проходит куда меньшее расстояние, чем место приложения силы. На самом деле Архимед мог бы сдвинуть Землю на то же (крохотное-крохотное) расстояние, просто подпрыгнув на месте. Тем не менее рычаг очень эффективен, как и другое устройство (вариант рычага), также известное Архимеду, – полиспаст. Когда скептически настроенный Гиерон попросил Архимеда продемонстрировать свое изобретение, тот

…велел наполнить обычной кладью царское трехмачтовое грузовое судно, недавно с огромным трудом вытащенное на берег целою толпою людей, посадил на него большую команду матросов, а сам сел поодаль и, без всякого напряжения вытягивая конец каната, пропущенного через составной блок, придвинул к себе корабль – так медленно и ровно, точно тот плыл по морю [1] .

Вторая книга посвящена в основном нахождению центра тяжести различных геометрических фигур – треугольника, параллелограмма, трапеции и сегмента параболы.

Книга «О сфере и цилиндре» содержит результаты, которыми Архимед настолько гордился, что даже велел начертать их на своей гробнице. Он доказал вполне строго, что площадь поверхности сферы в четыре раза больше площади любого ее большого круга (такого, как экватор сферической Земли); что объем шара составляет две трети объема цилиндра, описанного вокруг этого шара; и что площадь любого сегмента шара, отрезанного от него плоскостью, равна площади соответствующего сегмента такого цилиндра. В своем доказательстве он использовал витиеватый метод, известный как метод исчерпывания, который первым предложил Евдокс при работе с пропорциями с участием иррациональных чисел, которые невозможно точно представить в виде дроби. В современных терминах можно сказать, что Архимед доказал: площадь поверхности сферы радиуса r равна 4πr2, а заключенный в ней объем равен 4/3πr3.

У математиков есть привычка представлять конечный результат в красиво организованном, упорядоченном виде, скрывая от глаз тот часто путаный и сумбурный процесс, в результате которого этот результат был получен. Нам повезло кое-что узнать о том, как Архимед делал свои открытия в отношении сферы, поскольку этот процесс нашел отражение в «Послании к Эратосфену о методе». Долгое время работа считалась утраченной, но в 1906 г. датский историк Йохан Гейберг обнаружил так называемый палимпсест Архимеда, содержавший ее неполный список. Палимпсест – это текст, стертый или смытый в древности с целью повторно использовать пергамент или бумагу, на которых он был написан. Около 530 г. Исидор Милетский собрал работы Архимеда в Константинополе (современный Стамбул), столице Византийской империи. В 950 г. их переписал неизвестный византийский писец; в то время в Константинополе действовала школа Льва Математика, в которой изучались работы Архимеда. После этого рукопись каким-то образом переместилась в Иерусалим, где в 1229 г. была разобрана, отмыта (не слишком хорошо), сложена пополам и заново переплетена уже в виде 177-страничной христианской литургической книги.

В 1840-е гг. на этот текст, вернувшийся к тому моменту обратно в Константинополь и находившийся в греческой православной библиотеке, наткнулся библеист Константин фон Тишендорф. Он вынул из книги один лист и поместил его в библиотеку Кембриджского университета. В 1899 г. Афанасий Пападопуло-Керамевс, составляя каталог библиотечных рукописей, частично перевел этот лист. Гейберг понял, что текст принадлежит Архимеду, и проследил судьбу книжной страницы обратно до Константинополя, где ему разрешили сфотографировать весь документ. Затем он переписал текст и издал результаты своей работы между 1910 и 1915 гг., а Томас Хит перевел текст на английский язык. После сложной цепочки событий, включая продажу на аукционе, осложненную судебной тяжбой по поводу права собственности на документ, рукопись была продана анонимному американцу за $2 млн. Новый владелец предоставил ее для исследований, так что затертый текст восстановлен с применением различных цифровых технологий обработки изображений.

Чтобы доказывать теорему методом исчерпывания, нужно заранее знать ответ, и ученые долгое время гадали, как Архимед сумел угадать правила определения площади поверхности и объема сферы. Трактат «О методе» поясняет:

Действительно, кое-что из того, что ранее было мною усмотрено при помощи механики, позднее было также доказано и геометрически, так как рассмотрение при помощи этого метода еще не является доказательством; однако получить при помощи этого метода некоторое предварительное представление об исследуемом, а затем найти и само доказательство гораздо удобнее, чем производить изыскания, ничего не зная [2] .

Архимед мысленно уравновешивает шар, цилиндр и конус на весах, а затем нарезает их бесконечно тонкими ломтиками, которые перераспределяет таким образом, чтобы сохранить баланс. Затем он применяет закон рычага, чтобы соотнести три объема между собой (объемы цилиндра и конуса был уже известны), и выводит требуемые величины. Существуют предположения, что именно Архимед первым использовал настоящие бесконечно малые величины в математике. Возможно, мы усматриваем слишком много в этом не самом вразумительном документе, но ясно, что трактат «О методе» предвосхищает некоторые идеи дифференциального исчисления.

* * *

Другие труды Архимеда наглядно показывают, насколько разнообразными были его интересы. Трактат «О спиралях» доказывает некоторые фундаментальные утверждения о длинах и площадях, связанных с Архимедовой спиралью – кривой, которую описывает точка, движущаяся с постоянной скоростью вдоль прямой линии, вращающейся с постоянной скоростью. Трактат «О коноидах и сфероидах» исследует объемы сегментов объемных тел, образованных вращением конических сечений вокруг некоторой оси.

Трактат «О плавающих телах» – первая в истории работа по гидростатике и равновесным позициям плавающих объектов. В него входит и закон Архимеда: на тело, погруженное в жидкость, действует выталкивающая сила, равная весу жидкости, вытесненной этим телом. Этот принцип является темой знаменитого исторического анекдота, в котором Архимеда просят придумать метод, при помощи которого можно определить, действительно ли обетная корона, изготовленная для царя Гиерона, сделана из золота. Идея решения осеняет Архимеда внезапно, когда он принимает ванну, и он приходит в такой восторг, что выскакивает на улицу, позабыв одеться, и несется по городу в чем мать родила с криком «Эврика!» («Нашел!»). Не забывайте, что появление нагого человека в публичном месте в Древней Греции не рассматривалось как скандальное событие. Кульминацией книги является условие устойчивого плавания параболоида – предтеча фундаментальных идей теории кораблестроения, связанных с остойчивостью и переворачиванием судов.

В «Измерении круга» метод исчерпывания применяется для доказательства того, что площадь круга равна длине половины радиуса, умноженной на длину окружности, – πr2 в современных терминах. Чтобы доказать это, Архимед вписывает в окружность и описывает вокруг нее правильные многоугольники с 6, 12, 24, 48 и 96 сторонами. Рассматривая девяностошестиугольник, он доказывает результат, эквивалентный, по существу, оценке величины π: он попадал в промежуток между

«Исчисление песчинок» адресовано Гелону II, тирану Сиракуз и сыну Гиерона II. Это подкрепляет предположение о том, что Архимед был в родстве с царской семьей. Он так объясняет свою цель:

Некоторые люди полагают, государь Гелон, что число песка по величине бесконечно… я постараюсь показать тебе… что среди чисел, которые получили от нас название и опубликованы в адресованной (мной) Зевксиппу книге, некоторые превосходят не только число песчинок в объеме, равном заполненной, как мы сказали, Земле, но даже в объеме, равном миру [3] .

Здесь Архимед рекламирует свою новую систему наименования больших чисел и борется с частым неверным употреблением термина «бесконечный» вместо «очень большой». Сам он ясно ощущает разницу. В его работе сочетаются две основные идеи. Первая из них – расширение стандартного набора греческих слов для обозначения чисел, чтобы можно было именовать гораздо большие числа, чем мириада мириад (100 миллионов, 108). Вторая – оценка размеров Вселенной, которую Архимед основывает на гелиоцентрической (с Солнцем в центре) системе Аристарха. Согласно результатам подсчета, для полного заполнения Вселенной потребовалось бы, в современной нотации, не более 1063 песчинок.

* * *

В математике существует давняя традиция развлечения, в рамках которого математики исследуют всевозможные игры и головоломки. Иногда это делается просто для удовольствия, а иногда подобные легкомысленные задачи помогают понять серьезные концепции. В «Задаче о быках» поднимаются вопросы, не потерявшие актуальности и сегодня. В 1773 г. немецкий библиотекарь Готтхольд Лессинг наткнулся на одну греческую рукопись: стихотворение из 44 строк, приглашающее читателя подсчитать, сколько животных ходит в стаде бога Солнца. Заголовок стихотворения представляет его как письмо от Архимеда к Эратосфену. Начинается оно так:

Сколько у Солнца быков, найди для меня, чужестранец.

(Ты их, подумав, считай, мудрости если не чужд.)

Как на полях Тринакрийской Сицилии острова тучных

Их в четырех стадах много когда-то паслось.

Цветом стада различались: блистало одно млечно-белым,

Темной морской волны стада другого был цвет,

Рыжим третие было, последнее пестрым. И в каждом

Стаде была самцов множеством тяжкая мощь,

Все же храня соразмерность такую… [5]

Затем в ней перечисляются семь уравнений в стиле:

число белых быков #i_006.png число черных быков + число рыжих быков и следует продолжение:

Сколько у Солнца быков, чужестранец, коль точно ты скажешь,

Нам раздельно назвав тучных быков число,

Также раздельно коров, сколько каждого цвета их было,

Не назовет хоть никто в числах невеждой тебя,

Все ж к мудрецам причислен не будешь. Учти же, пожалуй,

Свойства какие еще Солнца быков числа.

число белых быков + число черных быков = квадратное число,

число пестрых быков + число рыжих быков = треугольное число.

Если ты найдешь, чужестранец, умом пораскинув,

И сможешь точно назвать каждого стада число,

То уходи, возгордившись победой, и будет считаться,

Что в этой мудрости ты все до конца превзошел [6] .

Квадратные числа – это 1, 4, 9, 16 и т. д., получаются они при умножении натурального числа на само себя. Треугольные числа – это 1, 3, 6, 10 и т. д., образуемые сложением последовательных натуральных чисел, к примеру, 10 = 1 + 2 + 3 + 4. Эти условия образуют то, что мы сегодня называем системой диофантовых уравнений в честь Диофанта Александрийского, который написал о них около 250 г. в книге «Арифметика». Решение должно даваться в целых числах, поскольку вряд ли у бога Солнца в стаде ходит половинка коровы.

Первый набор условий дает бесконечное число возможных решений, в наименьшем из которых божественное стадо насчитывает 7 460 514 черных быков и сравнимое число остальных животных. Дополнительные условия позволяют выбрать среди этих решений и ведут к тому типу диофантовых уравнений, которые известны как уравнения Пелля (глава 6). Здесь нужно найти целые x и y, такие что nx2 + 1 = y2, где n – заданное целое число. К примеру, при n = 2 уравнение принимает вид 2x2 + 1 = y2, а его решениями являются пары чисел x = 2, y = 3 и x = 12, y = 17. В 1965 г. Хью Уильямс, Р. Герман и Чарльз Зарнке при помощи двух компьютеров фирмы IBM нашли наименьшее решение, удовлетворяющее двум дополнительным условиям. Это решение приблизительно равно 7, 76 × 10206544.

Архимед никак не мог найти это число вручную, к тому же нет никаких свидетельств того, что он вообще имеет какое-то отношение к этой задаче, кроме того что его имя фигурирует в названии стихотворения. Задача о быках до сих пор привлекает внимание специалистов по теории чисел и способствует получению новых результатов, к примеру решая уравнения Пелля.

* * *

Исторических данных о жизни Архимеда почти нет, однако о его смерти мы знаем чуть больше – если, конечно, считать, что хотя бы одна из дошедших до нас легенд соответствует истине. Но можно с уверенностью предположить, что хотя бы зерно правды в них присутствует.

Во время Второй Пунической войны, около 212 г. до н. э., римский генерал Марк Клавдий Марцелл осадил Сиракузы и взял город после двух лет осады. Плутарх рассказывает, что во время взятия города пожилой Архимед рассматривал какой-то чертеж на песке. Генерал послал солдата, чтобы тот пригласил Архимеда на встречу с ним, но математик отказался пойти, сказав, что не закончил работу над задачей. Солдат вышел из себя и убил Архимеда мечом; рассказывают, что последними словами мудреца были: «Не тронь моих чертежей!» Зная математиков, я полагаю, что такая ситуация вполне возможна, но Плутарх приводит и другой вариант истории, в которой Архимед пытается сдаться случайному солдату, а тот, решив, что математические инструменты в руках ученого стоят дорого, убивает его, чтобы ими завладеть. В обоих вариантах легенды Марцелл был очень недоволен смертью столь уважаемого гения механики.

Гробница Архимеда была украшена изображением его любимой теоремы из книги «О шаре и цилиндре»: объем шара, вписанного в цилиндр, равен 2/3 от его объема, а площадь поверхности шара равна площади боковой поверхности этого цилиндра. Через 100 с лишним лет после смерти Архимеда квестором (должностным лицом) на Сицилии был известный римский оратор Цицерон. Услышав о гробнице, он с трудом отыскал ее в заброшенном состоянии возле Агригентинских ворот в Сиракузах. Цицерон приказал восстановить гробницу, что позволило ему прочесть некоторые надписи и разглядеть чертеж шара и цилиндра.

Сегодня расположение этой гробницы неизвестно; судя по всему, от нее ничего не осталось. Но Архимед продолжает жить в своей математике, значительная часть которой не потеряла значения за более чем 2000 прошедших лет.