Смерть в черной дыре и другие мелкие космические неприятности

Тайсон Нил Деграсс

Часть VII

Наука и Бог

О столкновениях на путях познания

 

 

Глава сороковая

В начале было…

Физика описывает поведение вещества, энергии, пространства и времени и их взаимодействие во Вселенной. Судя по всему, что сумели выяснить ученые, то, что делают друг с другом эти четыре главных героя космической драмы, определяет все химические и физические явления. Поэтому все фундаментальное, все знакомое нам, землянам, начинается с законов физики.

Передний фронт открытий почти во всех областях научных исследований, а особенно в физике, лежит в царстве эксперимента. При предельных состояниях вещества, например в окрестностях черной дыры, обнаруживаешь, что гравитация жестоко скручивает близлежащий пространственно-временной континуум. При предельно высоких энергиях поддерживается термоядерный синтез в недрах звезд, когда температура составляет десять миллионов градусов. И при любых мыслимых предельных состояниях обязательно получаешь те самые условия чудовищного жара и чудовищной плотности, которые преобладали во Вселенной в первые мгновения ее существования.

Мы рады сообщить, что никаких предельных физических состояний в повседневной жизни не наблюдается. Обычно по утрам, если все идет нормально, встаешь с постели, слоняешься по дому, что-то ешь, потом выбегаешь за дверь. Родные и близкие полностью рассчитывают на то, что к вечеру ты будешь выглядеть точно так же, как поутру, и вернешься домой целым и невредимым. А теперь представьте себе, что вы приходите на работу, в душный конференц-зал на важное совещание, назначенное на десять ноль-ноль, и вдруг разом теряете все свои электроны – или, хуже того, все атомы, составляющие ваш организм, разлетаются в разные стороны. Или, например, сидите вы в кабинете, стараетесь хоть что-то сделать при свете настольной лампы, и вдруг кто-то включает верхний свет, и от этого ваше тело начинает метаться по комнате, беспорядочно отражаясь от стен, пока вас не выносит в окно. Или вы после работы идете посмотреть соревнования по сумо – и видите, как два сферических господина сталкиваются, исчезают и ни с того ни с сего превращаются в два луча света!

Если бы подобные сцены разыгрывались изо дня в день, современная физика не казалась бы такой диковинной, познания о ее основах естественным образом вытекали бы из нашего жизненного опыта, а наши родные и близкие ни за что не выпускали бы нас из дома на работу. А когда-то, в первые мгновения существования Вселенной, такое происходило сплошь и рядом. Чтобы представить себе и понять, как это было, есть лишь один способ – завести себе здравый смысл иного порядка, выработать иное интуитивное понимание того, как должны действовать законы физики при экстремальных температурах, плотностях и давлении.

Добро пожаловать в мир E = mc².

Версию своей знаменитой формулы Эйнштейн опубликовал в 1905 году в своей эпохальной статье под названием «К электродинамике движущихся тел». Понятия, выдвинутые в этой статье, известны как специальная теория относительности, и они навсегда изменили наши представления о пространстве и времени. Эйнштейну было тогда всего 26 лет. Подробнее он рассказал о своем аккуратненьком уравнении в отдельной и, что примечательно, совсем короткой заметке, которая вышла в свет в том же году – «Зависит ли инерция тела от содержащейся в нем энергии?» Чтобы избавить вас от штудирования этой статьи, организации эксперимента и проверки теории, поясню, что ответ – «Да».

Как писал Эйнштейн:

Если тело отдает энергию  L в виде излучения, то его масса уменьшается на L/V² (Здесь L  – энергия, V  – скорость излучения, то есть, скорость света, поэтому это выражение соответствует более привычной записи E/c² . – Прим. перев. ) … Масса тела есть мера содержащейся в нем энергии; если энергия изменяется на величину L, то масса меняется соответственно…
( Здесь и далее пер. под ред. И. Тамма )

Эйнштейн не был вполне уверен, что это утверждение истинно, и затем предположил:

Не исключена возможность того, что теорию удастся проверить для веществ, энергия которых меняется в большей степени (например, для солей радия).

Итак, перед вами алгебраический рецепт на все случаи жизни, когда вам захочется преобразовать вещество в энергию или энергию в вещество. Этими простыми словами Эйнштейн невольно подарил астрофизикам вычислительный инструмент E = mc², который позволяет им заглянуть из Вселенной в том виде, в каком она пребывает сейчас, глубоко в прошлое, в самое начало, когда с момента ее рождения миновали ничтожные доли секунды.

Самая известная форма энергии – это фотон, неделимая частица света, лишенная массы. В фотонах мы просто-таки купаемся – к нам долетают фотоны и с Солнца, Луны и звезд, и от газовой плиты, торшера и ночника. Почему же мы не сталкиваемся с E = mc² ежедневно, на личном опыте? Энергия фотонов видимого света несравнимо меньше, чем энергия субатомных частиц с самой маленькой массой. Фотон не может ни во что превратиться, поэтому жизнь его течет счастливо, почти без потрясений.

Хотите приключений? Заведите себе компанию фотонов из гамма-лучей, у которых энергия уже нешуточная, по крайней мере в 200 000 раз больше, чем у видимых фотонов. Правда, вы довольно скоро заболеете раком и умрете, зато успеете увидеть, как везде, где пробегали эти фотоны, возникают пары электронов и позитронов – частица со своей античастицей, одна из множества сладких парочек в субатомном мире. На ваших глазах эти электроны из царства вещества и антивещества будут сталкиваться, аннигилировать и снова создавать гамма-фотоны. Увеличьте энергию света еще в 2000 раз, и вот уже получились гамма-лучи, энергии которых хватит, чтобы превратить впечатлительного человека в Халка. Однако теперь у пар этих фотонов хватает энергии и на то, чтобы спонтанно создавать более массивные нейтроны, протоны и их античастицы.

Высокоэнергичные фотоны где попало не слоняются. Однако места их обитания лежат вовсе не в воображаемом мире. Гамма-лучам подходит любая обстановка, лишь бы температура там была выше нескольких миллиардов градусов.

То, что частицы и их энергетические запасы превращаются друг в друга, играет в космологии определяющую роль. В настоящее время температура расширяющейся Вселенной, вычисленная по наблюдениям микроволнового излучения, заполняющего все космическое пространство, составляет всего 2,73 градуса по Кельвину. Микроволновые фотоны, как и фотоны видимого света, недостаточно горячи и поэтому не могут претендовать на то, чтобы превратиться в частицу по закону E = mc²; строго говоря, мы еще не знаем ни одной частицы, в которую они способны спонтанно превратиться. Однако еще вчера Вселенная была чуть меньше и чуть теплее. А позавчера – еще меньше и еще теплее. Прокрутите стрелки часов еще немного назад, скажем, на 13,7 миллиарда лет, и попадете прямиком в первобытный бульон Большого Взрыва, во времена, когда фоновая температура космоса была так высока, что представляла интерес для астрофизики.

То, как вели себя пространство, время, вещество и энергия по мере расширения и остывания Вселенной с самого ее начала – величайший эпос на свете. Однако, чтобы объяснить, что же происходило в этом космическом горниле, надо найти способ соединить четыре фундаментальные силы Вселенной в одну, а также способ примирить друг с другом две несовместимые области физики – квантовую механику (науку о малом) и общую теорию относительности (науку о большом).

Воодушевленные счастливым союзом квантовой механики и электромагнетизма, заключенным в середине XX века, физики наперегонки стремились наладить отношения между квантовой механикой и общей теорией относительности – создать теорию квантовой гравитации. До финишной прямой мы пока не добрались, зато точно знаем, где стоят барьеры: они находятся на границе «Планковской эпохи». Это фаза развития Вселенной с момента рождения до возраста 1043 секунд и до того, как Вселенная достигла размера 1035 метров в поперечнике. Немецкий физик Макс Планк, в честь которого и названы эти невообразимо малые величины, для которых даже нет подходящих числительных, в 1900 году ввел понятие кванта энергии и в целом считается отцом квантовой механики.

Однако тревожиться не о чем. Плохие отношения между гравитацией и квантовой механикой не сулят современной Вселенной особых сложностей. Астрофизики применяют принципы и инструментарий общей теории относительности и квантовой механики к совершенно разным классам задач. Однако в самом начале, в Планковскую эпоху, большое было малым, а следовательно, гравитация с квантовой механикой, по всей видимости, состояли тогда в близких, страстных, но недолговечных отношениях. Увы, мы до сих пор так и не узнали, какими клятвами обменялись они у алтаря, и поэтому нам не удается сколько-нибудь достоверно описать поведение Вселенной во время этого краткого междуцарствия с помощью каких бы то ни было законов физики (из числа нам известных).

Однако к концу Планковской эры гравитация высвободилась из объятий других сил природы, по-прежнему объединенных, и добилась независимости, которую прекрасно описывают современные теории. Перевалив за рубеж 1035 секунды, Вселенная продолжила расширяться и остывать, и объединенные силы раскололись на электрослабое и сильное ядерное взаимодействие. А еще позднее электрослабое взаимодействие раскололось на электромагнитное и слабое ядерное взаимодействие, и так мы и получили четыре отдельные силы, которые знаем и любим: слабое взаимодействие контролирует радиоактивный распад, сильное взаимодействие связывает частицы в ядре атома, электромагнитное взаимодействие связывает атомы и молекулы, а гравитация – большие «куски» вещества. К этому времени Вселенной исполнилось всего одна триллионная секунды. Однако таинственные превращения сил и другие основополагающие события в жизни Вселенной уже снабдили ее фундаментальными качествами, каждое из которых достойно отдельной книги.

Пока Вселенная разменивала свою первую триллионную секунды, вещество с энергией находились в постоянном взаимодействии. Незадолго до этого, пока расставались сильное и электрослабое взаимодействие и сразу после, Вселенная представляла собой бурлящий океан кварков, лептонов, их антисобратьев, а также бозонов – частиц, которые обеспечивали их взаимодействие. Считается, что ни одно из этих семейств частиц не делится на что-либо меньшее и более элементарное. Хотя все эти частицы фундаментальны, у каждой есть несколько видов. Заурядный фотон видимого света – член семейства бозонов. Из лептонов лучше всех знакомы непосвященным электроны и, наверное, нейтрино, а из кварков… Увы, знакомых кварков у нас нет. Каждому подвиду кварков дано абстрактное название, не служащее никаким филологическим, философским и педагогическим целям – оно нужно лишь для того, чтобы различать их: верхний и нижний, странный и очарованный, прелестный и истинный.

Кстати, бозоны получили название просто-напросто в честь индийского ученого Шатьендраната Бозе. Слово «лептон» образовано от греческого «leptos» – «легкий» или «маленький». А вот у самого слова «кварк» происхождение сугубо литературное и гораздо более причудливое. Физик Мюррей Гелл-Манн, в 1964 году предположивший существование кварков, считал, что в их семействе всего три члена, и позаимствовал название из загадочной фразы из романа Джеймса Джойса «Поминки по Финнегану»: «Три кварка для Мастера Марка!» У кварков есть одно несомненное преимущество – все их названия просты, чего никогда не удается добиться химикам, биологам и геологам, когда они выдумывают названия объектам своих исследований.

Кварки – те еще фрукты. В отличие от протонов, каждый из которых несет электрический заряд +1, и электронов, у которых заряд −1, у кварков заряды дробные – одна или две трети. И поймать один обособленный кварк невозможно, он всегда соединен с соседними кварками. Сила, которая скрепляет два и больше кварков вместе, растет пропорционально усилию их разделить, как будто они соединены какой-то субатомной резинкой. Если все же растащить кварки друг от друга, резинка лопается, и высвободившийся запас энергии зовет на помощь E = mc², отчего на каждом конце создается по новому кварку, а вы возвращаетесь в исходную точку. Но в кварк-лептонную эпоху плотность Вселенной была так велика, что расстояние между несвязанными кварками было сопоставимо с расстоянием между связанными кварками. При таких условиях невозможно было создать надежные узы между соседними кварками, и они двигались сами по себе, хотя коллективно были связаны друг с другом. Такое состояние вещества – своего рода кварковый суп – открыли в 2002 году ученые из Брукхейвенской национальной лаборатории. Есть надежные теоретические данные, из которых следует, что на самом раннем этапе существования Вселенной, возможно, во время разделения каких-то взаимодействий, произошло некое событие, в результате которого во Вселенной наблюдается примечательная асимметрия: частиц вещества стало попросту больше, чем частиц антивещества, в пропорции миллиард и одна к миллиарду. В суматохе непрерывного создания, аннигиляции и воссоздания кварков и антикварков, электронов и антиэлектронов (более известных как позитроны), нейтрино и антинейтрино этот небольшой дисбаланс в популяции никто и не заметил. У «лишних людей» все равно была масса возможностей найти себе партнера по аннигиляции, как и у всех прочих.

Однако такое положение дел сохранялось недолго. Космос расширялся и охлаждался, достиг размеров Солнечной системы, а его температура упала ниже триллиона градусов.

С момента рождения Вселенной миновала миллионная доля секунды.

При такой прохладе у Вселенной уже не хватало ни тепла, ни плотности, чтобы изготавливать кварки, поэтому все они расхватали себе партнеров и создали новое прочное семейство тяжелых частиц под названием адроны (от греческого слова «hadros», что значит «толстый, плотный»). Переход от кварков к адронам вскоре привел к появлению протонов и нейтронов, а также других, менее знакомых широкой публике тяжелых частиц, и все они состояли из разных комбинаций представителей семейства кварков. Легкая асимметрия вещества и антивещества, повлиявшая на кварк-лептонный суп, сказалась и на адронах, и последствия у этого были просто невероятные.

Вселенная остывала, количество энергии, доступной для спонтанного создания фундаментальных частиц, стремительно уменьшалось. В адронную эпоху вездесущие фотоны больше не могли призывать на помощь E = mc², чтобы создавать пары кварков-антикварков. Мало того, фотоны, возникшие в результате всех оставшихся аннигиляций, выпустили свою энергию, отдали ее вечно расширяющийся Вселенной и опустились ниже предела, допускавшего создание пар адронов-антиадронов. На каждый миллиард аннигиляций, после которых получался миллиард фотонов, оставался всего один выживший адрон. Этим-то одиночкам и досталось в результате все веселье – именно из них состоят галактики, звезды, планеты и люди.

Не будь перевеса вещества над антивеществом в соотношении миллиард и один на миллиард, вся масса во Вселенной аннигилировала бы, и остался бы космос, состоящий исключительно из фотонов и все – вот к чему привело бы буквальное исполнение сценария «Да будет свет».

К этому времени Вселенной исполнилась одна секунда.

Вселенная разрослась уже до нескольких световых лет, примерно на расстояние от Солнца до ближайших звезд. Было еще довольно жарко, как-никак миллиард градусов, так что еще оставалась возможность выпекать электроны, которые вместе с партнерами-позитронами то возникали, то исчезали. Однако во Вселенной, которая все расширяется и все остывает, дни их – точнее, секунды – были сочтены. Судьба адронов постигла и электроны – в конце концов уцелел лишь один на миллиард. Остальные аннигилировали вместе со своими напарниками-античастицами позитронами и превратились в море фотонов.

К этому моменту на каждый протон приходится один «замороженный» электрон. Космос продолжает остывать, температура упала уже ниже 100 миллионов градусов, и протоны соединяются и с протонами, и с нейтронами, отчего возникают ядра атомов и образуется Вселенная, в которой 90 % ядер – это ядра водорода, а 10 % – ядра гелия плюс ничтожные количества дейтерия, трития и лития.

С момента рождения Вселенной миновало две минуты.

Еще примерно 380 000 лет с нашим супом из частиц ничего особенного не произойдет. Все эти тысячелетия температура остается достаточно высокой, чтобы электроны свободно странствовали среди фотонов и расталкивали их то туда, то сюда.

Однако этой вольнице приходит конец, когда температура Вселенной падает ниже 3000 градусов по Кельвину (примерно половина температуры солнечной поверхности) и все электроны соединяются со свободными ядрами. В результате этого союза возникает вездесущий океан фотонов видимого света, что завершает процесс формирования частиц и атомов в первичной Вселенной.

Вселенная все расширяется, ее фотоны и дальше теряют энергию, уходят из диапазона видимого света в инфракрасный диапазон и в микроволновое излучение.

Вскоре мы еще поговорим подробнее о том, что куда бы мы, астрофизики, ни заглянули, везде мы находим неизгладимые следы, словно бы отпечатки пальцев, в виде микроволновых фотонов с температурой 2,73 К и рисунок их распределения по небу – это память о распределении вещества во Вселенной в эпоху непосредственно перед формированием атомов. Из этого факта мы можем сделать много разных выводов, в том числе о возрасте и форме Вселенной. И хотя в наши дни атомы уже вошли в повседневный обиход, у формулы Эйнштейна, обеспечивающей вселенское равновесие, еще осталось вдоволь работы – в ускорителях частиц, где пары «частица-античастица» то и дело создаются из полей с большой плотностью энергии, в недрах Солнца, где ежесекундно преобразуются в энергию 4,4 миллиона тонн вещества, в ядрах всех остальных звезд. Еще она находит себе занятие в окрестностях черных дыр, сразу за их горизонтом событий, где пары «частица-античастица» возникают за счет чудовищной гравитационной энергии черной дыры. Этот процесс описал еще в 1975 году Стивен Хокинг – и показал, что из-за этого механизма черные дыры медленно испаряются, теряя массу. Иначе говоря, черные дыры не вполне черные.

Сегодня это явление называется излучением Хокинга и напоминает нам о плодотворности уравнения E = mc².

Но что же было до всего этого? Что было до начала?

Астрофизики не имеют об этом ни малейшего понятия. Или, точнее, наши самые смелые гипотезы не получают никакого или почти никакого подтверждения в экспериментальной науке. Однако представители некоторых религиозных групп не без самодовольства утверждают, что раз все должно было с чего-то начаться, это действовала сила, пересилившая все остальные силы, источник, из которого произошло все остальное. Имел место какой-то первотолчок.

По мысли подобных людей это что-то – разумеется, Бог.

А вдруг Вселенная была всегда – просто в каком-то состоянии, которое нам еще предстоит определить и описать, например, в составе множественной Вселенной? А может быть, Вселенная, как и ее частицы, просто возникла из ничего?

Подобные ответы обычно никому не нравятся. Тем не менее они напоминают нам, что незнание – естественное состояние сознания ученого-исследователя, находящегося на переднем крае науки, на границе познания, которая отступает все дальше и дальше. Те, кто считают, что все уже познали, просто никогда не искали эту границу между известным и неизвестным во Вселенной, никогда на нее не натыкались. Здесь заключается очень интересная дихотомия. Утверждение «Вселенная была всегда» – вполне законный ответ на вопрос «Что было до начала?», однако далеко не все это признают. Однако для многих религиозных людей ответ «Бог был всегда» – это очевидный и даже приятный ответ на вопрос «Что было до Бога?»

Кем бы ты ни был, путь к открытию, где и как все началось, всегда вызывает дрожь восторга, словно бы знание о начале всего дарует особого рода причастность к тому, что было дальше, а может быть, и власть над ним. А значит, что справедливо для жизни как таковой, справедливо и для Вселенной: знать, откуда ты пришел, не менее важно, чем знать, куда ты идешь.

 

Глава сорок первая

Священные войны

Каждый раз, когда я читаю публичную лекцию о Вселенной, я стараюсь отвести достаточно времени для вопросов. Как пойдут события, вполне предсказуемо. Первые вопросы относятся непосредственно к лекции. Потом слушатели переходят на особо пикантные космические темы – заговаривают о черных дырах, квазарах, Большом Взрыве. Если у меня хватает времени, чтобы ответить на все вопросы и если дело происходит в Америке, в конце концов речь заходит о Боге. Чаще всего меня спрашивают: «Верят ли ученые в Бога? А вы верите в Бога? Если изучаешь астрофизику, как это влияет на религиозность – укрепляешься в вере или наоборот?»

Издатели давно разобрались, что упоминание Бога приносит много денег, особенно если автор – ученый и в названии книги прямо противопоставлены темы науки и религии. Читателям такие книги по душе – это, например, «Бог и астрономы» Роберта Ястрова (Robert Jastrow, «God and the Astronomers»), «Частица Бога» Леона М. Ледермана (Leon M. Lederman, «The God Particle»), «Физика бессмертия. Современная космология, Бог и воскрешение из мертвых» Фрэнка Дж. Типлера (Frank J. Tipler, «The Physics of Immortality: Modern Cosmology, God, and the Resurrection of the Dead») и две работы Пола Дэвиса – «Бог и новая физика» и «Разум Бога» (Paul Davies, «God and the New Physics», «The Mind of God»). Все эти авторы – признанные ученые, физики или астрофизики, и хотя книги их не религиозного содержания, они подталкивают читателя к тому, чтобы при разговоре об астрофизике упоминать Бога. Даже покойный Стивен Дж. Гулд, «бульдог Дарвина» и ярый агностик, и тот поучаствовал в этом параде названий – у него есть книга «Твердыня вечная. Наука, религия и полнота жизни» (Stephen Jay Gould, «Rock of Ages: Science and Religion in the Fullness of Life»).

Финансовый успех этих печатных трудов показывает, что американское общество готово вознаграждать деньгами всякого, кто, будучи ученым, открыто говорит о Боге.

После выхода в свет «Физики бессмертия», где говорится о том, позволяют ли законы физики вам и вашей душе существовать сколько-нибудь долго после того, как вы покинете этот мир, Типлер во время рекламного турне выступил во многих протестантских общинах, и ему щедро за это платили. Это прибыльное направление особенно процветает в последние годы стараниями сэра Джона Темплтона, состоятельного основателя Инвестиционного фонда Темплтона, цель которого – добиться мира и гармонии в отношениях науки с религией. Фонд Темплтона не только финансирует семинары и конференции по соответствующей тематике, но и разыскивает плодовитых ученых, которые публикуют работы с религиозным уклоном, дабы наградить их ежегодной премией – между прочим, ее сумма больше Нобелевской.

Расставим все точки над «i». У науки и религии в их нынешнем виде нет ничего общего. Как подробно доказано в монографии XIX века «История войны науки с теологией в христианстве», принадлежащей перу историка Эндрю Д. Уайта, одно время бывшего президентом Корнельского университета (Andrew D. White, «A History of the Warfare of Science with Theology in Christendom»), на протяжении всей истории наука и религия пребывали в состоянии вражды и соперничества, и все зависело от того, кто из них в данный момент обладает большей властью над обществом. Заявления науки основываются на экспериментальной проверке и подтверждении, а заявления религии – на вере. Примирить эти подходы к познанию в принципе невозможно, вот почему каждый раз, когда сталкиваются представители этих лагерей, дебаты могут тянуться вечно. Впрочем, как при переговорах об освобождении заложников, лучше всего, наверное, постараться, чтобы обе стороны были поглощены разговорами друг с дружкой.

Раскол произошел отнюдь не потому, что никто раньше не пытался примирить враждующие стороны. Величайшие умы – от Клавдия Птолемея, жившего во II веке, до Исаака Ньютона, жившего в веке XVII, не жалели своей невероятной интеллектуальной мощи на то, чтобы вывести природу Вселенной из принципов и утверждений, которые содержатся в священных писаниях. Тот же Ньютон ко времени своей кончины написал о Боге и религии больше слов, чем о физических законах, и в том числе предпринял жалкие попытки понять и предсказать события в мире природы, опираясь на библейскую хронологию. Если бы его труды увенчались успехом, к сегодняшнему дню наука и религия были бы практически неотличимы.

Мой довод очень прост. Я еще ни разу не видел, чтобы предсказание о положении вещей в физическом мире, сделанное на основании того или иного религиозного документа, так или иначе оправдалось. Более того, я могу сделать и более сильное заявление. Каждый раз, когда кто-то пытался дать точное предсказание о положении вещей в физическом мире на основании религиозных документов, попытка с треском проваливалась. Под предсказанием я понимаю конкретное, не проверенное экспериментально утверждение о природных явлениях или о поведении природных объектов, сделанное до того, как событие имеет место.

Если модель описывает что-то уже после того, как это произошло, вместо предсказания получается «послесказание». Послесказания – фундамент большинства мифов о сотворении мира и, разумеется, сказок Киплинга, где даются объяснения задним числом уже известных реалий повседневной жизни. Однако наука – это такой бизнес, где за одно правильное предсказание отсыплют не глядя добрую сотню послесказаний.

* * *

Верхние места в топ-параде религиозных предсказаний занимают извечные притязания на то, когда настанет конец света; пока что ни одно из них не оправдалось. Впрочем, это относительно невинные упражнения. Однако бывают и такие предсказания и заявления, которые всерьез тормозят или даже обращают вспять научный прогресс. Вопиющий пример – судебный процесс над Галилеем (я бы проголосовал за него на конкурсе «Процесс тысячелетия»), в ходе которого он показал, что Вселенная фундаментально не соответствует преобладающим взглядам католической церкви. Правда, надо отдать должное инквизиции: геоцентрическая модель Вселенной с точки зрения наблюдений вполне себя оправдывала. Геоцентрическая модель – при условии, что она была дополнена полным комплектом эпициклов, позволяющих объяснить особенности движения планет на фоне звезд, – в свое время не противоречила никаким данным наблюдений. Это положение сохранялось даже после того, как Коперник вел свою гелиоцентрическую модель Вселенной, что произошло за сто лет до Галилея. Геоцентрическая модель соответствовала и догматам католической церкви, и превалирующему толкованию Библии, согласно которой Земля определенно была создана раньше Солнца и Луны, о чем, собственно, и говорится в первых нескольких стихах книги Бытие. Если тебя создали первым, значит, ты становишься центром всяческого движения. Где тебе еще быть? Более того, предполагалось, что и сами Солнце и Луна представляют собой гладкие сферы. Что еще может создать совершенное всеведущее божество?

Разумеется, все изменилось с изобретением телескопа и с наблюдениями Галилея над поведением светил. Новое оптическое устройство выявило свойства космоса, которые прямо противоречили всеобщим представлениям о геоцентрической, безупречной божественной Вселенной. Поверхность Луны была каменистой и ухабистой, поверхность Солнца была вся в плавающих пятнах, у Юпитера оказались свои собственные спутники, которые вращались вокруг него, а не вокруг Земли, а у Венеры – фазы, совсем как у Луны. За эти революционные открытие, сотрясшие основы христианства, а еще за то, что Галилей так ими похвалялся, его отдали под суд, признали виновным в ереси, приговорили к домашнему аресту. Это было очень мягкое наказание, если вспомнить, что случилось с монахом Джордано Бруно. За несколько десятков лет до этого Бруно тоже обвинили в ереси и сожгли на костре за предположение, что жизнь может быть не только на Земле, но и на других планетах.

Я вовсе не утверждают, что вполне уважаемые ученые, признанные специалисты в своей области, разумно следовавшие научному методу, никогда не ошибались. Всякое бывало. Большинство заявлений, которые делают ученые, работающие на переднем крае науки, рано или поздно оказываются неверными, в первую очередь – из-за неполных или плохих данных, а иногда – из-за глупых ляпсусов. Однако научный метод, позволяющий совершать ознакомительные вылазки в интеллектуальные тупики, позволяет также получить гипотезы, модели и прогностические теории, которые могут быть потрясающе точными. История человечества не знает другого занятия, позволяющего с такой точностью расшифровывать устройство Вселенной.

Иногда науку обвиняют в узколобости и упрямстве. Зачастую подобные обвинения выдвигают, когда видят, как ученые с легкостью отмахиваются от астрологии, всяческих сверхъестественных явлений, снежного человека и прочих областей человеческих интересов, которые никогда не проходят проверку двойным слепым методом и не оставляют по себе надежных следов. Только не обижайтесь. С тем же самым скептицизмом ученые относятся и к самым обычным гипотезам в профессиональных научных журналах. Стандарты совершенно одинаковы. Вспомните хотя бы, что было, когда химики из Юты Б. Стенли Понс и Мартин Флейшман заявили на пресс-конференции, что осуществили в своей лаборатории «холодный» термоядерный синтез. Ученые отреагировали молниеносно и с большим скептицизмом. Не прошло и нескольких дней после объявления, как стало ясно, что повторить результат, о котором заявили Понс и Флейшман, никому не удается. По итогам проверки их гипотеза была отвергнута. Подобные сценарии, за вычетом пресс-конференций, разыгрываются чуть ли не ежедневно по случаю практически любой гипотезы. Просто вам рассказывают не обо всех таких случаях, а, похоже, только о тех, которые могут прямо повлиять на экономику.

* * *

Ученым свойствен столь сильный скептицизм, что кое-кого, наверное, удивит, если я скажу, что больше всего ученые радуются, когда кому-нибудь действительно удается найти недочеты в сложившихся системах представлений: на долю таких исследователей приходится больше всего похвал, премий и славы. Такие же премии получают и те, кто открывает новые способы понимания Вселенной. Почти все знаменитые ученые – выбирайте кого хотите – на протяжении жизни хоть раз прославились чем-то подобным. Такой путь к успеху в профессиональной карьере по сути своей претит практически любой другой сфере человеческих интересов, а особенно религии.

Из всего этого отнюдь не следует, что в мире нет религиозных ученых. Недавно было проведено исследование религиозных воззрений среди профессионалов в области физико-математических наук (Larson and Witham 1998), и оказалось, что религиозными объявили себя 65 % математиков (самая большая доля) и 22 % физиков и астрономов (самая маленькая доля). В среднем по стране среди всех ученых доля религиозных составила около 40 %, и этот показатель за последние сто лет менялся мало. Для сравнения, религиозными себя считают около 90 % населения США, это один из самых высоких показателей в западной культуре, так что либо в науку тянет людей нерелигиозных, либо занятия наукой отвращают от религии.

А как же те ученые, которые считают себя религиозными? Невозможно заниматься серьезными научными исследованиями исходя из религиозных убеждений. С другой стороны, современные методы науки не имеют практически никакого отношения к этике, вдохновению, морали, красоте, любви, ненависти и эстетике. Это жизненно важные элементы цивилизованной жизни, и именно они и составляют предмет забот практически любой религии. А следовательно, для многих ученых здесь нет никакого конфликта интересов.

Как мы вскоре убедимся, когда ученые говорят о Боге, то обычно упоминают его в связи с теми областями познания, где нам нужно быть особенно смиренными и где мы сильнее всего удивляемся и восхищаемся. А разве можно устать от удивления и восхищения?

В XIII веке испанский король Альфонсо Мудрый (Альфонсо Х), который был еще и прекрасным математиком, пришел к мысли, что птолемеевы эпициклы, корректирующие геоцентрическую модель Вселенной, чересчур сложны. Это его огорчало, а поскольку король не отличался таким смирением, как остальные мыслители, находившиеся на передовом рубеже науки, он как-то раз отметил:

Если бы я присутствовал при сотворении мира, то, пожалуй, дал бы несколько полезных советов по обустройству Вселенной.
(Carlyle 2004, Book II, Chapter VII)

Совершенно согласен с претензиями ко Вселенной, которые высказал король Альфонсо, был и Альберт Эйнштейн, который в письме к коллеге отмечал: «Если этот мир сотворил Бог, очевидно, что обеспечить нам простоту его понимания не было его главной заботой» (Einstein 1954). Когда Эйнштейн не смог заключить, как и почему детерминистская Вселенная требует пробабилистских моделей квантовой механики, то сказал: «Трудно подглядеть в Божьи карты. Но в то, что Он решил играть со всем миром в кости… в такое я ни на миг не могу поверить» (Frank 2002, p. 208). Когда Эйнштейну рассказали о результатах одного эксперимента, которые, если бы их удалось подтвердить, опровергли бы его новую теорию гравитации, Эйнштейн заметил: «Пути Господни неисповедимы, но злым Он быть не может» (Frank 2002, p. 285). Датский физик Нильс Бор, современник Эйнштейна, наслушавшись от Эйнштейна упоминаний Господа, воскликнул как-то раз, что тому пора перестать отдавать Богу распоряжения (Gleick 1999)!

В наши дни иногда приходится слышать, как тот или иной астрофизик, быть может, один на сотню, публично упоминает Бога, когда его спрашивают, откуда взялись все физические законы или что было до Большого Взрыва. Мы уже поняли, что эти вопросы составляют передний край современной науки о космосе и на данный момент выходят за пределы ответов, которые мы можем получить на основании доступных данных и теорий. Уже появились некоторые перспективные идеи, например инфляционная космология или теория струн. В конечном итоге из таких идей и получатся ответы на эти вопросы – и предел восхищения и удивления отодвинется чуточку дальше.

Лично я придерживаюсь совершенно прагматичного мировоззрения, отчасти напоминающего взгляды Галилея, который, как говорят, на суде сказал: «Библия учит, как вести себя, чтобы попасть на небеса, а не как ведут себя сами небеса» (Drake 1957, p. 186). А в письме великой герцогине Тосканской в 1615 году он писал: «Мне думается, что Господь написал две книги. Первая – Библия, где люди находят ответы на вопросы о морали и нравственности. Вторая же книга Господа – книга природы, которая позволяет людям опираться на наблюдения и опыт, чтобы ответить на свои собственные вопросы об устройстве Вселенной» (Drake 1957, p. 173).

Проще говоря, я верю в то, что помогает узнать истину. А узнать истину помогает здоровый скептицизм, воплощенный в научном методе. Честное слово, если бы удалось доказать, что Библия представляет собой богатый источник ответов на научные вопросы и понимания явлений природы, мы штудировали бы ее изо дня в день в поисках астрофизических открытий. Однако слова, при помощи которых я описываю научное вдохновение, у меня те же самые, что и у восторженных верующих. Как и многие другие, я смиренно склоняюсь перед объектами и явлениями Вселенной. Я благоговею перед ее великолепием. Но при этом я отдаю себе отчет, что если я выдвину гипотезу о Боге, который дарует нам голубые дали непознанного, благодаря научному прогрессу может настать день, когда никаких голубых далей непознанного уже не останется. И я мирюсь с этой мыслью.

 

Глава сорок вторая

Периметр незнания

Ученые, писавшие свои труды в минувшие столетия, считали своим долгом говорить о тайнах мироздания и о творении Господнем выспренным языком поэзии. Пожалуй, в этом нет ничего удивительного: многие ученые в те времена, как и многие ученые в наши дни, считали себя людьми духовными.

Однако тщательное изучение более старых текстов, особенно тех, где речь идет о Вселенной как таковой, показывает, что авторы прибегали к божественному лишь тогда, когда доходили до пределов своего понимания. Они говорили о высшей силе, лишь когда глядели в океан собственного невежества. Они призывали Бога, только очутившись в полном одиночестве на краю бездонной пропасти непонимания. Однако там, где мыслители были уверены, что правильно объясняют происходящее, о Боге никто даже не упоминает.

Начнем с самых верхов. Исаак Ньютон был одним из величайших умов за всю историю человечества. Его законы движения и закон всемирного тяготения, сформулированные в середине XVII века, описывают физические явления вселенского масштаба, которые философы не могли объяснить на протяжении тысячелетий. Благодаря этим законам можно понять, как происходит гравитационное взаимодействие в системе из нескольких тел, а это позволяет понять, как устроены орбиты. Закон всемирного тяготения Ньютона дает возможность вычислить силу притяжения между любыми двумя объектами. Если ввести третий, то каждый из них притянет два других, и рассчитать орбиты, которые они описывают, станет гораздо сложнее. А если добавить четвертый, пятый и так далее объекты, вскоре получится наша Солнечная система со всеми ее планетами. Земля и Солнце взаимно притягиваются, но при этом Землю притягивает еще и Юпитер, а также Сатурн и Марс, Юпитер притягивает Сатурн, Сатурн притягивает Марс – и так далее.

Ньютон боялся, что из-за всего этого перетягивания орбиты Солнечной системы могут утратить стабильность. Его формулы показывали, что планеты уже давным-давно должны были либо упасть на Солнце, либо просто вылететь из системы – и в том и в другом случае при Солнце не осталось бы планет. Однако Солнечная система, как и Вселенная в целом, представлялась Ньютону образцом порядка и прочности.

Поэтому Ньютон в своем величайшем труде «Начала» приходит к выводу, что Господь, должно быть, время от времени вмешивается и что-то подправляет:

Шесть главных планет обращается вокруг Солнца приблизительно по кругам, концентрическим с Солнцем, по тому же направлению и приблизительно в той же самой плоскости… Все эти правильные движения не имеют своим началом механических причин, ибо кометы носятся во всех областях неба по весьма эксцентрическим орбитам… … Такое изящнейшее соединение Солнца, планет и комет не могло произойти иначе, как по намерению и по власти могущественного и премудрого существа.
( Здесь и далее цитаты из «Начал» Ньютона даны в переводе А. Крылова )

В своих «Началах» Ньютон проводит различие между гипотезами и экспериментальной философией и объявляет: «Гипотезам же метафизическим, физическим, механическим, скрытым свойствам не место в экспериментальной философии». Ньютону нужны исключительно данные, которые можно «вывести из явлений». Однако в отсутствие данных, на границе между тем, что он мог объяснить, и тем, что он мог лишь прославлять, – того, причины чего он мог выявить, и того, причины чего выявить не мог, – Ньютон восторженно призывал Бога:

Он вечен и бесконечен, всемогущ и всеведущ… всем управляет и все знает, что было и что может быть… Мы познаем его лишь по его качествам и свойствам и по премудрейшему и превосходнейшему строению вещей и по конечным причинам, и восхищаемся по совершенству всего, почитаем же и поклоняемся по господству.

Прошло сто лет, и французский математик и астроном Пьер-Симон Лаплас бросился в лобовую атаку на ньютонову дилемму нестабильных орбит. В его глазах загадочная стабильность Солнечной системы объяснялась не непознаваемым вмешательством Господа: Лаплас объявил ее научной задачей. В своем трактате «Небесная механика», состоящем из нескольких частей, первый том которого вышел в свет в 1799 году, Лаплас доказывает, что Солнечная система стабильна на протяжении периодов времени гораздо больших, чем мог предсказать Ньютон. Для этого Лаплас разработал новую отрасль математики под названием «теория возмущений», что позволило ему изучать сочетанный эффект взаимодействия множества мелких сил. Часто рассказывают – впрочем, скорее всего, рассказ этот сильно приукрашен, – что когда Лаплас подарил экземпляр «Небесной механики» своему другу Наполеону Бонапарту, сведущему в физике, Наполеон спросил его, какую роль Бог сыграл в конструировании и отладке небес. «Сир, в этой гипотезе я не нуждаюсь», – отвечал Лаплас (DeMorgan 1872).

* * *

Тем не менее пример Лапласа – скорее исключение, поскольку не только Ньютон, но и многие другие ученые взывали к Богу или к богам всякий раз, когда их познания достигали предела, за которым лежало невежество. Вспомним хотя бы александрийского астронома Птолемея, жившего во II веке. Вооруженный описанием поведения планет на небесах, он не располагал подлинным пониманием происходящего и поэтому не смог сдержать религиозного пыла и на полях своего «Альмагеста» приписал:

Я знаю, что от природы смертен и существование мое эфемерно, но когда я с удовольствием слежу за передвижениями небесных тел, то больше не касаюсь Земли ногами, я предстаю перед самим Зевсом и насыщаюсь амброзией.

А можно вспомнить и голландского астронома XVII века Христиана Гюйгенса, в число достижений которого входит создание первых часов с маятником и открытие колец Сатурна. Он посвятил вводные главы своей прелестной книги «Открытые небесные миры», опубликованной уже посмертно, в 1698 году, восславлению всего того, что уже было известно к тому времени о планетах и их орбитах, форме и размерах, а также об относительной яркости планет и о том, из каких каменных пород они предположительно состоят. В книге есть даже вклейки с изображением структуры Солнечной системы. В рамках этого обсуждения Богу места нет, хотя всего веком ранее, до достижений Ньютона, орбиты планет были покрыты завесой священной тайны.

«Небесные миры» также полны предположений о возможности существования жизни на планетах Солнечной системы, и здесь-то Гюйгенс и задается вопросами, на которые у него нет ответа. Здесь-то он и заговаривает о загадках биологии своего времени, например о том, как трудно выявить источник жизни. И поскольку физика в XVII веке продвинулась гораздо дальше биологии, Гюйгенс, конечно, упоминает десницу Божию лишь тогда, когда речь идет о биологии:

Думаю, никто не станет отрицать, что в размножении и росте животных и растений больше следов разумного замысла, больше чудесного, чем в безжизненных грудах неодушевленных тел… Ибо именно в них десница Божия и мудрость Божественного провидения явлены гораздо отчетливее, чем во всем прочем.
(Huygens 1698, р. 20)

Сегодня светские философы называют подобного рода призывы к божественному «доказательством от незнания» – и это очень верно подмечено, поскольку незнания у нас всегда было в избытке, в отличие от знаний.

* * *

Все благочестие ученых вроде Ньютона, Гюйгенса и других величайших умов минувших лет не мешало им быть эмпириками. Они не закрывали глаза на выводы, к которым настойчиво подталкивали полученные данные, а когда открытия конфликтовали с доминирующими догматами веры, отстаивали истинность открытий. Разумеется, это было нелегко, иногда ученые встречали суровый отпор, например Галилей, которому пришлось защищать свои наблюдения, сделанные при помощи телескопов, от чудовищных нападок, происходивших как от священного писания, так и от «здравого» смысла.

Галилей четко разграничил роли религии и науки. Религия для него была служением Богу и спасением душ, тогда как наука – источником точных наблюдений и доказуемых истин. В своем письме великой герцогине Кристине Тосканской он не оставляет никаких сомнений в том, что он думает о буквальном понимании Священного писания:

Если при толковании Библии вынужденно ограничиваться лишь грамматическим смыслом, лишенным всяких прикрас, неизбежно впадешь в заблуждение… нельзя сомневаться и тем более опровергать никакие библейские пассажи, где речь идет о каких-то физических явлениях, которые можно доказать, а между тем вероятно, что эти пассажи имеют какой-то скрытый за словами иной смысл…
(Venturi 1818, p. 222)

Не чувствую себя обязанным верить, что тот самый Бог, который наделил нас чувствами, разумом и здравым смыслом, не желает, чтобы мы всем этим пользовались.

Галилей был редким исключением среди ученых – он считал неведомое объектом исследования, а не вечной тайной, над которой довлеет десница Божия.

Поскольку небесные сферы в целом считались царством Божественного, то обстоятельство, что простые смертные не в состоянии объяснить, как они устроены, вполне можно было считать доказательством существования высшей мудрости и власти Божией. Однако начиная с XVII века труды Коперника, Кеплера, Галилея и Ньютона, не говоря уже о Максвелле, Гейзенберге, Эйнштейне и всех прочих, кто открыл фундаментальные законы физики, обеспечивали рациональное объяснение все новым и новым явлениям. Мало-помалу Вселенную стали изучать при помощи научного метода и научного инструментария – и тогда она превратилась в царство точных знаний и доказательств.

* * *

А затем произошла совершенно неожиданная и поразительная философская инверсия: толпы священнослужителей и ученых провозгласили, что именно законы физики как таковые и служат доказательством мудрости и могущества Господня.

В XVII–XVIII веках была популярна тема «заводной Вселенной» – упорядоченного, рационального, предсказуемого часового механизма, созданного и управляемого Богом и его физическими законами. Первые телескопы, позволявшие наблюдать небо лишь в диапазоне видимого света, не помогали разрушить этот стройный образ упорядоченной системы. Луна вращается вокруг Земли. Земля и прочие планеты вращаются вокруг своей оси и вокруг Солнца. Звезды светят. Туманности свободно парят в пространстве.

Лишь в XIX веке стало понятно, что видимый свет – это всего лишь одна полоса в широком спектре электромагнитного излучения, просто так вышло, что именно эту полосу видят люди. В 1800 году открыли инфракрасное излучение, в 1801 – ультрафиолетовое, в 1888 – радиоволны, в 1895 – рентгеновские лучи, в 1900 – гамма-лучи. А с каждым новым десятилетием следующего века в научный обиход входили все новые разновидности телескопов, снабженные датчиками, способными «видеть» невидимые прежде части электромагнитного спектра. Теперь астрофизики начали выявлять подлинный характер Вселенной.

Как выяснилось, некоторые небесные тела испускают больше света в невидимых диапазонах, чем в видимом. И невидимый свет, который уловили новые телескопы, показал, что в космосе творится настоящая бойня – чудовищные гамма-всплески, смертоносные пульсары, сокрушающие вещество гравитационные поля, пожирающие вещество черные дыры, обдирающие шкуры со своих раскормленных соседей, новорожденные звезды, пылающие в недрах областей схлопнувшегося газа. И по мере того, как наши обычные оптические телескопы становились все больше и лучше, картина становилась все страшнее: на наших глазах сталкиваются и заглатывают друг друга галактики, взрываются сверхмассивные звезды, орбиты звезд и планет приходят в хаос. И, как уже отмечалось, наши космические окрестности, внутренняя часть Солнечной системы, оказалась настоящим стрельбищем, тут полным-полно залетных астероидов и комет, которые время от времени сталкиваются с планетами. Случается, что они даже массированно стирают с лица Земли флору и фауну. Все говорит о том, что мы живем вовсе не в благовоспитанной заводной Вселенной, а в зоопарке, полном свирепых злобных тварей, сеющих смерть и разрушение.

Разумеется, и Земля тоже может оказаться вредной для здоровья. Гризли мечтают покалечить вас на суше, акулы – сожрать в океане. Вьюга грозит вас заморозить, пустыня – высушить насмерть, землетрясение – засыпать, вулканы – испепелить. Вирусы вызывают болезни, паразиты норовят высосать жизненные соки, рак захватывает тело, врожденные болезни влекут за собой безвременную смерть. И даже если вам очень повезло и вы в целом здоровы, ваши посевы погубит саранча, цунами смоет вас в океан вместе с чадами и домочадцами или ураган сравняет ваш город с землей.

* * *

В общем, Вселенная хочет всех нас убить. Однако давайте пока не будем обращать внимания на это обстоятельство – ведь нам и раньше это удавалось.

На переднем крае науки маячит множество вопросов – возможно, даже бесконечное множество. Ответы на некоторые из них ускользали от лучших умов наших собратьев на протяжении десятков, а иногда и сотен лет. И при всем при том в современной Америке идея о том, что единственный ответ на все загадки – это наличие высшего разума, переживает возрождение. Нынешняя версия доказательства от незнания получила новое название: «разумный замысел».

Это выражение намекает на то, что некая сущность, чьи интеллектуальные способности намного превышают человеческие, способна воплотить в себе, создать или обеспечить все предметы и явления физического мира, которые мы не можем объяснить научными методами.

Интересная гипотеза.

Но почему же мы ограничиваемся только тем, что слишком удивительно или сложно для нашего понимания, и считаем, что высший разум создал только такие предметы и явления, только с такими свойствами? Почему не упомянуть и все то, что устроено до того нелепо, глупо, непрактично, нерационально, что прямо вопиет об отсутствии всякого разумного замысла?

Возьмем хотя бы человеческое тело. Мы едим, пьем и дышим при помощи одного и того же отверстия в голове, и именно поэтому, несмотря на прием доктора Генри Геймлиха, носящий его имя, удушение по-прежнему занимает четвертое место в списке причин смерти от несчастного случая в США. А утопление, которое стоит на пятом месте? Вода покрывает две трети поверхности Земли, однако мы – существа сухопутные, и умираем, будучи полностью погруженными в воду всего на несколько минут.

А чего стоит собрание ненужных частей тела! К чему нам ноготь на мизинце ноги? А аппендикс, который у взрослого человека перестает функционировать и служит исключительно источником аппендицита?

Однако и полезные части тела тоже весьма несовершенны. Вот я, например, очень люблю свои колени, однако никто никогда не скажет, что они прекрасно защищены от ударов и травм. В наши дни те, у кого больные колени, могут хирургически заменить их искусственными суставами. А вот замену позвоночнику, который у всех постоянно болит, придумают, наверное, еще очень не скоро.

А молчаливые убийцы? Высокое артериальное давление, рак кишечника, диабет ежегодно уносит жизни десятков тысяч американцев, однако их зачастую диагностирует только патологоанатом. Правда, было бы славно, если бы у нас были встроенные био-датчики, которые заблаговременно предупреждали бы об опасности? Ведь датчики состояния двигателя есть даже на самых дешевых автомобилях!

А какой шутник сконструировал область между ног – парк аттракционов, построенный прямо на канализационном отстойнике?

Глаз часто считают чудом биологической инженерии. Однако для астрофизика это совсем неважный инструмент. Было бы лучше, если бы глаз был чувствительнее к темным объектам в небе и ко всем невидимым частям спектра. Насколько красивее были бы закаты, если бы мы видели ультрафиолетовое и инфракрасное излучение! А как было бы полезно, если бы мы с первого взгляда видели все источники микроволнового излучения в округе или знали, какие радиостанции сейчас работают. Как было бы полезно, если бы мы ночью видели полицейские радары…

Только подумайте, насколько проще было бы прокладывать маршрут в незнакомом городе, если бы мы, подобно птицам, всегда знали бы, где север, благодаря магнетиту в голове. Подумайте, насколько лучше нам жилось бы, если бы у нас были не только легкие, но и жабры, насколько продуктивнее мы работали бы, имей мы шесть рук, а не две. А было бы восемь – можно было бы спокойно вести машину и при этом говорить по мобильному телефону, настраивать радиоприемник, красить глаза, попивать кофе и чесать левое ухо.

Идиотские ошибки в замысле достойны отдельного воспевания. Не то что бы природа вела себя так по умолчанию, однако они встречаются сплошь и рядом. Однако почему-то всем нравится думать, будто наше тело, наш разум и даже наша Вселенная – шедевры красоты и разумности. Может быть, такой образ мыслей – хороший антидепрессант. Но к науке это не имеет отношения – ни сейчас, ни в прошлом, никогда.

* * *

Есть и другая практика, не имеющая отношения к науке, – манера приветствовать незнание. Однако это и есть фундаментальный принцип философии разумного замысла: я не знаю, что это. Я не знаю, как это устроено. Для меня это слишком сложно, мне не разобраться. И вообще людям в этом не разобраться – слишком сложно. Значит, это, должно быть, творение высшего разума.

Как быть с подобной логикой? Неужели просто уступить прерогативу решать задачи тому, кто умнее тебя, тому, кто даже не человек? Неужели сказать студентам, что надо решать только задачи, на которые легко получить ответ?

Вероятно, и в самом деле человеческий разум способен изучать Вселенную лишь до некоторого предела. Но какой было бы самонадеянностью с моей стороны заявлять, что если я не могу решить какую-то задачу, значит, ее не сможет решить никто – ни те, кто жили до нас, ни те, кто еще не родился. Только представьте себе, что было бы, если бы так думали Галилей и Лаплас. Или лучше представьте себе, что было бы, если бы Ньютон думал не так. Тогда он решил бы задачу Лапласа на сто лет раньше – и у Лапласа появилась бы возможность взять следующий барьер незнания.

Наука – это философия открытий. Гипотеза разумного замысла – это философия незнания. Нельзя построить программу открытий на предположении, что ни у кого не хватит ума найти ответ на ту или иную задачу. Когда-то люди решили, что причина морских бурь – бог Нептун. Сегодня мы называем эти бури циклонами. Знаем, где и когда они зарождаются. Знаем, что ими движет. Знаем, что усмиряет их разрушительную силу. И всякий, кто изучал глобальное потепление, скажет вам, что их усиливает. В наши дни циклоны называют «волей Божьей» разве что страховые агенты.

* * *

Пытаться отрицать, что в истории человечества была и есть целая плеяда ярких, интересных ученых и других мыслителей, которые в своих трудах апеллировали к божественному, пытаться вычеркнуть их из памяти было бы бесчестно с интеллектуальной точки зрения. Естественно, на просторах академического пейзажа найдется место и для гипотезы разумного замысла. Вот, например, история религии. Или, скажем, психология и философия. Этой гипотезе не место лишь в кабинете физики, только и всего.

Если академические доводы вас не поколебали, задумайтесь о финансовой стороне дела. Впустите гипотезу разумного замысла в учебники по физике, в лаборатории и аудитории – и мы понесем неисчислимые потери на передовом крае научных открытий, тех самых, которые движут экономику будущего. Не хочу, чтобы студентам, которые могли бы совершить следующий крупный прорыв в освоении возобновляемых источников энергии или в области космических полетов, внушали, что если они чего-то не понимают и этого еще никто не понял, значит, это создано высшими силами и потому лежит за рамками их интеллектуальных способностей. В день, когда это произойдет, американцы просто сядут сложа руки и замрут в благоговении перед всем непонятным – и мы будем беспомощно наблюдать, как весь остальной мир храбро шагает туда, куда еще не заглядывал ни один смертный.