Наша математическая вселенная

Тегмарк Макс

Часть I. Всё крупнее и крупнее

 

 

Глава 2. Наше место в пространстве

 

Космические вопросы

Мальчик поднимает руку, и я жестом предлагаю задать вопрос. «А космос тянется без конца?» — спрашивает он.

Вот это да! Я только что закончил небольшой рассказ об астрономии в «Детском уголке» в Уинчестере (Массачусетс, США), где мои дети проводят время после уроков, и вся очаровательная группа детсадовцев, сидя на полу, глядит на меня большими вопрошающими глазами, ожидая ответа. А этот пятилетний малыш только что задал вопрос, на который я не могу ответить! На самом деле, ответить на него не может никто на планете. И всё же это не безнадёжный метафизический вопрос, а серьёзный, научный: теории, о которых я вам расскажу, дают на этот счёт ясные предсказания, а уже идущие эксперименты могут пролить на него ещё больше света. Я считаю, что это важнейший вопрос о фундаментальной природе физической реальности, и он приведёт нас к двум типам параллельных вселенных (гл. 5).

Год за годом следя за мировыми новостями, я чувствовал, как во мне растёт мизантропия, но всего за несколько секунд этот малыш укрепил мою веру в потенциал человечества. Если пятилетний ребёнок может говорить такие вещи, представьте только, на какие достижения способны взрослые в подходящих обстоятельствах! Он также напомнил мне о важности обучения. Все мы от рождения наделены способностью удивляться, но в какой-то момент школа обычно умудряется вытравить её из нас. Я чувствую, что важнейшая моя задача как учителя не изложить факты, а разжечь эту угасшую страсть к вопрошанию.

Я люблю вопросы. Особенно глобальные. Я чувствую себя счастливым, потому что могу тратить львиную долю своего времени на интересные вопросы. То, что я могу называть эту деятельность работой и зарабатывать так на жизнь, — большая удача, превосходящая мои самые смелые надежды. Вот список из шестнадцати вопросов, которые мне чаще всего задают:

1. Как может пространство не быть бесконечным?

2. Как бесконечное пространство может быть создано за конечное время?

3. Куда расширяется Вселенная?

4. Где именно в пространстве произошёл наш Большой взрыв?

5. Произошёл ли наш Большой взрыв в одной точке?

6. Если возраст нашей Вселенной всего 14 млрд лет, то как мы видим объекты на расстоянии 30 млрд световых лет?

7. Не нарушают ли галактики, удаляющиеся быстрее света, теорию относительности?

8. Галактики действительно удаляются от нас — или это пространство расширяется?

9. Расширяется ли Млечный Путь?

10. Найдены ли следы сингулярности Большого взрыва?

11. Не нарушает ли закон сохранения энергии возникновение материи почти из ничего в ходе инфляции?

12. Что стало причиной нашего Большого взрыва?

13. Что было до нашего Большого взрыва?

14. Какова окончательная судьба нашей Вселенной?

15. Что такое тёмная материя и тёмная энергия?

16. Действительно ли мы несущественны для Вселенной?

На одиннадцать вопросов мы ответим в следующих четырёх главах. Но сначала вернёмся к детсадовскому вопросу, центральному для всей первой части книги: тянется ли космос бесконечно?

 

Насколько огромен космос?

Однажды отец дал мне совет: «Если ты задумался над сложным вопросом, на который не можешь ответить, займись сначала более простым вопросом, на который не можешь ответить». Последуем этому совету и выясним, какой минимальный размер должно иметь пространство, чтобы не противоречить наблюдениям. На рис. 2.1 показано, как поразительно выросли эти размеры: сегодня мы знаем, что пространство по крайней мере в миллиард триллионов (1021) раз превышает наибольшие расстояния, знакомые древним охотникам и собирателям, — те, что они могли пройти за время своей жизни.

Более того, на рисунке видно, что расширение наших горизонтов было не уникальным событием, а повторялось многократно. Всякий раз, когда людям удавалось заглянуть дальше и построить карту более крупных структур Вселенной, мы обнаруживали, что всё известное нам прежде является частью чего-то большего. Как показано на рис. 2.2, наша родина — это часть планеты, которая является частью Солнечной системы, которая является частью Галактики, которая является частью паттерна скоплений галактик, который является частью наблюдаемой Вселенной, которая является частью одного или более уровней параллельных вселенных.

Рис. 2.1. Нижнее ограничение на размер нашей Вселенной постоянно растёт. Заметьте, что шкала на вертикальной оси очень крутая: с каждым делением размеры возрастают в 10 раз.

Люди думали, что всё видимое — это и есть всё существующее, и высокомерно помещали себя в центр мироздания. Таким образом, недооценка была лейтмотивом наших поисков понимания космоса. И всё же рис. 2.1 отражает и другую мысль, вдохновляющую меня: мы многократно недооценивали не только размеры космоса, но и силу человеческого разума, способного его понять. У наших пещерных предков был такой же большой мозг, как и у нас, и поскольку они не тратили вечера на просмотр телевизора, я уверен, что они задавались вопросами вроде: «Что это там такое в небе?» или «Откуда это всё взялось?» Они пересказывали друг другу красивые мифы и легенды, но им и в голову не приходило, что они способны найти настоящие ответы на эти вопросы. И что секрет заключается не в освоении полётов в космос для изучения небесных тел, а в том, чтобы позволить взлететь разуму.

Нет лучшей гарантии неудачи, чем признать, что успех невозможен, а значит, не надо и пытаться. Задним числом кажется, что многие великие прорывы в физике могли случиться раньше, поскольку необходимые инструменты уже существовали. Проведём аналогию с хоккеем: люди не забивали шайбу в пустые ворота просто потому, что считали свою клюшку сломанной. В следующих главах я поделюсь впечатляющими примерами того, как Исаак Ньютон, Александр Фридман, Георгий Гамов и Хью Эверетт преодолели эту неуверенность. Мне очень нравится высказывание нобелевского лауреата Стивена Вайнберга: «Так часто бывает в физике — ошибка не в том, что мы слишком серьёзно относимся к своим теориям, а в том, что не воспринимаем их достаточно серьёзно».

Сначала выясним, как определить размеры Земли и расстояние до Луны, Солнца, звёзд и галактик. На мой взгляд, это одна из самых ярких детективных историй всех времён, которая, можно сказать, породила современную науку. Так что я горю желанием поделиться ею с вами, как закуской перед основным блюдом — последними достижениями космологии. Как вы увидите, первые четыре вопроса не требуют ничего сложнее измерений углов. Они также проиллюстрируют, насколько важно удивляться, казалось бы, банальным наблюдениям — ведь они могут оказаться ключевыми уликами.

Рис. 2.2. Наша родина — это часть планеты (слева), которая является частью Солнечной системы, которая является частью Галактики (посередине слева), которая является частью паттерна скоплений галактик (посередине справа), которая является частью наблюдаемой Вселенной (справа), которая может быть частью одного или более уровней параллельных вселенных.

 

Размеры Земли

С древности люди замечали, что у корабля, уходящего за горизонт, корпус исчезает из виду раньше парусов. Это наводило на мысль, что поверхность океана искривлена и что Земля имеет сферическую форму, подобно Солнцу и Луне. Древние греки обнаружили прямое тому подтверждение, заметив, что Земля во время лунного затмения отбрасывает на Луну круглую тень (рис. 2.3). Хотя размеры Земли нетрудно оценить по виду парусных судов, Эратосфен около 2,2 тыс. лет назад выполнил более точные измерения, догадавшись, как воспользоваться для этого измерением углов. Он знал, что в египетской Сиене в день летнего солнцестояния Солнце в полдень оказывалось прямо над головой, однако в Александрии, расположенной на 794 км севернее, оно в это время находилось на 7,2° южнее зенита. Отсюда учёный вывел, что перемещение на 794 км соответствует прохождению 7,2° из 360° окружности Земли, а значит, длина этой окружности составляет около 794 км × 360° / 7,2° ≈ 39,7 тыс. км, что удивительно близко к современному значению (40 тыс. км).

Рис. 2.3. Во время лунного затмения Луна проходит сквозь тень, отбрасываемую Землёй (вверху). Более двух тысяч лет назад Аристарх Самосский сравнил размер Луны с размером земной тени во время лунного затмения и верно определил, что Луна примерно в 4 раза меньше Земли. (Мультиэкспозиционная фотография Скотта Иварта.)

Занятно, что Христофор Колумб глубоко заблуждался, положившись на позднейшие, менее точные расчёты и перепутав арабские мили с итальянскими, отчего пришёл к выводу, что ему нужно проплыть всего 3,7 тыс. км, чтобы достичь Востока, тогда как действительное расстояние составляло 19,6 тыс. км. Ясно, что он не получил бы средства на экспедицию, если бы сделал правильные расчёты, и, очевидно, он бы не выжил, если бы ему не подвернулась Америка. Так что иногда везение оказывается важнее правоты.

 

Расстояние до Луны

Затмения долго порождали страх, трепет и мифы. (Колумб, попав на Ямайке в затруднительное положение, сумел испугать аборигенов, «предсказав» лунное затмение 29 февраля 1504 года.) Однако затмения дают и замечательную возможность оценить размеры космоса. Аристарх Самосский заметил (рис. 2.3): когда Земля оказывается между Солнцем и Луной и происходит лунное затмение, тень Земли, падающая на Луну, имеет искривлённый край, причём круглая тень Земли в несколько раз больше Луны. Аристарх также понимал, что эта тень немного меньше самой Земли, поскольку Земля меньше; он учёл это в своих вычислениях и пришёл к выводу, что Луна примерно в 3,7 раза меньше Земли. Поскольку Эратосфен уже определил размер Земли, Аристарх просто поделил его на 3,7 и получил размеры Луны! По-моему, именно тогда человеческое воображение наконец оторвалось от Земли и начало завоёвывать космос. Великое множество людей до Аристарха смотрело на Луну, но он первым смог определить её размеры. Он совершил открытие благодаря силе своей мысли, а не полёту на ракете.

Один научный прорыв нередко ведёт к следующему. Определение размеров Луны сразу позволило определить расстояние до неё. Вытяните перед собой руку и посмотрите, какие предметы вы можете заслонить мизинцем. Угол, который он закрывает, составляет около 1°, и это примерно вдвое больше, чем нужно, чтобы закрыть Луну — проверьте сами, когда её увидите. Чтобы объект перекрыл угол в полградуса, расстояние до него должно быть примерно в 115 раз больше его размеров. Если, глядя из окна самолёта, вы можете половиной мизинца закрыть 50-метровый (олимпийского размера) плавательный бассейн, то вы находитесь на высоте 115 × 50 м = 6 км. Аристарх рассчитал, что расстояние до Луны в 115 раз больше её размера, что дало значение в 30 раз больше диаметра Земли.

 

Расстояние до Солнца и планет

А что можно сказать о Солнце? Попробуйте закрыть его мизинцем, и вы увидите, что оно перекрывает почти такой же угол, как и Луна: около половины градуса. Очевидно, что оно дальше Луны, поскольку во время солнечных затмений Луна закрывает его от нас (хотя и чуть-чуть), но насколько оно дальше? Это зависит от его размеров: например, если оно втрое больше Луны, то, чтобы перекрывать тот же угол, ему следует находиться в три раза дальше.

Аристарх Самосский смог дать разумный ответ и на этот вопрос. Солнце, Луна и Земля образуют прямоугольный треугольник в моменты, когда Луна оказывается в фазе первой или последней четверти, то есть когда Солнце освещает ровно половину обращённой к нам стороны Луны (рис. 2.4). Аристарх оценил угол между Луной и Солнцем в этот период время в 87°. Таким образом, учёный узнал длину стороны Земля — Луна треугольника Земля — Луна — Солнце и смог с помощью тригонометрических формул вычислить длину стороны Земля — Солнце, то есть расстояние между Землёй и Солнцем. Он пришёл к выводу, что Солнце находится примерно в 20 раз дальше Луны, а значит, оно в 20 раз крупнее её. Иными словами, Солнце имело колоссальный размер — в пять с лишним раз больше Земли в поперечнике. Это подтолкнуло Аристарха к тому, чтобы (задолго до Николая Коперника) выдвинуть гелиоцентрическую гипотезу: он чувствовал, что разумнее считать Землю обращающейся вокруг более крупного Солнца, нежели наоборот.

Рис. 2.4. Измерив угол между Солнцем и Луной в фазе первой или последней четверти, Аристарх Самосский получил возможность оценить расстояние до Солнца. (На этом рисунке масштаб не соблюдён: Солнце примерно в 100 раз больше Земли и примерно в 400 раз дальше от нас, чем Луна.)

Эта история одновременно вдохновляет и предостерегает. Она учит тому, как важно найти оригинальный подход и верно оценивать погрешности измерений. Последнее у древних греков получалось хуже, и Аристарх, к сожалению, не исключение. Оказалось очень трудно определить, когда Луна освещена ровно на 50 %, а правильное значение угла между Луной и Солнцем в этот момент составляет не 87°, а около 89,85°, что очень близко к прямому углу. Это делает треугольник (рис. 2.4) очень длинным и узким: в действительности Солнце почти в 20 раз дальше, чем подсчитал Аристарх, и примерно в 109 раз больше Земли в диаметре (так что в объёме Солнца уместилось бы более 1 млн таких планет, как Земля). К сожалению, эта грубая ошибка оставалась неисправленной в течение 2 тыс. лет. Когда за дело взялся Коперник, рассчитавший размеры и форму Солнечной системы, он правильно определил взаимное расположение и относительные размеры планетных орбит, но масштаб его модели Солнечной системы был занижен примерно в 20 раз. Это всё равно, что перепутать настоящий дом с кукольным.

 

Расстояние до звёзд

А что можно сказать о звёздах? Насколько они далеки? И что они такое? Я думаю, что это одно из величайших в истории «глухих» детективных дел. Определение расстояний до Луны и Солнца было впечатляющим достижением, но тут, по крайней мере, имелась в качестве подсказки некоторая информация: они интересным образом меняли своё положение на небе, их форму и угловые размеры можно было измерять. Но звезда представляется совершенно безнадёжным случаем! Она кажется тусклой белой точкой. Вы присматриваетесь и видите… всю ту же тусклую белую точку без малейших признаков формы и размера. Просто светящуюся точку. И, похоже, звёзды не перемещаются по небу, если не считать видимого вращения всех звёзд вместе, которое является иллюзией, вызванной вращением Земли.

Кое-кто в древности считал, что звёзды — это маленькие отверстия в чёрной сфере, сквозь которые просачивается далёкий свет. Джордано Бруно, напротив, предположил, что звёзды подобны нашему Солнцу, но находятся очень далеко и, возможно, обладают собственными населёнными планетами. Эти рассуждения не понравились католической церкви, и Бруно сожгли в 1600 году на костре.

В 1608 году неожиданно появился проблеск надежды: был изобретён телескоп. Галилео Галилей быстро его усовершенствовал и, посмотрев на звёзды, увидел… лишь белые точки. Возвращаемся на исходную позицию. У меня есть звукозапись, на которой я ребёнком играю «Ты свети, звезда, мерцая» на пианино моей бабушки Сигне. Ещё недавно, в 1806 году, когда эта песня появилась, строчка «Кто ты в тёмной вышине?» продолжала волновать многих, и никто не мог, положа руку на сердце, сказать, что он знает ответ.

Если звёзды — это действительно далёкие солнца, как предполагал Бруно, то они должны находиться гораздо дальше Солнца, чтобы светить так тускло. Но насколько дальше? Это зависит от того, насколько ярки они на самом деле. Спустя 32 года после сочинения песенки немецкий математик и астроном Фридрих Бессель сделал открытие. Выставьте вверх большой палец на расстоянии вытянутой руки и несколько раз попеременно закройте левый и правый глаз. Палец будто перепрыгивает вправо и влево на определённый угол относительно далёких предметов. Теперь поднесите палец немного ближе к глазам, и вы заметите, что угловая величина «прыжка» выросла. Астрономы называют эту угловую величину параллаксом, и, очевидно, её можно применить, чтобы определить расстояние до пальца. На практике вам не требуется заниматься математическими вычислениями, поскольку мозг выполняет их без усилий, и вы этого даже не замечаете. Тот факт, что два глаза фиксируют разные углы для объектов на разном расстоянии, существенен для понимания системы восприятия дальности в мозге, наделяющей нас трёхмерным зрением.

Если бы наши глаза были расставлены шире, мы лучше воспринимали бы глубину на больших расстояниях. В астрономии можно применить тот же метод параллакса, притворяясь, будто мы гиганты с глазами, разнесёнными на 300 млрд м, что соответствует диаметру земной орбиты вокруг Солнца. Это можно сделать, сравнивая телескопические фотографии с шестимесячным интервалом, за который Земля перемещается на противоположную сторону своей орбиты. Бессель заметил, что положения звёзд, за исключением одной, на снимках кажутся одинаковыми. Это звезда 61 Лебедя. Она, в отличие от других, смещалась на небольшой угол, показывая тем самым, что расстояние до неё почти в 1 млн раз больше, чем до Солнца, — это так далеко, что звёздному свету требуется 11 лет, чтобы достичь нас, тогда как солнечный свет доходит к нам за 8 минут.

Вскоре были измерены параллаксы других звёзд, так что стали известны расстояния до многих из них. Если вы ночью проследите за удаляющимся автомобилем, яркость его габаритных огней будет убывать обратно пропорционально квадрату расстояния до него (вдвое дальше — вчетверо слабее). Теперь, когда Бессель знал расстояние до звезды 61 Лебедя, он воспользовался законом обратных квадратов для вычисления её светимости. Полученный результат оказался сопоставим со светимостью Солнца, что с запозданием подтвердило правоту Джордано Бруно.

Почти одновременно, в 1814 году, немецкий оптик Йозеф фон Фраунгофер изобрёл спектроскоп, позволивший раскладывать белый свет на цвета и измерять их. Фраунгофер открыл в радуге загадочные тёмные линии (рис. 2.5) и выяснил, что их точные положения в цветовом спектре зависят от того, из чего сделан источник света, то есть они оказались своего рода спектральными отпечатками пальцев. В последующие десятилетия были измерены и занесены в каталоги спектры многих распространённых веществ. С помощью этой информации можно показать замечательный фокус на вечеринке и впечатлить друзей, определяя, что светится в их фонариках, лишь анализируя испускаемый ими свет и даже не подходя близко. Спектр солнечного света неожиданно показал, что Солнце, пылающий шар в небесах, содержит водород и некоторые другие элементы, хорошо известные на Земле. Более того, когда собранный телескопом звёздный свет изучили с помощью спектроскопа, оказалось, что звёзды в первом приближении состоят из той же смеси газов, что и Солнце. Это закрепило победу Бруно: звёзды — это далёкие солнца, сходные как по выделяемой энергии, так и по составу. Так за считанные десятилетия звёзды превратились из непостижимых белых точек в гигантские шары горячего газа, химический состав которых можно определить.

Рис. 2.5. Радуга, сфотографированная моим сыном Александром, ведёт не к горшку с золотом, а к золотой жиле информации об устройстве атомов и звёзд. В гл. 7 мы узнаем, что соотношение интенсивности различных цветов объясняется тем, что свет состоит из частиц (фотонов), а положение и ширину многих тёмных линий можно вычислить с помощью квантово-механического уравнения Шрёдингера.

Спектр — это настоящая золотая жила астрономической информации, и всякий раз, когда вам приходит в голову, что вы выжали из него всё, что можно, оказывается, что в нём закодировано что-нибудь ещё. Спектр позволяет измерить температуру объекта, не прикасаясь к нему термометром. Вы и без прикосновения знаете, что раскалённый добела кусок металла горячее раскалённого докрасна, и, аналогично, беловатые звёзды горячее красноватых. С помощью спектроскопа температуру можно определять очень точно. В качестве неожиданного бонуса теперь эта информация позволяет определить размеры звезды, подобно тому, как отгадывание одного слова в кроссворде помогает отгадать другое. Температура показывает, сколько света испускает каждый квадратный метр звёздной поверхности. Поскольку можно вычислить общее количество испускаемого звездой света (по расстоянию до неё и видимому блеску), теперь можно определить и площадь поверхности звезды в квадратных метрах и узнать, насколько она велика.

Спектр звезды также содержит скрытые подсказки о её движении, заключающиеся в небольших сдвигах частоты (цвета) излучения за счёт так называемого эффекта Доплера — того самого, который превращает сигнал проезжающего мимо автомобиля в характерное «вжи-и-и-и-у-у-у…»: частота выше, когда автомобиль приближается к вам, а затем становится ниже, когда он начинает удаляться. В отличие от Солнца, большинство звёзд состоит в устойчивых парных отношениях, кружась друг вокруг друга по постоянной орбите. Часто это кружение можно заметить благодаря эффекту Доплера, который заставляет спектральные линии звёзд двигаться взад и вперёд при каждом обороте. Величина этого смещения показывает скорость движения, а наблюдая за двумя звёздами, можно иногда измерить расстояние между ними. В совокупности эта информация позволяет показать ещё один замечательный фокус: мы можем взвешивать звёзды, не помещая их на весы, а применяя ньютоновы законы движения и тяготения для вычисления того, насколько массивными должны быть звёзды, чтобы двигаться по наблюдаемым орбитам. В некоторых случаях доплеровские смещения позволяют обнаружить планеты, обращающиеся вокруг звезды. Если планета проходит на фоне звезды, небольшое уменьшение звёздного блеска позволяет определить размер планеты, а небольшое изменение в спектральных линиях показывает, есть ли у планеты атмосфера и из чего она состоит. Спектры — это благодатный дар природы. Определение ширины спектральных линий у звёзд заданной температуры позволяет измерить газовое давление. А по тому, как спектральные линии расщепляются на две или более линий, можно измерить напряжённость магнитного поля на поверхности звезды.

Подведём итоги. Вся имеющаяся у нас информация о звёздах получена от доходящего до Земли слабого света, однако вдумчивая детективная работа позволила нам извлечь из него сведения о расстоянии до звёзд, их размерах, массе, составе, температуре, давлении, магнетизме и о наличии у них планетных систем. То, что человеческий разум смог узнать всё это из, казалось бы, непостижимых белых точек, — это триумф, который, я думаю, заставил бы гордиться собой даже Шерлока Холмса и Эркюля Пуаро!

 

Расстояние до галактик

Моя бабушка Сигне умерла в возрасте 102 лет. Я некоторое время раздумывал о её жизни, и меня поразило, что она выросла в другом мире. Когда она пошла в колледж, известная нам Вселенная представляла собой лишь Солнечную систему и облако звёзд вокруг неё. Она и её друзья, вероятно, думали об этих звёздах как о невообразимо далёких объектах: свет от ближайших из них идёт к нам несколько лет, а от самых далёких — тысячи лет. Всё это по современным меркам может считаться нашим уютным космическим двориком.

Если в её колледже были астрономы, они могли рассуждать о туманностях — размытых облакоподобных объектах в ночном небе, среди которых попадались красивые спиральные формы, вроде изображений на знаменитом полотне Ван Гога «Звёздная ночь». Что это за объекты? Многие астрономы считали их скучными межзвёздными газовыми облаками, но некоторые придерживались более радикальных взглядов — они полагали, что это «островные вселенные», которые сегодня мы называем галактиками — огромные группы звёзд, находящиеся столь далеко, что они не видны по отдельности в телескоп и поэтому кажутся туманной дымкой. Чтобы разрешить этот спор, астрономам требовалось измерить расстояние до некоторых туманностей. Но как это сделать?

Метод параллакса, который работал для ближайших звёзд, не годился для туманностей: они настолько далеко, что их параллактические углы слишком малы для измерения. Как ещё можно измерить большие расстояния? Если посмотреть в телескоп на далёкую лампочку, можно заметить, что на ней напечатано «100 ватт», и это всё, что вам нужно: просто воспользуйтесь законом обратных квадратов и вычислите, как далеко она должна находиться, чтобы иметь наблюдаемую яркость. Астрономы называют такие полезные объекты известной светимости стандартными свечами. Применяя вышеупомянутый детективный метод, астрономы с сожалением обнаружили, что звёзды вовсе не стандартизированы: некоторые светят в миллион раз ярче Солнца, а другие в тысячу раз слабее. Однако если вы сможете, наблюдая звезду, увидеть, что на ней написано «4 × 1026 ватт» (корректная маркировка для нашего Солнца), у вас появится стандартная свеча и возможность вычислить расстояние до неё точно так же, как до лампочки. К счастью, природа снабдила нас особым типом полезных в этом отношении звёзд — их называют цефеидами. Это переменные звёзды, светимость которых колеблется во времени из-за того, что они меняются в размерах. В 1912 году гарвардский астроном Генриетта Соун Ливитт обнаружила, что темп их пульсаций может служить ваттметром: чем больше дней проходит между двумя последовательными пульсациями, тем больше излучается ватт световой энергии.

У цефеид есть также то преимущество, что, будучи достаточно яркими, они видны на огромных расстояниях (некоторые из них светят в 100 тыс. раз ярче Солнца). Американский астроном Эдвин Хаббл открыл несколько таких звёзд в Туманности Андромеды — диффузном пятнышке размером с Луну, которое можно увидеть невооружённым глазом, если забраться подальше от городских огней. Используя калифорнийский телескоп Хукера (его 2,5-метровое зеркало было тогда крупнейшим в мире), он измерил периоды их пульсации, рассчитал с помощью формулы Ливитт, какой они обладают светимостью, сравнил с их видимым блеском и вычислил расстояния до них. Когда он рассказал о своих результатах на конференции в 1925 году, у многих отвисли челюсти: он доказал, что Туманность Андромеды — это галактика примерно в 1 млн световых лет от нас, в тысячу раз дальше самых далёких звёзд, которые моя бабушка видела на ночном небе! Теперь мы знаем, что Туманность Андромеды находится ещё дальше — примерно в 3 млн световых лет, так что Хаббл невольно продолжил традицию ошибочной недооценки расстояний, идущую от Аристарха Самосского и Коперника.

Хаббл и другие астрономы продолжали открывать всё более далёкие галактики. Они раздвинули наши горизонты с миллионов до миллиардов световых лет, а мы в гл. 5 раздвинем их до триллионов световых лет и даже дальше.

 

Что такое пространство?

Так тянется ли космос бесконечно? К вопросу можно подойти двояко: путём наблюдений и теоретически. Пока мы следовали первому подходу, рассматривая, как хитроумные измерения открывали всё более далёкие области космоса без видимых признаков конца. Однако и теоретики достигли значительного прогресса. Прежде всего, как может пространство не тянуться бесконечно? Я объяснил детям, что было бы странно вдруг встретить знак, как на рис. 2.6, предупреждающий о достижении конца космоса. Я размышлял об этом, когда сам был ребёнком: а что за этим знаком? Мне казалось, что беспокоиться о достижении конца космоса столь же глупо, как древним мореплавателям бояться упасть с края Земли. Так что я попросту заключил, что пространство бесконечно и тянется вечно. Ещё Евклид пришёл к выводу, что геометрия является частью математики и что бесконечное трёхмерное пространство можно описать столь же строго, как и другие математические структуры вроде числовых множеств. Древнегреческий учёный разработал красивую математическую теорию бесконечного трёхмерного пространства, а также его геометрических свойств, и люди долго считали её единственным логически возможным способом существования нашего физического пространства.

Рис. 2.6. Трудно представить себе, что пространство может быть конечным. Если оно где-то заканчивается, то что находится дальше, за его краем?

Однако в середине XIX века математики Карл Фридрих Гаусс, Янош Бойяи и Николай Лобачевский независимо друг от друга открыли, что существуют и другие логические возможности для однородного трёхмерного пространства. Бойяи в восторге писал отцу: «Из ничего я создал странный новый мир». Новые пространства подчиняются новым правилам: так, они более не обязаны быть бесконечными, каковым представлялось пространство Евклиду, а углы треугольника не обязательно дают в сумме 180°. Представьте себе треугольники на двумерных поверхностях трёхмерных фигур. Сумма трёх их углов больше 180° на сфере (рис. 2.7, слева), 180° на цилиндре (в середине) и меньше 180° на гиперболоиде (справа). Более того, двумерная поверхность сферы конечна, хотя на ней нет ничего похожего на край.

Этот пример показывает, что правила евклидовой геометрии могут нарушаться на поверхности, если она не плоская. Однако идеи Гаусса и других математиков были ещё радикальнее: пространство может быть искривлённым само по себе, даже если оно не является поверхностью чего-либо! Предположим, вы — слепой муравей, желающий знать, по какой из фигур на рис. 2.7 вы ползаете. Вы чувствуете себя так, будто живёте в двумерном пространстве, поскольку не можете выйти в третье измерение (оторваться от поверхности), но это не препятствует вашей детективной работе: вы по-прежнему можете определить прямую линию (как кратчайший путь между двумя точками), а значит, и суммировать величины трёх углов треугольника. Например, если вы получите 270°, то воскликнете: «Это больше 180°, значит, я на сфере!» Чтобы ещё больше впечатлить друзей-муравьёв, вы даже можете рассчитать, как далеко нужно пройти по прямой, чтобы вернуться в исходную точку. Иными словами, все обычные для геометрии объекты — точки, прямые, углы, кривые и т. д. — можно строго определить, оставаясь в двумерном пространстве безо всяких ссылок на третье измерение. Это означает, что математики могут строго определить кривизну двумерной поверхности, даже если третьего измерения не существует: двумерное пространство может быть искривлённым само по себе, не являясь поверхностью чего-либо.

Рис. 2.7. Если нарисовать треугольники на этих поверхностях, сумма их углов окажется больше 180° (слева), 180° (посередине) и меньше 180° (справа). Эйнштейн считал, что в нашем трёхмерном физическом пространстве для треугольников возможны все эти варианты.

Вероятно, математическое открытие неевклидовых пространств полтора столетия назад казалось большинству людей не более чем абстракцией, не имеющей практического отношения к нашему физическому миру. Затем Эйнштейн выдвинул общую теорию относительности, которая, по сути, утверждала, что мы — муравьи. Теория Эйнштейна позволяет нашему трёхмерному пространству быть искривлённым без всякого скрытого четвёртого измерения, в котором оно искривлялось бы. Так что на вопрос, в пространстве какого типа мы живём, нельзя ответить, исходя из одной логики, как надеялись сторонники Евклида. Решить эту задачу можно, лишь выполнив измерения, например построив в космосе огромный треугольник (скажем, из лучей света) и проверив, равна ли сумма его углов 180°. В гл. 4 я расскажу, как мы с коллегами развлекались, проделывая это. Ответ оказался близок к 180° для треугольников размером с Вселенную, но значительно превосходящим 180°, если большую часть треугольника занимает нейтронная звезда или чёрная дыра. Так что форма нашего физического пространства сложнее, чем в трёх примерах на рис. 2.7.

Вернёмся к детскому вопросу о конечности пространства. Мы видим, что теория Эйнштейна позволяет пространству быть конечным далеко не таким глупым способом, как на рис. 2.6: оно может быть конечным за счёт искривлённости. Например, если наше трёхмерное пространство искривлено подобно поверхности четырёхмерной гиперсферы, то, будь у нас возможность достаточно далеко уйти по прямой линии, мы в конце концов вернулись бы домой с противоположной стороны. Мы не упали бы с края трёхмерного пространства, поскольку у него нет края, как нет края и у сферы, по которой ползёт муравей (рис. 2.7).

В действительности, Эйнштейн позволяет нашему трёхмерному пространству быть конечным, даже если оно не искривлено. Цилиндр на рис. 2.7 в математическом смысле плоский: если нарисовать треугольник на бумажном цилиндре, сумма его углов составит 180°. Чтобы убедиться в этом, вырежьте из цилиндра треугольник: он ровно ляжет на стол. Со сферой или гиперболоидом это не получится сделать без складок или разрывов бумаги. Но хотя цилиндр на рис. 2.7 кажется плоским для муравья, ползущего по небольшому участку, цилиндр замкнут на себя: муравей может вернуться домой, обойдя его вокруг по прямой линии. Математики называют подобные характеристики связности пространства его топологией. Они дали определение плоскому пространству, замкнутому на себя по всем измерениям, и назвали такое пространство тором. Двумерный тор имеет такую же топологию поверхности, как у баранки. Эйнштейн допускает, что физическое пространство, в котором мы живём, представляет собой трёхмерный тор и является в таком случае плоским и конечным. Или бесконечным.

Обе эти возможности прекрасно согласуются с лучшей имеющейся у нас теорией о пространстве — общей теорией относительности Эйнштейна. Но какое оно? В гл. 4 и 5 мы найдём свидетельство того, что пространство всё-таки бесконечно. Но поиск ответа на детский вопрос приводит нас к другой проблеме: чем в действительности является пространство? Хотя все мы сначала думаем о пространстве как о чём-то физическом, образующем ткань нашего материального мира, теперь мы видим, что математики говорят о пространствах как о математических сущностях. Для них изучение пространства — то же самое, что изучение геометрии, а геометрия — просто часть математики. Вполне можно считать, что пространство — это математический объект в том смысле, что все внутренне присущие ему свойства — такие как размерность, кривизна и топология — математические. Мы рассмотрим этот аргумент в гл. 10.

В этой главе мы, изучив своё положение в пространстве, обнаружили, что Вселенная гораздо больше, чем казалось нашим предкам. Чтобы по-настоящему понять, что происходит на огромных расстояниях, можно вести наблюдения с помощью телескопов. Однако определить своё место в пространстве недостаточно. Нам необходимо знать и своё место во времени.

 

Резюме

• Раз за разом люди убеждались, что физическая реальность гораздо больше, чем мы представляли, что известный нам мир входит в состав куда более грандиозных структур: нашей планеты, Солнечной системы, Галактики, сверхскопления галактик и т. д.

• Общая теория относительности (ОТО) Эйнштейна допускает, что пространство может тянуться бесконечно.

• ОТО допускает альтернативные варианты: пространство конечно, но не имеет границы, так что если вы будете двигаться достаточно долго и быстро, то сможете вернуться с противоположной стороны.

• Ткань нашего физического мира, пространство само по себе может быть чисто математическим объектом в том смысле, что все имманентно присущие ему свойства (размерность, кривизна и топология) — математические.

 

Глава 3. Наше место во времени

 

Откуда взялась Солнечная система? Однажды в школе, во втором классе, мой сын Филипп вступил в полемику по этому вопросу. Разговор был примерно таким:

— Я думаю, Солнечную систему создал Бог, — сказала одноклассница.

— Мой папа говорит, что она возникла из гигантского молекулярного облака, — перебил Филипп.

— А откуда взялось гигантское молекулярное облако? — спросил другой мальчик.

— Может быть, Бог создал гигантское молекулярное облако, а после гигантское молекулярное облако породило Солнечную систему, — сказала девочка.

Бьюсь об заклад: с тех пор, как на Земле появились люди, они вглядываются в ночное небо и удивляются, откуда всё взялось. Как и в прошлом, есть вещи, которые мы знаем, и вещи, которых мы не знаем. Нам многое известно о том, что существует здесь и сейчас, а также мы довольно много знаем о событиях, близко отстоящих в пространстве и времени — скажем, что находится у нас за спиной или что мы ели на завтрак. Двигаясь вдаль и в прошлое, мы в конце концов сталкиваемся с пределами своего знания. В предыдущей главе мы видели, как человеческая изобретательность постепенно отодвигала этот предел всё дальше в пространстве. Теперь рассмотрим, как люди отодвигали эту границу во времени.

Почему Луна не падает на Землю? Ответ на этот вопрос станет для нас отправной точкой.

 

Как появилась Солнечная система?

Всего четыре столетия назад поиски ответа на этот вопрос казались безнадёжными. Было открыто местоположение важнейших объектов, видимых невооружённым глазом: Солнца, Луны, Меркурия, Венеры, Марса, Сатурна и Юпитера. Работа Николая Коперника, Тихо Браге, Иоганна Кеплера и других астрономов также позволила разобраться в движении этих объектов. Оказалось, что Солнечная система напоминает отлаженный часовой механизм. Не было признаков того, что он в некоторый момент был запущен и однажды остановится. Но действительно ли он вечный? Если нет, откуда он появился? Насчёт этого люди оставались в неведении.

В искусственных часовых механизмах, создававшихся в то время на продажу, законы, управляющие движением зубчатых колёс, пружин и других деталей, были вполне ясны и позволяли рассчитать их поведение в будущем и в прошлом. Можно было предсказать, что часы продолжат тикать с постоянной частотой, а также что они в конце концов остановятся из-за трения, если их не завести. Осмотрев их, можно было, скажем, узнать, что их заводили в прошлом месяце. Существуют ли аналогичные точные законы, описывающие и объясняющие движение небесных тел, со своими подобными трению эффектами, которые постепенно изменяют Солнечную систему и могут указать, когда и как она образовалась?

Казалось, что ответ на этот вопрос — твёрдое «нет». Здесь, на Земле, мы добились прочного понимания того, как движутся в пространстве предметы — от брошенного камня до валуна, запущенного катапультой, или пушечного ядра. Однако законы, управляющие небесными телами, казались отличными от законов, управляющих объектами здесь, на Земле. Если Луна подобна гигантскому камню, то почему она не падает, как обычные камни? Классический ответ состоял в том, что Луна — это небесное тело, а небесные тела подчиняются иным законам. Скажем, она не подвержена земному притяжению и поэтому не падает. Некоторые шли дальше и предлагали следующее объяснение: небесные объекты ведут себя так, потому что они идеальны. Они имеют идеальную сферическую форму, поскольку именно сфера — идеальная фигура. Они движутся по круговым орбитам, поскольку окружность тоже идеальна. А падение стало бы столь неидеальным событием, насколько это вообще возможно. На Земле несовершенство повсеместно: трение замедляет движение, огонь сжигает, люди — смертны. В небесах, напротив, движение кажется не подверженным трению, Солнце не прогорает, и вообще нет никаких признаков конца.

Но эта безупречная репутация небес не выдержала испытания. Анализируя измерения Тихо Браге, Иоганн Кеплер установил, что планеты движутся не по окружностям, а по эллипсам, которые представляют собой вытянутые, а значит, не столь совершенные модификации окружностей. В свои телескопы Галилей увидел, что совершенство Солнца нарушается безобразными чёрными пятнами, а Луна — это не гладкая сфера, она покрыта горами и гигантскими кратерами. Почему же она не падает?

В конце концов на этот вопрос ответил Исаак Ньютон. Он выдвинул гипотезу насколько простую, настолько и радикальную: небесные тела подчиняются тем же законам, что и объекты на Земле. Да, конечно, Луна не падает, как брошенный камень, — но что если обычный камень тоже можно бросить так, чтобы он не падал? Ньютон знал, что камни падают наземь, а не улетают вверх, к Солнцу, и связал это с большей удалённостью Солнца и с тем, что гравитационное притяжение объекта ослабевает с расстоянием. Так можно ли метнуть камень вверх так, чтобы он ускользнул от земного притяжения прежде, чем тому хватит времени, чтобы поменять направление его движения на обратное? Сам Ньютон не мог этого сделать, но он понял, что гипотетическая суперпушка справилась бы с этим, придав камню достаточную скорость. Это значит, что судьба запущенного по горизонтали ядра зависит от его скорости (рис. 3.1): оно врежется в землю, только если его скорость меньше некоей магической величины. Если стрелять ядрами, придавая им всё большую скорость, они, прежде чем упасть, будут пролетать всё дальше, пока не достигнут скорости, при которой они будут сохранять высоту над Землёй постоянной, не падая, а обращаясь вокруг Земли по окружности, — как Луна! Зная силу притяжения у земной поверхности из экспериментов с падающими камнями, яблоками и т. д., Ньютон смог вычислить магическую скорость: она составила колоссальные 7,9 км/с. Предположив, что Луна подчиняется тем же законам, что и пушечное ядро, учёный рассчитал скорость, необходимую ей, чтобы удерживаться на круговой орбите. Единственное, чего не хватало Ньютону — правила, позволяющего понять, насколько слабее земное притяжение в окрестностях Луны. Более того, поскольку Луна затрачивает один месяц на прохождение окружности, длину который вычислил Аристарх, Ньютон уже знал её скорость: около 1 км/с, как у пули из автомата M16. И тут он сделал замечательное открытие: если предположить, что сила гравитации ослабевает обратно пропорционально квадрату расстояния от центра Земли, то скорость, которая позволяет Луне двигаться по круговой орбите, точно совпадает с её измеренной скоростью! Ньютон открыл закон гравитации и обнаружил, что он универсален, то есть применим не только здесь, на Земле, но и в небесах.

Рис. 3.1. Пушечное ядро (г), выпущенное со скоростью более 11,2 км/с, улетает от Земли и никогда не возвращается (если пренебречь сопротивлением воздуха). При чуть меньшей скорости (в) оно выходит на эллиптическую орбиту вокруг Земли. Если выстрелить горизонтально со скоростью 7,9 км/с (б), орбита ядра будет идеальной окружностью, а если стрелять с меньшей скоростью (а), оно в конце концов упадёт на Землю.

Внезапно все элементы головоломки встали на свои места. Ньютон, применяя закон тяготения вкупе с математическими законами движения, которые он сформулировал ранее, смог объяснить движение не только Луны, но и планет вокруг Солнца. Он даже сумел математически доказать, что в общем случае орбиты являются эллипсами, а не окружностями. Кеплер считал это обстоятельство необъяснимым.

Как и большинство великих прорывов в физике, законы Ньютона дали ответ на гораздо большее число вопросов, чем те, которые привели к их открытию. Например, они объяснили приливы: гравитационное притяжение Луны и Солнца сильнее действует на морские воды, которые ближе к ним, заставляя воду плескаться по мере вращения Земли. Законы Ньютона также показывают, что общее количество энергии сохраняется, так что если где-нибудь появилась энергия, она не могла появиться из ниоткуда, а должна была поступить откуда-нибудь. Приливы растрачивают массу энергии (часть её можно собрать с помощью приливных электростанций), но откуда берётся вся эта энергия? Большей частью из вращения Земли, которое замедляется трением: если вы иногда чувствуете, что вам не хватает времени в сутках, просто подождите 200 млн лет, и тогда день удлинится до 25 часов!

Следовательно, трение воздействует даже на движение планет, и это отменяет идею вечности Солнечной системы. В прошлом Земля должна была вращаться быстрее, и можно рассчитать, что система Земля — Луна не старше 4–5 млрд лет: в противном случае Земля должна была бы в прошлом вращаться настолько быстро, что центробежные силы разорвали бы её на части. Вот, наконец, и первый намёк на происхождение Солнечной системы: у нас есть оценка времени совершения преступления!

Ньютоновский прорыв подтолкнул человеческий ум к покорению космоса: он показал, что мы можем сначала открывать физические законы, производя эксперименты здесь, на Земле, а затем экстраполировать эти законы для объяснения того, что происходит в небесах. Хотя Ньютон сначала применил этот подход только к движению и гравитации, идея распространялась со скоростью степного пожара, и со временем её стали применять к свету, газам, жидкостям, твёрдым телам, электричеству и магнетизму. Люди экстраполировали свои открытия не только на макромир, на космос, но и на микромир, обнаруживая, что многие свойства газов и других веществ можно объяснить, применяя к атомам, из которых те состоят, ньютоновские законы движения. Научная революция началась. Она приблизила и Промышленную революцию, и информационную эру. Прогресс, в свою очередь, позволил построить мощные компьютеры, которые помогают науке развиваться, решая физические уравнения и находя ответы на многие интересные вопросы, прежде ставившие нас в тупик.

Законы физики можно применять по-разному. Часто мы хотим применять имеющиеся знания для предсказания будущего, как при прогнозировании погоды. Однако уравнения точно так же можно решать и в обратную сторону, применяя современные знания, чтобы пролить свет на прошлое, как при реконструкции затмения, которое Колумб наблюдал на Ямайке. Третий способ состоит в том, чтобы вообразить гипотетическую ситуацию и применить физические уравнения для расчёта того, как она будет изменяться с течением времени, — так, например, при моделировании запуска ракеты к Марсу определяется, достигнет ли она намеченной цели. Этот третий подход дал новые ключи к загадке происхождения Солнечной системы.

Представьте себе огромное газовое облако в открытом космосе: что с ним произойдёт с течением времени? Законы физики предсказывают схватку между двумя силами, которые определяют его судьбу: гравитация будет пытаться сжать его, а давление будет стремиться его рассеять. Если гравитация начинает брать верх, сжимая облако, то оно будет нагреваться (мой велосипедный насос по той же причине при использовании нагревается), что, в свою очередь, повысит давление, препятствующее дальнейшему нарастанию гравитации. Облако может долгое время оставаться стабильным — когда гравитация и давление уравновешивают друг друга, — но это непростое перемирие в конце концов нарушается. Нагретое газовое облако светится, излучая часть тепловой энергии, поддерживающей в нём давление. Это позволяет гравитации сжать облако сильнее — и т. д. Запрограммировав в компьютерах законы гравитации и физики газов, можно во всех деталях смоделировать эту гипотетическую битву. В конце концов центральная часть облака станет настолько горячей и плотной, что превратится в термоядерный реактор: атомы водорода будут сливаться в атомы гелия, поскольку мощная гравитация не позволит им разлететься. Так рождается звезда. Внешние части образующейся звезды уже достаточно горячи, чтобы ярко светиться, и их излучение начинает выдувать прочь остатки газового облака, делая новорождённую звезду видимой для наших телескопов.

Перемотка. Повторное воспроизведение. В процессе постепенного сжатия газового облака любое, даже самое слабое его вращение ускоряется, как это происходит с фигуристкой, которая начинает крутиться быстрее, когда прижимает руки к телу. Центробежные силы, вызванные ускоряющимся вращением, мешают гравитации сжать газовое облако в точку. Вместо этого она придаёт ему форму, напоминающую пиццу — так пекарь по соседству с моей начальной школой раскручивал тесто для пиццы, чтобы придать ему форму диска. Основные ингредиенты всех космических «пицц» — водород и гелий, но если среди них также находится место более тяжёлым атомам вроде углерода, кислорода и кремния, то пока в центре газовой «пиццы» формируется звезда, её внешние части могут скомкаться в несколько холодных объектов — планет. Они станут видны, как только новорождённая звезда сдует остатки «теста». Поскольку всё вращение (угловой момент) связано с вращением исходного облака, все планеты Солнечной системы обращаются вокруг Солнца в одном направлении (против часовой стрелки, если смотреть со стороны Северного полюса), и в том же направлении примерно за месяц поворачивается вокруг своей оси само Солнце.

Это объяснение происхождения Солнечной системы поддерживается сегодня не только теоретическими расчётами, но и телескопическими наблюдениями множества других планетных систем, «пойманных с поличным» на различных стадиях процесса рождения. Наша Галактика содержит огромное число гигантских молекулярных облаков — газовых облаков, содержащих молекулы, помогающих им рассеивать тепло, охлаждаться и сжиматься. В некоторых случаях мы наблюдаем совсем юные звёзды, окружённые пиццеобразными газовыми протопланетными дисками, ещё почти нетронутыми. Недавнее открытие множества планетных систем вокруг других звёзд принесло астрономам массу новых данных, позволяющих улучшить понимание происхождения Солнечной системы.

Если именно такой процесс сопровождал рождение Солнечной системы, то когда именно он имел место? Ещё в начале прошлого столетия было широко распространено мнение, что Солнце образовалась всего 20 млн лет назад, поскольку за большее время потеря энергии в форме излучения привела бы к гравитационному сжатию Солнца до гораздо меньших размеров, чем мы наблюдаем. Аналогично было подсчитано, что если подождать значительно дольше, рассеялась бы и большая часть внутреннего тепла Земли, ответственного за вулканические извержения и геотермальные источники.

Источник солнечного тепла оставался загадкой до 30-х годов, когда учёные открыли термоядерные реакции. Но ещё прежде того, благодаря открытию в 1896 году радиоактивности, были опровергнуты бытовавшие представления о возрасте Земли. Появился замечательный новый метод его уточнения. Атомы самого распространённого изотопа урана спонтанно распадаются на торий и другие, более лёгкие, элементы, с такой скоростью, что половина их разрушается за 4,47 млрд лет. Радиоактивный распад уже миллиарды лет производит достаточно тепла для поддержания земного ядра в разогретом состоянии, и это объясняет, каким образом наша планета остаётся тёплой, несмотря на то, что она гораздо старше 20 млн лет. Мало того, измеряя долю распавшихся атомов урана в горных породах, можно определить возраст этих пород. Так было показано, что некоторые образцы, найденные на хребте Джек-Хиллс в Западной Австралии, имеют возраст более 4,404 млрд лет. Рекордный для метеоритов возраст составляет 4,56 млрд лет. Это подтверждает, что и наша планета, и остальная Солнечная система образовались около 4,5 млрд лет назад — в полном согласии с более грубыми оценками, основанными на приливном торможении.

Таким образом, применение законов физики дало людям качественный и количественный ответ на один из главных вопросов наших предков: как и когда возникла Солнечная система?

 

Как появились галактики?

Итак, мы отодвинули границу нашего знания на 4,5 млрд лет в прошлое. Тогда Солнечная система образовалась в результате гравитационного коллапса гигантского молекулярного облака. Но одноклассник моего сына Филиппа спрашивал: откуда взялось это гигантское молекулярное облако?

Образование Галактики

Вооружённые телескопами, карандашами и компьютерами астрономы нашли убедительный ответ и на эту загадку, хотя ряд важных пробелов ещё предстоит восполнить. По сути, схватка гравитации и давления, в ходе которой сформировалась пиццеобразная Солнечная система, повторяется в гораздо большем масштабе: сжимается куда более крупная заполненная газом область совокупной массой в миллионы или даже триллионы масс Солнца. Такой коллапс не приводит к образованию увеличенной версии Солнечной системы с мегазвездой, окружённой мегапланетами. Вместо этого происходит фрагментация на огромное число газовых облаков меньшего размера, из которых образуются отдельные планетные системы: так рождается галактика. Солнечная система — одна из сотен миллиардов в одной из этих пиццеобразных галактик, которая называется Млечным Путём. Мы находимся примерно на полпути от его центра (рис. 2.2), вокруг которого совершаем оборот за пару сотен миллионов лет.

Иногда галактики сталкиваются друг с другом. Эти космические дорожно-транспортные происшествия не так страшны, как может показаться, поскольку звёзды, как правило, проходят друг мимо друга. В итоге галактики сливаются, а большинство их звёзд объединяется в новую, более крупную галактику. Как Млечный Путь, так и наша ближайшая крупная соседка, Туманность Андромеды, — пиццеобразные галактики, которые называют спиральными из-за восхитительных рукавов (рис. 2.2). Когда сталкиваются две спиральные галактики, результат сначала кажется беспорядочным, а затем формируется округлая капля из звёзд, называемая эллиптической галактикой. Такая судьба ждёт и нас, поскольку через несколько миллиардов лет нам предстоит столкновение с Туманностью Андромеды. Неизвестно, будут ли наши потомки называть свой дом Млечномедой, но мы твёрдо знаем, что это будет эллиптическая галактика: телескопы позволили увидеть множество подобных столкновений на разных стадиях, и результаты этих наблюдений вполне согласуются с теоретическими предсказаниями.

Если галактики образовались за счёт слияния более мелких галактик, насколько малы были те, первоначальные? Эти поиски были темой первого исследовательского проекта, который меня по-настоящему озадачил. Ключевой частью моих вычислений было определение того, как химические реакции в газе порождают молекулы, способные приводить к снижению давления за счёт излучения тепловой энергии. Но каждый раз, когда мне казалось, что вычисления окончены, я обнаруживал, что применяемые мной формулы молекул содержат серьёзную ошибку, делающую все расчёты неверными и заставляющие начать всё сначала. Через четыре года после того, как научный руководитель Джо Силк впервые предложил мне этим заняться, я был настолько раздосадован, что подумывал заказать футболку с надписью «Я ненавижу молекулы» и изображением молекулы водорода, моего главного врага, перечёркнутой толстой красной линией, как на знаке «Курение запрещено». Но затем удача мне улыбнулась: перебравшись в Мюнхен на позицию постдока, я встретил студента по имени Том Абель, который только что завершил поистине энциклопедические расчёты всех молекулярных формул, которые мне требовались. Он присоединился к нашей команде в качестве соавтора, и 24 часа спустя дело было сделано. Мы предсказывали, что масса самых первых галактик составляла «всего» около 1 млн масс Солнца. Нам повезло: этот результат в основном согласуется с гораздо более сложными компьютерными моделями, которыми профессор Том занимается сейчас в Стэнфорде.

Возможно, наша Вселенная расширяется

Самое грандиозное шоу на Земле, в рамках которого поколения живых организмов рождаются, взаимодействуют и умирают, началось около 4,5 млрд лет назад. Кроме того, мы открыли, что это часть ещё более грандиозного спектакля, в котором поколения галактик рождаются, взаимодействуют и умирают в космической «экосистеме». Так вот, не может ли быть в этой постановке третьего уровня, на котором могут рождаться и умирать целые вселенные? В частности, нет ли признаков того, что наша Вселенная имела начало во времени? Если да, как и когда это произошло?

Почему галактики не падают? С ответа на этот вопрос начинается наш следующий рывок, отодвигающий предел знания ещё дальше в прошлое. Мы видели, что Луна не падает на Землю, потому что обращается вокруг неё с высокой скоростью. Вселенная во всех направлениях населена галактиками, и очевидно, что для них это объяснение не подходит. Не все они обращаются вокруг нас. И если Вселенная вечна и в целом статична (то есть далёкие галактики не движутся быстро), почему же они не упадут на нас, как случилось бы с Луной, если бы она вдруг остановилась?

Конечно, во времена Ньютона никто не знал о галактиках. Но если, подобно Джордано Бруно, представить себе бесконечную статическую Вселенную, однородно заполненную звёздами, то должно иметься хотя бы примерное объяснение, позволяющее не волноваться, что они на нас упадут. Законы Ньютона утверждают, что к каждой звезде приложена большая (в действительности бесконечная) сила гравитации, действующая в равной мере во всех направлениях, и можно заключить, что эти противоположно направленные силы погасят друг друга, оставив все звёзды в неподвижности.

В 1915 году это объяснение было опровергнуто новой теорией гравитации — общей теорией относительности. Её автор Альберт Эйнштейн понимал, что статическая бесконечная Вселенная, однородно заполненная материей, не укладывается в новые уравнения гравитации. И как же он поступил? Он, безусловно, усвоил главный урок Ньютона: надо смело экстраполировать свои уравнения и представить, какого рода Вселенная будет им удовлетворять, а затем выяснить, какие наблюдения позволяют проверить, действительно ли мы живём в такой Вселенной. По иронии судьбы, даже Эйнштейн, один из самых изобретательных учёных всех времён, чей принцип состоял в том, чтобы подвергать сомнению самые несомненные допущения и авторитеты, не решился усомниться в собственном авторитете и собственной уверенности в том, что мы живём в вечной, неизменной Вселенной. Вместо этого он совершил, как впоследствии сам признавался, свою величайшую ошибку: изменил уравнения, добавив дополнительный член, позволяющий Вселенной быть статической и вечной. Двойная ирония состоит в том, что сегодня этот дополнительный член, похоже, вновь появился в уравнениях в форме космической тёмной энергии, которую мы ещё обсудим, но на этот раз он имеет иной смысл и не делает нашу Вселенную статической.

Человеком, которому, наконец, хватило смелости и способностей, чтобы довериться уравнениям Эйнштейна, оказался русский физик и математик Александр Фридман. Он решил их в самом общем случае для Вселенной, однородно заполненной материей, и обнаружил нечто шокирующее: большинство решений не было статическим, а изменялось во времени! Статическое решение Эйнштейна было не просто исключением из обычного поведения, но и являлось неустойчивым: почти статическая Вселенная не могла оставаться в таком состоянии длительное время. Если Ньютон показал, что естественное состояние Солнечной системы — пребывать в движении (Земля и Луна просто не могут вечно оставаться в неподвижности), то Фридман продемонстрировал, что естественное состояние нашей Вселенной — движение.

О каком именно движении шла речь? Фридман открыл, что самым естественным состоянием для Вселенной является расширение или сжатие. Если она расширяется, то все объекты внутри неё отдаляются друг от друга, как шоколадные крошки на поднимающемся кексе (рис. 3.2). В этом случае в прошлом все они должны были располагаться ближе друг к другу. На самом деле в простейшем фридмановском решении для расширяющейся Вселенной в прошлом есть определённый момент, когда всё, что мы наблюдаем сегодня, находилось в одном и том же месте, создавая там бесконечную плотность. Иными словами, у нашей Вселенной есть начало, и её рождение представляло собой взрыв чего-то бесконечно плотного. Большой взрыв.

Рис. 3.2. Далёкие галактики удаляются друг от друга, как шоколадные крошки на поднимающемся кексе (слева): с точки зрения любой из них, все остальные удаляются со скоростью, пропорциональной расстоянию до них. Но если считать, что пространство растягивается, как поверхность кекса, то не галактики движутся относительно пространства, а само пространство меняется так, что все расстояния равномерно увеличиваются (справа), как если бы мы переобозначили отметки на всех линейках, сделав из миллиметров сантиметры.

Реакцией на фридмановский Большой взрыв была оглушительная тишина. Хотя его статья была опубликована в одном из наиболее престижных физических журналов Германии и обсуждалась Эйнштейном и иными учёными, в итоге она была, по большому счёту, проигнорирована и не оказала практически никакого влияния на господствующую картину мира того времени. Игнорирование великих озарений — давняя традиция в космологии (на самом деле, науки в целом): мы уже обсуждали гелиоцентризм Аристарха и далёкие солнечные системы Бруно, а дальше в этой и в следующих главах мы встретим ещё много таких примеров. В случае Фридмана, я думаю, причина отчасти была в том, что он опередил своё время. В 1922 году известная Вселенная, по сути, ограничивалась галактикой Млечный Путь (на самом деле, лишь небольшой её частью, которую люди могли наблюдать), а она не расширяется, поскольку сотни миллиардов её звёзд удерживаются на орбитах гравитационным притяжением. Это ответ на девятый вопрос из списка в предыдущей главе: расширяется ли Млечный Путь? Фридмановское расширение относится лишь к таким большим масштабам, в которых можно игнорировать скучивание материи в галактики, а галактик — в скопления. На рис. 2.2 видно, что на больших расстояниях — около 100 млн световых лет — распределение галактик становится довольно однородным, что позволяет применять фридмановские решения для однородной Вселенной, а значит, галактики, разделённые таким большим расстоянием, должны удаляться друг от друга. Но сам факт существования других галактик был установлен Хабблом только в 1925 году, тремя годами позднее! Тут бы и настал звёздный час Фридмана. К сожалению, его дни были сочтены: в тот самый год он умер от брюшного тифа в возрасте всего 37 лет.

Для меня Фридман — один из величайших, но, увы, недооценённых героев космологии. Пока я писал этот отрывок, я перечитал первоисточник, статью Фридмана 1922 года, которая заканчивается интригующим примером огромной, в 5 миллиардов триллионов масс Солнца, вселенной, для которой он рассчитал время жизни: около 10 млрд лет — того же порядка, что и общепризнанный сегодня возраст Вселенной. Фридман не объясняет, откуда он взял это значение задолго до открытия галактик, но это, безусловно, достойное окончание выдающейся статьи выдающегося человека.

Вселенная расширяется

Через пять лет история повторилась: аспирант Массачусетского технологического института, бельгийский священник и астрофизик Жорж Леметр вновь опубликовал независимо переоткрытое им фридмановское решение для Большого взрыва. И вновь научное сообщество фактически проигнорировало его.

В конце концов идея Большого взрыва была воспринята не из-за новой теоретической работы, а из-за новых измерений. Когда Эдвин Хаббл убедился в существовании других галактик, следующим естественным его шагом стало изучение их распределения в пространстве и движения. Как правило, довольно легко измерить скорость, с которой объект приближается к вам или удаляется, поскольку это движение вызывает сдвиг линий в спектре. Красный свет имеет наименьшую частоту среди всех цветов радуги, и если галактика удаляется от нас, все её спектральные линии будут испытывать красное смещение, то есть сдвигаться ближе к красному концу спектра, и чем выше её скорость, тем сильнее будет это смещение. Если же галактика приближается, то её цвета, напротив, будут испытывать голубое смещение к более высоким частотам.

Если бы галактики просто беспорядочно двигались в пространстве, то примерно половина из них имела бы красное смещение, а остальные — голубое. К удивлению Хаббла, почти все изученные им галактики имели красное смещение. Почему они разбегаются от нас? Они нас не любят? Мы что-то не то сказали? Вдобавок Хаббл открыл, что чем больше расстояние d, тем выше скорость v, с которой галактика удаляется от нас. Это выражается формулой v = Hd, которую сейчас называют законом Хаббла. Здесь H — постоянная Хаббла, которую сам Хаббл в эпохальной статье 1929 года скромно обозначил буквой K. Интересно, что Жорж Леметр в своей незамеченной статье 1927 года показал, как из решения, описывающего расширяющуюся Вселенную, вытекает закон Хаббла: если всё в мире расширяется, удаляясь от всего прочего, то и далёкие галактики разбегаются от нас согласно именно такому закону.

Если галактика радиально удаляется, значит, раньше она находилась очень близко. Давно ли это было? Глядя на автомобиль, удирающий после ограбления банка, можно, разделив пройденное расстояние на скорость, оценить, как давно он отъехал от банка. Если сделать это для удаляющихся галактик, закон Хаббла даёт одинаковый ответ — d/v = 1/H — для всех них. Современные измерения дают оценку этой величины 1/H ≈ 14 млрд лет, то есть открытие Хаббла свидетельствует, что около 14 млрд лет назад имело место нечто весьма впечатляющее — огромное количество материи было сжато до очень высокой плотности. Чтобы получить более точный ответ, нужно принять во внимание ускорение (замедление, равномерное движение) автомобиля (Вселенной) с момента оставления места преступления. Мы, делая сейчас расчёты с применением уравнения Фридмана и данных современных измерений, обнаруживаем, что требуется очень незначительная, на несколько процентов, корректировка: после Большого взрыва наша Вселенная примерно половину времени замедлялась, а остальное время ускорялась, так что соответствующие поправки примерно компенсируют друг друга.

Что означает расширение Вселенной?

После того как были опубликованы измерения Хаббла, они убедили даже Эйнштейна: наша Вселенная официально стала расширяющейся. Но что означает расширение Вселенной? Здесь мы подходим ещё к четырём вопросам, сформулированным в начале гл. 2.

Вопрос первый: действительно ли галактики удаляются от нас — или это пространство расширяется? Весьма удобно, что теория гравитации (общая теория относительности) Эйнштейна считает эти две точки зрения эквивалентными и в равной мере правильными (рис. 3.2), так что думайте об этом так, как вам кажется более естественным.

Согласно первой точке зрения, пространство не меняется, а галактики движутся сквозь него, как шоколадные крошки на поднимающейся сдобной булке под действием добавленного в тесто разрыхлителя. Все галактики (шоколадные крошки) удаляются друг от друга, и чем больше расстояние между ними — тем быстрее. В частности, если вы встанете на конкретную крошку (галактику), вы увидите, что движение всех остальных относительно неё подчиняется закону Хаббла: все они удаляются от вас радиально, и с увеличением расстояния вдвое их скорость также удваивается. Примечательно, что всё выглядит совершенно одинаково независимо от того, с какой шоколадной крошки (галактики) вести наблюдение, так как если у распределения галактик нет границы, то расширение не имеет центра — оно кажется одинаковым отовсюду.

Согласно второй точке зрения, пространство подобно тесту сдобной булки: оно расширяется так, что шоколадные крошки относительно теста неподвижны, а галактики не двигаются сквозь пространство. То есть можно считать галактики покоящимися в пространстве (рис. 3.2, справа), при этом все расстояния между ними изменяются. Это всё равно, что поменять отметки на воображаемых линейках, соединяющих галактики, сделав их из миллиметровых сантиметровыми, отчего все межгалактические расстояния станут в 10 раз больше прежних.

Это даёт ответ ещё на один вопрос: не нарушают ли галактики, удаляющиеся быстрее света, теорию относительности? Закон Хаббла v = Hd говорит, что галактики будут удаляться от нас быстрее скорости света c, если расстояние до них больше c/H ≈ 14 млрд световых лет, и у нас нет оснований сомневаться, что такие галактики существуют. Не противоречит ли это утверждению Эйнштейна о том, что никакой объект не может двигаться быстрее света? Ответ — и да, и нет. Это нарушает специальную теорию относительности 1905 года, но не противоречит общей теории относительности 1915 года, которая стала последним словом Эйнштейна по данному вопросу. Следовательно, всё в порядке. Общая теория относительности ослабила световой барьер: если специальная теория относительности утверждает, что никакие два объекта не могут двигаться быстрее света друг относительно друга ни при каких обстоятельствах, то общая говорит, что они не могут двигаться быстрее света друг относительно друга, когда они находятся в одном и том же месте. Однако галактики, удаляющиеся со сверхсветовой скоростью, находятся очень далеко от нас. Если настаивать на том, что пространство расширяется, можно перефразировать это соображение: ничему не позволено двигаться быстрее света сквозь пространство, но само пространство может растягиваться с какой ему угодно скоростью.

Кстати, о далёких галактиках. Я видел газетные статьи, где говорилось о галактиках, отстоящих от нас на 30 млрд световых лет. Если возраст нашей Вселенной всего 14 млрд лет, то как мы видим объекты в 30 млрд световых лет? Каким образом их свету хватило времени, чтобы добраться до нас? Более того, они удаляются от нас быстрее света, что делает абсурдным сам разговор о возможности их увидеть. Ответ в данном случае состоит в том, что мы видим эти далёкие галактики не там, где они находятся теперь, а там, где они были, когда испускали свет, который сейчас доходит до нас. Точно так же, как Солнце мы видим таким, каким оно было 8 минут назад, и в том месте, где оно было 8 минут назад, далёкие галактики мы можем видеть такими, какими они были 13 млрд лет назад, и в тех местах, где они были тогда, — примерно в 8 раз ближе к Земле, сравнительно с их нынешним положением. Так что свету из таких галактик достаточно пройти сквозь пространство всего 13 млрд световых лет, а разница добирается за счёт растяжения пространства. Это похоже на то, как по бегущей дорожке в аэропорту можно пройти 20 метров, сделав всего 10 шагов.

Как расширяется Вселенная?

Не случится ли там, вдали, куда направлено разбегание галактик, какого-нибудь космического ДТП, когда они врежутся в то, что находится там, куда они расширяются? Если наша Вселенная расширяется согласно уравнениям Фридмана, такой проблемы не существует: как показано на рис. 3.2, расширение выглядит одинаково повсюду в космосе, так что подобных проблемных мест быть не может. Если принять ту точку зрения, что далёкие галактики удаляются сквозь статическое пространство, причина, по которой они никогда не сталкиваются с более далёкими галактиками, состоит в том, что те удаляются ещё быстрее: вам не удастся врезаться сзади в разгоняющийся «Порше», если сами вы сидите за рулём ископаемого «Форда-Т». Если же считать, что пространство расширяется, то объяснение состоит просто в том, что его объём не сохраняется. Новости с Ближнего Востока приучили нас к той мысли, что нельзя получить больше места иным путём, кроме как отобрав его у кого-нибудь. Однако общая теория относительности утверждает прямо противоположное: дополнительный объём может быть создан в определённой области между некоторыми галактиками без того, чтобы он расширялся в другие области. Этот объём просто остаётся между галактиками (рис. 3.2, справа).

Космическая классная комната

Как бы безумно это ни звучало, представление о расширении Вселенной логически последовательно и поддерживается астрономическими наблюдениями. Со времени Эдвина Хаббла подтверждающих эту теорию наблюдений стало гораздо больше благодаря современным технологиям и новым открытиям. Самый фундаментальный вывод состоит в том, что изменениям подвержена вся Вселенная: отодвинув рубеж наших знаний на миллиарды лет, мы обнаружили Вселенную, которая ещё не настолько сильно расширилась и поэтому была плотнее и гуще населена. Таким образом, мы обитаем не в скучном статическом пространстве, аксиоматизированном Евклидом, а в динамичном эволюционирующем пространстве, которое пережило своего рода детство и даже, возможно, рождение — около 14 млрд лет назад.

Радикально усовершенствованные телескопы усилили наше зрение настолько, что теперь мы можем непосредственно наблюдать за эволюцией пространства. Представьте, что вы выступаете с презентацией перед большой аудиторией. Внезапно вы замечаете нечто забавное. Ближайший к вам ряд кресел занят людьми примерно вашего возраста. Однако в десятом ряду вы видите лишь подростков. За ними — кучку маленьких детей, а ряд позади них занят младенцами. Вглядываясь во Вселенную, мы видим нечто подобное. Вблизи множество больших, зрелых галактик, похожих на нашу, а очень далеко мы видим в основном маленькие юные галактики, которые не кажутся вполне развитыми. А за ними и вовсе нет галактик, лишь темнота. Поскольку свету требуется больше времени, чтобы прийти издалека, заглядывание на большие расстояния равносильно наблюдению прошлого. Темнота позади галактик — это эпоха до образования всех галактик. В то время пространство было заполнено водородом и гелием в виде газа, тяготение которого ещё не успело превратить его сгущения в галактики, а поскольку этот газ прозрачен, как гелий в воздушных шарах, он невидим в телескоп.

Но есть загадка: во время презентации вы неожиданно замечаете, что из-за последнего пустого ряда поступает энергия — задняя стена аудитории не вполне тёмная, а испускает слабое излучение в виде микроволн! Почему? Мы видим именно такое свечение, когда заглядываем очень далеко во Вселенной.

 

Откуда приходят микроволны?

Для меня главный урок Ньютона и Фридмана сводится к максиме: «Экстраполируйте смелее». Берите законы физики, как вы их понимаете, применяйте их к ещё не исследованным ситуациям и смотрите, не предскажут ли они что-нибудь такое, что можно наблюдать. Ньютон взял законы движения, которые Галилей открыл для Земли, и экстраполировал их на Луну и другие небесные тела. Фридман взял законы движения и гравитации, которые Эйнштейн открыл, опираясь на данные о Солнечной системе, и экстраполировал их на всю Вселенную. Кажется, эта максима должна стать распространённым научным методом. В частности, можно было бы ожидать, что после 1929 года, когда фридмановская идея расширяющейся Вселенной получила признание, учёные по всему миру станут соревноваться друг с другом в систематическом изучении того, что случится, если экстраполировать её в прошлое. Ну, если вы так подумали, то ошиблись… Как бы учёные ни настаивали, что они заняты рациональным поиском истины, они, как и все люди, имеют слабости: учёные испытывают предубеждения, зависят от чужого мнения и повинуются стадному инстинкту. Чтобы преодолевать эти недостатки, требуется нечто большее, чем просто талант к вычислениям.

Для меня следующим космологическим супергероем, который сделал необходимые выводы, был ещё один русский учёный — Георгий Гамов. Научным руководителем его диссертации в Ленинграде был не кто иной, как Александр Фридман. Хотя Фридман умер на втором году совместной работы, Гамов унаследовал как идеи, так и интеллектуальную смелость Фридмана.

Космический плазменный экран

Раз Вселенная расширяется, значит, в прошлом она должна была иметь большую плотность. Но всегда ли она расширялась? Вероятно, нет: работа Фридмана допускает, что когда-то Вселенная могла сжиматься, и всё вещество, двигавшееся к нам, постепенно замедлилось, остановилось и начало ускоряться — но уже направляясь от нас. Такой космический отскок мог случиться, только если плотность вещества была гораздо ниже известного теперь значения. Гамов решил систематически исследовать другую возможность, более общую и радикальную: расширение, имеющее начало. Как он объяснял в книге 1946 года, если уподобить космическую драму кинофильму и запустить его в обратную сторону, мы увидим, как плотность Вселенной беспредельно возрастает. Поскольку межгалактическое пространство заполнено водородом, по мере продвижения назад во времени этот газ будет становиться всё плотнее, а значит, всё горячее. Если нагревать ледяной куб, он расплавится. Если продолжать нагревать жидкую воду, она превратится в газ — пар. Аналогично, если продолжать нагревать газообразный водород, он перейдёт в четвёртое состояние — плазму. Почему? Дело в том, что атом водорода — это просто электрон, обращающийся вокруг протона, а газообразный водород — это просто скопление таких атомов, сталкивающихся друг с другом. Когда температура поднимается, атомы движутся быстрее и сталкиваются друг с другом сильнее. Если становится достаточно горячо, удары оказываются настолько разрушительными, что атомы распадаются на части, а электроны и протоны начинают двигаться независимо. Водородная плазма — это и есть «суп» из свободных электронов и протонов.

Рис. 3.3. Свету от далёких источников требуется время, чтобы достичь Земли, поэтому, заглядывая вдаль, мы смотрим и вглубь времён. За самыми далёкими галактиками мы видим непрозрачную стену светящейся водородной плазмы, излучению которой потребовалось около 14 млрд лет, чтобы дойти до нас. В то время водород, который заполняет пространство сегодня, был разогрет настолько, что представлял собой плазму. Нашей Вселенной тогда было всего около 400 тыс. лет. (На основе рисунка группы NASA/WMAP.)

Иными словами, Гамов предсказал, что наша Вселенная началась с горячего Большого взрыва и что плазма некогда заполняла весь космос. Причём особенно интересно, что предсказание проверяемо: если холодный газообразный водород прозрачен и невидим, то горячая водородная плазма непрозрачна и ярко светится, подобно поверхности Солнца. Это означает, что когда мы заглядываем дальше в космос (рис. 3.3), мы видим сначала старые галактики, за ними молодые галактики, затем прозрачный газообразный водород, а затем стену сияющей водородной плазмы. Мы не сможем увидеть, что за этой стеной, поскольку она непрозрачна, а значит, скрывает всё, что было до неё. Более того, как показано на рис. 3.4, мы должны видеть это во всех направлениях, поскольку, куда бы мы ни взглянули, мы смотрим назад во времени. Получается, мы должны увидеть окружающую нас гигантскую плазменную сферу.

В книге 1946 года Гамов, излагая теорию Большого взрыва, предсказал, что у нас должна иметься возможность наблюдать эту плазменную сферу. Он поручил своим ученикам Ральфу Альферу и Роберту Херману проработать этот вопрос, и несколько лет спустя они опубликовали статью, в которой предсказали, что эта сфера будет светиться с температурой около 5° выше абсолютного нуля, а значит, в основном будет испускать микроволны, а не видимый свет. К сожалению, Альферу и Херману не удалось убедить астрономов поискать фоновое космическое микроволновое излучение, и их работа была почти забыта, как и фридмановское открытие расширения Вселенной.

Рис. 3.4. Всё выглядит так, как если бы мы находились в центре гигантской плазменной сферы. Мы видим плазменную стену с предыдущего рисунка во всех направлениях.

Как увидеть послесвечение

К 1964 году группа принстонских учёных поняла, что доступный для наблюдения микроволновый сигнал должен существовать, и планировала начать его поиски, но её неожиданно опередили. В том году Арно Пензиас и Роберт Вильсон испытывали в «Белл лабораториз» в штате Нью-Джерси самый совершенный в то время микроволновый телескоп. Они обнаружили нечто загадочное: телескоп регистрировал сигнал, который они не могли объяснить, причём сигнал не менялся, куда бы ни направляли аппарат. Странно! Учёные предполагали регистрировать сигналы только при наведении на конкретные объекты на небе, например на Солнце или на спутник с микроволновым передатчиком. Но вместо этого складывалось впечатление, что всё небо светится с температурой 3° по абсолютной шкале — очень близкой к 5°, предсказанным Гамовым и его коллегами. Радиоастрономы стали проверять локальные источники шума — на время подозрения пали на голубей, которые гнездились в телескопе и оставляли там помёт. Как-то раз я обедал с Арно. Он рассказал, что голубей посадили в деревянный ящик с пищей и послали в отдалённый кампус «Белл лабораториз», чтобы птиц выпустили там. К сожалению, голуби вернулись. В книге Арно уклончиво сказано, что физики всё-таки «избавились» от голубей. Я, напоив его вином, выяснил правду: это было сделано с применением огнестрельного оружия… Голубей устранили, но загадочный сигнал остался: Пензиас и Вильсон открыли космический микроволновый фон, слабое послесвечение нашего Большого взрыва.

Это открытие стало сенсацией и было отмечено Нобелевской премией по физике 1978 года. Из вычислений Гамова и его учеников следовало, что плазменная сфера на рис. 3.4 должна быть примерно вдвое холоднее солнечной поверхности, а её горячее излучение шло через космос 14 млрд лет, прежде чем достигло нас, и по пути оно остыло в тысячу раз — до наблюдаемых 3° выше абсолютного нуля, — потому что пространство тысячекратно расширилось. Иными словами, вся Вселенная была когда-то горячей, как звезда, а дикая тысячекратная экстраполяция, применённая Гамовым в его теории Большого взрыва, была проверена и подтверждена.

«Детские фото» Вселенной

Когда плазменная сфера была обнаружена, началась гонка: кто первый сделает её фотографии? Поскольку температура излучения была почти одинаковой во всех направлениях, изображения Пензиаса и Уилсона выглядели как на белых шуточных открытках с подписью «Сан-Франциско в тумане». Чтобы получить интересные фотографии, которые можно было бы считать первыми «детскими снимками» Вселенной, нужно было увеличить контрастность, регистрируя малейшие изменения от места к месту. Такие вариации должны существовать: если бы в прошлом условия везде были идентичными, то по законам физики они бы оставались идентичными и сейчас, а это прямо противоречит картине, которую мы наблюдаем (галактики в одних местах и пустота в других).

Однако сделать «детские фотографии» оказалось настолько трудно, что для этого понадобилось почти 30 лет. Для подавления измерительных шумов Пензиас и Уилсон воспользовались жидким гелием, охлаждавшим детектор до температуры, близкой к температуре космического микроволнового фона. Но флуктуации температуры от места к месту на небе, как оказалось, должны составлять тысячные доли процента, так что для получения «детских фотографий» требовалась в 100 тыс. раз более высокая чувствительность, чем была доступна Пензиасу и Уилсону. Экспериментаторы по всему миру принимали этот вызов — и терпели поражение. Одни говорили, что это безнадёжно, другие отказывались сдаваться. Первого мая 1992 года, когда я был аспирантом, по молодому ещё интернету разнёсся слух: Джордж Смут собирается объявить о результатах самого амбициозного эксперимента того времени по изучению микроволнового фона, который выполнялся спутником НАСА под названием COBE (Cosmic Background Explorer). Моего научного руководителя Джо Силка пригласили представить доклад Джорджа, и прежде чем он улетел в Вашингтон, я спросил, что он думает об этом открытии. Джон предположил, что они не увидели космические флуктуации, а просто зарегистрировали радиошум нашей Галактики.

Но, вопреки ожиданиям, Смут взорвал бомбу, которая изменила не только мою карьеру, но и космологию как науку. Он со своей командой действительно обнаружил флуктуации! Стивен Хокинг назвал это «самым важным открытием в космологии за целое столетие, если не вообще», поскольку «детские фотографии» 400-тысячелетней Вселенной несут важнейшую информацию о нашем космическом происхождении.

«Золотая лихорадка»

Теперь, когда COBE нашёл золото, началась лихорадка. Как видно на рис. 3.5, карта неба, составленная COBE, размытая. Низкое разрешение изображений не позволило показать детали размером менее 7°. Естественно, следующим шагом стало детальное наблюдение небольшого участка неба с высоким разрешением и низким уровнем шума. На таких картах высокого разрешения закодирован ответ на некоторые ключевые космологические вопросы. Я люблю фотографировать (в возрасте 12 лет мне удалось, разнося по Стокгольму рекламки, накопить денег на первую камеру), так что задача фотографирования Вселенной меня сразу увлекла. Кроме того, мне нравилось возиться со снимками и компьютерной графикой, будь то иллюстрации для школьной стенгазеты «Кураре» или изображения для условно-бесплатной компьютерной игры FRAC (трёхмерный клон «Тетриса»), доход от которой позволил мне объехать мир в 1991 году. Так что я бывал счастлив, когда экспериментаторы позволяли мне вместе с ними превращать данные в карты неба.

Моей первой удачей стала встреча с молодым принстонским профессором Лайманом Пейджем. Мне понравилась его весёлая мальчишеская улыбка, и после его доклада на конференции я набрался смелости предложить ему сотрудничество. Пейдж понравился мне ещё больше, когда я узнал, что до аспирантуры он годами бороздил Атлантику под парусом. В итоге профессор доверил мне данные, полученные с помощью микроволнового телескопа в канадском городе Саскатун, которым он со своей группой три года сканировал участок неба непосредственно возле Северного полюса.

Рис. 3.5. Когда демонстрируется карта неба целиком, удобно проецировать её на плоскую поверхность так же, как это делается с картой Земли (вверху): просто интерпретируется она как взгляд вверх, а не вниз, в землю. «Детское фото» нашей Вселенной, полученное COBE (внизу слева) было нечётким. Это обусловило повторение экспериментов по рассматриванию участков неба с более высоким разрешением (посередине слева). Позднее спутники WMAP и «Планк» построили карты всего неба с высоким разрешением (справа) — 3 мегапиксела и 50 мегапикселов соответственно. Эти небесные карты повёрнуты относительно карты Земли так, что центральная горизонтальная линия соответствует не плоскости земного экватора, а плоскости Галактики (серая полоса слева внизу); Северный полюс Земли указывает на центр саскатунской карты. (Карта Земли: Патрик Дайнин.)

Преобразование данных в карту оказалось делом удивительно сложным: они представляли собой не фотографии неба, а длинные таблицы чисел, указывающих, сколько вольт получено при сложении и вычитании сигналов от различных участков неба всевозможными способами. Правда, это занятие оказалось на редкость увлекательным и потребовало от меня максимального напряжения и всех моих знаний в области теории информации и вычислительных методов. Я провёл много вечеров в своём мюнхенском кабинете постдока, пока не довёл до ума саскатунскую карту (рис. 3.5), подгадав как раз к большой космологической конференции во Французских Альпах. Я прочитал уже сотни докладов, но лишь некоторые отпечатались в памяти как волшебные моменты. Это как раз один из тех случаев. Когда я поднялся на подиум и оглядел аудиторию, сердце моё забилось: она была заполнена людьми, многих из которых я знал по работам, но большинство понятия не имело, кто я такой. Они ехали в Альпы скорее затем, чтобы покататься на лыжах, а не выслушивать новичков вроде меня. Однако явившихся очень волновало всё, что касалось изучения космического микроволнового фона, и я чувствовал гордость. Из сегодняшнего дня 1996 год видится как докембрий: мы делали доклады, пользуясь пачками целлулоидных «прозрачек». В моей колоде был туз — слайд с изображением саскатунской карты (рис. 3.5) в виде увеличенного фрагмента карты COBE. Я почувствовал возбуждение аудитории. Во время перерыва после доклада люди толпились у проектора, задавая вопросы и требуя снова и снова показывать тот слайд. Дик Бонд, один из авторов космологии микроволнового фона, сказал мне с улыбкой: «Поверить не могу, что Лайман поделился с вами данными!»

Я чувствовал, что космология вступила в золотой век и движется по замечательной спирали: открытия притягивают людей и гранты, а это, в свою очередь, ведёт к новым открытиям. Уже в следующем месяце, в апреле 1996 года, было одобрено финансирование двух новых спутников с кардинально улучшенными по сравнению с COBE разрешением и чувствительностью. Одним из них стал проект WMAP, открытый НАСА по инициативе Лаймана Пейджа и его близких коллег, а вторым — европейский проект «Планк» (в ходе подготовки грантовой заявки я имел удовольствие делать для него вычисления и прогнозы). Поскольку космические экспедиции требуют многолетнего планирования, группы по всему миру включились в гонку, стремясь опередить WMAP и «Планк» или, по крайней мере, получить до их запуска какие-нибудь легкодоступные результаты. Вот почему саскатунский проект оказался первым из многих, с которыми я имел удовольствие сотрудничать в деле анализа данных. Я работал с экспериментаторами из проектов HACME, QMAP, Tenerife, POLAR, PIQ и Boomerang, получая из их данных «детские фото» Вселенной. В основном я стремился стать посредником между теорией и экспериментом. Я чувствовал, что космология превращается из бедной данными дисциплины в область, где данных больше, чем люди могут обработать, и решил создать инструменты, позволяющие извлекать всё возможное из этой лавины данных. В частности, я опирался на теорию информации, чтобы выяснить, сколько полезных данных о Вселенной содержится в заданном наборе данных. Обычно в мегабайтах, гигабайтах или терабайтах измерений имеется небольшое число битов космологической информации, сложным образом зашифрованных и скрытых в огромном количестве шума от электроники детектора, атмосферных помех, галактического излучения и т. д. Хотя существовал идеальный математический способ извлечения этой иголки из стога сена, на практике он обычно оказывался слишком трудоёмким и требовал миллионов лет компьютерных вычислений. Я публиковал различные методы анализа данных, которые не всегда были идеальными, но позволяли извлекать почти всю информацию достаточно быстро с точки зрения наших практических задач.

Я по многим причинам люблю космический микроволновый фон. Например, я благодарен ему за первый брак, за сыновей Филиппа и Александра. Я встретил Анжелику де Оливейра Косту, свою (теперь уже бывшую) жену, когда она приехала из Бразилии в Беркли в качестве аспирантки Джорджа Смута. Нам довелось тесно сотрудничать не только в деле перемены подгузников, но и во многих из упомянутых проектов по анализу данных. Одним них был QMAP, телескоп, запущенный на высотном аэростате Лайманом Пейджем, Марком Девлином и их коллегами, чтобы избавиться от большей доли микроволнового шума, вызываемого атмосферой.

Первое мая 1998 года, уже около двух часов ночи, а дела обстоят весьма скверно. До вылета на космологическую конференцию в Чикаго, где я должен рассказать о новых результатах QMAP, осталось всего семь часов, но мы с Анжеликой, погружённые в сомнения, ещё сидим в кабинете в Принстонском институте перспективных исследований. До сих пор от экспериментов в области космического микроволнового фона требовалась полная уверенность в том, что не сделано ошибок и не упущено ничего важного. Ключом к достоверности в науке служит получение независимых экспериментальных подтверждений ваших результатов. Но, поскольку люди смотрели в разных направлениях и пользовались инструментами с разным разрешением, прежде нельзя было сравнить изображения неба, полученные в двух разных экспериментах, и проверить, согласуются ли они. Вплоть до этого момента карты, построенные телескопами в Саскатуне и QMAP, имели значительное перекрытие на небе вдоль полосы бананообразной формы (рис. 3.5). Мы с Анжеликой в смятении смотрели на дисплей: карты Саскатуна и QMAP совершенно не согласовывались! Щурясь так и сяк, мы пытались убедить себя, что это несоответствие — лишь инструментальный шум. Но выдавать желаемое за действительное можно лишь до определённого предела. Столько сделано — и тут выясняется, что по крайней мере одна из этих карт полностью ошибочна. И как делать об этом доклад?! Это обернулось бы позором не только для нас, но и для всех, кто участвовал в экспериментах.

Неожиданно Анжелика обнаруживает подозрительный знак «минус», наличие которого в программе, грубо говоря, приводит к тому, что карта QMAP отображается вверх ногами. Мы исправляем его, перезапускаем программу и недоверчиво поглядываем друг на друга, пока на экран выводится новая карта. Теперь согласие между двумя картами просто потрясающее! Поспав несколько часов, мы летим в Чикаго. Я на ходу готовлю доклад, несусь от арендованного автомобиля к аудитории Фермилаба и едва успеваю к началу своего выступления. Я настолько возбуждён, что до самого вечера не осознаю своей новой ошибки: автомобиль исчез.

— Где вы его поставили? — спрашивает охранник.

— Да вот тут, прямо напротив гидранта, — отвечаю я, и тут до меня доходит — ну надо же! — второй раз за день…

Космический мяч для пляжного волейбола

«Золотая лихорадка» — добыча данных из микроволнового фона — продолжалась много лет. Было поставлено более 20 различных экспериментов, и каждый из них её подхлёстывал (о некоторых я расскажу). А затем пришёл черёд WMAP. В два часа дня 11 марта 2003 года аудитория была переполнена: мы не отрывались от экрана, где участники WMAP в прямом эфире телевидения НАСА рассказывали о своих результатах. Если наземные и аэростатные эксперименты могли нанести на карту лишь часть неба, то спутник WMAP картографировал всю небесную сферу, как ранее COBE, но с радикально выросшими чувствительностью и разрешением. Я чувствовал себя как в детстве, на новогодней ёлке, когда наконец приехал Санта-Клаус, — только этого момента я с нетерпением ждал не месяцы, а годы. Ожидание того стоило: полученные изображения ошеломляли. При этом самоотверженные учёные прошли путь от выделения финансирования до получения результатов менее чем за 6 лет — втрое быстрее, чем COBE. Руководитель проекта WMAP Чак Беннет чуть не умер, выдерживая график. Другой ключевой участник проекта Дэвид Спергел рассказал мне, что у Чака случился инфаркт и он провёл три недели в больнице.

Наконец, они открыто разместили все данные в интернете, и космологи всего мира смогли попробовать самостоятельно проанализировать их. Теперь пришло время вкалывать мне. Измерения WMAP были безупречны, но загрязнены радиошумом нашей Галактики: на карте COBE (рис. 3.5) он выглядит как горизонтальная полоса. Неприятность в том, что такое микроволновое загрязнение от нашей и других галактик охватывает всё небо, даже если где-то его уровень слишком низок, чтобы быть заметным. Однако это загрязнение имеет цвет, отличный от цвета сигнала (его интенсивность по-другому зависит от частоты), а WMAP получил изображение неба на пяти частотах. Группа WMAP использовала эту дополнительную информацию для очистки, но я раздумывал над куда лучшим методом, основанном на теории информации, который дал бы более чистую карту с более высоким разрешением (рис. 3.5, внизу справа). Спустя месяц работы вместе с Анжеликой и моим старым другом Эндрю Гамильтоном мы отправили статью в журнал, и жизнь стала возвращаться в нормальное русло. Я развлекался, изготавливая карту микроволнового фона в виде мяча (рис. 3.4). Карта так понравилось команде WMAP, что они сделали собственную версию и напечатали её на мяче для пляжного волейбола, который теперь украшает мой кабинет. Я зову его «своей Вселенной», поскольку это каноническое изображение границы, охватывающей всё, что мы в принципе можем наблюдать.

«Ось зла»

Важнейшие космологические данные зашифрованы в размерах пятен, заметных на космическом микроволновом фоне (ниже я объясню подробнее). Кроме того, мы можем представить двумерную карту микроволнового фона как сумму множества мультиполей (рис. 3.6). (Аналогично можно раскладывать звуки и цвета на частоты.) Карты-мультиполи, по сути, отражают вклад пятен разного размера, и ещё со времён COBE складывалось впечатление, что со вторым мультиполем, называемым квадруполем, творится нечто странное: самые крупные пятна на карте были видны хуже, чем ожидалось. Однако никому не удавалось получить карту этого квадруполя и посмотреть, что с ним происходит: для этого требовалась карта всего неба, а микроволны от нашей Галактики загрязняли части неба так, что восстановить изображение было невозможно.

Так было прежде, но наша карта казалась настолько чистой, что, возможно, могла использоваться для всего неба. Как-то раз, глубокой ночью, незадолго до того, как мы собирались подавать статью о карте, когда Анжелика и дети уже спали, да я и сам собирался на боковую, мне стало любопытно, как выглядит пресловутый квадруполь, и я решил написать компьютерную программу, выстраивающую его изображение. Когда изображение наконец появилось на дисплее (рис. 3.6, слева), оно заинтриговало меня. Паттерн не просто был слабым, как и ожидалось (флуктуации температуры в горячих и холодных пятнах близки к нулю), — вместо случайной мешанины пятен, как предсказывала теория, он образовывал забавный одномерный пояс, окружающий небо. Я уже засыпал, но решил вознаградить себя за ночное программирование и отладку ещё одним изображением, так что поменял в программе число 2 на 3 и перезапустил её, чтобы нарисовать третий мультиполь, называемый октуполем. Ого! Что за?.. Появился другой одномерный пояс (рис. 3.6, посередине), по-видимому, совпадающий по ориентации с квадруполем. Но наша Вселенная не должна быть такой! В отличие от человеческих портретов, на изображениях Вселенной не предполагалось никакого выделенного направления вроде «верха»: они должны выглядеть, как ни поверни, примерно одинаково. Но на «детских снимках» Вселенной на дисплее были полосы, как у зебры, вытянутые в одном направлении. Подозревая, что в моей программе ошибка, я поменял 3 на 4, но рисунок четвёртого мультиполя (рис. 3.6, справа) выглядел как ожидалось: случайные пятна без выделенного направления.

Рис. 3.6. Когда карта WMAP, представленная на рис. 3.5, раскладывается на сумму мультиполей, показывающих пятна всё меньших размеров, то на первых двух мультиполях (слева и посередине) видно загадочную симметрию относительно некоего направления, названного «осью зла». Различные цвета показывают, насколько теплее или холоднее среднего небо в данном направлении. Шкала размечена в микрокельвинах, миллионных долях градуса.

Дважды всё перепроверив, мы с Анжеликой упомянули о неожиданном открытии в своей статье, посвящённой карте. Я был поражён — такой поднялся шум. (Об этом рассказала газета «Нью-Йорк таймс», и редакция даже прислала к нам фотографа.) Мы стали изучать явление подробнее, как и другие группы (одна назвала выделенное направление «осью зла»). Кто-то доказывал, что это статистическая флуктуация или галактическое загрязнение. Другие утверждали, что это явление ещё загадочнее, чем считали мы, находя с применением другого метода дополнительные аномалии даже для мультиполей 4 и 5. Некоторые экзотические объяснения, вроде того, что мы живём в небольшой «вселенной-баранке», где пространство замкнуто на себя, были впоследствии отброшены, но и по сей день я озадачен «осью зла» не меньше, чем в ту первую ночь.

Совершеннолетие микроволнового фона

В 2006 году нас с Анжеликой пригласили в Стокгольм, чтобы помочь отметить присуждение Нобелевской премии по физике за открытие COBE. Как часто бывает, в команде COBE были трения по вопросу о научном вкладе участников. Премию разделили Джордж Смут и Джон Мазер, и я с облегчением увидел их умиротворяющий подход к делу. Они смогли пригласить команду COBE приехать и погреться в лучах заслуженной славы. Чувствовалось, что нескончаемая череда вечеринок помогла преодолеть трещины в отношениях, подчёркивая очевидное — все участники не просто помогли двум коллегам получить премию, а совершили нечто гораздо более важное: «детские фотографии» Вселенной породили целое исследовательское направление и начали новую эру в космологии. (Как бы мне хотелось, чтобы Гамов, Альфер и Херман тоже были там!)

21 марта 2013 года я проснулся в пять утра в напряжённом ожидании и сразу настроился на прямую интернет-трансляцию из Парижа, где команда спутника «Планк» показывала свои первые изображения микроволнового фона. За 10 лет ACBAR, ACT, Южный полярный телескоп и т. д. углубили наши знания о микроволновом фоне, но это была крупнейшая веха со времён WMAP. Пока я брился, Джордж Эфстатиу рассказывал о результатах. Мне вспомнился март 1995 года, когда Джордж пригласил меня в Оксфорд поработать с ним над новым методом анализа данных «Планка». Это был первый раз, когда меня пригласили в исследовательскую коллаборацию, и я был очень за это благодарен. Мы разрабатывали новую технику очистки загрязнённых изображений, которая должна была помочь в обосновании финансирования «Планка» Европейским космическим агентством. И вот результаты наконец станут известны постаревшему на 18 лет Максу!

Когда Джордж показал карту неба, полученную «Планком», я отложил бритву, чтобы вывести на дисплей и очищенную карту WMAP. «Они так похожи! — подумалось мне. — И „ось зла“ на месте!» Я поместил обе карты на рис. 3.5, чтобы вы могли их сравнить. Как видите, крупные детали изумительно совпадают, но на карте «Планка» гораздо больше крошечных пятнышек. Значительное увеличение чувствительности и разрешения позволило разобрать детали, слившиеся на карте WMAP. Карта «Планка» определённо оправдывала ожидания! Я спроецировал её на сферу. Благодаря превосходному качеству «Планк» фактически предоставил контрольные данные для оценки работы WMAP, и после обработки мне стало ясно, что команда WMAP заслужила «пять с плюсом» (как и команда самого «Планка»). Однако я думаю, что главный сюрприз, который преподнёс «Планк», состоит в том, что не обнаружилось никаких сюрпризов: в основном он подтвердил космологическую картину, которая у нас уже была, но с гораздо большей точностью. Исследования космического микроволнового фона вступили в пору зрелости.

Итак, мы отодвинули пределы наших знаний на 14 млрд лет — до 400 тыс. лет после Большого взрыва — и увидели, что всё появилось из заполнявшей космос горячей плазмы. В те времена не было ни людей, ни планет, ни даже звёзд с галактиками — только атомы, сталкивающиеся друг с другом и излучающие свет. До разгадки происхождения этих атомов мы ещё не добрались.

 

Как появились атомы?

Космический «термоядерный реактор»

Смелая экстраполяция Гамова предсказала космический микроволновый фон, а теперь у нас были и восхитительные «детские фото» Вселенной. Но, словно этого было недостаточно, Гамов продолжил свою экстраполяцию ещё дальше в прошлое и вывел из неё другие следствия. Чем дальше в прошлое — тем горячее. Около 400 тыс. лет после Большого взрыва заполнявший пространство водород оказался разогрет до нескольких тысяч градусов. Это всего вдвое меньше, чем на поверхности нашего Солнца, и поэтому он вёл себя так же, как водород на Солнце — светился, порождая космический фон микроволнового излучения. Гамов предположил, что через минуту после Большого взрыва температура водорода составляла около 1 млрд градусов. Это горячее, чем в ядре Солнца, а значит, водород должен был делать то же самое, что и водород в солнечном ядре — участвовать в термоядерных реакциях, превращаясь в гелий. Однако расширение и охлаждение Вселенной вскоре выключило космический «термоядерный реактор», охладив его до температуры, при которой он не смог работать, так что у него не было времени, чтобы весь водород превратить в гелий. С подачи Гамова его ученики Альфер и Херман выполнили детальные расчёты этих реакций, однако, поскольку работали они ещё в конце 40-х годов, им сильно недоставало современных компьютеров.

Но как проверить это предсказание, если первые 400 тыс. лет жизни Вселенная была непрозрачной и всё, что случилось тогда, скрыто от нашего зрения вуалью космического плазменного экрана, порождающего микроволновый фон? Гамов увидел здесь сходство с теорией существования динозавров: их нельзя увидеть непосредственно, но можно посмотреть на окаменелости. Поверяя вычисления группы Гамова с использованием современных данных и компьютеров, можно вывести: когда Вселенная была термоядерным реактором, она успела переработать в гелий 25 % своей массы. Когда вы измеряете долю гелия в далёком межгалактическом газе, изучая с помощью телескопа его спектр, вы обнаруживаете, что его там… эти самые 25 %! Меня эта находка впечатляет столь же сильно, как открытие бедра тираннозавра. Это прямое свидетельство того, что в прошлом происходили безумные вещи: в данном случае всё было безумно горячим. Причём гелий — это не единственная «окаменелость». Первичный нуклеосинтез, как стали называть теорию Гамова, также предсказывал, что каждый из примерно 300 тыс. атомов должен быть дейтерием, а каждый пятимиллионный атом — литием. Сейчас оба соотношения измерены и полностью согласуются с теоретическими предсказаниями.

Большой взрыв под вопросом

Впрочем, успех дался нелегко. Теорию Большого взрыва встретили прохладно. Даже название «Большой взрыв» придумал один из оппонентов Гамова, Фред Хойл. В 1950 году за теорией Гамова числилось два важных предсказания, причём оба неверных: о возрасте Вселенной и о распространённости элементов. Первоначальные хаббловские измерения космологического расширения предсказывали, что нашей Вселенной не более 2 млрд лет, и геологов не устраивало, что Вселенная моложе их горных пород. Кроме того, Гамов, Альфер и Херман надеялись, что первичный нуклеосинтез породит практически все наблюдаемые вокруг нас атомы в правильных пропорциях, но ему не удалось произвести даже близкое к нужному количество углерода, кислорода и других обычных для нас элементов — получились только гелий, дейтерий и ничтожное количество лития.

Теперь мы знаем, что Хаббл сильно ошибся в оценке расстояния от нас до галактик. Из-за этого он заключил, что Вселенная расширяется в 7 раз быстрее, чем на самом деле, и, следовательно, она в 7 раз моложе, чем в действительности. В 50-х годах, благодаря улучшенным измерениям, эта ошибка стала исправляться. Недовольные геологи получили подтверждение своей правоты и поостыли.

Второй «провал» теории Большого взрыва также исправили примерно в это время. Гамов провёл новаторские исследования термоядерных реакций в звёздах. Согласно этой работе, а также исследованиям других учёных, звёзды производят почти только гелий — как сейчас Солнце. (Гамов надеялся, что первичный нуклеосинтез может объяснить, откуда взялись все остальные элементы.) Однако в 50-х годах физики-ядерщики открыли, как казалось, случайное совпадение между уровнями ядерной энергии гелия, бериллия, углерода и кислорода, благодаря которому усиливались термоядерные реакции. Фред Хойл первым понял, что это совпадение позволяет звёздам на поздних стадиях жизни превращать гелий в углерод, кислород и большинство других элементов, из которых состоим мы. Более того, стало ясно, что звёзды завершают жизнь, взрываясь и возвращая многие из порождённых атомов обратно в газовые облака, которые порождают новые звёзды, планеты и, в конце концов, нас. Иными словами, мы связаны с небесами теснее, чем думали наши предки: мы созданы из звёздной пыли. Мы живём во Вселенной, а Вселенная живёт в нас. Эта догадка превратила гамовскую теорию первичного нуклеосинтеза из провала в потрясающий успех: в первые минуты Вселенная создала гелий с добавками дейтерия и лития, а звёзды породили все остальные атомы. Загадка происхождения атомов была разрешена. И тут — везёт так везёт, — едва отношение к теории горячей Вселенной наконец стало теплеть, как мир космологии взбудоражило подтверждение в 1964 году другого гамовского предсказания — послесвечения Большого взрыва в форме космического микроволнового излучения.

Что такое Большой взрыв?

Мы отодвинули границу наших знаний в прошлое почти на 14 млрд лет, к тому времени, когда вся Вселенная была раскалённым термоядерным реактором. Когда я говорю, что верю в гипотезу Большого взрыва, то имею в виду, что я убеждён в истинности следующего утверждения, и не более того:

Всё, что мы можем наблюдать сейчас, когда-то было горячее солнечного ядра и расширялось так быстро, что менее чем за секунду вдвое увеличивалось в размерах.

Этот взрыв, определённо, был достаточно большим, чтобы оправдать прописную букву в своём названии. Учтите, однако: моё определение, очень осторожное, ничего не говорит о том, что было до взрыва. Например, эта гипотеза не подразумевает, что возраст нашей Вселенной в тот момент составлял секунду, или что некогда она была бесконечно плотной, или она возникла из некоей сингулярности, в которой не действовала наша математика. На заданный в прошлой главе вопрос — есть ли у нас доказательство существования сингулярности в момент Большого взрыва? — имеется простой ответ: нет! Конечно, если мы экстраполируем уравнения Фридмана настолько далеко во времени, насколько они позволяют, они перестанут работать при бесконечно плотной сингулярности примерно за секунду до начала первичного нуклеосинтеза. Однако квантово-механическая теория (гл. 7) говорит, что эта экстраполяция перестаёт работать раньше, чем достигается сингулярность. Я думаю, очень важно различать то, чему есть надёжные подтверждения, и то, что пока находится в области спекуляций. Хотя мы располагаем некоторыми интересными теориями (гл. 5), следует прямо заявить, что мы ничего не знаем наверняка. Вот нынешний рубеж наших знаний. Вообще-то мы даже не уверены, что наша Вселенная действительно имела начало, а не занималась непонятно чем вечность до первичного нуклеосинтеза.

Короче говоря, мы отодвинули границу знания на удивление далеко во времени, уяснив ход космической истории (рис. 3.7). Через 1 млн лет после Большого взрыва пространство было заполнено почти однородным прозрачным газом. Если рассматривать космическую драму в обратном порядке, мы увидим, как газ становится всё горячее, его атомы сталкиваются друг с другом всё активнее, пока они не распадаются на ядра и свободные электроны и не образуют плазму. Затем мы увидим, как атомы гелия, сталкиваясь, разбиваются на протоны и нейтроны. А те разбиваются на кварки. Тут мы пересекаем границу знания и входим в сферу научных спекуляций: в гл. 5 мы исследуем то, что на рис. 3.7 названо «инфляцией» и «квантовой пеной». Если мы вернёмся к миллиону лет после Большого взрыва и запустим время вперёд, то увидим, как гравитация увеличивает небольшие сгущения газа, превращая их в галактики, звёзды и все разнообразные космические структуры, которые мы наблюдаем сегодня.

Рис. 3.7. Хотя мы мало что знаем о рождении Вселенной, мы хорошо представляем себе, что случилось в следующие 14 млрд лет. По мере того, как Вселенная расширялась и охлаждалась, кварки объединялись в протоны (ядра водорода) и нейтроны, которые, в свою очередь, сливались в ядра гелия. Затем ядра, захватывая электроны, образовывали атомы, а гравитация сложила из атомов галактики, звёзды и планеты.

Но гравитация может лишь усиливать малые флуктуации, превращая их в крупные, и не способна порождать флуктуации из ничего. Идеально гладкую и однородную среду гравитация сохранит таковой навсегда. Она не в силах образовать никаких уплотнений, не говоря уже о галактиках. Это означает, что в ранней Вселенной должны были существовать небольшие зародышевые флуктуации, которые гравитация могла усиливать и которые послужили своего рода космическими чертежами, определяющими, где будут формироваться галактики. Откуда могли появиться эти флуктуации? Мы увидели, откуда во Вселенной атомы, но что можно сказать о происхождении величественного паттерна, в который выстроились галактики? Откуда взялась крупномасштабная структура Вселенной? Из множества космологических вопросов, которыми задавались люди, этот кажется мне самым важным. В следующих двух главах я поясню, почему я так считаю.

 

Резюме

• Свету из далёких источников требуется время, чтобы достичь Земли, поэтому телескопы позволяют нам увидеть ход истории космоса.

• Около 14 млрд лет назад наша Вселенная была горячее, чем нынешнее ядро Солнца, и расширялась настолько быстро, что меньше чем за секунду удваивалась в размерах. Я называю это «Большим взрывом».

• Хотя нам неизвестно, что происходило до Большого взрыва, мы уже многое знаем о произошедшем с тех пор — о расширении пространства и кластеризации вещества.

• В течение нескольких минут Вселенная была гигантским термоядерным реактором и, подобно солнечному ядру, превращала водород в гелий и другие элементы, пока космологическое расширение не сделало её разрежённой и холодной в достаточной мере, чтобы термоядерные реакции остановились.

• Расчёты показывают, что около 25 % водорода превратилось в гелий. Измерения прекрасно согласуются с этим предсказанием и данными о других лёгких элементах.

• Ещё через 400 тыс. лет расширения и разрежения водородно-гелиевая плазма охладилась настолько, что стала прозрачным газом. Мы видим этот переход как далёкую плазменную стену, слабое свечение которой известно как космический микроволновый фон (за его изучение присудили две Нобелевских премии).

• За миллиарды лет гравитация превратила нашу Вселенную из однородной и скучной в комковатую и интересную. Гравитация усилила незначительные флуктуации, которые мы наблюдаем на космическом микроволновом фоне, и сформировала из них планеты, звёзды, галактики и наблюдаемую сейчас крупномасштабную структуру Вселенной.

• Теория космологического расширения предсказывает, что галактики должны удаляться от нас в соответствии с определённой формулой, которая согласуется с тем, что мы действительно наблюдаем.

• Вся история Вселенной с высокой точностью описывается простыми физическими законами, которые позволяют определять будущее на основании прошлого, и наоборот.

• Физические законы, управляющие историей нашей Вселенной, описываются с помощью математических уравнений. Поэтому самое точное описание нашей космической истории — математическое.

 

Глава 4. Вселенная в числах

 

У меня буквально челюсть отвисла. Я стоял на обочине, лишившись дара речи. Я ежедневно смотрел на небо, всю свою жизнь, но никогда прежде по-настоящему его не видел. Было около пяти утра. Я остановился на обочине шоссе через Аризонскую пустыню, чтобы свериться с картой. И оказался пригвождён к месту: то, что я увидел над головой, ничуть не походило на мутное стокгольмское небо с редкими проблесками тусклых звёзд, под которым я вырос. Из тысяч сверкающих точек складывались прекрасные узоры, а поперёк небосвода, как величественное галактическое шоссе, тянулся Млечный Путь.

Этому впечатляющему виду способствовали сухой пустынный воздух и высота 2 км над уровнем моря, но, я думаю, вы тоже можете забраться достаточно далеко от городской подсветки, чтобы посмотреть на звёздное небо. Чем поразительно звёздное небо? Отчасти самими звёздами, их огромным числом. Но и ещё кое-чем — звёздными узорами. Наши предки были так ими заинтригованы, что придумали для их объяснения мифы, а жители некоторых регионов планеты складывали из звёзд созвездия, изображавшие мифологических персонажей. Звёздное небо не похоже на ткань в горошек, звёзды сгруппированы иначе. Самой крупной группировкой звёзд из увиденных мною той ночью была галактика Млечный Путь. Учёные с помощью телескопов обнаружили, что другие галактики также складываются в сложные паттерны, образуя группы — скопления галактик, — а также колоссальную волокнистую структуру, тянущуюся на сотни миллионов световых лет. Откуда взялись эти паттерны? Каково происхождение этой грандиозной космической структуры?

В конце прошлой главы мы указали на дестабилизирующее влияние гравитации. Это заставило задуматься о происхождении крупномасштабной структуры Вселенной. Иными словами, интеллектуальный поиск привёл нас к тому же вопросу, которым мы задаёмся эмоционально, когда восхищаемся видом звёздного неба: откуда взялась такая структура?

 

Требуется точная космология

Мы пока не достигли полного понимания того, как возникла наша Вселенная, и не знаем точно, что происходило до эпохи, когда она была гигантским термоядерным реактором, менее чем за секунду увеличивающимся в размерах вдвое. И всё же мы многое знаем о случившемся за 14 млрд лет. Расширение и кластеризация — эти основные процессы, управляемые гравитацией, превратили горячий однородный кварковый «суп» в наполненный звёздами космос. Разбирая в прошлой главе историю Вселенной, мы видели, что в процессе расширения концентрация и температура элементарных частиц постепенно снижались, что позволяло частицам группироваться, образуя всё более крупные структуры — атомные ядра, атомы, молекулы, звёзды, галактики. Нам известны четыре фундаментальных взаимодействия, и три из них по очереди становились движущей силой процесса кластеризации: сильное ядерное взаимодействие породило ядра, электромагнитное взаимодействие создало атомы и молекулы, и, наконец, гравитация образовала грандиозные структуры, украшающие ночное небо.

Но как именно гравитация это сделала? Когда вы останавливаете велосипед на переходе, то гравитация сразу заявляет о себе: вы начинаете заваливаться вбок и вынуждены выставить ногу. Суть неустойчивости в том, что слабые флуктуации усиливаются. Например, чем дальше от равновесного положения находится остановившийся велосипед, тем сильнее гравитация тянет вас в том же неверном направлении. А в космосе происходит вот что: чем дальше Вселенная отходит от идеальной однородности, тем интенсивнее гравитация усиливает скучивание вещества. Если некая область космоса сравнительно плотнее своих окрестностей, то её гравитация усиливается, позволяя ей ещё быстрее аккрецировать массу. (Точно так же проще делать деньги, когда у вас их уже много.) Четырнадцати миллиардов лет вполне достаточно, чтобы гравитационная неустойчивость превратила нашу Вселенную из скучной в интересную, усилив даже малейшие флуктуации плотности до огромных сгущений, таких как галактики.

В 1990 году, когда я поступил в аспирантуру и впервые столкнулся с космологией, детали этой картины расширения и кластеризации всё ещё оставались неясными. Специалисты спорили, 10 или 20 млрд лет нашей Вселенной, продолжая давнюю дискуссию о том, насколько быстро она расширяется сейчас, и оставался открытым более трудный вопрос о скорости расширения в прошлом. История кластеризации оставалась ещё более тёмной: попытки добиться точного соответствия теории и наблюдений показывали, что мы не понимаем, из чего состоит 96 % нашей Вселенной! После эксперимента COBE было установлено, что скучивание через 400 тыс. лет после Большого взрыва составляло всего 0,002 %. Стало ясно, что гравитации не хватило бы времени, чтобы усилить эту едва заметную кластеризацию до современной крупномасштабной структуры, если бы некая невидимая материя не создавала дополнительное тяготение.

Эта загадочное вещество называют тёмной материей, хотя эпитет невидимая кажется более подходящим: она скорее прозрачная, и вы даже не заметите, как она проходит сквозь руку. И вправду, тёмная материя из космоса, сталкиваясь с Землёй, по-видимому, проходит нашу планету насквозь, не взаимодействуя с ней. Но будто одной этой странности, тёмной материи, было недостаточно, так что учёным пришлось ввести в оборот вторую загадочную субстанцию, тёмную энергию, чтобы добиться согласия теоретических предсказаний с наблюдаемыми параметрами расширения и кластеризации. Считается, что тёмная энергия влияет на космологическое расширение, совершенно не затрагивая кластеризацию, и всегда остаётся идеально однородной.

Простейшим кандидатом на роль тёмной энергии была космологическая постоянная — упоминавшийся выше подгоночный параметр, который Эйнштейн ввёл в свою теорию гравитации (и назвал его позднее самой серьёзной своей ошибкой). Существование тёмной материи предположил в 1934 году Фриц Цвикки, чтобы объяснить дополнительное гравитационное притяжение, удерживающее скопления галактик от распада. А Вера Рубин в 60-х годах открыла, что спиральные галактики вращаются настолько быстро, что они разлетелись бы на части, если бы не содержали невидимую гравитирующую массу. Эти идеи были встречены довольно скептически: если ты утверждаешь, что необъяснимые явления связаны с сущностью, которая невидима и способна буквально просачиваться сквозь стены, то не пора ли верить в привидения? К тому же древняя история знает тревожный прецедент: поняв, что планетные орбиты не являются идеальными окружностями, Птолемей усложнил свою теорию, заставив планеты двигаться по меньшим окружностям (эпициклам), которые, в свою очередь, двигались по окружностям. Последующее открытие более точных законов тяготения отменило эпициклы, предсказав, что орбиты планет не круговые, а эллиптические. Возможно, необходимость в тёмной материи и тёмной энергии также исчезнет, если открыть ещё более точный закон тяготения? И можно ли воспринимать всерьёз современную космологию?

Рис. 4.1. И тёмная материя, и тёмная энергия невидимы, то есть отказываются взаимодействовать со светом и иными электромагнитными явлениями. Мы догадываемся об их существовании лишь по причине их гравитационного влияния.

Такого рода вопросами мы задавались, когда были аспирантами. Чтобы ответить, требовались гораздо более точные измерения, которые превратили бы космологию из дисциплины умозрительной, небогатой эмпирическими данными, в точную науку. К счастью, произошло именно это.

 

Точные флуктуации микроволнового фона

Как видно на рис. 3.6, «детскую фотографию» нашей Вселенной, полученную в ходе наблюдений космического микроволнового фона, можно разложить на сумму компонентных карт, называемых мультиполями, которые, по сути, отражают вклад пятен различных размеров. На рис. 4.2 показана общая величина флуктуаций для каждого мультиполя. Эта кривая называется спектром мощности микроволнового фона, и в ней закодирована ключевая космологическая информация, которую содержит карта. Когда вы смотрите на карты неба (рис. 3.4), вы видите пятна разных размеров, как на псе-далматинце: некоторые пятна всего около 1° в поперечнике, другие — 2°, и т. д. Спектр мощности содержит информацию о том, сколько имеется пятен каждого размера.

Рис. 4.2. Точные измерения зависимости флуктуаций космического микроволнового фона от углового масштаба исключают многие популярные прежде теоретические модели, но прекрасно согласуются с кривыми, которые предсказаны современной стандартной моделью. Этот график позволяет оценить замечательные аспекты современной космологии, не беспокоясь о деталях: высокоточные измерения существуют, они полностью согласуются с теоретическими предсказаниями.

Но самое замечательное то, что спектр мощности можно не только измерить, но и предсказать: для любой математически заданной модели расширения и кластеризации Вселенной можно точно рассчитать вид спектра мощности. Как показано на рис. 4.2, предсказания для разных моделей сильно различаются. Доступные сегодня измерения с высокой степенью надёжности исключают все теоретические модели, представленные на рис. 4.2, кроме одной (несмотря на то, что в годы моей аспирантуры за каждой «убитой» моделью стоял кто-нибудь из моих уважаемых коллег, и порою не один). Предсказываемая форма спектра мощности сложным образом зависит от всего, что влияет на космологическую кластеризацию (включая плотность атомов, плотность тёмной материи, плотность тёмной энергии и природу первичных флуктуаций), так что если мы скорректируем допущения обо всех этих вещах так, чтобы предсказания совпадали с измерениями, мы не только подтвердим, что модель работает, но и измерим эти важные физические величины.

 

Телескопы и компьютеры

Когда в аспирантуре я впервые узнал о космическом микроволновом излучении, никаких измерений спектра мощности ещё не было. Затем команда COBE дала первый набросок этой трудноуловимой извивающейся кривой, определив, что её высота в левой части составляет около 0,001 % и что она идёт примерно горизонтально. Данные COBE содержали больше информации о спектре мощности, но никто её не выделил, поскольку для этого требовались трудоёмкие манипуляции с таблицами чисел — матрицами, — занимавшими до 31 мегабайта памяти. В 1992 году эта величина была устрашающей. С однокурсником Тедом Банном мы придумали коварный план. У нашего профессора Марка Дэвиса был компьютер с объёмом памяти более 32 мегабайт, который мы называли «волшебной горошиной», и ночь за ночью я логинился на него в предрассветные часы, когда никто не следил, и запускал анализ наших данных. Через несколько недель подпольной работы мы опубликовали статью с наиболее точными на тот момент данными о форме кривой спектра мощности.

Этот проект позволил мне понять, что достижения компьютерной техники способны вывести астрономию на новый уровень — подобно тому, как телескопы изменили её лицо. Судите сами: ваш нынешний компьютер настолько мощен, что мог бы повторить наши с Тедом вычисления за несколько минут. Я решил, что если экспериментаторы вкладывают так много труда в сбор данных о Вселенной, люди вроде меня просто обязаны взять из этих данных всё, что только возможно. Это стало лейтмотивом моей работы в следующее десятилетие.

Я был одержим задачей, как наилучшим образом определить спектр мощности. Существовали быстрые методы, которые давали погрешности и отличались другими недостатками. Затем мой друг Эндрю Гамильтон разработал оптимальный метод, но, к сожалению, его требования к компьютерному времени росли как шестая степень числа пикселов на карте неба, так что длительность определения спектра мощности по карте COBE превысила бы возраст Вселенной.

21 ноября 1996 года. В Принстонском институте перспективных исследований в штате Нью-Джерси тихо и темно. Я провожу ещё одну ночь в кабинете. Меня волнует возможность замены метода шестого порядка Эндрю Гамильтона методом третьего порядка, позволяющим оптимально определить спектр мощности COBE менее чем за час, и я хочу закончить статью к завтрашней конференции. Профессиональные физики загружают свои только что написанные статьи на общедоступный сайт http://arXiv.org, чтобы коллеги могли прочесть их прежде, чем тексты надолго увязнут в процессе журнального рецензирования и публикации. Однако у меня была манера загружать статьи до завершения работы над ними — сразу после наступления суточного дедлайна для подачи таких препринтов. Таким образом, я оказывался первым в списке статей следующего дня. Недостаток в том, что если не успеть закончить статью за 24 часа, то я опозорюсь на весь мир, опубликовав сырой черновик, который станет вечным памятником моей глупости. На этот раз моя стратегия дала сбой, и ранние пташки в Европе наткнулись на недоделанный раздел обсуждения в моей статье, который я закончил лишь около четырёх утра. На конференции мой друг Ллойд Нокс представил похожий метод, который он разработал совместно с Эндрю Яффе и Диком Бондом в Торонто, но ещё не подготовил для публикации. Когда я рассказывал о своих результатах, Ллойд, ухмыльнувшись, сказал Дику: «Тегмарк — быстрые пальчики!» Наш метод оказался чрезвычайно полезным и с тех пор применяется практически во всех измерениях спектра мощности микроволнового фона. Мы с Ллойдом, похоже, шли по жизни параллельными курсами: нам одновременно приходили в голову одинаковые идеи (впрочем, он обогнал меня с выводом замечательной формулы для шума на картах микроволнового фона), в одно и то же время у нас родилось двое сыновей, и даже развелись мы синхронно.

 

Золото в холмах

По мере совершенствования экспериментов, компьютеров и методов результаты измерения кривой спектра мощности (рис. 4.2) становились всё точнее. Как видно на рисунке, предсказываемая форма кривой отчасти напоминает холмы Калифорнии. Если обмерить много немецких догов, пуделей и чау-чау и нарисовать их распределение по размеру, получится кривая с тремя пиками. А если измерить множество пятен космического микроволнового фона (рис. 3.4) и нарисовать их распределение по размерам, окажется, что пятна определённого размера встречаются особенно часто. Наиболее заметный пик на рис. 4.2 соответствует пятнам с угловым размером около 1°. Почему? Эти пятна были порождены звуковыми волнами, распространявшимися по космический плазме почти со скоростью света, а поскольку плазма просуществовала 400 тыс. лет после Большого взрыва, эти пятна выросли в размерах примерно до 400 тыс. световых лет. Если посчитать, под каким углом на нашем небосводе 14 млрд лет спустя видно сгущение размером 400 тыс. световых лет, получится около 1°. Если, конечно, пространство не искривлено…

Существует не один вид однородного трёхмерного пространства (гл. 2): кроме плоской разновидности, которую аксиоматизировал Евклид и мы изучали в школе, существуют искривлённые пространства, где углы подчиняются иным правилам. В школе меня учили, что углы треугольника на листе бумаги дают в сумме 180°. Но если нарисовать треугольник на искривлённой поверхности апельсина, то в сумме они дадут больше 180°, ну а если на седле, сумма окажется меньше 180° (рис. 2.7). Аналогично, если наше физическое пространство искривлено подобно сферической поверхности, то угол, охватываемый каждым пятном микроволнового фона, окажется больше, а значит, пики на кривой спектра мощности сместятся влево. Если же пространство имеет седловидную кривизну, пятна будут казаться меньше, и пики сместятся вправо.

Я считаю одной из самых красивых идей в эйнштейновской теории гравитации ту, что геометрия — это не только математика, но и физика. В частности, уравнения Эйнштейна показывают: чем больше материи в пространстве, тем сильнее последнее искривляется. Эта кривизна пространства заставляет предметы двигаться не по прямым линиям, а искривлять свою траекторию в сторону массивных объектов — таким образом, гравитация объясняется как проявление геометрии. Это открывает совершенно новый способ взвешивания Вселенной: надо просто измерить первый пик спектра мощности космического микроволнового фона. Если его положение покажет, что пространство плоское, уравнения Эйнштейна скажут, что средняя космическая плотность составляет около 10−26 кг/м3, что соответствует примерно 10 мг в расчёте на объём Земли или примерно 6 атомам водорода на кубический метр. Если пик смещён левее, то плотность выше, и наоборот. Из-за путаницы, связанной с тёмной материей и тёмной энергией, измерение совокупной общей плотности имеет огромное значение, и экспериментальные группы по всему миру стремились получить данные об этом первом пике, который, как ожидалось, будет обнаружить проще всего: крупные пятна легче измерить.

Я уловил первые признаки этого пика в 1996 году в статье, написанной по материалам Саскатунского проекта, инициатором которого был Барт Неттерфилд, ученик Лаймана Пейджа. «Вау!» — подумал я и опустил ложку с мюсли, чтобы во всём разобраться. Умом я понимал, что теория, стоящая за пиками спектра мощности, очень элегантна, однако нутром чувствовал, что человеческие экстраполяции не могут работать так хорошо. Через три года Эмбер Миллер, также ученица Лаймана Пейджа, инициировала более точные измерения первого пика и обнаружила, что он находится примерно в том месте, где должен быть в случае плоской Вселенной. Но почему-то тогда казалось, что это слишком хорошо, чтобы быть правдой. Наконец, в апреле 2000 года я вынужден был признать правоту этих учёных. Микроволновый телескоп Boomerang на высотном аэростате размером с футбольное поле за 11 суток облетел Антарктиду и получил самые точные в то время данные для определения спектра мощности, показавшие красивый пик ровно на том месте, которое соответствует плоской Вселенной. Так мы узнали совокупную плотность нашей Вселенной (усреднённую по всему пространству).

Тёмная энергия

Эти измерения привели к интересной ситуации с бюджетом космической материи. Как видно на рис. 4.3, совокупный бюджет известен нам по положению первого пика, но мы также знаем плотность обычной материи и плотность тёмной материи по данным об их гравитационном влиянии на космическую кластеризацию. Однако вся эта материя даёт лишь около 30 % общего бюджета, а значит, 70 % должны представлять собой некую форму материи, не подверженной кластеризации, — так называемую тёмную энергию.

Рис. 4.3. Бюджет космической материи. Положения пиков спектра мощности микроволнового фона на горизонтальной оси указывают на то, что пространство плоское, а общая плотность материи (усреднённая по всей Вселенной) примерно в миллион триллионов триллионов (1030) раз ниже плотности воды. Высоты пиков говорят нам о том, что на обычную и тёмную материю приходится примерно 30 % общей плотности, а ещё 70 % должно приходиться на нечто другое.

Только что я рассказал много интересных вещей, но не произнёс главное слово: сверхновые. Совершенно независимые данные, полученные в ходе изучения космологического расширения, а не кластеризации, привели к тому же 70-процентному значению для тёмной энергии. Мы уже говорили о применении переменных звёзд цефеид в качестве стандартных свечей для измерения космических расстояний. Но теперь космологи заполучили в качестве инструмента другую, значительно более яркую, стандартную свечу, которую можно видеть не только в миллионах, но даже в миллиардах световых лет. Это колоссальные космические взрывы, называемые сверхновыми типа Ia, которые за несколько секунд могут испускать больше энергии, чем 100 миллионов миллиардов солнц.

Помните первую строфу песенки «Ты свети, звезда, мерцая»? Когда Джейн Тейлор записала строчку «…как алмаз, ночь украшая», она даже не догадывалась, насколько права: Солнце через 5 млрд лет умрёт, закончив свои дни белым карликом (он представляет собой гигантский шар, состоящий — как и алмаз — в основном из атомов углерода). Сейчас во Вселенной полно белых карликов. Многие постоянно наращивают массу, заглатывая газ соседних умирающих звёзд-компаньонов, вокруг которых они обращаются. Как только у них официально фиксируется избыточный вес (при достижении 1,4 массы Солнца), у них случается звёздный эквивалент инфаркта: они теряют стабильность и испытывают гигантский термоядерный взрыв — превращаются в сверхновую типа Ia. Поскольку эти «космические бомбы» имеют почти одинаковую массу, неудивительно, что и по мощности они примерно равны.

Более того, небольшие вариации в мощности взрыва связаны с его спектром, а также скоростью нарастания и спада вспышки. Эти параметры можно измерить, что позволило астрономам превратить сверхновые типа Ia в точные стандартные свечи. Этим методом воспользовались Сол Перлмуттер, Адам Рисс, Брайан Шмидт, Роберт Киршнер и их коллеги для точного измерения расстояний до множества сверхновых типа Ia с одновременным определением скорости их удаления по красным смещениям. На основе этих измерений учёные подготовили самую точную для своего времени реконструкцию скорости расширения Вселенной в прошлом. В 1998 году они объявили о замечательном открытии, которое принесло им в 2011 году Нобелевскую премию по физике: в течение 7 млрд лет замедляясь, космологическое расширение затем вновь стало ускоряться и ускоряется до сих пор! Если вы подбросите камень, тяготение планеты будет замедлять его удаление от Земли, так что космологическое ускорение демонстрирует странную гравитационную силу, которая проявляется не в притяжении, а в отталкивании. Теория гравитации Эйнштейна предсказывает, что тёмная энергия обладает как раз таким антигравитационным эффектом, а группа, исследовавшая сверхновые, обнаружила, что 70-процентная доля тёмной энергии в составе космической материи объясняет их наблюдения.

50-процентный средний уровень

Мне нравится быть учёным: это даёт возможность работать с замечательными людьми. Чаще всего моим соавтором был дружелюбный аргентинец Матиас Салдарриага. Мы с бывшей женой звали его за глаза «Великий Салда», соглашаясь, что единственная вещь, которая превосходит его талант, — это его чувство юмора. Он участвовал в написании компьютерных программ, которые использовались для предсказания кривых спектра мощности (вроде тех, что на рис. 4.2), а однажды поспорил на авиабилет до Аргентины, что все его предсказания ошибочны и не существует ни одного пика. Готовясь к получению результатов проекта Boomerang, он ускорил свои вычисления и насчитал огромную базу данных моделей, с которыми можно было сравнивать измерения. Так что, когда данные стали доступны Boomerang, я вновь загрузил на http://arXiv.org неоконченную статью и имел удовольствие вкалывать сутки подряд, чтобы завершить её к воскресному вечеру. Обычная (атомарная) материя испытывает столкновения там, где тёмная материя проходит насквозь, и эти два типа материи по-разному движутся в космосе. А значит, они по-разному влияют на кривую спектра мощности микроволнового фона (рис. 4.2). Команда Boomerang сообщила об едва заметном втором пике, и мы с Матиасом определили, что в таком случае атомы должны составлять по крайне мере 6 % общего бюджета космической материи. Однако первичный нуклеосинтез (космический термоядерный реактор, который мы обсуждали в гл. 3) идёт, только если на атомы приходится 5 % — значит, где-то ошибка! В эти сумасшедшие дни я оказался в Альбукерке, куда приехал делать доклад, и был по-настоящему взволнован, рассказывая аудитории об этих новых уликах, которые нам подбросила Вселенная. Мы с Матиасом едва успели к дедлайну, и наша статья появилась в интернете непосредственно перед статьёй, в которой команда Boomerang анализировала собственные данные: придирчивый компьютер задержал их по дурацкой причине — подпись к иллюстрации оказалась на одно слово длиннее положенного.

Перекрёстная проверка — неприятная штука, когда имеешь дело с налоговой инспекцией, но в науке это хорошая вещь. Проект Boomerang дал космологам возможность провести две перекрёстные проверки бюджета космической материи:

1. Мы измерили долю тёмной энергии двумя разными способами (по сверхновым типа I a и по пикам космического микроволнового излучения), и результаты сошлись.

2. Мы измерили долю обычной материи двумя разными способами (по первичному нуклеосинтезу и по пикам космического микроволнового излучения), и результаты не сошлись, так что по крайней мере один из методов был ошибочным.

Пик возвращается

Год спустя в шикарном зале для пресс-конференций в Вашингтоне я сижу в кресле, как приклеенный, чувствуя себя так, словно с минуты на минуту в комнату войдёт Санта-Клаус, да не один, а целых три. Первым был Джон Карлстрем, сообщивший результаты, полученные микроволновым телескопом DASI на Южном полюсе. После разглагольствований об уже известных мне технических деталях — бум! — выясняется, что получен самый замечательный график спектра мощности из всех, какие мне встречались — с тремя отчётливыми пиками. Затем появился Санта № 2: Джон Рал из Boomerang. Опять разглагольствования, и снова — бум! Ещё один замечательный спектр мощности с тремя пиками, прекрасно согласующийся с измерениями DASI. Причём некогда невзрачный второй пик заметно подрос после того, как они усовершенствовали конструкцию телескопа. Наконец, Санта № 3: Пол Ричардс сообщил результаты измерений в ходе аэростатного эксперимента MAXIMA, которые согласовывались с остальными данными. Я был в восторге. Столько лет я мечтал об уликах, закодированных в микроволновом фоне, и вот они! Это было так дерзко — считать, что мы знаем, что именно Вселенная делала всего через несколько сотен тысяч лет после Большого взрыва, — и всё же мы оказались правы. В эту ночь я быстро перезапустил свою программу подбора модели с новыми данными о микроволновом фоне, и теперь, когда второй пик стал выше, мой код предсказал 5 % атомов — в полном согласии с теорией первичного нуклеосинтеза. Перекрёстная атомная проверка из провала превратилась в успех, порядок в космосе был восстановлен. Этот порядок сохранился до сих пор: WMAP, «Планк» и другие проекты измерили кривую спектра мощности ещё точнее, но, как видно на рис. 4.2, в трёх первых экспериментах всё было определено правильно.

 

Точные данные о кластеризации галактик

К 2003 году фон космического микроволнового излучения стал, пожалуй, величайшим в истории успехом космологии. Многие увидели в нём панацею, способную решить все наши проблемы и измерить все ключевые параметры космологических моделей. Это впечатление было ошибочным. Допустим, проведя измерения, вы определили, что мой вес составляет 90 кг. Очевидно, этой информации недостаточно, чтобы узнать мой рост и объём талии, поскольку вес зависит от обоих этих параметров: я могу оказаться высоким и тощим или низким и упитанным. Мы сталкиваемся с похожими проблемами, когда пытаемся измерить ключевые параметры Вселенной. Например, характерные размеры пятен микроволнового фона, соответствующие положениям пиков спектра мощности на горизонтальной оси (рис. 4.2), зависят и от кривизны пространства (которая увеличивает либо уменьшает эти пятна), и от плотности тёмной энергии (которая изменяет скорость расширения Вселенной, а значит, и расстояние до плазменной поверхности с её пятнами, что также заставляет их казаться крупнее или мельче). Поэтому, хотя многие журналисты заявляли, что такие эксперименты, как Boomerang и WMAP продемонстрировали плоскую геометрию пространства, на самом деле это не так: Вселенная может быть и плоской, содержащей около 70 % тёмной энергии, и искривлённой, с иным количеством тёмной энергии. Есть и другие пары космологических параметров, которые трудно разделить на основе анализа микроволнового фона. Например, амплитуда неоднородностей в ранней Вселенной и время появления первых звёзд влияют на спектр мощности (рис. 4.2) сходным образом (в данном случае меняя высоту пиков). Как известно из школьной алгебры, для определения двух величин требуется более одного уравнения. В космологии мы хотим определить около 7 параметров, и в одном только микроволновом фоне для этого просто недостаточно данных. Так что необходима дополнительная информация из других космологических измерений. Например, из трёхмерных карт галактик.

Обзоры красных смещений галактик

Когда мы строим трёхмерную карту расположения галактик во Вселенной, мы сначала анализируем двумерные фотографии неба, чтобы найти галактики, а затем проводим дополнительные измерения, чтобы определить, насколько далеко галактики находятся. Самый масштабный пока проект трёхмерного картографирования называется Слоуновским цифровым обзором неба (SDSS). (Мне повезло в нём поучаствовать, когда я был постдоком в Принстоне.) Более десяти лет небольшой армии специалистов понадобилось, чтобы отснять треть неба с помощью специально построенного в Нью-Мексико 2,5-метрового телескопа и получить двумерную карту неба (рис. 4.4). Принстонский профессор Джим Ганн, напоминавший мне добродушного волшебника, использовал свою магическую силу, чтобы построить для этого телескопа поразительную цифровую камеру, самую большую из когда-либо применявшихся для решения астрономических задач.

Рис. 4.4. Количество информации в Слоуновском цифровом обзоре неба поразительно. Левый рисунок, представляющий всё небо, содержит почти терапиксел — миллион мегапикселов. Последовательно увеличивая фрагменты, мы добираемся до галактики Водоворот, находящейся в созвездии Большой Медведицы, но такой же уровень детализации доступен в любой точке изображения. (Иллюстрация: Майк Блэнтон и Дэвид Хогг/Коллаборация SDSS.)

Если вы приглядитесь к изображениям неба в этом обзоре (рис. 4.5), вы обнаружите множество звёзд, галактик и других объектов — их там более полумиллиарда. Это означает, что если вы попросите аспиранта отыскать все объекты, то, затрачивая на каждый по одной секунде и работая 8 часов в день без перерывов и выходных, он справится с этой работой за 50 лет, а вы получите награду как худший в истории научный руководитель. Поиск этих объектов оказался на удивление сложным даже для компьютера: необходимо уметь различать галактики, звёзды (которые казались бы точечными, если бы не атмосферное размытие), кометы, спутники и т. д. Хуже того, объекты накладываются друг на друга — например, близкая звезда досадным образом оказывается на фоне далёкой галактики. Несколько лет спустя эту проблему удалось решить благодаря героическим программистским усилиям Роберта Лаптона, весёлого англичанина, который подписывал электронные письма «Роберт Лаптон Добрый» и всегда ходил босиком (рис. 4.5).

Следующий шаг — понять, на каком расстоянии находится каждая галактика. Закон Хаббла v = Hd означает, что Вселенная расширяется, и чем больше расстояние d до далёкой галактики, тем выше скорость v, с которой она удаляется от нас. Закон Хаббла надёжно подтверждён, и его можно применить как метод измерения расстояний: определив по красному смещению спектральных линий скорость удаления галактики, можно узнать расстояние до неё. Измерять красные смещения и скорости легко, а расстояния трудно, так что закон Хаббла позволяет сэкономить массу усилий: как только постоянная Хаббла H определена по близким галактикам, достаточно измерить скорости v далёких галактик по красным смещениям их спектров и поделить их на H.

Рис. 4.5. Роберт Лаптон вместе с моими сыновьями рассматривает небольшую часть карты Слоуновского цифрового обзора неба, украшающую стену на астрономическом факультете Принстонского университета. После того как разработанное Робертом программное обеспечение выявило все объекты на карте, были измерены расстояния до большинства интересных галактик и получилась трёхмерная карта (слева), где мы в центре, а каждая точка представляет галактику. Слоуновскую Великую стену можно найти, отступив примерно на треть от верхнего края изображения.

Из каталога объектов, составленного с помощью программы Лаптона, было отобрано около миллиона самых интересных для измерения спектров. Чтобы собрать свет 24 спектров галактик, благодаря которым Эдвин Хаббл открыл космологическое расширение, требовались недели. А в Слоуновском цифровом обзоре неба конвейер по производству спектров выдаёт их по 640 в час, причём все измеряются одновременно. Хитрость в том, чтобы расставить 640 оптических волокон в тех местах фокальной плоскости телескопа, где, по данным каталога Лаптона, должны быть изображения галактик; а затем все волокна направляют галактический свет в спектрограф, который раскладывает их в радужные полоски, фиксируемые цифровой камерой. Другой программный пакет, разработанный Дэвидом Шлегелем и его коллегами, анализирует эти спектры и определяет по красным смещениям спектральных линий расстояние и другие характеристики для каждой галактики.

В левой части рис. 4.5 я изобразил трёхмерный срез Вселенной, на котором каждая точка представляет галактику. Когда мне хочется отвлечься, я люблю полетать с помощью трёхмерного симулятора космологических полётов. При этом открывается нечто изумительно красивое: мы являемся частью грандиозной структуры. Не только наша планета — часть Солнечной системы, а Солнечная система — часть Галактики, но и сама наша Галактика — часть паутины групп, скоплений, сверхскоплений и гигантской волокнистой структуры, сплетённой из галактик. Разглядывая эту карту, я заметил нечто, сегодня известное как Слоуновская Великая стена (рис. 4.5, слева), и был так поражён размерами этого объекта, что сначала заподозрил ошибку в своей программе. Но некоторые мои коллеги независимо обнаружили, что этот объект действительно существует: он имеет протяжённость 1,4 млрд световых лет и является крупнейшей известной структурой во Вселенной. Этот крупномасштабный паттерн кластеризации — космологический клад, в котором закодирована важнейшая информация, отсутствующая в микроволновом космическом фоне.

Космология: от традиционной к прецизионной

Паттерны в распределении галактик в действительности те же, проявления которых мы увидели на карте космического микроволнового фона, но только они показаны миллиарды лет спустя и усилены гравитацией. В области пространства, в которой газ когда-то был на 0,001 % плотнее, чем в окрестностях, и вызывал появление пятна на карте WMAP (рис. 3.4), сегодня может располагаться скопление из сотни галактик. В этом смысле флуктуации микроволнового фона можно рассматривать как космическую ДНК, чертёж, согласно которому развивается Вселенная. Сравнивая едва заметную в прошлом кластеризацию, просматриваемую на космическом микроволновом фоне, и ярко выраженный современный паттерн кластеризации на трёхмерной карте галактик, можно уточнить природу материи, притяжение которой до настоящего времени заставляло кластеризацию усиливаться.

Кластеризация микроволнового фона характеризуется кривой спектра мощности (рис. 4.2), и то же верно для кластеризации галактик. Однако найти точный вид этой кривой оказалось очень трудно: измерение показанного на рис. 4.6 галактического спектра мощности на основе данных Слоуновского цифрового обзора неба, несмотря на огромную помощь коллег, заняло у меня шесть — шесть! — лет и стало самым утомительным проектом в моей жизни. Раз за разом я думал: «Как здорово, что я наконец с этим почти покончил, я просто не вынесу, если это продолжится!» — и тут же обнаруживал новые проблемы в своих выкладках.

Рис. 4.6. Скучивание материи во Вселенной описывается кривой спектра мощности. Тот факт, что отметке 1000 млн световых лет соответствует значение 10 % на кривой, означает, грубо говоря, что если измерить количество массы в сфере такого радиуса, то результат будет варьировать в пределах 10 % в зависимости от того, где в пространстве поместить эту сферу. Сегодня существуют высокоточные измерения, и они согласуются с теоретическими предсказаниями. Мне кажется особенно важным, что пять различных способов измерения этой кривой согласуются друг с другом, хотя и сами данные, и люди, которые их получали, и применяемые методы различны.

Почему это оказалось так трудно? Ну, всё было бы проще, знай мы точное положение каждой галактики во Вселенной и будь у нас бесконечно мощный компьютер для анализа данных. Многие галактики по разным причинам нам не видны, а для некоторых из видимых расстояние и светимость не такие, как мы думаем. Если игнорировать эти осложнения, получается некорректный спектр мощности, который приводит к неправильным выводам о Вселенной.

Первые трёхмерные карты галактик были настолько малы, что на их анализ не имело смысла тратить время. Мой коллега Майкл Воугли дал мне замечательный рисунок, сводящий воедино все измерения, сделанные примерно до 1996 года, и когда я спросил его, почему на нём нет «усов», характеризующих погрешности измерений, он ответил: «Я не доверяю этим измерениям». У него были основания для скептицизма: у одних групп мощность получалась в 10 раз больше, чем у других.

Научные группы по всему миру создавали более крупные трёхмерные карты и публиковали их в интернете. Я подумал: если так много людей вкладывает так много сил в создание этих карт, они заслуживают тщательного анализа. Мы с Эндрю Гамильтоном решили не жалеть времени и определить спектр мощности распределения галактик, опираясь на методы теории информации вроде тех, которые мы разработали для анализа космического микроволнового фона.

Эндрю — неисправимо жизнерадостный британец, один из моих любимых соавторов. Однажды я опоздал в ресторан, где встречался с Эндрю и моими друзьями Вэйном Ху и Дэвидом Хоггом, недавно побрившим голову. Когда я спросил официантку, не видела ли она троицу, напоминавшую Роберта Редфорда, Брюса Ли и Коджака, она на мгновение задумалась и, улыбнувшись, сказала: «Да, я вижу Роберта Редфорда…» Сначала мы анализировали постоянно растущие трёхмерные карты с невнятными названиями вроде IRAS, PSCz, UZC и 2dF, охватывающие около 5, 15, 20 и 100 тыс. галактик соответственно. Эндрю жил в Калифорнии, и мы бесконечно обсуждали математические тонкости измерения спектра мощности в электронной переписке, по телефону и в пеших походах в горы.

Карта Слоуновского цифрового обзора неба была самой большой и точной среди всех: в её основе лежала полностью цифровая обработка изображений и тщательнейший контроль качества, и я чувствовал, что она заслуживает самого усердного анализа. Поскольку цепочка рассуждений прочна ровно настолько, насколько прочно её самое слабое звено, я потратил годы, разбираясь с заковыристыми вопросами, которые многим казались скучными. Профессор Джилл Напп, жена Джима Ганна и одна из главных движущих сил проекта, организовывала еженедельные встречи в Принстоне, где за её несравненным угощением мы пытались обнаружить все скелеты в шкафах нашего анализа и придумать, что с ними делать. Например, количество галактик, нанесённых на карту в конкретном направлении, зависело от того, насколько хорошей была погода, когда фотографировался участок, а также от количества галактической пыли в этом направлении и доли видимых галактик, которую удавалось охватить оптическими волокнами. Откровенно говоря, это было скучно, так что я не стану утомлять вас деталями. И всё же я получил огромную помощь от множества людей, в особенности от профессора Майкла Страусса и его аспиранта Майка Блэнтона. Параллельно шёл нескончаемый цикл многонедельных обсчётов терабайтов числовых таблиц, называемых матрицами, причём после каждого захода я просматривал запутанные графики, отлаживал код и запускал всё заново.

В 2003 году, после шести лет работы я наконец опубликовал две статьи, и у каждой было более 60 соавторов. Никогда в жизни я не чувствовал большего облегчения от завершения какого-либо дела, за исключением, возможно, этой книги. Первая статья была посвящена измерению галактического спектра мощности (рис. 4.6), а вторая касалась оценки космологических параметров на основе этих данных и спектра мощности микроволнового фона. Важнейшие результаты указаны в табл. 4.1: я обновил данные с учётом последних измерений, выполненных другими авторами. Значения при этом сильно не изменились, хотя погрешности уменьшились. У меня ещё свежи в памяти дебаты времён моей учёбы в аспирантуре: каков возраст Вселенной — 10 или 20 млрд лет? А сейчас мы спорим, составляет он 13,7 или 13,8 млрд лет! Точная космология наконец-то родилась, и я горжусь, что сыграл скромную роль в её появлении.

Табл. 4.1. Совмещая карты космического микроволнового фона с трёхмерными картами распределения галактик, можно измерить ключевые космологические параметры с точностью до нескольких процентов.

Лично мне итог этой работы принёс большую удачу. Осенью 2004 года Массачусетский технологический институт рассматривал мою кандидатуру на должность постоянного профессора, и мне сказали, что для этого надо «взять главный приз или, на худой конец, бронзовую медаль». Подобно чартам с рейтингами продаж у музыкантов, у учёных есть индексы цитирования: всякий раз, когда кто-то упоминает вашу статью, он записывает очко в вашу пользу. Порой цитирование бывает случайным и даже глупым, оно подвержено эффекту толпы, поскольку ленивые авторы склонны копировать у других ссылки, даже не читая цитируемые статьи, но аттестационные комиссии носятся с индексом цитирования, как бейсбольные тренеры с рейтингом игроков. И тут мне по-настоящему повезло — эти две статьи неожиданно стали самыми цитируемыми из всех моих публикаций, а одна даже стала самой цитируемой статьёй по физике в 2004 году. Хотя она продержалась в этом статусе не очень долго, этого хватило для одобрения моей кандидатуры на должность профессора. А потом журнал «Сайенс» решил, что «главным научным прорывом 2003 года» стало появление доверия к космологии, упомянув при этом результаты WMAP и наш анализ данных Слоуновского цифрового обзора неба.

По правде сказать, эти данные вовсе не стали прорывом, они лишь отражали медленный, но неуклонный прогресс мирового космологического сообщества в последние годы. Наша работа ни в коей мере не была революционной, мы не открыли ничего удивительного. Скорее мы просто способствовали повышению доверия к космологии и её превращению в более зрелую науку. Для меня самым большим сюрпризом стало как раз отсутствие сюрпризов.

Знаменитый советский физик Лев Ландау сказал, что космологи часто ошибаются, но никогда не сомневаются, и мы видели множество примеров этого — от Аристарха, утверждавшего, что Солнце в 18 раз ближе, чем оно на самом деле, до Хаббла, который в 7 раз завысил скорость расширения Вселенной. Эта эпоха «Дикого Запада» подошла к концу. Мы видели, что и теория первичного нуклеосинтеза, и теория космической кластеризации дают одинаковый результат для плотности атомов и что сверхновые типа Ia дают то же значение для плотности тёмной энергии, что и данные космической кластеризации. Из всех перекрёстных проверок моя любимая — та, что представлена на рис. 4.6: там я начертил пять результатов измерения кривой спектра мощности. Хотя получившие их люди и их методы были разными, все пять, как видите, согласуются друг с другом.

 

Окончательная карта нашей Вселенной

Ещё многое предстоит найти

Я сижу в постели, набираю эти слова и думаю о том, как сильно изменилась космология. В те годы, когда я был постдоком, мы часто обсуждали, как было бы здорово получить прецизионные данные и, наконец, точно измерить все интересующие нас космологические параметры. Сегодня можно сказать: дело сделано, ответы — в табл. 4.1. И что теперь? Космология исчерпана? Следует ли космологам подыскать себе другое занятие? Нет! Чтобы оценить, как много интересного ещё предстоит сделать, честно взглянем на то немногое, чего удалось достичь космологам: по большому счёту, мы лишь параметризовали наше незнание — в том смысле, что за каждым параметром в табл. 4.1 стоит необъяснённая загадка. Например:

• Мы измерили плотность тёмной материи. Но что это такое?

• Мы измерили плотность тёмной энергии. Но что это такое?

• Мы измерили плотность атомов (1 атом приходится примерно на 2 млрд фотонов). Но какой процесс привёл к такому соотношению?

• Мы посчитали, что амплитуда первоначальных флуктуаций составляла 0,002 %. Но какой процесс их породил?

По мере повышения качества данных мы сможем использовать их для измерения параметров в табл. 4.1 со всё более высокой точностью, то есть со всё большим числом цифр после запятой. Но меня гораздо сильнее вдохновляет использование улучшенных данных для измерения новых параметров. Например, можно попробовать определить иные, кроме плотности, параметры тёмной материи и тёмной энергии. Есть ли у тёмной материи давление? А скорость? А температура? Это могло бы пролить свет на её природу. Действительно ли плотность тёмной энергии строго постоянна? Если бы удалось измерить даже малейшие её изменения во времени или от места к месту, это дало бы нам ключ к пониманию её природы и того, как тёмная энергия влияет на будущее нашей Вселенной. Есть ли у первичных флуктуаций ещё какие-либо закономерности или свойства помимо амплитуды в 0,002 %? Это могло бы многое рассказать о происхождении Вселенной.

Я много думал над тем, как подступиться к этим вопросам, и на все эти вопросы ответ один: получить карту Вселенной! В частности, нам нужны максимально подробные трёхмерные карты Вселенной. Наибольший объём, который мы в принципе можем нанести на карту — та часть пространства, свет из которой успел до нас дойти. Данный объём, в сущности, соответствует внутренности плазменной сферы (рис. 4.7, слева), которую мы исследовали, и, как видно из центрального изображения на этом рисунке, свыше 99,9 % этого объёма остаётся неисследованным. Видно также, что наша лучшая трёхмерная карта галактик, построенная на основе данных Слоуновского цифрового обзора неба, покрывает лишь наши ближайшие космологические окрестности — Вселенная поистине колоссальна! Если добавить на этот рисунок самые далёкие галактики, когда-либо открытые астрономами, они будут чуть дальше, чем на полпути до края, и их окажется слишком мало, чтобы составить сколько-нибудь полезную трёхмерную карту.

Рис. 4.7. Сравнительно с наблюдаемой частью Вселенной (слева) её доля, которая была картографирована (в центре), очень мала и охватывает менее 0,1 % объёма. Как и в случае с Австралией в 1838 году (справа), на карту нанесена лишь полоска по периметру, а большая часть внутренней территории остаётся неисследованной. Окружность на среднем рисунке — это плазма (излучение, составляющее наблюдаемый нами космический микроволновый фон, поступает лишь из её тонкого внутреннего серого края). Небольшая структура вблизи центра — крупнейшая на данный момент трёхмерная карта галактик, построенная на основе данных Слоуновского цифрового обзора неба.

Если бы мы смогли нанести на карту неисследованные части Вселенной, космологию ожидал бы колоссальный прогресс. Мы бы не только тысячекратно расширили свою космологическую осведомлённость, но и (далеко — значит давно) узнали бы подробности того, что происходило в первой половине нашей космической истории. Однако как это сделать? Все методы, которые мы обсуждали, продолжают впечатляющим образом развиваться, но, к сожалению, в обозримой перспективе они, видимо, не позволят картографировать большую долю неохваченного картами 99,9 % объёма Вселенной. Эксперименты по картографированию космического микроволнового фона затрагивают в основном границу этого объёма, поскольку внутри он большей частью прозрачен для микроволн. На таких расстояниях большинство галактик становятся настолько тусклыми, что их трудно увидеть даже в лучшие телескопы. К тому же значительная часть этого объёма настолько удалена, что вовсе не содержит галактик — мы заглядываем в настолько далёкое прошлое, когда большинство их ещё не сформировалось!

Картографирование водорода

К счастью, существует другая технология картографирования. То, что мы считаем пустотой, в действительности не совсем пусто: межгалактическое пространство заполняет газообразный водород. Кроме того, физики давно знают, что газообразный водород испускает радиоволны длиной 21 см, которые можно регистрировать с помощью радиотелескопов. (Когда мой однокурсник Тед Банн преподавал в Беркли и коснулся этой темы, один студент задал ему вопрос: «А какая длина волны у линии длиной 21 см?») Это значит, что, хотя водород невидим для обычных телескопов, посредством радиотелескопов его, в принципе, можно «увидеть» в большей части Вселенной, в том числе задолго до того, как образовались звёзды и галактики. И можно построить трёхмерные карты распределения газообразного водорода, используя явление красного смещения, которое обсуждалось в гл. 2: поскольку радиоволны при расширении Вселенной растягиваются, длина регистрируемых на Земле волн указывает, с какого расстояния (а значит, из какого времени) они к нам пришли. Например, волны, которые, приходя к нам, имеют длину 210 см, были растянуты в 10 раз, а значит, испускались они, когда Вселенная была в 10 раз меньше, чем сегодня. Эту методику называют томографией на волне 21 см, и поскольку она может привести к следующему прорыву в космологии, к ней привлечено большое внимание. В гонку включились многие научные группы, которые стремятся первыми в мире надёжно зарегистрировать едва уловимый сигнал водорода, находящегося на полпути до края Вселенной, однако пока никто в этом не преуспел.

Что такое телескоп?

Почему это так трудно? Потому что сигнал очень слаб. Что нужно для регистрации чрезвычайно слабых сигналов? Чрезвычайно большой телескоп. Скажем, площадью 1 км2. Что нужно для постройки чрезвычайно большого телескопа? Чрезвычайно большой бюджет. Но всё-таки — насколько большой? Вот тут интереснее! Стоимость традиционных радиотелескопов вроде того, что на рис. 4.8, более чем удваивается при удвоении площади, и в некоторый момент становится абсурдно высокой.

Поэтому во всех экспериментах, стремящихся осуществить томографию на волне 21 см, используется более современный тип радиотелескопов, называемых интерферометрами. Поскольку свет и радиоволны — это электромагнитные явления, они, распространяясь, создают электрическое напряжение между различными точками пространства. Это, конечно, очень низкое напряжение, во много раз слабее 1,5 В между контактами батарейки, но и его можно уловить с помощью хороших антенн и усилителей. Основная идея интерферометрии такова: с помощью массива радиоантенн измерить большое число таких напряжений и с помощью компьютера по этим данным реконструировать вид неба. Если все антенны расположены в горизонтальной плоскости, как на рис. 4.8 (на переднем плане), то волна, пришедшая прямо сверху, достигнет их одновременно. Волны, идущие под углом, достигнут некоторых антенн раньше, чем других, и компьютер использует этот факт для определения их направления. Наш мозг пользуется тем же методом при определении источника звука: если левое ухо слышит звук раньше правого, то звук, очевидно, приходит слева. Точно оценив разницу во времени, мозг может даже оценить, идёт звук строго слева или под углом. Имея только два уха, вы не можете определить угол точно и справились бы с задачей гораздо лучше, будь у вас, наподобие большого радиоинтерферометра, сотни ушей по всему телу (хотя, возможно, это выглядело бы не очень хорошо). Идея интерферометра, предложенная Мартином Райлом в 1946 году, оказалась невероятно успешной и принесла ему Нобелевскую премию в 1974-м.

Рис. 4.8. Радиоастрономия с большим бюджетом (на заднем плане) и с малым (на переднем плане). Во время экспедиции в обсерваторию Гринбэнк в Западной Виргинии мой аспирант Энди Лютомирски возится с электронным оборудованием, спрятанным в палатку от дождя.

Однако главное затруднение при измерении этих различий во времени связано с тем, что вычисления приходится проводить для каждой пары антенн (или ушей), и количество таких пар растёт примерно как квадрат числа антенн. Это означает, что если увеличить количество антенн в тысячу раз, стоимость компьютера подскочит в миллион раз! А вы-то хотели, чтобы астрономическим был телескоп, а не бюджет! Поэтому интерферометры до сих пор ограничивались десятками или сотнями антенн, тогда как для томографии на волне 21 см их требуется около миллиона.

Когда я перебрался в Массачусетский технологический институт, мне великодушно позволили присоединиться к американо-австралийскому эксперименту по томографии на волне 21 см, которым руководила моя коллега Джеки Хьюит. На встречах, посвящённых нашему проекту, я иногда фантазировал, как бы удешевить строительство огромных телескопов. И вот однажды во время такой встречи в Гарварде у меня в голове щёлкнуло: дешёвый способ есть!

Омнископ

Я рассматриваю телескоп как машину по сортировке волн. Если вы посмотрите на свою руку и измерите распределение интенсивности света по ней, это ничего не скажет о том, как выглядит ваше лицо, поскольку световые волны от всех участков лица смешиваются в каждой точке кожи руки. Но если рассортировать волны света по направлениям их распространения так, чтобы волны, идущие в разных направлениях, попадали на разные места руки, вы сможете восстановить изображение своего лица. Именно это делает объектив фотоаппарата или телескопа, и глаз, и вогнутое зеркало радиотелескопа на рис. 4.8. В математике сортировку волн называют преобразованием Фурье. Телескоп, по сути, является преобразователем Фурье. И если традиционный телескоп выполняет его аналоговыми средствами, с использованием линз или кривых зеркал, то интерферометр делает это с помощью специального компьютера. Волны сортируются не только по направлениям их распространения, но и по длинам, что в случае видимого света соответствует их цвету. В Гарварде меня посетила идея: построить громадный радиотелескоп, в котором антенны располагались бы не беспорядочно, как в нынешних проектах, а по несложному шаблону. В случае телескопа с миллионом антенн числовой трюк, использующий свойства этого шаблона, позволил бы ускорить необходимые для преобразования Фурье вычисления в 25 тыс. раз. Грубо говоря, телескоп можно было удешевить в 25 тыс. раз.

Мне удалось убедить своего друга Матиаса Салдарриагу в разумности этой идеи. Мы опубликовали на эту тему две статьи, где показали, что основная идея годится для широкого набора различных шаблонов расположения антенн. Предлагаемый телескоп мы назвали омнископом, поскольку он был и всенаправленным (мог получать изображение всего неба сразу), и всеволновым, то есть работал сразу в широком диапазоне длин волн («цветов»).

Эйнштейну приписывают высказывание: «Теория и практика — теоретически одно и то же, но на практике это совсем разные вещи». Мы решили построить небольшой прототип, чтобы убедиться в его работоспособности. Я обнаружил, что базовый принцип омнископа был применён 20 годами ранее группой японских учёных (с иными целями), но электроника того времени заставила их ограничиться 64 антеннами. Благодаря революции сотовых телефонов ключевые компоненты нашего прототипа с тех пор радикально подешевели, и конструкцию стало можно сделать за копейки. Мне также очень повезло с помощниками — группой замечательных студентов Массачусетского технологического института, в том числе электроинженерного факультета, которые могли, словно по волшебству, создавать электронные печатные платы для цифровой обработки сигналов. Один из них, Невада Санчес, научил меня теории магического дыма в электронике, которую мы в дальнейшем подтвердили в ходе экспериментов в лаборатории: электронные компоненты работают, потому что содержат магический дым. Если вы случайно сделаете с ними что-то, из-за чего магический дым выйдет наружу, они перестают работать…

Всю научную карьеру я занимался в основном теорией и анализом данных. Когда я пришёл к постановке эксперимента, это оказалось совершенно новым делом — и понравилось мне. Пока наш едва сформировавшийся омнископ ведёт себя хорошо, но ещё рано говорить, удастся ли нам или кому-либо раскрыть потенциал томографии на волне 21 см. Однако омнископ уже кое-чему научил меня — и это «кое-что» касается меня самого. Наиболее увлекательной частью процесса были экспедиции, когда мы грузили оборудование в фургон и отправлялись в какой-нибудь глухой угол, подальше от радиостанций, сотовых телефонов и других искусственных источников радиоволн. В эти дни моя жизнь, обычно раздроблённая электронными письмами, лекциями, заседаниями и семейными обязанностями, сменялась благословенным саториподобным состоянием полной концентрации: никаких телефонных звонков, никакого интернета, никаких пауз, и каждый член команды на 100 % сосредоточен на общей цели. Иногда я думаю, не перебарщивает ли наша эпоха с многозадачностью в повседневной жизни, не следует ли нам исчезать подобным образом чаще, в том числе и по иным причинам. Ну, например, чтобы завершить книгу…

 

Почему случился Большой взрыв?

Обилие высокоточных данных превратило космологию из умозрительной дисциплины в точную науку. Теперь возраст Вселенной измерен с погрешностью 1 %. Как обычно бывает в науке, мы, отвечая на старые вопросы, наталкиваемся на новые, и я предвижу замечательное десятилетие: космологи всего мира предложат новые теории и поставят новые эксперименты, чтобы пролить свет на природу тёмной материи, тёмной энергии и т. д. В гл. 13 мы вернёмся к этим поискам и вопросу о судьбе Вселенной.

Для меня самый поразительный урок точной космологии состоит в том, что с момента рождения Вселенной ею управляют простые математические законы. Уравнения, выражающие общую теорию относительности, по-видимому, точно описывают гравитационное взаимодействие на расстояниях от миллиметров до сотен триллионов триллионов (1026) метров, а уравнения атомной и ядерной физики, похоже, точно описывают Вселенную, начиная с одной секунды после Большого взрыва до наших дней, то есть 14 млрд лет спустя. И делают они это не в общих чертах, как уравнения экономики, а с потрясающей точностью (рис. 4.2). Столь точная космология подчёркивает удивительную полезность математики для понимания мира. Мы вернёмся к этой загадке в гл. 10 и рассмотрим её радикальное объяснение.

Другой поразительный урок точной космологии состоит в том, что она неполна. Мы видим, что всё наблюдаемое во Вселенной порождено Большим взрывом, при котором почти однородный газ, столь же горячий, как ядро Солнца, расширялся столь быстро, что удваивался в размерах менее чем за секунду. Но кто всё это устроил? Я люблю размышлять над «проблемой Большого взрыва»: что сделало Большой взрыв — взрывом? Откуда появился горячий расширяющийся газ? И почему в нём были учтены эти 0,002 % — амплитуда первичных флуктуаций, которые превратились в галактики и крупномасштабную структуру, наблюдаемую в современной Вселенной? Короче, как всё это началось? Экстраполяция в прошлое фридмановских уравнений расширяющейся Вселенной приводит к проблемам, а значит, для понимания наших истоков требуются совершенно новые идеи. Об этом мы и поговорим в следующей главе.

 

Резюме

• Новейшие данные о космическом микроволновом фоне, кластеризации галактик и т. д. превратили космологию в точную науку. Так, мы перешли от споров о том, составляет возраст Вселенной 10 или 20 млрд лет, к спорам о том, составляет он 13,7 или 13,8 млрд лет.

• Эйнштейновская теория гравитации определённо стала рекордсменом по математической красоте среди физических теорий, объяснив гравитацию как проявление геометрии. Она показывает, что чем больше массы содержится в пространстве, тем сильнее пространство искривляется. Кривизна пространства заставляет предметы двигаться не по прямым линиям, а по кривым, закручивающимся в сторону массивных объектов.

• Путём изучения геометрии треугольников размером со Вселенную теория Эйнштейна позволяет определить общее количество массы во Вселенной. Удивительно, но на атомы, которые считались составными частями всего сущего, приходится всего 4 % этой массы, а остальные 96 % остаются необъяснёнными.

• Недостающая масса призрачна, будучи одновременно невидимой и способной незаметно проходить сквозь нас. Её гравитационное влияние указывает на то, что она состоит из двух обладающих противоположными свойствами субстанций: тёмная материя кластеризуется, а тёмная энергия — нет; тёмная материя разрежается при расширении, а тёмная энергия — нет; тёмная материя притягивает, а тёмная энергия отталкивает; тёмная материя помогает образовываться галактикам, а тёмная энергия — мешает.

• Точная космология открыла, что с момента рождения Вселенной ею управляют простые математические законы.

• Как ни была бы красива классическая модель Большого взрыва, она не годится для самых первых мгновений жизни Вселенной, а значит, для понимания истоков нам предстоит найти другие важные части головоломки.

 

Глава 5. Наше космическое происхождение

 

«О, нет! Он засыпает!» В 1997 году я делал доклад в Университете им. Тафтса. Легендарный Алан Гут специально приехал из Массачусетского технологического института, чтобы меня послушать. Я не встречался с ним прежде, и присутствие в аудитории такого светила заставляло меня гордиться и нервничать. В основном нервничать, особенно когда его голова начала клониться на грудь, а взгляд стал отсутствующим. Я постарался говорить бодрее и громче. Несколько раз он вскидывался, но вскоре я потерпел фиаско: он отправился в царство снов и не возвращался до конца доклада. Я чувствовал себя опустошённым.

Лишь много позднее, когда мы стали коллегами по Массачусетскому технологическому институту, я узнал, что он засыпает на всех докладах (кроме собственных). Сказать по правде, мой аспирант Адриан Лю говорит, что такое стало случаться и со мной. И с ним самим тоже. Но я этого никогда не замечал, поскольку мы трое отключаемся в одном и том же порядке. Если Алан, я и Адриан сидим рядом, то воспроизводим дремотную версию «волны», популярной у футбольных болельщиков.

Рис. 5.1. Андрей Линде (слева) и Алан Гут (справа) на шведском фестивале раков. Они не в курсе, что я их фотографирую и что им, двум главным архитекторам теории инфляции, придётся одеться иначе для церемонии награждения престижными премиями им. Грубера и Мильнера.

Алан настолько же дружелюбен, насколько и умён. Аккуратность, правда, не относится к сильным его сторонам: когда я впервые появился у него в кабинете, то обнаружил на полу толстый слой нераспечатанной корреспонденции. Выбрав наугад конверт, я увидел штемпель десятилетней давности. В 2005 году достижения Алана в этой области были удостоены престижной премии за самый захламлённый кабинет в Бостоне.

 

Что не так с Большим взрывом?

Но эта премия — не единственное достижение Алана. Около 1980 года он узнал от физика Боба Дикке, что во фридмановской модели Большого взрыва существуют серьёзные проблемы с самыми ранними стадиями, и предложил радикальное решение, которое назвал инфляцией. Экстраполяция фридмановских уравнений расширяющейся Вселенной назад во времени приводит к огромным успехам: они отлично объясняют, почему далёкие галактики разбегаются от нас, и откуда взялся фон космического микроволнового излучения, и как возникли лёгкие элементы и многие другие наблюдаемые явления.

Вернёмся в прошлое, к границе нашего знания, к тому мгновению, когда Вселенная расширялась столь быстро, что в следующую секунду её размеры удвоились. Уравнения Фридмана говорят нам, что до того Вселенная была ещё плотнее и горячее, и этому нет предела. И, в частности, примерно на 1/3 секунды ранее имело место начало, когда плотность нашей Вселенной была бесконечной и всё существующее разлеталось друг от друга с бесконечной скоростью.

Вслед за Дикке Алан Гут тщательно изучил эту историю возникновения нашего мира и понял, что она страшно неестественна. Например, на четыре вопроса из числа приведённых в начале гл. 2 она даёт такие ответы:

– Что стало причиной нашего Большого взрыва?

— Объяснения этому нет. Уравнения просто учитывают, что это случилось.

– Произошёл ли наш Большой взрыв в одной точке?

— Нет.

– Где именно в пространстве произошёл наш Большой взрыв?

— Он случился везде, сразу в бесконечном множестве точек.

– Как бесконечное пространство может быть порождено за конечное время?

— Объяснения этому нет. Уравнения просто учитывают, что пространство было бесконечным уже в момент его появления.

Можно ли сказать, что эти ответы раскрывают суть дела и элегантно снимают все вопросы о Большом взрыве? Если нет, то вы в хорошей компании! На самом деле есть ещё много вещей, которые фридмановская модель Большого взрыва не может объяснить.

Проблема горизонта

Проанализируем тщательнее третий вопрос из списка. На рис. 5.2 проиллюстрирован тот факт, что температура излучения космического микроволнового фона почти одинакова (с точностью до пятой значащей цифры) во всех направлениях. Если бы Большой взрыв случился в одних областях пространства существенно раньше, чем в других, у этих областей было бы разное время для расширения и остывания и температура на наших картах космического микроволнового фона варьировалась бы от места к месту не на 0,002 %, а почти на 100 %.

Но не мог ли некий физический процесс привести к выравниванию температуры гораздо позднее Большого взрыва? В конце концов, если лить холодное молоко в горячий кофе, не удивительно, что когда вы начнёте пить, они станут однородно тёплыми. Проблема в том, что процесс смешивания требует времени: необходимо подождать, чтобы молекулы молока и кофе перемешались. Однако у отдалённых частей Вселенной, доступных нашим наблюдениям, не было времени для такого перемешивания (ещё в 60-х годах на это обратили внимание Чарлз Мизнер и его коллеги). У областей а и б (рис. 5.2), которые мы видим в противоположных направлениях на небе, не было времени для взаимодействия: даже информация, передающаяся со скоростью света, не успела бы дойти из а в б, поскольку свет от а прошёл полпути — до точки, где находимся мы. Это значит, что фридмановская модель Большого взрыва не даёт объяснения одинаковой температуры в точках а и б. Получается, что у этих областей было равное время для остывания после Большого взрыва, а отсюда следует, что они независимо испытали Большой взрыв почти в одно и то же время без какой-либо общей причины.

Рис. 5.2. У молекул горячего кофе и холодного молока достаточно времени для взаимодействия и выравнивания температуры. У плазмы в областях а и б не было времени для взаимодействия: даже информация, передаваемая со скоростью света, не успела бы дойти от а до б, поскольку свет от а достиг пока лишь тех, кто пьёт кофе на полпути к б. Поэтому с точки зрения фридмановской модели Большого взрыва тот факт, что плазма в областях а и б тем не менее обладает одинаковой температурой, является загадкой.

Чтобы лучше понять, какое недоумение это вызвало у Алана Гута, представьте вот что. Проверив электронную почту, вы обнаружили приглашение на ланч от приятеля, а затем увидели, что все остальные ваши приятели прислали вам по письму с приглашением на ланч и что все до единого письма отправлены одновременно. Вы, вероятно, решили бы, что имеет место сговор и что появление всех этих писем вызвано общей причиной. Возможно, друзья решили устроить вам вечеринку-сюрприз. Для завершения аналогии с загадкой Алана о Большом взрыве, где области а, б, … соответствуют вашим приятелям, добавим, что вам точно известно: ваши друзья никогда не встречались, не связывались друг с другом и не имели доступа к какой-либо общей информации до отправки вам приглашений. Тогда пришлось бы признать это невероятным совпадением. На самом деле, слишком невероятным, так что вы, вероятно, решили бы, что сделали некорректное допущение и ваши друзья всё же смогли снестись. И это точно тот вывод, который сделал Алан: то, что бесконечное множество независимых областей пространства испытали Большой взрыв одновременно, не может быть беспричинным совпадением. Должен иметься некий физический механизм, вызывающий и взрыв, и синхронизацию. Один необъяснённый Большой взрыв — это уже плохо; бесконечное число необъяснённых Больших взрывов, вдобавок прекрасно синхронизированных, — уже ни в какие ворота не лезет.

Это проблема горизонта: она затрагивает то, что мы видим на своём космологическом горизонте — в самых отдалённых областях, доступных для наблюдения. Словно этого мало, Боб Дикке рассказал Алану о втором затруднении фридмановской теории Большого взрыва, которую он назвал проблемой плоской геометрии.

Проблема плоской геометрии

Измерения показывают, что наше пространство с высокой степенью точности плоское. Дикке считал, что это странно — если верна фридмановская модель Большого взрыва: такое состояние крайне неустойчиво, и нет оснований ожидать, что оно сохранится надолго. Например, в гл. 3 мы обсуждали неустойчивость остановившегося велосипеда, связанную с тем, что малейшее его отклонение от идеального равновесия усиливается гравитацией, так что вы сильно удивитесь, увидев ничем не поддерживаемый велосипед, который простоит вертикально несколько минут. На рис. 5.3 показаны три решения уравнений Фридмана, иллюстрирующих космологическую неустойчивость. Средняя кривая соответствует плоской Вселенной, которая остаётся идеально плоской и расширяется вечно. Две другие кривые начинаются почти так же, с практически неискривлённого пространства через миллиардную долю секунды, и спустя миллиардную долю секунды их плотности различаются лишь в 24-й значащей цифре. Но гравитация усиливает эти ничтожные различия, и в следующие 500 млн лет это заставляет Вселенную, описываемую нижней кривой, прекратить расширение и коллапсировать в Большом хлопке — Большом взрыве наоборот. В этой коллапсирующей в итоге Вселенной пространство приобретает такое искривление, что сумма углов треугольника оказывается гораздо больше 180°. Верхняя кривая, напротив, описывает Вселенную, искривлённую таким образом, что углы в сумме дают меньше 180°. Она расширяется гораздо быстрее пограничной плоской Вселенной, и к настоящему времени её газ должен был стать слишком разрежённым, чтобы образовывать галактики, а соответствующий сценарий можно назвать «Большим замерзанием».

Рис. 5.3. Ещё одна необъяснённая загадка фридмановской модели Большого взрыва состоит в том, что Вселенная так долго существует без заметного искривления пространства, ведущего к Большому хлопку или Большому замерзанию. Эти кривые соответствуют незначительно различающимся значениям плотности в момент, когда возраст Вселенной составлял одну миллиардную секунды: изменение последней из 24 цифр приводит к переходу в режим Большого хлопка или Большого замерзания прежде, чем Вселенная достигнет 4 % своего нынешнего возраста. (Благодарю Неда Райта за идею рисунка.)

Так почему наша Вселенная плоская? Если заменить 24 цифры на рис. 5.3 случайными значениями и решить уравнение Фридмана, то вероятность получить Вселенную, которая останется плоской спустя 14 млрд лет, будет меньше, чем для дротика, брошенного с Марса, попасть точно в центр мишени на Земле. Тем не менее фридмановская модель Большого взрыва не предполагает никакого объяснения этому совпадению.

Конечно, рассудил Алан Гут, должен существовать некий механизм, который вынуждает Вселенную иметь точно такую плотность, какая требуется, чтобы обеспечить исключительно плоскую геометрию в самом начале её истории.

 

Как действует инфляция

Сила удвоения

Алан догадался, что с помощью одной странно звучащей посылки можно разом решить и проблему горизонта, и проблему плоской геометрии, и объяснить многое другое. Посылка такова: в некоторый момент существовала однородная капля некоей плотной субстанции, которую было очень трудно рассеять. Это значит, что если бы 1 г такой субстанции вдвое увеличился в объёме, то его плотность (отношение массы к объёму) осталась бы почти такой же, и получилось бы уже 2 г материи. Сравним это с обычным веществом, таким как воздух: если он расширяется, занимая больший объём (как при выпускании сжатого воздуха из шины), общее число молекул газа, а значит, и общая масса, остаётся неизменным, и плотность падает.

Согласно эйнштейновской теории гравитации, крошечная нерассеиваемая капля может испытать поразительное разрастание, которое Алан назвал инфляцией, и фактически вызвать Большой взрыв! Как показано на рис. 5.4, уравнения Эйнштейна имеют решение, в котором каждая часть капли удваивается в размерах за одинаковые отрезки времени (такой тип роста называют экспоненциальным). В этом сценарии наша едва зародившаяся Вселенная росла во многом так же, как вы сами сразу после зачатия (рис. 5.5): любая ваша клетка удваивалась примерно за сутки, за счёт чего их общее число в каждый новый день составляло 1, 2, 4, 8, 16 и т. д. Повторяющееся удвоение — могучая сила, и ваша мама попала бы в трудное положение, если бы вы продолжали ежесуточно вдвое прибавлять в весе вплоть до своего рождения: через 9 месяцев (после 274 удвоений) вы весили бы больше, чем вся материя в наблюдаемой части Вселенной! Именно это происходит в описанном Аланом процессе инфляции: начавшись с капли размером много меньше и легче атома, он многократно удваивает её размеры, пока она не становится массивнее, чем вся наблюдаемая Вселенная.

Рис. 5.4. Согласно эйнштейновской теории гравитации, нерассеиваемая субстанция (плотность которой не уменьшается при расширении) может «инфлировать», удваиваясь в размерах через равные интервалы времени, и за доли секунды разрастается от субатомного масштаба до величины, сильно превосходящей наблюдаемую Вселенную. Так взрыв превращается в Большой взрыв. Это повторяющееся удвоение происходит во всех трёх измерениях, так что удвоение в диаметре увеличивает объём в 8 раз. Здесь я изобразил только два измерения, так что удвоение диаметра учетверяет объём.

Рис. 5.5. Теория инфляции утверждает, что новорождённая Вселенная росла во многом так же, как ребёнок: за фазой ускоренного роста, при которой размер удваивается через равные интервалы времени, следует более спокойная фаза замедляющегося роста. Поразительно, что вертикальная ось на обоих графиках одна и та же: в простейшей модели Вселенная прекращает инфлировать, когда примерно сравнивается в размерах с апельсином (но весит она при этом в 1081 раз больше). Наша новорождённая Вселенная удваивалась в размерах примерно в 1043 раз быстрее первых клеток зародыша.

Проблемы решены

Как видно на рис. 5.4, повторяющееся удвоение размеров автоматически приводит к повторяющемуся удвоению скорости расширения (я обозначил его стрелками). Иными словами, оно вызывает ускоряющееся расширение. Если бы вы прибавляли в весе ежедневно до своего рождения, то сначала вы расширялись бы довольно медленно (всего на несколько поперечников клетки в сутки). А ближе к концу периода созревания, превзойдя по массе наблюдаемую Вселенную и продолжая ежедневно удваиваться, вы расширялись бы с умопомрачительный скоростью — много миллиардов световых лет в день. Но если вы удваивали свою массу раз в сутки, то инфлирующая новорождённая Вселенная удваивала свою массу куда быстрее. В некоторых из самых популярных версий теории инфляции масса удваивается примерно каждую десятитриллионную от триллионной от квадриллионной (10–38) доли секунды, и требуется около 260 удвоений, чтобы породить массу наблюдаемой Вселенной. Это значит, что процесс инфляции от начала до конца по человеческим меркам был почти мгновенным и потребовал не более 10–35 секунды (это меньше, чем требуется свету, чтобы пройти миллионную часть поперечника протона). То есть экспоненциальное расширение начинается с чего-то крошечного, почти неподвижного, и превращает его в чудовищный взрыв. Благодаря этому инфляция решает «проблему взрыва», объясняя, чем вызван наш Большой взрыв — процессом повторяющегося удвоения. Она также объясняет, почему расширение однородно, как установил Эдвин Хаббл: области, которые отстоят вдвое дальше друг от друга, разлетаются вдвое быстрее (рис. 5.4).

На рис. 5.5 показано, что экспоненциальное расширение вашего тела в конце концов сменилось более медленным ростом. Новорождённая Вселенная также прекратила инфлировать. Инфлирующий материал распался на обычную материю, которая продолжила расширяться в более спокойном режиме, двигаясь по инерции со скоростью, которую она приобрела на взрывной инфляционный стадии, и постепенно замедляясь гравитацией.

Алан Гут понял, что инфляция также решает проблему горизонта. Удалённые области а и б на рис. 5.2 были чрезвычайно близки на ранних стадиях инфляции, у них было время для взаимодействия. Затем взрывное инфляционное расширение развело а и б, и только теперь они вновь начинают вступать в контакт. Клетки носа содержат те же ДНК, что и клетки пальцев ног, поскольку у них общий предок: и те, и другие возникли в результате последовательного удвоения первой вашей клетки. Аналогично далёкие области космического пространства обладают сходными свойствами, поскольку имеют общее происхождение: они рождены последовательным удвоением одной и той же капли инфлирующей материи.

Но Алан Гут понял также, что инфляция решает также проблему плоской геометрии. Представьте, что вы муравей на сфере (рис. 2.7) и способны видеть лишь небольшую область искривлённой поверхности, на которой живёте. Если инфляция внезапно увеличит сферу в огромное число раз, эта небольшая доступная вашему наблюдению область станет выглядеть гораздо более плоской. Квадратный сантиметр поверхности шарика для пинг-понга заметно искривлён, тогда как квадратный сантиметр поверхности Земли почти идеально плоский. Аналогично, когда инфляция колоссально расширяет наше собственное трёхмерное пространство, оно становится почти идеально плоским в пределах любого конкретного кубического сантиметра. Алан доказал, что если продолжительность инфляции достаточна для порождения наблюдаемой Вселенной, она сделает пространство настолько плоским, что оно продержится до наших дней без Большого хлопка и Большого замерзания.

В действительности инфляция обычно продолжается гораздо дольше, гарантируя, что пространство до наших дней останется практически идеально плоским. Иными словами, теория инфляции ещё в 80-х годах дала проверяемое предсказание: наше пространство должно быть плоским. И, как показано в двух предыдущих главах, сегодня это предсказание проверено с точностью лучше 1 %. Теория инфляции блестяще сдала экзамен.

Кто платит за бесплатный ланч?

Инфляция похожа на блестящий трюк. Интуиция подсказывает мне, что это просто не может соответствовать законам физики, однако при внимательном рассмотрении оказывается, что она соответствует.

Прежде всего: как может 1 г инфлирующей материи при расширении превратиться в 2 г? Ведь не может же масса возникнуть из ничего? Интересно, что Эйнштейн оставил в своей специальной теории относительности лазейку, согласно которой энергия E и масса m связаны знаменитой формулой E = mc2. Здесь c = 299 792 458 м/с — скорость света, и поскольку это большое число, крошечной массе соответствует огромная энергия (при атомном взрыве в Хиросиме в энергию превратилось менее 1 г массы). Это означает, что увеличить массу чего-либо можно путём добавления энергии. Например, растягивая резиновую ленту, можно сделать её немного тяжелее: для растяжения нужно приложить энергию, которая переходит в резину и увеличивает её массу.

Резиновая лента обладает отрицательным давлением, поскольку нужно совершить работу, чтобы её растянуть. Для субстанции с положительным давлением, такой как воздух, есть другая лазейка: чтобы её сжать, надо совершить работу. Короче говоря, инфлирующая субстанция должна обладать отрицательным давлением, и оно должно быть настолько велико, чтобы энергии, требующейся для её двукратного растяжения по объёму, точно хватало для удвоения её массы.

Ещё одно загадочное свойство инфляции состоит в том, что она вызывает ускоренное расширение. В школе меня учили, что гравитация — это притягивающая сила, и если имеется сгусток расширяющегося вещества, разве не должна гравитация, напротив, замедлять его расширение, пытаясь, в конечном счёте, обратить движение вспять и снова стянуть всё вещество вместе? И вновь Эйнштейн приходит на помощь — на этот раз с лазейкой в общей теории относительности, которая утверждает: гравитацию вызывает не только масса, но и давление. Поскольку масса не может быть отрицательной, гравитация массы всегда притягивающая. Положительное давление тоже вызывает притягивающую гравитацию, но это означает, что отрицательное давление должно вызывать отталкивающую! Инфлирующая субстанция обладает огромным отрицательным давлением. Алан Гут подсчитал, что отталкивающее действие её гравитации, вызванное её отрицательным давлением, в 3 раза сильнее, чем притягивающая сила гравитации, связанная с её массой. Так что притяжение инфлирующей субстанции отступает.

Однако, по утверждению нобелевского лауреата по экономике Милтона Фридмана, бесплатного ланча не бывает. Так кто же платит по энергетическим счетам за галактическое великолепие, которое мы наблюдаем в нашей Вселенной? Это делает гравитация, поскольку гравитационные силы впрыскивают энергию в инфлирующую материю, растягивая её. Но если полная энергия всего не может меняться, а массивные объекты несут в себе положительную энергию согласно формуле Эйнштейна E = mc2, это значит, что с гравитацией должно быть связано соответствующее количество отрицательной энергии. Так и есть: гравитационное поле, ответственное за все гравитационные силы, обладает отрицательной энергией. И оно приобретает больше отрицательной энергии всякий раз, когда гравитация что-либо ускоряет. Рассмотрим далёкий астероид. Если он движется медленно, то обладает очень небольшой кинетической энергией. Если он вдали от земного притяжения, он также обладает очень небольшой гравитационной энергией (потенциальной энергией). Если он начнёт падать на Землю, то станет приобретать всё большую скорость, а с ней и кинетическую энергию, возможно, достаточную для образования при ударе огромного кратера. Поскольку гравитационное поле первоначально почти не обладало энергией, а затем высвободило всю эту положительную энергию, то само оно осталось с отрицательной.

Тут мы затронули ещё один вопрос из списка в начале главы 2: окружающая нас материя образуется почти из ничего в ходе инфляции — не нарушает ли это закон сохранения энергии? Мы видим, что ответ на него отрицательный: вся необходимая энергия заимствуется у гравитационного поля.

Должен признаться, что хотя этот процесс не нарушает законов физики, он заставляет меня нервничать. Я просто не могу избавиться от неприятного чувства, что живу в некоей «пирамиде» космического масштаба. Если бы вы посетили Берни Мэдоффа до его ареста в 2008 году (за присвоение 65 млрд долларов), вы подумали бы, что он действительно владеет всеми роскошными вещами, которые его окружали. Однако оказалось, что он приобретал их на присвоенные деньги. Много лет он раз за разом удваивал масштаб своих операций, постоянно увеличивая объём заимствований у наивных вкладчиков. Инфляционная Вселенная делает точно то же самое: удваивается в размерах и раз за разом покрывает свои энергетические долги, заимствуя у гравитационного поля ещё больше энергии. По аналогии с Мэдоффом инфляционная Вселенная эксплуатирует внутреннюю неустойчивость системы для создания видимого блеска из ничего. Я лишь надеюсь, что наш мир окажется более устойчивым, чем мир Мэдоффа…

 

Благодатный дар

Инфляция на бис

Как и у многих успешных научных теорий, у инфляции был непростой старт. Её первое твёрдое предсказание, что пространство плоское, казалось несовместимым с множеством наблюдательных данных. Теория гравитации Эйнштейна гласит, что пространство может быть плоским, лишь если плотность материи равна определённому критическому значению. Символом Ω обозначают, во сколько раз плотность Вселенной выше критической плотности, и инфляция предсказывает, что Ω = 1. Однако когда я был аспирантом, оценки плотности по обзорам галактик ещё оставляли желать лучшего и из них следовало меньшее значение Ω ≈ 0,25. Это всё сильнее смущало Алана Гута, который на каждой конференции настаивал, что Ω = 1, несмотря на то, что говорили коллеги-экспериментаторы. Гут продолжал стоять на своём, и справедливо. Открытие тёмной энергии показало, что мы учитывали лишь около четверти плотности, а когда учли и тёмную энергию, то получили значение Ω = 1 с погрешностью менее 1 % (табл. 4.1).

Открытие тёмной энергии резко повысило доверие к теории инфляции и по другой причине: мы уже не можем отрицать возможность существования нерассеиваемой субстанции как бессмысленной или противоречащей физике, поскольку тёмная энергия — именно такая субстанция! Эпоха инфляции, породившая наш Большой взрыв, закончилась 14 млрд лет назад, однако началась новая эпоха инфляции — под влиянием тёмной энергии. Теперь она протекает, как в рапиде: Вселенная удваивается в размерах не за долю секунды, а за 8 млрд лет. Так что нынешние содержательные дискуссии касаются не вопроса, была ли инфляция, а лишь того, имела ли она место один раз или дважды.

«Посев» первичных флуктуаций

Отличительный признак успешной научной теории: она даёт больше, чем в неё закладывается. Алан Гут показал, что за счёт одного-единственного предположения (о крошечной капле труднорассеиваемой субстанции) можно решить сразу три космологических парадокса: проблему взрыва, проблему горизонта и проблему плоской геометрии. Выше мы видели, как теория инфляция дала сверх заложенного в неё: она предсказала Ω = 1, что точно подтвердилось два десятилетия спустя. Но это не всё.

Предыдущую главу мы закончили вопросом, каковы истоки галактик и крупномасштабной структуры Вселенной. К всеобщему удивлению, теория инфляции ответила и на этот вопрос. И какой это был ответ! Впервые идею предложили два русских физика, Геннадий Чибисов и Вячеслав Муханов. Когда я впервые услышал о ней, я счёл её абсурдной. Сейчас я считаю её главным кандидатом на роль самого радикального и красивого синтеза идей в истории науки.

Если кратко, то первичные космические флуктуации появились благодаря квантовой механике — теории микромира (гл. 7, 8). Но ещё в колледже я узнал, что квантовые эффекты существенны лишь для очень малых объектов вроде атомов. Так какое отношение они могут иметь к самым крупным объектам из тех, которые мы изучаем, — к галактикам? Один из самых красивых аспектов теории инфляции состоит в том, что она связывает самые малые и самые большие масштабы: на ранних стадиях инфляции область пространства, которая ныне содержит Млечный Путь, была гораздо меньше атома, так что квантовые эффекты могли иметь существенное значение. И это было так: принцип неопределённости Гейзенберга в квантовой механике (гл. 7) не позволяет никакой субстанции, в том числе инфлирующей материи, быть совершенно однородной. Если вы попытаетесь сделать её однородной, квантовые эффекты вынудят её волноваться, и однородность будет нарушена. Когда инфляция растягивает субатомную область до размеров всей наблюдаемой Вселенной, флуктуации плотности, которые впечатала в неё квантовая механика, также растягиваются до размеров галактик и более. Обо всём остальном позаботилась гравитационная неустойчивость, усилившая флуктуации с ничтожного уровня 0,002 %, обеспеченного квантовыми флуктуациями, до величественных галактик, их скоплений и сверхскоплений, украшающих теперь ночное небо.

И главное здесь то, что всё можно точно подсчитать. Кривая спектра мощности (рис. 4.2) — это теоретическое предсказание одной из простейших инфляционных моделей, и я нахожу замечательным её согласие со всеми наблюдениями. Инфляционные модели также предсказывают три измеренных космологических параметра, приведённых в табл. 4.1. Я уже упоминал одно из этих предсказаний: Ω = 1. Два других касаются характерных особенностей кластеризации, которыми мы займёмся в последней главе. В простейших инфляционных моделях амплитуда первичных флуктуаций (обозначена в таблице буквой Q) зависит от того, насколько быстро инфлирующая область удваивается в размерах, и при времени удвоения около 10–38 секунды предсказание совпадает с наблюдаемым значением Q ≈ 0,002 %.

Теория инфляции также даёт интересные предсказания для параметра «наклона» первичной кластеризации (в таблице он обозначен n). Взгляните на зазубренную кривую на рис. 5.6, которую математики называют самоподобной, фрактальной или масштабно-инвариантной. Все эти термины, по сути, означают, что если вы замените изображение увеличенным фрагментом его же, то не найдёте различий. Поскольку повторять этот трюк можно сколько угодно, ясно, что и триллионная часть кривой должна выглядеть так же, как вся она в целом. Интересно, что, согласно предсказаниям теории инфляции, новорождённая Вселенная тоже почти наверняка была масштабно инвариантной в том смысле, что нельзя было обнаружить различий между случайно выбранным кубическим сантиметром и значительно увеличившимся его фрагментом. Почему? В эпоху инфляции увеличение Вселенной было, по сути, эквивалентом ожидания, пока всё вокруг ещё раз удвоится в размерах. Так что, совершив путешествие во времени в эпоху инфляции, вы увидели бы, что статистические свойства флуктуаций были масштабно инвариантными — то есть не изменялись во времени. Теория инфляции предсказывает, что это происходит по простой причине: локальные физические условия, порождаемые квантовыми флуктуациями, также мало изменяются во времени, поскольку инфлирующая субстанция не испытывает существенных изменений плотности или других параметров.

Параметр наклона n в табл. 4.1 характеризует близость инфляционной Вселенной к масштабной инвариантности. Он сопоставляет уровень кластеризации на больших и малых масштабах и определён так, что значение n = 1 соответствует идеальной масштабной инвариантности (одинаковая кластеризация во всех масштабах), n < 1 означает, что кластеризация сильнее в больших масштабах, а n > 1 — в малых масштабах. Муханов и другие первопроходцы теории инфляции предсказывали, что значение n должно быть очень близко к 1. Когда я с другом Тедом просиживал ночи с компьютером (гл. 4), мы занимались как раз получением самой точной в то время оценки параметра n. Наш результат был n = 1,15 ± 0,29, что подтверждало ещё одно предсказание теории инфляции.

Однако ситуация с параметром n оказалась ещё интереснее. Поскольку инфляция в конце концов прекратилась, инфлирующая субстанция должна была постепенно, пусть и очень медленно, разрежаться в ходе инфляции — в противном случае ничто не менялось бы, и инфляция продолжалась бы вечно. В простейших инфляционных моделях убывание плотности приводит к тому, что амплитуда порождаемых флуктуаций также убывает. Это значит, что флуктуации, возникающие позднее, должны иметь меньшую амплитуду. Но позднее возникшие флуктуации к моменту окончания инфляции не успевают сильно растянуться, и, значит, сейчас флуктуации в меньших масштабах должны быть меньшими. Эти рассуждения приводят к предсказанию n < 1. Для более конкретного прогноза необходима модель, описывающая, из чего состоит инфлирующая субстанция. Простейшая такая модель, впервые предложенная Андреем Линде и называемая на профессиональном языке «скалярным полем с квадратичным потенциалом» (это, по сути, гипотетический родственник магнитного поля), даёт предсказание n = 0,96. Теперь снова заглянем в табл. 4.1. Как видите, современные измерения n стали в 60 раз точнее, чем во времена «волшебной горошины». Согласно последним данным, n = 0,96 ± 0,005, что исключительно близко к предсказанному значению.

Рис. 5.6. Эта похожая на снежинку фигура, называемая кривой Коха в честь шведского математика Хельге фон Коха, обладает замечательным свойством: она совпадает с увеличенной частью самой себя. Теория инфляции предсказывает, что новорождённая Вселенная была подобным образом неотличима от увеличенного фрагмента самой себя, по крайней мере в приближённом статистическом смысле.

С годами эти измерения будут уточняться. У нас также появилась возможность измерить несколько дополнительных параметров, для которых теория инфляции давала предсказания. Например, кроме интенсивности и цвета, свет обладает свойством поляризации. Пчёлы видят её и используют для навигации. Хотя человеческий глаз её не замечает, тёмные очки пропускают свет, лишь если он определённым образом поляризован. Многие популярные модели инфляции предсказывают специфический характер поляризации излучения космического микроволнового фона. Квантовые флуктуации в ходе инфляции порождают гравитационные волны, вибрации самой ткани пространства-времени, а они, в свою очередь, характерным образом искажают рисунок космического микроволнового излучения. Если эти искажения удастся зарегистрировать в экспериментах, то, думаю, их признают неопровержимым доказательством того, что инфляция имела место.

Итак, пока нельзя утверждать, что Большой взрыв был вызван инфляцией. Однако, я считаю, надо признать: теория инфляции оказалась успешнее, чем Алан Гут мог себе представить, придумывая её. Она согласуется с точными измерениями и является теорией нашего космического происхождения, которая наиболее серьёзно воспринимается космологическим сообществом.

 

Вечная инфляция

Пока наш разговор о теории инфляции не очень отличается от обсуждения жизненного цикла любой успешной физической идеи: новая теория разрешает старые проблемы. Затем следуют предсказания. Экспериментальное подтверждение. Широкое признание. Переписанные учебники. Складывается впечатление, что теорию инфляции пора проводить на заслуженный отдых: «Благодарим тебя, теория инфляции, за самоотверженную службу по увязыванию некоторых неясностей в отношении истоков Вселенной. Теперь настало время уйти на пенсию в специально выделенные разделы учебников, а нас оставить в покое — работать над иными, новейшими, более волнующими нас проблемами, которые пока не разрешены». Однако, подобно упорному стареющему профессору, инфляция отказывается уходить в отставку! Помимо того, что она продолжает плодоносить в своей области космологии ранней Вселенной, она преподносит сюрпризы, для некоторых моих коллег нежелательные.

Неостановимая

Первым потрясением стало то, что инфляция в общем случае не желает останавливаться, вечно порождая пространство. В рамках конкретной модели это обнаружили Андрей Линде и Пол Стейнхардт. Элегантное доказательство существования этого эффекта дал Алекс Виленкин, профессор из Университета им. Тафтса — тот самый, который пригласил меня сделать доклад, усыпивший Алана Гута. В студенческие годы на родной Украине он, несмотря на то, что был предупреждён о «последствиях», отказался по требованию КГБ свидетельствовать против однокурсника, который критически высказывался о властях. Хотя Алекса приняли в аспирантуру физического факультета МГУ, престижную для советского физика, он так и не получил разрешения переехать в Москву. Не было у него и возможности получить какую-либо нормальную работу. Год он прослужил ночным сторожем в зоопарке, а после ему удалось покинуть страну. Всякий раз, когда меня раздражают бюрократы, я вспоминаю историю Алекса, и она превращает моё раздражение в благодарное понимание того, как незначительны мои проблемы. Возможно, его непоколебимость объясняет, почему он продолжает открывать вещи, которые отвергают другие великие учёные.

Алекс обнаружил, что вопрос о том, где и когда инфляция завершается, очень тонкий и интересный. Мы знаем, что инфляция заканчивается по крайней мере в некоторых местах, поскольку 14 млрд лет назад она закончилась в той части пространства, где мы сейчас обитаем. Это означает, что некий физический процесс может избавить от инфлирующей субстанции, заставив её распасться на обычную неинфлирующую материю, которая продолжает расширяться, кластеризуется и, в конце концов, образует галактики, звёзды и планеты. Известно, что радиоактивность делает вещества неустойчивыми, заставляя их распадаться на другие вещества, так что можно предположить, что инфлирующей субстанции присуща подобная нестабильность. Это означает, что есть некий временной масштаб, период распада, в течение которого распадётся половина инфлирующей субстанции. Как показано на рис. 5.7, в этом случае возникает интересное противостояние между удвоением, связанным с инфляцией, и уполовиниванием, вызванным распадом. Чтобы инфляция работала, побеждать должно первое, так что общий инфлирующий объём должен со временем расти. А значит, время удвоения инфлирующей субстанции должно быть меньше периода её полураспада. На рисунке показан пример, где инфляция утраивает размер пространства за то время, пока распадается треть инфлирующей субстанции, и так раз за разом. Как видите, общий объём пространства, в котором идёт инфляция, продолжает удваиваться без ограничений. Но параллельно за счёт распада инфлирующей субстанции продолжают постоянно возникать, также удваиваясь в объёме, неинфлирующие области пространства, где инфляция прекратилась и могут образовываться галактики.

Неостановимость инфляции оказалась гораздо более общим свойством, чем первоначально предполагалось. Андрей Линде, которому принадлежит авторство термина «вечная инфляция», обнаружил, что даже простейшие предложенные им модели инфляции вечно инфлируют за счёт элегантного механизма, связанного с квантовыми флуктуациями, породившими наши первичные космологические флуктуации.

Рис. 5.7. Схематическая иллюстрация вечной инфляции. На каждый объём инфлирующей субстанции (кубик), который распадается, превращаясь в неинфлирующую вселенную с Большим взрывом, подобную нашей, приходится два других инфлирующих объёма, которые не распадаются. Так что общий инфлирующий объём удваивается, а не утраивается. Из-за этого никогда не прекращающегося процесса число вселенных с Большим взрывом на каждом шагу удваивается: 1, 2, 4 и т. д. Поэтому то, что мы называем нашим Большим взрывом (одна из вспышек), — это не начало всего, а конец инфляции в нашей части пространства.

Учёные, проанализировав очень широкий класс инфляционных моделей, выяснили, что почти все они приводят к вечной инфляции. Хотя большая доля этих расчётов сложна, рис. 5.7 отражает суть того, почему инфляция в общем случае вечна: прежде всего, чтобы инфляция работала, инфлирующая субстанция должна расширяться быстрее, чем распадаться, и это автоматически делает общее количество инфлирующей материи растущим без ограничений.

Открытие вечной инфляции радикально изменило наше понимание того, что является наибольшим масштабом в космосе. Теперь я ничего не могу поделать с тем, что наша прежняя история начинает звучать как сказка: «Давным-давно была инфляция. От инфляции случился Большой взрыв. Большой взрыв породил галактики». Рис. 5.7 поясняет, почему эта история наивна: опять повторяется характерная человеческая ошибка — считать всё, известное нам сегодня, всем существующим. Мы видим, что даже наш Большой взрыв — это лишь малая часть некоей величественной древовидной структуры, которая продолжает расти. Иными словами, то, что мы называем нашим Большим взрывом, не было подлинным началом, а скорее было концом — окончанием инфляции в некоторой части пространства.

Как образовать бесконечное пространство с конечным объёмом

Ребёнок в гл. 2 интересовался, тянется ли космос вечно. Вечная инфляция даёт недвусмысленный ответ: пространство не просто огромно — оно бесконечно. И с бесконечным числом галактик, звёзд и планет.

Рассмотрим данное представление. Хотя схематический характер рис. 5.7 не позволяет показать это ясно, мы всё ещё говорим об одном связном пространстве. Прямо сейчас (мы вернёмся к смыслу слов «прямо сейчас») некоторые части этого пространства очень быстро расширяются, поскольку содержат инфлирующую материю, другие расширяются гораздо медленнее, поскольку инфляция в них прекратилась, а третьи, например область внутри нашей Галактики, не расширяются вовсе. Так закончилась ли инфляция? Исследования инфляции, о которых я упоминал, показывают, что и да, и нет. Она закончилась и не закончилась в следующем смысле:

1. Почти во всех частях пространства инфляция в конце концов завершится Большим взрывом, подобным нашему.

2. Тем не менее останутся некоторые точки пространства, где инфляция не завершится никогда.

3. Общий инфлирующий объём вечно возрастает, удваиваясь через постоянные интервалы времени.

4. Общий постинфляционный объём, содержащий галактики, также вечно возрастает, удваиваясь через постоянные интервалы времени.

Но означает ли это, что пространство действительно бесконечно уже сейчас? Это приводит нас к ещё одному вопросу из гл. 2: как бесконечное пространство может быть создано за конечное время? Это кажется невозможным. Но инфляция подобна магическому шоу, где кажущиеся невозможными вещи случаются за счёт творческого использования законов физики. В действительности инфляция может сделать даже нечто лучшее, и я думаю, это лучший фокус из всех: она может породить бесконечный объём внутри конечного объёма! Она может начать с чего-либо меньшего, чем атом, и породить внутри него бесконечное пространство, содержащее бесконечно много галактик, не влияя при этом на окружающее пространство.

На рис. 5.8 показано, как инфляция проделывает этот фокус. Изображён срез пространства и времени, на котором правый и левый края соответствуют точкам, где инфляция никогда не закончится, а нижний край соответствует времени, когда вся область между этими двумя точками инфлирует. Нарисовать расширяющееся трёхмерное пространство трудновато, так что на рисунке я буду игнорировать расширение и два из трёх измерений пространства (ни то, ни другое осложняющее обстоятельство не влияет на суть). Рано или поздно инфляция завершится везде, за исключением левого и правого краёв. Искривлённая граница показывает точное время её завершения в различных местах. Как только инфляция завершается в конкретной области, там начинает разворачиваться описанная в двух предыдущих главах традиционная история Большого взрыва с горячим космическим «термоядерным реактором», который в итоге остывает и даёт начало атомам, галактикам и, возможно, наблюдателям вроде нас.

Рис. 5.8. Инфляция может порождать бесконечные вселенные внутри того, что со стороны выглядит как объём субатомного размера. Наблюдатель внутри увидит, что а одновременно с б, а в — с г. Бесконечная U-образная поверхность, где заканчивается инфляция, — для него момент нуль, а бесконечная U-образная поверхность, где формируются атомы, — момент 400 тыс. лет, и т. д. Для простоты здесь проигнорировано расширение пространства, а также два из его трёх измерений.

А вот и суть фокуса: согласно общей теории относительности, наблюдатель, живущий в одной из галактик, будет воспринимать пространство и время иначе, нежели я определил их с помощью осей координат на своём рисунке. Наше физическое пространство не содержит встроенных сантиметровых отметок, которые есть на линейках. Нет у Вселенной и заранее установленных часов. Вместо этого любой наблюдатель может определить свои собственные мерные стержни и часы, которые, в свою очередь, определяют его представления о пространстве и времени. Эта идея восходит к одной из догадок Эйнштейна: наблюдатели могут воспринимать пространство и время по-разному. Например, относительной может быть одновременность.

Представьте, что вы отправляете электронное письмо подруге-астронавту на Марс: «Привет! Как у тебя дела?» Через десять минут она получает ваше сообщение, переданное ей со скоростью света посредством радиоволн. Пока вы ждёте, приходит письмо из Нигерии с предложением задёшево купить «Ролекс». Ещё через десять минут вы получаете ответ с Марса: «Всё хорошо, но тоскую по Земле».

Теперь вопрос: что произошло раньше — вы получили спам или ваша подруга-астронавт отправила вам сообщение? Поразительно, но, как догадался Эйнштейн, на этот простой вопрос нет простого ответа. Оказывается, правильный ответ зависит от скорости того, кто на него отвечает! Например, если я, пролетая мимо Земли к Марсу на космическом корабле, перехватываю эти три сообщения и анализирую ситуацию, то по моим бортовым часам ваша подруга на Марсе отправила сообщение раньше, чем вы получили спам. Если же я лечу в обратную сторону, то, по-моему, спам вы получили раньше. Вы сбиты с толку? То же самое было с большинством коллег Эйнштейна, когда он представлял свою теорию относительности, однако бесчисленные эксперименты с тех пор подтвердили, что время устроено именно так. Единственный случай, когда мы можем твёрдо сказать, что событие на Марсе произошло раньше, чем событие на Земле, это когда сообщение с Марса, отправленное после марсианского события, приходит на Землю раньше земного события.

Теперь применим всё это к ситуации на рис. 5.8. Наблюдателю вне данной области может показаться разумным определить пространство как горизонтальное направление, а время как вертикальное (см. рисунок), так что четыре события, обведённых кружками, произошли в следующем порядке: a, б, в, г. Более того, событие б определённо случилось раньше г, поскольку можно представить себе отправку сообщения от б к г. Аналогично событие а определённо произошло прежде в. Но можно ли быть вполне уверенным, что а случилось раньше б, притом что два эти события произошли слишком далеко друг от друга, чтобы свет успел дойти от одного до другого? Ответ Эйнштейна — нет. Для наблюдателя, живущего в одной из этих галактик, разумнее принять, что инфляция закончилась в определённый зафиксированный момент времени, поскольку конец инфляции соответствует его Большому взрыву, так что для него события а и б одновременны. Как видите, поверхность «конца инфляции» не горизонтальна. Она бесконечна, поскольку изгибается наподобие буквы U у левого и правого краёв рисунка, где, как мы договорились, инфляция никогда не заканчивается. Это значит, что с точки зрения данного наблюдателя его Большой взрыв произошёл в один момент в истинно бесконечном пространстве! Откуда эта бесконечность? Она проникла через бесконечность доступного будущего времени, поскольку пространственное измерение данного наблюдателя всё сильнее загибается вверх.

Аналогичным образом наблюдатель придёт к выводу, что его пространство бесконечно и в последующие времена. Например, если он поставит эксперимент по изучению космического микроволнового фона, чтобы получить «детские фотографии» своей 400-тысячелетней вселенной, плазменная поверхность, изображение которой он получит, будет соответствовать поверхности на рисунке, где протоны и электроны объединяются в прозрачные (невидимые) атомы водорода. Поскольку, как вы видите, это также бесконечная U-образная поверхность, наблюдатель сочтёт свою 400-тысячелетнюю вселенную бесконечной. Он также будет считать события в и г одновременными, так как они лежат на U-образной поверхности, где формируются первые галактики, и т. д. Поскольку вложить друг в друга можно бесконечное число U-образных кривых, наблюдатель будет считать, что его вселенная бесконечна и в пространстве, и во времени, хотя для внешнего наблюдателя вся она вписывается в исходную область субатомного размера. Пространство расширяется внутрь, не требуя увеличения места, которое оно занимает при наблюдении извне: Эйнштейн позволил пространству растягиваться и порождать дополнительный объём из ничего. На практике эта бесконечная вселенная может выглядеть извне как чёрная дыра субатомного размера. Надо сказать, что Алан Гут и его коллеги изучили спорную возможность проделать этот фокус, получив в лаборатории нечто, выглядящее снаружи как маленькая чёрная дыра, а изнутри как бесконечная вселенная. Вопрос, действительно ли такое возможно, пока открыт. Если желаете стать демиургом, рекомендую инструкции Брайана Грина для «амбициозных творцов вселенных» из его книги «Скрытая реальность».

Выше мы взялись за инфляцию из-за неудовлетворительных ответов, которые фридмановская теория Большого взрыва даёт на фундаментальные вопросы. Поэтому закончим ответами, которые даёт теория инфляции:

– Что стало причиной нашего Большого взрыва?

— Многократное удвоение в размерах взрывчатой субатомной капли инфлирующей материи.

– Произошёл ли наш Большой взрыв в одной точке?

Почти: он начался в области пространства размером много меньше атома.

– Где именно в пространстве произошёл наш Большой взрыв?

— В указанной крошечной области. Инфляция, однако, растянула её примерно до размеров грейпфрута, растущего столь быстро, что последующее расширение сделало его больше всего пространства, которое мы наблюдаем сейчас.

– Как бесконечное пространство может быть порождено за конечное время?

— Инфляция порождает бесконечное число галактик и продолжается вечно. Согласно общей теории относительности, наблюдатель в одной из галактик будет видеть пространство и время по-своему, воспринимая пространство как имеющее бесконечные размеры уже в момент окончания инфляции.

Подведём итоги. Теория инфляции радикально трансформировала представления о нашем космическом происхождении, заменив неуклюжие ответы, которые давала фридмановская модель Большого взрыва, простым механизмом, порождающим наш Большой взрыв почти из ничего. Теория инфляции дала нам много больше, чем мы надеялись: пространство, которое не просто огромно, а действительно бесконечно — в нём бесконечное число галактик, звёзд и планет. И это лишь верхушка айсберга.

 

Резюме

• Фридмановская модель испытывает серьёзные трудности с объяснением самых ранних стадий Большого взрыва…

• …а теория инфляции разрешает их все и объясняет механизм возникновения Большого взрыва.

• Инфляция объясняет, почему пространство плоское (это подтверждено наблюдениями с погрешностью около 1 %),

• и почему отдалённые области нашей Вселенной выглядят в среднем одинаково во всех направлениях (с флуктуациями от места к месту величиной всего 0,002 %).

• Теория инфляция объясняет происхождение этих флуктуаций квантовыми флуктуациями, которые были сначала растянуты инфляцией от микроскопических до макроскопических масштабов, а затем усилены гравитацией, благодаря чему образовались современные галактики и крупномасштабная структура Вселенной.

• Теория инфляция объясняет даже космическое ускорение (отмечено Нобелевской премией 2011 года) — как перезапуск инфляции в рапиде с удвоением размеров Вселенной не за долю секунды, а за 8 млрд лет.

• Теория инфляции предполагает, что наша Вселенная росла во многом подобно ребёнку: за фазой ускоренного роста, когда размеры удваивались с фиксированными интервалами во времени, последовала фаза замедления роста.

• То, что мы называем Большим взрывом, было не началом, а скорее концом — концом инфляции в нашей области пространства. В других областях инфляция обычно продолжается вечно.

• В общем случае теория инфляции предсказывает, что наше пространство не просто огромно, а бесконечно и заполнено бесконечным числом галактик, звёзд и планет, начальные условия для которых сформированы случайными квантовыми флуктуациями.

 

Глава 6. Добро пожаловать в мультиверс

 

Готовы ли вы к спорным темам? Наука, с которой мы до сих пор знакомились в этой книге, сегодня в основном не вызывает разногласий. Но теперь мы вступаем в дискуссионную область: многие мои коллеги-физики будут горячо агитировать «за» или «против» идей, о которых сейчас пойдёт речь.

 

Мультиверс I уровня

Существует ли точная ваша копия, читающая мою книгу и решившая отложить её, не закончив это предложение? Человек, живущий на планете Земля с туманными горами, плодородными полями и растущими городами, — планете, находящейся в Солнечной системе вместе с другими 7 планетами? Жизнь этого человека была идентична вашей вплоть до настоящего момента, когда, решив продолжить чтение, вы породили расхождение между своими жизнями.

Вероятно, вы сочтёте идею странной, и, должен признаться, у меня была такая же инстинктивная реакция. И всё же нам, по-видимому, придётся с ней смириться, поскольку простейшая и наиболее популярная сейчас космологическая модель предсказывает, что такой человек действительно существует в галактике на расстоянии около 101029 м. Для этого утверждения даже не требуется спекулятивных допущений современной физики — достаточно того, что пространство бесконечно и более или менее однородно заполнено материей. Ваш двойник — это просто предсказание теории вечной инфляции, которая согласуется со всеми современными наблюдательными данными и служит основой большинства расчётов и моделей, представляемых на космологических конференциях.

Что такое Вселенная?

Прежде чем говорить о других вселенных, важно пояснить, что мы подразумеваем под собственной. Вот терминология, которой я буду пользоваться:

Физическая реальность — это всё, что существует.

Наша Вселенная — это часть физической реальности, которую мы в принципе можем наблюдать.

Если пренебречь квантовыми осложнениями, которыми мы займёмся в гл. 7, следующее определение Вселенной эквивалентно приведённому.

Наша Вселенная — это сферическая область пространства, в которой свету хватит времени, чтобы дойти до нас за 14 млрд лет, прошедших с момента нашего Большого взрыва.

В предыдущей главе мы назвали эту область наблюдаемой Вселенной. Более наукообразный синоним, популярный у астрономов, — объём внутри космологического горизонта. Астрономы любят говорить и о нашем хаббловском объёме, размер которого примерно таков же и определяется как область, внутри которой галактики удаляются медленнее, чем свет.

Имея в виду, что могут существовать другие вселенные, я считаю излишне высокомерным называть нашу собственную — этой Вселенной, так что я постараюсь вовсе избегать данного термина. Но это, конечно, дело вкуса, например, ньюйоркцы называют свой город просто «Городом», а американцы и канадцы говорят о своём бейсбольном чемпионате как о «Мировой серии».

Хотя эти определения могут показаться разумными, имейте в виду, что некоторые авторы применяют эти термины иначе. Кое-кто использует выражение «эта Вселенная» (которого я избегаю) для обозначения всего, что существует, и в таком случае по определению не может быть никаких параллельных вселенных.

Теперь, когда мы дали определение нашей Вселенной, хорошо бы узнать, насколько она велика. Вселенная — это сферическая область с центром на планете Земля. Материя у края Вселенной, от которой свет едва успел дойти до нас за 14 млрд лет, находится сейчас на расстоянии 5 × 1026 м. Насколько сегодня известно, Вселенная содержит около 1011 галактик, 1023 звёзд, 1080 протонов и 1089 фотонов.

Это, конечно, огромное количество материи, но может ли её в дальнем космосе быть ещё больше? Теория инфляции предсказывает, что так и есть. Вселенная вашего двойника, если она существует, — сфера такого же размера, центр которой где-то очень далеко от нас. Мы не можем её увидеть и не можем ни с чем в ней взаимодействовать, поскольку ни свет, ни какая-либо другая информация из неё ещё не успели до нас дойти. Это простейший пример параллельных вселенных. Я предпочитаю называть эту разновидность — отдалённую область пространства размером с нашу Вселенную — параллельной вселенной I уровня. Все параллельные вселенные I уровня образуют мультиверс I уровня. В табл. 6.1 даны определения всех разновидностей мультиверсов, о которых говорится в книге, и поясняется, как они взаимосвязаны.

Само наше определение Вселенной будто подразумевает, что понятие наблюдаемой Вселенной относится к небольшой части огромного мультиверса, который навсегда останется в ведении метафизики. Эпистемологическая граница между физикой и метафизикой определяется исходя из возможности экспериментальной проверки теории, а не из того, насколько странной теория кажется и ссылается ли она на ненаблюдаемые сущности. Экспериментальные прорывы, ставшие возможными благодаря развитию технологий, расширяют горизонты физики, которые охватывают всё более абстрактные (и в момент их появления контринтуитивные) представления, например: сферическая вращающаяся Земля, электромагнитное поле, замедление времени на высоких скоростях, квантовые суперпозиции, искривлённое пространство и чёрные дыры. Становится всё яснее, что теории, основанные на современной физике, в действительности могут быть предсказательными, эмпирически проверяемыми и фальсифицируемыми, несмотря на то, что они включают в себя понятие мультиверса. В оставшейся части этой книги мы будем исследовать целых четыре уровня параллельных вселенных, и лично для меня самый интересный вопрос состоит не в том, существует ли мультиверс (поскольку существование его I уровня не вызывает сомнений), а в том, сколько внутри него уровней.

На что похожи параллельные вселенные I уровня?

Допустим, инфляция действительно имела место и сделала наше пространство бесконечным. В таком случае существует бесконечное число параллельных вселенных I уровня. Более того, как показано на рис. 5.8, бесконечное пространство в момент его образования было заполнено материей, которая, как и в нашей Вселенной, постепенно образовывала атомы, галактики, звёзды и планеты. Это значит, что большинство параллельных вселенных I уровня имеет в общих чертах такую же космологическую историю, как и наша Вселенная. Однако большинство их отличается от нашей Вселенной в деталях, поскольку их начальные состояния немного различались. Причины этого, как я говорил в предыдущей главе, в том, что первичные флуктуации, ответственные за появление всех космических структур, были порождены квантовыми флуктуациями, которые во всех отношениях совершенно случайны.

Физическое описание нашего мира традиционно делится на две части: с чего всё началось и как всё изменяется. Иными словами, мы имеем начальные условия и законы физики, указывающие, как начальные условия меняются с течением времени. Наблюдатели в параллельных вселенных I уровня открывают точно такие же законы физики, как и мы, однако с иными начальными условиями. Так, частицы начинают движение из немного иных мест и двигаются со слегка отличными скоростями. Именно небольшие различия определяют, что в конце концов случится в соответствующих вселенных: какие области пространства превратятся в галактики, а какие станут межгалактическими пустотами, у каких звёзд будут планеты, на каких из них появятся динозавры и на каких они погибнут из-за столкновения с астероидом, и т. д. Иначе говоря, вызванные квантовыми явлениями различия между параллельными вселенными, со временем усиливаясь, порождают совершенно разные истории. Короче, студенты в параллельных вселенных I уровня будут изучать одни и те же законы на занятиях по физике, но разные факты на занятиях по истории.

Но существуют ли вообще эти студенты? Кажется совершенно невероятным, чтобы ваша жизнь была бы точно повторена, поскольку для этого требуется очень много совпадений: Земля должна образоваться, на ней должна развиться жизнь, должны вымереть динозавры, ваши родители должны встретиться, вам должно прийти в голову прочесть эту книгу и т. д. Но вероятность того, что всё это случится, определённо не равна нулю, поскольку именно это фактически случилось здесь, в нашей Вселенной. Если бросить игральные кости достаточное число раз, гарантированно произойдут даже самые маловероятные вещи. При бесконечном числе параллельных вселенных I уровня, порождённых инфляцией, квантовые флуктуации, по сути, и бросают кости бесконечное число раз, со стопроцентной уверенностью обещая, что ваша жизнь повторится. На самом деле таких повторений бесконечно много, поскольку и ничтожная доля бесконечного числа остаётся бесконечным числом.

Но бесконечное пространство содержит не только ваши точные копии. В нём гораздо больше людей, которые очень похожи на вас. Так что если бы вам удалось встретиться с человеком, чей облик идеально похож на ваш, вполне вероятно, что он говорил бы на языке, который вы не смогли бы понять, и прожил бы жизнь, совершенно не похожую на вашу. Но среди всех ваших бесконечных подобий там, на других планетах, есть и некто, разговаривающий по-английски, живущий на планете, идентичной Земле, и с жизнью, неотличимой от вашей. Этот человек чувствует то же, что и вы. И всё же могут быть крайне незначительные отличия в том, как движутся частицы в мозге вашего двойника — отличия слишком малые, чтобы быть в данный момент ощутимыми, но достаточные, чтобы в следующую секунду заставить его отложить книгу, тогда как вы продолжите чтение, и с этого момента ваши жизни начнут расходиться.

Возникает интересный философский вопрос, которым мы займёмся в гл. 11. Если действительно существует много ваших копий с одинаковым прошлым и воспоминаниями, это разрушает традиционное понятие детерминизма: вы не сможете предсказать собственное будущее, даже если обладаете полным знанием всей прошлой и будущей истории космоса! Дело в том, что нет способа определить, какой из копий являетесь вы (все они чувствуют себя вами). И всё же с некоторого момента их жизни обычно расходятся, поэтому большее, что вы можете сделать — это предсказать вероятности событий, которые могут с вами случиться.

Короче говоря, в бесконечном пространстве, порождённом инфляцией, случается всё, что может случиться согласно законам физики. И случается всё бесконечное число раз. Это значит, что существуют параллельные вселенные, где вы никогда не получали штраф за парковку, где вы носите другое имя, где вы выиграли в лотерею миллион, где Германия победила во Второй мировой войне, где по Земле продолжают бродить динозавры, где, наконец, Земля вовсе не образовалась. Хотя каждый из этих вариантов имел место в бесконечном числе вселенных, некоторые случились в большей их доле, и осмысление этого факта приводит к интереснейшим выводам. Мы поговорим об этом в гл. 11.

Параллельные вселенные ненаучны?

До сих пор я рассказывал здесь в основном о вещах, которые, надеюсь, вы находили вполне разумными. Конечно, кое-какие научные открытия, которые я описывал, в своё время считались спорными, но сегодня они общепризнанны. Тем не менее в этой главе, вероятно, всё кажется слегка ненормальным. А рассуждения о наших копиях могут показаться просто безумием. Так что прежде чем лезть дальше в эту кроличью нору, следует сделать паузу. Прежде всего, действительно ли научно говорить о таких вещах, которые мы не можем даже наблюдать, или я пересёк черту и занялся чистым философствованием?

Философ Карл Поппер популяризировал максиму, ныне широко признанную: «Если нечто не фальсифицируемо, то оно ненаучно». Физика — это постоянная проверка математических теорий с помощью наблюдений: если теория в принципе не может быть проверена, то чисто логически её невозможно фальсифицировать, а значит, она ненаучна. Отсюда вытекает, что надежда оказаться научными есть лишь у теорий. Так мы приходим к очень важному тезису:

Параллельные вселенные — это не теория, а предсказание некоторых теорий.

Таких, как теория инфляции. Параллельные вселенные (если они существуют) — это объекты, а объекты не бывают научными, так что параллельные вселенные могут быть научны не более, чем галлюцинации.

Поэтому нам следует переформулировать свои сомнения в терминах теорий. Это приводит к ключевому вопросу: являются ли теории, предсказывающие существование ненаблюдаемых сущностей, нефальсифицируемыми и поэтому ненаучными?

Вот здесь мне становится действительно интересно, поскольку на данный вопрос есть чёткий ответ: чтобы теория была фальсифицируемой, не обязательно иметь возможность наблюдать и проверять все её предсказания, достаточно хотя бы одного. Рассмотрим следующие аналогии:

Поскольку общая теория относительности (ОТО) Эйнштейна успешно предсказала многие наблюдаемые явления (например характер движения Меркурия вокруг Солнца, искривление света под влиянием гравитации и гравитационное замедление часов), мы считаем её успешной научной теорией и всерьёз принимаем такие её предсказания, которые касаются вещей, коих мы наблюдать не можем, например пространства, продолжающегося внутри чёрной дыры под её горизонтом событий, а также того, что (в противоположность ранним недоразумениям) на самом горизонте ничего необычного не происходит. Аналогично, успешные предсказания теории инфляции, описанные в двух предыдущих главах, делают её научной теорией, а значит можно воспринимать всерьёз и другие её предсказания: проверяемые (например относительно того, что будет измерено в будущих экспериментах по исследованию космического микроволнового фона) и кажущиеся непроверяемыми, вроде существования параллельных вселенных. Последние три примера в таблице выше относятся к теориям, которые я разберу ниже, и предсказывают дополнительные типы параллельных вселенных.

Ещё одна важная особенность физических теорий состоит в том, что если вам нравится одна из них, придётся «покупать» её в полной комплектации. Нельзя сказать: «Мне нравится, как ОТО объясняет орбиту Меркурия, но я не люблю чёрные дыры, так что хочу обойтись без них». Вы не можете «купить» ОТО без чёрных дыр, в отличие от кофе без кофеина. ОТО — это жёсткая математическая конструкция, которая не допускает точных настроек; вам придётся либо принять все её предсказания, либо с нуля изобрести другую математическую теорию, которая согласуется со всеми успешными предсказаниями ОТО и одновременно предсказывает, что чёрных дыр не существует. Это оказывается чрезвычайно сложным делом, и до сих пор подобные попытки оканчивались ничем.

Так вот, и параллельные вселенные — не аксессуар к теории вечной инфляции. Они часть пакета, и если они вам не нравятся, придётся найти другую математическую теорию, которая решит проблему взрыва, проблему горизонта, проблему плоской геометрии, а также сгенерирует первичные космологические флуктуации, но при этом не будет предсказывать параллельных вселенных. Это оказалась крайне сложно. Вот почему всё больше моих коллег, часто нехотя, начинают всерьёз воспринимать параллельные вселенные.

Аргументы в пользу параллельных вселенных I уровня

Итак, мы усвоили важную мысль: не нужно чувствовать вину за разговоры о параллельных вселенных в этой книге, несмотря на то, что она задумана как научная. Однако теория не становится верной только оттого, что она научна, так что разберём доводы в пользу параллельных вселенных.

Ранее мы убедились, что мультиверс I уровня, включая ваших двойников, — это логическое следствие вечной инфляции. Мы также знаем, что теория инфляция — самая популярная сейчас в научном сообществе теория, описывающая раннюю Вселенную, и что инфляция обычно бывает вечной, а значит, порождает мультиверс I уровня. Иными словами, лучшим аргументом в пользу мультиверса I уровня являются свидетельства в пользу инфляции. Доказывает ли это существование ваших двойников? Конечно, нет. На данный момент мы не можем быть совершенно уверены, что инфляция вечна, или даже что она вообще имела место. К счастью, изучение инфляции сейчас очень привлекательно и в теоретическом, и в экспериментальном отношении, так что в ближайшие годы мы скорее всего получим новые данные за или против теории вечной инфляции (и, следовательно, за или против мультиверса I уровня).

До сих пор мы вели разговор в контексте теории инфляции. Но действительно ли мультиверс I уровня неразрывно связан с инфляцией? Нет, это не так. Чтобы мультиверса I уровня вовсе не существовало, не должно существовать никакого пространства за пределами области, доступной нашим наблюдениям. У меня нет ни одного коллеги, который выступал бы за столь малый размер пространства. Придерживающийся такого мнения подобен страусу, спрятавшему голову в песок и утверждающему, что существует лишь то, что он видит. Все мы признаём существование вещей, которых не видим, но смогли бы увидеть, если бы мы переместились или подождали (например, находящихся за горизонтом кораблей). Объекты за нашим космологическим горизонтом имеют такой же статус, поскольку наблюдаемая Вселенная ежегодно увеличивается примерно на световой год, и до нас доходит свет из всё более далёких областей.

А что можно сказать об аргументах в пользу существования наших двойников? Если мы проанализируем приведённые выше рассуждения, то увидим: свойство мультиверса I уровня, выражающееся словами «Случается всё, что может случиться», вытекает из двух отдельных логических допущений, и оба они могут быть корректными и без инфляции:

1. Пространство и материя бесконечны. Первоначально существовало бесконечное пространство, заполненное горячей расширяющейся плазмой.

2. Случайные зародыши; первоначально имелся механизм, действующий так, что в любой области могли возникнуть любые возможные первичные флуктуации, кажущиеся случайными.

Проанализируем эти два предположения. Я думаю, второе из них весьма разумно, вне зависимости от инфляции. Согласно нашим наблюдениям, случайного вида первичные флуктуации существуют, так что мы знаем, что некий механизм их породил. Мы тщательно измерили их параметры, используя космический микроволновый фон и карты галактик, и обнаружили, что их статистические свойства соответствуют тому, что в теории вероятности называют гауссовым случайным полем, и это удовлетворяет предположению № 2. Более того, если инфляции не было и далёкие области пространства не могли бы взаимодействовать друг с другом (рис. 5.2), этот механизм гарантированно «бросал бы игральные кости» независимо в каждой области.

Что можно сказать о предполагаемой бесконечности пространства и материи? Прежде всего, бесконечное пространство, достаточно равномерно заполненное материей, было стандартным предположением общепринятой космологии задолго до изобретения инфляции, и сегодня это часть так называемой стандартной космологической модели. Тем не менее это предположение (и вытекающее из него существование мультиверса I уровня) считается спорным. Отчасти эти соображения привели в 1600 году на эшафот Джордано Бруно. Тем, кто публиковался относительно недавно (в их числе Джордж Эллис, Джефф Брандрит, Жауме Гаррига и Александр Виленкин), костёр уже не грозил, но всё же давайте критически подойдём к допущению бесконечности пространства и бесконечности материи.

Хотя простейшая модель пространства, предложенная ещё Евклидом, бесконечна (гл. 2), эйнштейновская общая теория относительности предлагает различные варианты того, как именно пространство может быть конечным. Если пространство свёрнуто как гиперсфера (рис. 2.7), общий объём такой гиперсферы должен быть по меньшей мере стократно больше той её части, которую мы можем наблюдать — нашей Вселенной. Иначе невозможно объяснить, почему видимая часть пространства такая плоская, что эксперименты по изучению космического микроволнового фона не обнаруживают никакой кривизны. Иными словами, даже если мы живём в конечном пространстве вроде гиперсферы, всё равно существуют по крайней мере сотни параллельных вселенных I уровня.

А что можно сказать относительно конечного пространства торообразного — как бублик — типа (гл. 2)? Геометрия такого пространства плоская, но, начав движение в определённом направлении, в конце концов возвращаешься в исходную точку. Похожее пространство смоделировано в компьютерных играх, в которых можно вылететь за границу игрового поля и сразу же появиться с другой его стороны, так что, если заглянуть достаточно далеко вперёд, вы увидите перед собой собственный затылок, а во всех направлениях — бесконечно много ваших регулярно повторяющихся копий, будто вы оказались в комнате с зеркальными стенами. Если у нашего пространства такие свойства, то какой минимальный размер оно может иметь? Ясно, что оно должно быть гораздо больше нашей Галактики, поскольку в телескопы мы не видим бесконечного числа копий Млечного Пути, выстроившихся аккуратными рядами. Но если бы размер составлял, скажем, 10 млрд световых лет, этот тест уже не сработал бы: мы не увидели бы ближайшей копии нашей Галактики, поскольку 10 млрд лет назад её не существовало. Есть ещё более точный тест: мы можем найти узнаваемый объект вроде яркой галактики в 5 млрд световых лет от нас, а затем поискать тот же объект в 5 млрд световых лет в противоположном направлении. Такие поиски проводились и не дали результата. Наиболее чувствительный тест из всех заключается в использовании самого далёкого объекта, который мы можем увидеть, — космического микроволнового фона, на котором можно искать паттерны в противоположных направлениях (рис. 6.1). Многие исследовательские группы, включая меня с Анжеликой, пытались это сделать, но ничего не нашли. Кроме того, если пространство имеет конечный объём, в нём разрешены лишь некоторые частоты возмущений, подобно тому, как воздух во флейте может вибрировать лишь на определённых частотах. Это вносит в спектр мощности микроволнового фона определённые искажения, которые Анжелика и другие учёные не обнаружили. Короче говоря, всё ещё сохраняется возможность того, что пространство конечно. Однако выбор моделей с конечным пространством сильно ограничен наблюдениями, и все пока допустимые пространства имеют объём, сопоставимый с объёмом Вселенной или превышающий его. Более того, при наличии именно сейчас лишь одной Вселенной возникает необъяснимое совпадение: почему именно сейчас? Ведь ранее, когда свет дошёл до нас только из небольшой части пространства, вселенных должно было иметься больше одной.

Рис. 6.1. Если в тороидальной вселенной вы пролетите через правую окружность (справа), то немедленно окажетесь в соответствующей точке на левой окружности: покинув точку а, вы попадёте в точку а, и т. д. В действительности две точки а являются одной физической точкой. Значит, паттерны космического микроволнового фона вдоль этих двух окружностей должны казаться нам похожими, поскольку в действительности они представляют собой одно и то же.

Но довольно о бесконечном пространстве. Что можно сказать о бесконечном количестве материи? До появления теории инфляции это допущение часто оправдывалось ссылками на принцип Коперника, гласящий, что люди не занимают особенного места в космосе: если галактики есть вокруг нас, значит, галактики должны быть везде.

Что говорят об этом данные последних наблюдений? Например, насколько однородно распределение материи в больших масштабах? В модели островной вселенной, где пространство бесконечно, а вся материя заключена в конечной его области, почти все члены мультиверса I уровня были бы мёртвыми, состоящими лишь из пустого пространства. В прошлом такие модели были популярны. Первоначально островом была Земля и небесные тела, видимые невооружённым глазом, а в начале XX века островом стала известная нам часть галактики Млечный Путь. Модель островной вселенной недавно была окончательно опровергнута наблюдениями. Трёхмерные карты распределения галактик, о которых шла речь в предыдущей главе, показали, что впечатляюще крупномасштабные структуры (группы, скопления, сверхскопления галактик, стены) на больших масштабах уступают место унылой однородности, и никаких целостных структур размером более примерно 1 млрд световых лет не существует.

Чем крупнее структуры мы наблюдаем, тем более однородным кажется заполнение Вселенной материей (рис. 4.6). Если отбросить конспирологические теории, согласно которым Вселенная специально создана так, чтобы нас дурачить, наблюдения недвусмысленно говорят нам: пространство, каким мы его знаем, тянется далеко за границы нашей Вселенной и наполнено галактиками, звёздами и планетами.

Где находятся параллельные вселенные I уровня?

Итак, если параллельные вселенные I уровня существуют, то это просто области пространства размером с нашу Вселенную, которые удалены настолько, что свет от них ещё не успел достичь нас. Но если мы в центре Вселенной, означает ли это, что мы занимаем некое особое место в пространстве? Представьте себе, что вы идёте по большому полю в сильном тумане, которой ограничивает видимость до 50 м, и чувствуете себя так, будто находитесь в центре туманной сферы, за пределами которой, как за краем нашей Вселенной, вам ничего не видно. Но это не означает, что вы в особенном месте, поскольку всякий, кто находится в это время на поле, ощутит себя в центре собственной туманной сферы. Точно так же любой наблюдатель, находящийся в любом месте пространства, обнаружит себя в центре своей вселенной. Кроме того, между соседними вселенными не существует физических границ, как нет особой 50-метровой границы в тумане — поле и туман имеют одинаковые свойства и там, и здесь. Более того, вселенные могут перекрываться, как и туманные сферы. Некто на поле в 30 м от вас может одновременно видеть и вас, и области, которые вам не видны. Так и обитатель галактики в 5 млрд световых лет от нас будет видеть в своей вселенной и Землю, и области космоса, лежащие вне нашей Вселенной.

Если вечная инфляция (или что-либо другое) породила бесконечное число таких параллельных вселенных, насколько далеко находится ближайшая точная копия нашей собственной? Согласно классической физике, Вселенная может быть устроена бесконечным числом способов, так что нет гарантии, что вы когда-либо найдёте идентичную. С классической точки зрения, существует бесконечно много вариантов даже для расстояния между двумя частицами, так что требуется бесконечно много десятичных цифр, чтобы его задать. Однако очевидно, что существует лишь конечное число возможных вселенных, которые человеческая цивилизация смогла бы когда-либо отличить друг от друга: в наших мозгах и компьютерах можно хранить лишь конечное количество информации. Более того, мы можем выполнять измерения лишь с конечной точностью. Современный рекорд точности измерения количественной величины в физике составляет 16 десятичных цифр.

Квантовая механика ограничивает это разнообразие даже на фундаментальном уровне. В следующих двух главах мы узнаем, что квантовая механика вносит в природу внутреннюю размытость, которая лишает смысла разговоры о местоположении объектов с точностью, превосходящей определённый уровень. Вследствие этого ограничения общее число способов, которыми может быть организована наша Вселенная, становится конечным. Согласно консервативной оценке с поправкой в большую сторону, существует не более 1010 118 способов, которыми может быть устроена вселенная размером с нашу. Ещё более консервативное ограничение, известное как голографический принцип, предполагает, что объём размером с нашу Вселенную может быть устроен не более чем 1010 124 способами. В противном случае в него пришлось бы поместить столько вещества, что образовалась бы чёрная дыра, превосходящая его по размерам.

Это огромные числа, больше даже знаменитого гуголплекса. Маленькие мальчики склонны зацикливаться на больших вещах, и однажды я подслушал, как сын с приятелями пытаются обставить друг друга, называя всё большие числа. После триллионов, октиллионов и т. д. кто-нибудь неминуемо сбрасывает G-бомбу — гуголплекс, и на мгновение наступает благоговейная тишина. Гуголплекс — это 1, за которой следует гугол нулей, где гугол — это 1, за которой следует 100 нулей. Так что 1010 100 — это не 1 с 100 нулями, а 1, за которой следует 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 нулей. Это число настолько велико, что его в принципе нельзя записать: в нём больше цифр, чем есть атомов в нашей Вселенной. (Я всегда подозревал, что «Гугл» — амбициозная компания. Когда я побывал там на конференции, я узнал, что сотрудники называют корпоративный кампус «Гуголплексом».)

Рис. 6.2. В игрушечной вселенной, где в 4 местах может находиться по одной частице двух типов, существует всего 24 возможных комбинаций (вверху слева). Это означает, что в мультиверсе I типа, состоящем из таких вселенных, в среднем нужно проверить 16 вселенных, чтобы найти повторение одной заданной. Если наша Вселенная подобным же образом содержит 10118 частиц, которые можно скомбинировать 1010 118 различными способами, придётся посетить около 1010 118 параллельных вселенных, прежде чем отыщется идентичная копия.

Хотя число 1010 118 настолько велико, что его не назовёшь даже астрономическим, оно ничтожно в сравнении с бесконечностью. Это означает, что если вечная инфляция породила пространство, содержащее бесконечно много параллельных вселенных I уровня, среди них найдутся все возможные варианты. В частности, вам придётся проверить в среднем около 1010 118 вселенных, прежде чем вы найдёте копию любой вселенной (рис. 6.2). Так что если вы станете путешествовать по прямой линии, пока не наткнётесь на ближайшую копию нашей Вселенной, то пройденный вами путь составит примерно 1010 118 диаметров Вселенной. Если же вы станете искать во всех направлениях, то расстояние до ближайшей нашей копии выразится примерно тем же числом, и это будет примерно то же самое, что 1010 118 м — таково забавное математическое поведение двойных степеней (степеней в показателях степени).

Существенно ближе, на расстоянии около 101091 м, должна найтись сфера радиусом 100 световых лет, идентичная сфере с центром на Земле, где всё, что мы будем воспринимать в течение ближайшего столетия, окажется идентичным тому, что воспринимают там наши двойники. Примерно в 101029 м от нас должна найтись ваша идентичная копия. На самом деле, ваши копии, по-видимому, должны быть гораздо ближе, поскольку процессы образования планет и биологической эволюции, итог которых оказался в вашу пользу, везде одинаковы. В объёме одной лишь нашей Вселенной должно быть не менее 1020 планет.

 

Мультиверс II уровня

Помните, я назвал теорию инфляции благодатным даром? Когда начинает казаться, что она не может предсказать что-либо более радикальное, чем уже предсказано, ей это удаётся. Если вам было трудно переварить огромный мультиверс I уровня, попробуйте представить себе бесконечное множество таких мультиверсов, причём в некоторых могут действовать совершенно иные законы физики. Андрей Линде, Александр Виленкин, Алан Гут и их коллеги показали, что именно это обычно предсказывает теория инфляции. (А мы будем называть это мультиверсом II уровня.)

Много вселенных в одном пространстве

Как вообще физика может позволять такое безумие? Вспомните (рис. 5.8), что инфляция умудряется породить бесконечный объём внутри конечного. На рис. 6.3 показано, что нет причин, согласно которым инфляция не могла бы осуществить это в нескольких примыкающих друг к другу объёмах. В результате получилось бы несколько бесконечных областей (мультиверсов I уровня) — при условии, что инфляция вечна и никогда не заканчивается на границах между этими объёмами. Это означает, что если вы живёте в одном из мультиверсов I уровня, посещение соседнего невозможно: инфляция продолжает порождать разделяющее вас пространство быстрее, чем вы можете его преодолевать. Я представил, как разговариваю с детьми, расположившимися на заднем сиденье моей ракеты:

— Папа, мы уже приехали?

— Нам остался один световой год.

— Папа, мы уже приехали?

— Нам осталось два световых года.

Иными словами, хотя эти другие части мультиверса II уровня находятся в том же пространстве, что и мы, они более чем бесконечно далеки от нас в том смысле, что мы никогда их не достигнем, даже если будем вечно путешествовать со скоростью света. Напротив, сколь угодно отдалённых частей нашего мультиверса I уровня, в принципе, можно достичь, если у вас хватит терпения и если космологическое расширение замедляется.

Рис. 6.3. Если вечная инфляция порождает три бесконечные области посредством механизма, изображённого на рис. 5.8, то путешествовать между ними невозможно, поскольку инфляция порождает пространство между вами и местом назначения быстрее, чем вы можете его преодолевать.

На рис. 6.3 я сделал упрощение, проигнорировав тот факт, что пространство расширяется. Вечно инфлирующие области я обозначил тонкими вертикальными полосками, разделяющими U-образные мультиверсы I уровня. В действительности они будут быстро расширяться и в конце концов инфляция в части пространства внутри них прекратится, породив дополнительные U-образные области. Так ещё интереснее: мультиверс II уровня оказывается древоподобной структурой (рис. 6.4). Любая инфлирующая область продолжает быстро расширяться, но инфляция рано или поздно в различных её частях заканчивается, порождая U-образные области, и каждая из них представляет собой бесконечный мультиверс I уровня. Это древо продолжает расти вечно, создавая бесконечное число таких U-образных областей, и все они вместе образуют мультиверс II уровня. Завершение инфляции превращает инфлирующую субстанцию внутри каждой области в частицы, которые затем собираются в атомы, звёзды и галактики. Алан Гут любит называть мультиверсы I уровня «карманными вселенными», поскольку они аккуратно заполняют небольшие участки «кроны» древа.

Рис. 6.5. Может ли пространство замёрзнуть? Рыба может думать, что вода — пустое пространство, поскольку это единственная известная ей среда. Но если умная рыба выведет физические законы, управляющие молекулами воды, она поймёт, что у этих уравнений есть три решения: «фазы» жидкой воды, которую она знает, а также пара и льда, которых она никогда не видела. Аналогичным образом то, что мы считаем пустым пространством, может быть средой с 10500 или большим числом фаз, из которых мы знакомы лишь с одной.

Многообразие

Выше я упомянул, что мультиверс II уровня может содержать бесконечные области с совершенно различными законами физики. Но это кажется абсурдным: как могут физические законы позволять существовать иным физическим законам? Ключевая идея состоит в том, что фундаментальные законы физики, которые по определению соблюдаются везде и всегда, могут порождать сложные физические состояния, в которых эффективные законы физики, воспринимаемые разумными наблюдателями, изменяются от места к месту.

Если бы вы были рыбой и провели всю жизнь в океане, у вас могла бы возникнуть ошибочная догадка о том, что вода — это пустое пространство. То, что людям кажется свойствами воды, скажем, сопротивление, которое она оказывает при плавании, вы могли бы ошибочно интерпретировать как фундаментальный закон физики: «Рыба, начавшая равномерное движение, в конце концов останавливается, если не будет взмахивать плавниками». Вы, вероятно, не догадывались бы, что вода может существовать в трёх фазах — твёрдой, жидкой и газообразной — и что ваше «пустое пространство» просто является жидкой фазой, частным случаем решения уравнений, описывающих воду.

Этот пример может показаться глупым, и если бы настоящая рыба думала подобным образом, мы могли бы поднять её на смех. Но не может ли быть так, что пространство, которое воспринимается людьми как пустое, также некая форма среды? Тогда будут потешаться над нами. Имеется множество свидетельств того, что так дело и обстоит. Наше «пустое пространство», по-видимому, не только является такого рода средой, но и, похоже, может находиться не в трёх фазах, а в гораздо большем их числе (вероятно, около 10500), а возможно, даже в бесконечном числе. Значит, в дополнение к искривлению, растяжению и вибрации наше пространство, вероятно, способно испытывать нечто подобное замерзанию и испарению.

Как физики пришли к такому выводу? Ну, если бы наша рыба была достаточно умна, она могла бы поставить эксперимент и определить, что её «пространство» состоит из молекул воды, подчиняющихся определённым математическим уравнениям. Изучая эти уравнения, она смогла бы определить (рис. 6.5), что у них есть три решения, соответствующие трём фазам — твёрдому льду, жидкой воде и газообразному пару, — даже несмотря на то, что она никогда не видела ни айсбергов, ни гейзеров. Точно так же физики ищут уравнения, описывающие пространство и его наполнение. Мы ещё не нашли окончательный ответ, но приближения, которые у нас есть, как правило, обладают общим свойством — у них более одного решения (фазы) для описания однородного пространства. Авторы теории струн, теории-фаворита, обнаружили, что существует около 10500 или более решений, и нет признаков того, что конкурирующие теории, например петлевая квантовая гравитация, дают единственное решение. Физики называют совокупность всех возможных решений ландшафтом теории. Однако этот пессимистичный вывод основан на довольно сомнительном допущении, что способ протекания инфляции в нашей области пространства — это единственный способ её протекания где бы то ни было. Все эти решения, свойствами которых определяются эффективные законы физики, связаны с различными возможностями, вытекающими из одних и тех же фундаментальных законов.

Что это означает в отношении к инфляции? Поразительным образом вечная инфляция порождает все возможные типы пространства. Она реализует весь ландшафт. Фактически для каждой фазы, в которой может находиться пространство, она создаёт бесконечно много мультиверсов I уровня, заполненных этой фазой. Это означает, что мы, наблюдатели, можем легко совершить ту же ошибку, что и рыба: поскольку мы наблюдаем пространство, имеющее одни и те же свойства всюду в нашей Вселенной, мы склонны ошибочно полагать, что оно таково же во всех остальных местах.

Какое отношение всё это имеет к инфляции? Для изменения фазового состояния пространства требуется огромное количество энергии, так что наблюдаемые нами повседневные процессы просто не способны это сделать. Однако в прошлом, в процессе инфляции, в каждом крошечном объёме было заключено колоссальное количество энергии. Его было достаточно для того, чтобы квантовые флуктуации могли случайно вызывать изменение фазового состояния в какой-либо небольшой области, которая потом за счёт инфляции превращалась бы в колоссальный объём, содержащий лишь эту фазу. Более того, данная область пространства должна была перейти в определённую фазу, чтобы инфляция остановилась. Это гарантирует, что пограничные области между двумя фазами будут инфлировать вечно, в то время как каждая фаза целиком заполняет бесконечный мультиверс I уровня.

Что представляют собой фазовые состояния пространства? Представьте, что на день рождения вы получили в подарок автомобиль с ключом в зажигании, но прежде никогда не слышали об автомобилях и не располагаете совершенно никакой информацией о том, как они работают. Будучи любопытным человеком, вы забираетесь внутрь и начинаете давить на все кнопки и тянуть за все рычаги. В конце концов вы понимаете, как им пользоваться, и становитесь очень хорошим водителем. Но кто-то без вашего ведома стёр с рычага переключения скоростей букву R и испортил коробку передач так, что для переключения на задний ход требуется огромное усилие. Это значит, что пока кто-нибудь не подскажет, вы, возможно, не догадаетесь, что автомобиль способен двигаться задним ходом. Если попросить вас описать, как работает автомобиль, вы скорее всего будете ошибочно утверждать, что, во всех случаях, чем сильнее нажимаешь на педаль газа при работающем двигателе, тем быстрее автомобиль едет вперёд. Если в параллельной вселенной для переключения на движение вперёд, напротив, требуется огромное усилие, то там вы, вероятно, придёте к выводу, что машина работает иначе и движется только назад.

Рис. 6.6. Ткань пространства и времени, по-видимому, имеет многочисленные «рукоятки», которые могут быть установлены в различные положения в разных частях мультиверса II уровня. Наша собственная Вселенная, похоже, имеет 32 «рукоятки», положение которых можно менять (гл. 10), а также дополнительные — с дискретным набором положений, управляющие типами частиц, которые могут существовать.

Наша Вселенная очень похожа на автомобиль. Как показано на рис. 6.6, есть множество «рукояток», которые управляют её работой: законы, согласно которым движутся предметы при воздействии на них, и т. д. — именно это в школе называли законами физики, прибавляя фундаментальные постоянные. Каждое положение «рукояток» соответствует одному из фазовых состояний пространства, так что если имеется 500 «рукояток» с 10 положениями для каждой, то должно быть 10500 фаз.

В старших классах меня учили — неправильно, — что эти законы и значения постоянных всегда верны и не меняются от места к месту, от мгновения к мгновению. Почему это ошибка? Потому что для изменения положения этих переключателей, как в случае рычага переключения передач в автомобиле, требуется огромное количество энергии — гораздо больше, чем у нас в распоряжении, — и поэтому мы не понимали, что эти параметры можно менять. Мы даже не понимали, что вообще существуют параметры, которые можно изменять: в отличие от коробки передач, природные «рукоятки» надёжно спрятаны. Они проявляются в форме особых полей с очень массивными частицами-переносчиками и других малопонятных сущностей, а огромная энергия нужна не только для их изменения, но даже для обнаружения того, что они существуют.

Как физики догадались, что «рукоятки» могут существовать и что мы могли бы заставить нашу Вселенную функционировать иначе, если бы располагали достаточной энергией? Точно так же, как вы смогли бы догадаться, что автомобиль в принципе может двигаться задним ходом: путём внимательного изучения работы его частей! Вы могли бы догадаться об этом, изучив устройство коробки передач. Вот и изучение мельчайших «строительных блоков» природы подсказало, что при наличии достаточной энергии они могут реорганизоваться так, что наша Вселенная станет работать по-другому. Мы рассмотрим их функционирование в следующей главе. Вечная инфляция обеспечивала бы достаточное количество энергии для квантовых флуктуаций, чтобы породить все возможные комбинации в мультиверсах I уровня. Она действует как невероятно сильная горилла, которая беспорядочно крутит все рукоятки в автомобилях на заполненной парковке: когда она закончит своё дело, у некоторых машин окажется включённым задний ход.

Табл. 6.1. Ключевые мультиверсные понятия и их взаимосвязи.

Короче говоря, мультиверс II уровня принципиально меняет наши представления о физических законах. Многие закономерности, которые мы привыкли считать фундаментальными, по определению соблюдающимися всегда и везде, оказались не более чем эффективными законами — локальными нормативными актами, которые могут меняться от места к месту соответственно разным установкам рукояток, задающих различные фазовые состояния пространства. В табл. 6.1 перечисляются эти понятия и поясняется, как они связаны с параллельными вселенными. Эти изменения продолжают давнюю тенденцию. Если Коперник считал фундаментальным закон, гласящий, что планеты движутся по идеальным окружностям, то теперь мы знаем о существовании орбит более общего вида, степень отличия которых от окружности (эксцентриситет) — это, по сути, «рукоятка», которая после завершения формирования Солнечной системы может менять своё положение лишь очень медленно, с большим трудом. Мультиверс II уровня выводит это представление на новую высоту, понижая в ранге многие физические законы с фундаментальных до эффективных. Этим вопросом мы сейчас займёмся.

Точная настройка как аргумент в пользу мультиверса II уровня

Так существует ли на самом деле мультиверс II уровня? Аргументы в пользу вечной инфляции (их множество) являются также аргументами в пользу мультиверса II уровня, поскольку из первого вытекает второе. Мы также видели, что если существуют природные законы или постоянные, которые в принципе могут меняться от места к месту, то вечная инфляция обусловит их варьирование внутри мультиверса II уровня. Но существуют ли подтверждения, не завязанные столь сильно на теоретические аргументы?

Я хочу привести довод в пользу того, что они есть: это тот факт, что наша Вселенная кажется очень точно настроенной для жизни. Оказывается, многие из «рукояток», похоже, настроены на весьма специфические значения, и если бы мы могли чуть-чуть их повернуть, жизнь, какой мы её знаем, стала бы невозможной. Троньте «рукоятку» тёмной энергии, и галактики никогда не образуются, немного покрутите другую — и атомы станут неустойчивыми, и т. д. Имея недостаточный опыт пилотирования, я всегда боюсь запутаться в рукоятках в кабине самолёта, но если бы я мог случайно покрутить «рукоятки» нашей Вселенной, мои шансы на выживание были бы ещё ниже.

Вот три основных реакции на наблюдаемую точную настройку:

1.  Случайность . Это просто счастливое совпадение, и ничего больше.

2.  Замысел . Это свидетельство того, что наша Вселенная была сконструирована некой сущностью (возможно, божеством или высокоразвитой формой жизни, моделирующей вселенные), и «рукоятки» настроены так, чтобы сделать возможной жизнь.

3.  Мультиверс . Это свидетельство мультиверса II уровня, поскольку, если все положения «рукояток» где-то реализуются, то естественно, что мы существуем и наблюдаем себя в пригодной для жизни области.

Ниже мы рассмотрим интерпретации случайности и мультиверса, а вариант моделирования отложим до гл. 12. Но сначала разберёмся со свидетельствами точной настройки.

Точно настроенная тёмная энергия

До сих пор наша космическая история была своего рода гравитационным перетягиванием каната между тёмной материей, которая пытается всё стянуть, и тёмной энергией, которая стремится всё разбросать (гл. 4). Поскольку образование галактик связано со сгущением вещества, я думаю, что тёмная материя — наш друг, а тёмная энергия — враг. Плотность вещества в космосе в основном обеспечивается тёмной материей. Её дружественное гравитационное притяжение помогает формироваться галактикам, как наша. Однако, поскольку космологическое расширение приводит к разрежению тёмной материи, но не тёмной энергии, нежелательное гравитационное отталкивание тёмной энергии в конце концов берёт верх, отменяя дальнейшее образование галактик. Это значит, что если бы тёмная энергия имела значительно большую плотность, она стала бы брать верх гораздо раньше, ещё до того, как сформировались бы первые галактики. Результатом явилась бы мертворождённая вселенная, вечно тёмная и безжизненная, не содержащая ничего сложнее и интереснее почти однородного газа. Если, с другой стороны, плотность тёмной энергии уменьшилась бы настолько, чтобы стать существенно отрицательной (это допускает эйнштейновская теория гравитации), наша Вселенная прекратила бы расширяться и коллапсировала в Большом хлопке, прежде чем успела бы появиться жизнь. Если вы задумались, как изменить плотность тёмной энергии, повернув соответствующую «рукоятку» на рис. 6.6, то, пожалуйста, не крутите её слишком сильно, поскольку для жизни это может иметь такие же печальные последствия, как нажатие кнопки «Выкл.».

Насколько сильно можно повернуть «рукоятку» тёмной энергии? Текущее её положение соответствует плотности тёмной энергии, которую мы измерили на практике, и она составляет около 10–27 кг/м3, что удивительно близко к нулю в сравнении со всем доступным диапазоном. Естественное максимальное значение этого регулятора соответствует плотности тёмной энергии около 1097 кг/м3, при которой квантовые флуктуации заполняют пространство крошечными чёрными дырами, а минимальное значение равно той же величине, но со знаком минус. Если полный оборот «рукоятки» тёмной энергии на рис. 6.6 соответствует изменению плотности на всю величину этого диапазона, то фактическое положение «рукоятки» в нашей Вселенной отстоит от средней точки примерно на 10–123 полного оборота. Это значит, что если вы хотите повернуть «рукоятку» так, чтобы могли образовываться галактики, нужно задать угол поворота с точностью более 120 цифр после запятой! Хотя это кажется невыполнимо точной настройкой, некий механизм, очевидно, оказал эту услугу нашей Вселенной.

Точно настроенные частицы

В следующей главе мы исследуем микромир элементарных частиц. В нём множество «рукояток», определяющих массы частиц, а также то, насколько сильно они взаимодействуют друг с другом.

Научное сообщество постепенно начинает понимать, что точно настроены многие из этих регуляторов. Так, если электромагнитные силы ослабли бы примерно на 4 %, Солнце немедленно взорвалось бы: атомы его водорода стали бы соединяться в дипротоны (не существующую без такой поправки разновидность гелия, не содержащего нейтронов).

Если существенно усилить электромагнетизм, то стабильные атомы, например углерод и кислород, будут испытывать радиоактивный распад.

Если бы слабое ядерное взаимодействие оказалось существенно слабее, то вокруг нас не было бы водорода, поскольку вскоре после Большого взрыва весь он превратился бы в гелий. В обоих случаях — если бы взаимодействие было бы гораздо сильнее или слабее — нейтрино при взрыве сверхновой не могли бы рассеять в космосе внешние слои звезды, и необходимые для жизни тяжёлые элементы вроде железа вряд ли смогли бы покинуть звёзды, где они образуются, и оказаться в составе планет, например Земли.

Если бы электроны были гораздо легче, то не было бы стабильных звёзд, а если значительно тяжелее, то не могли бы существовать упорядоченные структуры, например кристаллы или молекулы ДНК. Если бы протоны оказались на 0,2 % тяжелее, они превращались бы в нейтроны, неспособные удерживать возле себя электроны, — и не было бы атомов. Напротив, если бы протоны были существенно легче, то нейтроны внутри атомов превращались бы в протоны, так что не было бы устойчивых атомов, кроме водорода. На самом деле масса протона зависит от другого регулятора, который имеет очень широкий диапазон варьирования и нуждается в точной настройке до 33 цифры после запятой, чтобы могли существовать стабильные атомы, кроме водорода.

Точная настройка в космологии

Многие из примеров точной настройки были найдены в 70–80-х годах Полом Дэвисом, Брэндоном Картером, Бернардом Карром, Мартином Рисом, Джоном Барроу, Франком Типлером, Стивеном Вайнбергом и другими физиками. Новые примеры продолжают появляться. Свою первую вылазку в эту область я предпринял в компании с Мартином Рисом, седым астрономом с безупречными британскими манерами, который стал одним из моих научных героев. Я не видел никого, кто бывал так счастлив, выступая с докладом — его глаза словно бы лучились. Он первым в научном истеблишменте поддержал меня в том, чтобы, следуя зову сердца, обратиться к «неортодоксальным» идеям. В предыдущей главе мы узнали, что амплитуда первичных космологических флуктуаций составляла около 0,002 %. Мы с Мартином подсчитали, что если бы они были меньше, то галактики не образовались бы, а если больше, то это привело бы к частому падению астероидов и прочим неприятностям.

А как насчёт случайности?

Но что нам даёт эта точная настройка? Прежде всего: почему мы не можем просто списать всё на цепочку счастливых совпадений?

Научный метод не терпит необъяснимых совпадений. Сказать, что моя теория требует необъяснимого совпадения для согласования с наблюдениями, всё равно что сказать: «Моя теория неверна». Мы видели, например, как теория инфляции предсказывает, что пространство плоское, а пятна космического микроволнового фона должны иметь средний размер около 1°, и что эксперименты, описанные в гл. 4, подтвердили это. Допустим, команда «Планка» обнаружила бы значительно меньший средний размер пятен, который заставил бы их объявить, что эти данные исключают теорию инфляции с уверенностью 99,999 %. Это значило бы, что случайные флуктуации в плоской Вселенной могли бы, в принципе, заставить пятна выглядеть при измерениях необычно малыми, приводя к некорректным выводам, но с вероятностью 99,999 % этого не случилось бы. Иными словами, инфляция потребовала бы необъяснимого совпадения с шансами 1: 100 000, чтобы оказаться в согласии с наблюдениями. Если бы Алан Гут и Андрей Линде провели после этого совместную пресс-конференцию и настаивали на том, что нет аргументов против теории инфляции, поскольку они нутром чуют — измерения «Планка» были просто совпадением, — такую позицию следовало бы отвергнуть как ненаучную.

Случайные флуктуации подтверждают, что в науке нельзя быть стопроцентно уверенным в чём-либо. Всегда есть вероятность того, что вам чрезвычайно не повезло со случайным измерительным шумом, что детектор сломался или даже что весь эксперимент был всего лишь галлюцинацией. На практике, однако, опровержение с надёжностью 99,999 % обычно рассматривается научным сообществом как последний гвоздь в крышку гроба теории. Что касается теории о том, что точная настройка тёмной энергии — это случайность, то она требует веры в гораздо более невероятное совпадение, а значит, исключается с вероятностью примерно 99,999 999… %, где после запятой около 120 девяток.

Слово на букву «А»

А что можно сказать про объяснение точной настройки через мультиверс II уровня? Теория, в которой все регуляторы природы принимают в тех или иных местах фактически все возможные значения, со стопроцентной надёжностью предсказывает, что существует пригодная для жизни вселенная, такая как наша. И, поскольку мы можем жить лишь в пригодной для обитания вселенной, мы не должны удивляться, что наблюдаем именно такую.

Хотя это логичное объяснение, оно весьма спорно. После всех известных истории наивных попыток сохранить Землю в качестве центра Вселенной, в сознании людей глубоко укоренилась противоположная точка зрения. Принцип Коперника гласит, что в нашем положении в пространстве и времени нет ничего особенного. Брэндон Картер предложил конкурирующую идею, которую назвал слабым антропным принципом: «Мы должны быть готовы принять во внимание тот факт, что наше местоположение в этой Вселенной с необходимостью является привилегированным в достаточной мере, чтобы быть совместимым с нашим существованием как наблюдателей». Некоторые мои коллеги считают, что Картер сделал предосудительный шаг назад, к геоцентризму. С принятием во внимание точной настройки картина мультиверса II уровня действительно полностью нарушает принцип Коперника. Как показано на рис. 6.7, подавляющее большинство вселенных мертво, а наша собственная в высшей степени необычна — она содержит гораздо меньше тёмной материи, чем большинство, а также имеет очень странные установки многих других «рукояток».

Объяснение наблюдений путём введения параллельных вселенных, которые мы не можем наблюдать, кажется некоторым моим коллегам ошибочным. Я помню доклад, сделанный в 1998 году в Фермилабе, месторасположении знаменитого ускорителя в окрестностях Чикаго. Аудитория взорвалась, когда докладчик произнёс «слово на букву „А“» — антропный. На самом деле, чтобы усыпить бдительность рецензента и добиться публикации, мы с Мартином Рисом решили просто не использовать это слово в аннотациях первых совместно написанных статей по антропной тематике…

Рис. 6.7. Если плотность тёмной энергии (представлена здесь градациями серого) изменяется от вселенной к вселенной, то галактики, планеты и жизнь будут появляться только в тех вселенных, где она наименьшая. На этом рисунке обитаемы 20 % наиболее светлых вселенных, но реальная их доля может оказаться ближе к 10-120.

Лично у меня картеровский антропный принцип вызывает единственное возражение: мне не нравится использование слова «принцип», которое несёт оттенок факультативности. Ведь применение строгой логики при сопоставлении теории с наблюдениями не является факультативным. Если большая часть пространства непригодна для жизни, то совершенно ясно, что мы должны обнаружить себя в таком месте, которое является особенным в том смысле, что оно пригодно для обитания. На самом деле большая часть пространства кажется совершенно непригодной для жизни, даже если ограничиться нашей собственной Вселенной: попробуйте выжить в межгалактической пустоте или внутри звезды! Достаточно сказать, что лишь одна тысячная триллионной триллионной триллионной доли нашей Вселенной лежит в пределах 1 км от поверхности какой-либо планеты, так что это очень специфическое место. Но то, что мы в него попали, вряд ли удивительно.

В качестве примера рассмотрим M, массу нашего Солнца. От величины M зависит светимость Солнца, и, опираясь на элементарную физику, можно вычислить, что жизнь, какой мы её знаем, возможна, лишь если M лежит в узком диапазоне между 1,6 × 1030 и 2,4 × 1030 кг. В ином случае климат Земли был бы холоднее, чем на Марсе, или жарче, чем на Венере. Измеренное значение M ≈ 2,0 × 1030 кг. Это кажущееся необъяснимым совпадение пригодного для жизни и наблюдаемого значений M может вызвать беспокойство, если принять во внимание то, что по расчётам звёзды могут существовать в гораздо более широком диапазоне возможных масс — от 1029 до 1032 кг, так что масса Солнца кажется точно подобранной для жизни. Однако это видимое совпадение можно объяснить, поскольку существует ансамбль из большого числа таких систем с различными настройками «рукояток». Мы знаем, что есть множество планетных систем с центральными звёздами и планетными орбитами разных размеров, и, очевидно, следовало ожидать, что мы появимся в одной из пригодных для обитания планетных систем.

Интересный момент: мы могли использовать факт точной настройки Солнечной системы как аргумент в пользу существования других планетных систем даже до того, как они были открыты. Опираясь на точно такую же логику, мы можем использовать наблюдаемую точную настройку нашей Вселенной как аргумент в пользу существования других вселенных. Единственное отличие состоит в том, являются или нет предсказываемые сущности наблюдаемыми, но это различие не ослабляет аргумент, поскольку никак не касается его внутренней логики.

На какие предсказания мы можем надеяться?

Физики любят измерять численные значения. Вот некоторые:

Нам также нравится предсказывать такие числа, исходя из фундаментальных принципов. Но достигнем ли мы когда-нибудь успеха? Иоганн Кеплер до открытия эллиптической формы планетных орбит выдвинул элегантную теорию, связанную с третьим из чисел в приведённой таблице. Он предположил, что орбиты Меркурия, Венеры, Земли, Марса, Юпитера и Сатурна находятся друг с другом точно в тех же соотношениях, как и вложенные друг в друга шесть сфер, между которыми вписаны соответственно октаэдр, икосаэдр, додекаэдр, тетраэдр и куб (рис. 7.2). Если закрыть глаза на тот факт, что эта теория вскоре была опровергнута на основании более точных измерений, она кажется в целом наивной. Сейчас мы знаем о существовании других планетных систем, и параметры орбит, измеренные в Солнечной системе, не дают фундаментальной информации о Вселенной и касаются лишь нашего положения в ней. В этом смысле мы можем считать цифры частью своего космического «почтового индекса». Чтобы объяснить внеземному почтальону, в какую из планетных систем мы хотим отправить посылку, можно сказать, чтобы он летел в ту из них, где имеется восемь планет, орбиты которых в 1,84, 2,51, 4,33, 12,7, 24,7, 51,1 и 76,5 раз больше восьмой, самой маленькой орбиты, и тогда он может воскликнуть: «О, я знаю, какую планетную систему вы имеете в виду!» Ровно по той же причине у нас не будет шансов предсказать массу или радиус Земли на основе фундаментальных принципов, поскольку мы знаем, что существует много планет разных размеров.

А что можно сказать о массе и величине орбиты электрона? Эти числа одинаковы для всех проверенных электронов во Вселенной, поэтому появилась надежда, что они могут быть поистине фундаментальными свойствами нашего физического мира, которые мы однажды сможем вычислить на основе одной только теории — совершенно в духе кеплеровской модели орбит. И действительно, в 1997 году знаменитый струнный теоретик Эд Виттен сказал мне, что, по его мнению, теория струн рано или поздно сможет предсказать, во сколько раз электрон легче протона. Однако когда мы виделись с ним в последний раз, на шестидесятилетии Андрея Линде, за очередным бокалом вина он признался, что оставил надежду предсказать все фундаментальные постоянные.

Откуда этот пессимизм? Дело в том, что история повторяется. Мультиверс II уровня делает с массой электрона то же, что другие планеты сделали с массой Земли, превратив её из фундаментального свойства природы лишь в часть нашего космического адреса. Измерить значение любого параметра, который варьирует внутри мультиверса II уровня — значит просто сузить список вселенных, в которых мы можем находиться.

Рис. 6.8. Массы девяти частиц-фермионов, которые нам удалось измерить, кажутся совершенно случайными, как и предсказывают некоторые модели мультиверса. Они утверждают, что мы, исходя из фундаментальных принципов, никогда не сможем их предсказать. На шкале показано, во сколько раз каждая частица тяжелее электрона.

Сейчас известно 32 независимых параметра нашей Вселенной, для которых мы пытаемся измерить как можно больше знаков после запятой (гл. 10). Все ли они варьируют по мультиверсу II уровня, или некоторые из них могут быть вычислены на основе фундаментальных принципов (или иного, более короткого, списка параметров)? У нас пока нет успешной фундаментальной физической теории, которая смогла бы ответить на этот вопрос, и интересно присмотреться к результатам измерений в поисках подсказок. Параметры, которые варьируют по мультиверсу, должны казаться случайными, если мы живём в случайно выбранной вселенной. Кажутся ли измеренные значения случайными? Вы сами можете оценить это. Взгляните на рис. 6.8, где я изобразил массы девяти фундаментальных частиц, называемых фермионами. Если отвлечься от шкалы, на которой масса увеличивается в 10 раз на каждые несколько сантиметров, рисунок напоминает мне девять случайно воткнувшихся в мишень дротиков. Действительно, эти девять чисел успешно проходят строгий статистический тест на случайность, удовлетворяя равномерному распределению с наклоном линии регрессии менее 10 %.

Не всё потеряно

Если мы живём в случайно пригодной для жизни вселенной, то числа должны казаться случайными, однако подчиняться распределению вероятностей, которое благоприятствует жизни. Сравнивая предсказания того, как параметры варьируют по мультиверсу с соответствующей физикой формирования галактик и т. д., мы можем сделать статистические предсказания о том, что должно фактически наблюдаться. До сих пор такие предсказания великолепно согласовывались с данными о тёмной энергии, тёмной материи и нейтрино (рис. 6.9). На самом деле, первое предсказание ненулевого значения плотности тёмной энергии, сделанное Стивеном Вайнбергом, было получено как раз таким образом.

Рис. 6.9. Если плотность тёмной энергии, тёмной материи и нейтрино очень сильно варьирует по мультиверсу II уровня, то большинство вселенных будет лишено галактик и безжизненно, а случайный наблюдатель должен ожидать, что измеренные им значения лежат в очень узком численном диапазоне, соответствующем показанным распределениям вероятности. Нам следует ожидать, что измеренные значения окажутся в центральных серых интервалах, на которые приходится 90 % вероятности, и они действительно туда укладываются.

Я получил большое удовольствие, проходя по списку «рукояток» и разбираясь, что случится, если их повернуть. Например, ни в коем случае не трогайте на рис. 6.6 «рукоятки», задающие число измерений пространства и времени: это приведёт к фатальным последствиям. Если установить число измерений пространства более трёх, не будет существовать ни стабильных планетных систем, ни устойчивых атомов. Скажем, переход в четырёхмерное пространство изменяет ньютоновский закон обратных квадратов для силы гравитации на закон обратных кубов, при котором вообще не существует устойчивых орбит. Я был очень горд этой своей догадкой, пока не узнал, что австрийский физик Пауль Эренфест пришёл к этому выводу ещё в 1917 году. Пространства с числом измерений менее трёх тоже не позволяют существовать планетным системам, поскольку гравитация в них перестаёт притягивать. Кроме того, они, по-видимому, ещё и по иным причинам слишком просты, чтобы содержать наблюдателей — например, в них отростки двух нейронов не могут пересекаться, не нарушая взаимную целостность. Изменение числа измерений времени не так абсурдно, как можно подумать, и общая теория относительности Эйнштейна отлично с этим справляется. Однако я однажды написал статью, в которой показал, что это уничтожило бы ключевое математическое свойство физики, которое позволяет нам делать предсказания, а значит, бесполезным стало бы развитие мозга. Три измерения пространства и одно измерение времени (рис. 6.10) — вот единственное пригодное для жизни сочетание. Иными словами, бесконечно умный ребёнок, не делая вообще никаких наблюдений, мог бы вычислить, исходя из первичных принципов, что в мультиверсе II уровня существуют другие комбинации размерности пространства и времени, но лишь вариант 3 + 1 пригоден для жизни. Перефразируя Декарта, он мог бы, ещё не открыв в первый раз глаза, подумать: «Я мыслю, следовательно, у пространства три измерения, а у времени — одно», и проверить своё предсказание.

Рис. 6.10. При более чем трёх измерениях пространства не существует стабильных атомов и планетных систем. При меньшем числе измерений не существует гравитационного притяжения. При размерности времени больше или меньше единицы физика утрачивает свою предсказательную силу, а значит, не будет смысла в развитии мозга. В мультиверсе II уровня, где число измерений пространства и времени изменяется от одной вселенной к другой, мы должны, таким образом, ожидать, что окажемся во вселенной с тремя измерениями пространства и одним — времени, поскольку все остальные вселенные, вероятно, необитаемы.

Если весь мультиверс II уровня существует в одном пространстве, то как внутри него может варьировать размерность? Дело в том, что, согласно наиболее популярным моделям теории струн, изменяется лишь кажущаяся размерность: истинное пространство всегда имеет 9 измерений, но мы не замечаем 6 из них, поскольку они микроскопически свёрнуты наподобие цилиндра на рис. 2.7. Если пройти небольшое расстояние вдоль одного из 6 скрытых измерений, окажешься на том же месте, откуда отправился. Предполагается, что все 9 измерений первоначально были свёрнуты, а затем в нашей области космоса инфляция растянула три из них до астрономических размеров, оставив остальные крошечными, невидимыми. В других местах мультиверса II уровня инфляция породила миры с числом измерений от 0 до 9.

Математики нашли множество способов, как эти дополнительные размерности могут быть свёрнуты и наполнены энергией (скрытые измерения, например, могут быть окружены внутри обобщённым магнитным полем). Все эти варианты соответствуют в теории струн регулировочным «рукояткам». Различные варианты могут относиться не только к физическим постоянным в несвернутых измерениях, но и к правилам, определяющим, какие элементарные частицы могут существовать и какие эффективные уравнения их описывают. Могут иметься параллельные вселенные II уровня, в которых, например, 10, а не 6 типов кварков.

Короче говоря, хотя фундаментальные уравнения физики (возможно, составляющие теорию струн) остаются верны во всём мультиверсе II уровня, видимые законы физики, которые будут открывать наблюдатели, изменяются от одного мультиверса I уровня к другому. Видимые законы не являются универсальными не только в словарном смысле, то есть «всегда применимыми», но и в буквальном смысле, то есть «применимыми к нашему Универсуму (Вселенной)». Они мультиверсальны лишь на I, но не на II уровне. Фундаментальные же уравнения мультиверсальны даже на II уровне — они не будут меняться, пока мы не доберёмся до мультиверса IV уровня (гл. 12).

 

Мультиверс: счёт после первого периода

В этой главе мы рассмотрели множество безумно звучащих идей, так что отступим на шаг назад и осмотрим картину в целом. Я вижу в инфляции объяснение, которое не ограничивается расширением или раздуванием. Так же, как клеточное деление не приводит к рождению лишь одного ребёнка, инфляция не ограничивается одной вселенной, а порождает огромный ансамбль параллельных вселенных, вероятно, реализующий все возможные варианты, о которых мы можем рассуждать в терминах фундаментальных постоянных. Это объясняет ещё одну загадку — тот факт, что наша Вселенная «настроена» для жизни. Большинство параллельных вселенных, порождаемых инфляцией, мертво, однако условия в некоторых подходят для жизни, и неудивительно, что именно в такой вселенной мы находимся.

Мой коллега Эдди Фархи называет Алана Гута «Позволителем»: всему, что в принципе может случиться, вечная инфляция позволяет произойти. Она порождает пространство, где это может случиться, и создаёт начальные условия, позволяющие разыграться всем историям. Иными словами, инфляция — это процесс, превращающий потенциальное в реальное.

Если вы чувствуете дискомфорт, рассуждая о мультиверсе II уровня, можете говорить о пространстве, помня, что все наши параллельные вселенные I и II уровня — лишь отдалённые области бесконечного пространства. Просто структура этого пространства гораздо богаче, чем мог себе представить Евклид: оно расширяется, и мы можем видеть лишь малую его часть, которую называем Вселенной, а свойства его отдалённых областей гораздо разнообразнее того, что видно в телескопы. Описание в гл. 3 нашей Вселенной как однородной — лишь часть картины, верная для промежуточных масштабов: гравитация заставляет вещество скучиваться и образовывать интересные структуры на меньших масштабах, а инфляция порождает разнообразие и интересные возможности на больших масштабах.

Если вы всё ещё не привыкли к идее параллельных вселенных, вам может помочь следующее. Алан Гут упомянул в недавнем докладе, прочитанном в Массачусетском технологическом институте, следующее. Когда мы открываем в природе некий объект, научный подход к делу предполагает поиск породившего его механизма. Автомобили строят на автозаводах, кролики появляются на свет при участии родителей-кроликов, а планетные системы рождаются при гравитационном коллапсе гигантских молекулярных облаков. Резонно предположить, что наша Вселенная порождена неким механизмом созидания вселенных (возможно, инфляцией, а может, и чем-либо совершенно иным). И вот ключевой момент: все прочие упомянутые механизмы естественным образом порождают множество экземпляров того, что они создают. Космос, содержащий лишь один автомобиль, одного кролика и одну планетную систему, кажется очень неестественным. По той же причине гораздо естественнее такой механизм созидания вселенных (каким бы он ни был), который порождает множество вселенных, а не ту единственную, в которой обитаем мы.

Применив этот аргумент к механизму (каким бы он ни был), запустившему инфляцию и в итоге породившему наш мультиверс II уровня, мы придём к выводу, что он, вероятно, породил множество мультиверсов II уровня, не связанных друг с другом. Однако этот вариант кажется непроверяемым, поскольку он не добавляет никаких качественно иных миров и не изменяет распределения вероятностей их свойств: ведь все возможные мультиверсы I уровня уже реализованы внутри каждого мультиверса II уровня.

Кроме инфляции могут существовать иные механизмы образования вселенных. Идея, предложенная Ричардом Толманом и Джоном Уилером и недавно доработанная Полом Стейнхардтом и Нилом Тароком, состоит в том, что наша космическая история циклична и проходит через бесконечную серию Больших взрывов. Если это так, то ансамбль воплощений также представляет собой мультиверс, разнообразие которого, вероятно, сравнимо с мультиверсом II уровня.

Ли Смолин предложил ещё один механизм рождения вселенных, включающий мутации и отпочковывание новых вселенных через чёрные дыры, а не рождение их в ходе инфляции. Это тоже приводит к мультиверсу II уровня с естественным отбором, отдающим предпочтение вселенным, порождающим максимальное число чёрных дыр. Мой друг Эндрю Гамильтон (гл. 4), возможно, открыл такой механизм созидания вселенных: он исследовал неустойчивость, которая возникает внутри чёрных дыр вскоре после их образования. Она оказалась достаточно энергичной, чтобы запустить инфляцию, способную породить мультиверс I уровня, целиком содержащийся внутри исходной чёрной дыры — хотя его обитатели, вероятно, никогда не узнают об этом.

В сценариях мира на бране другой трёхмерный мир может буквально быть параллелен нашему, находясь на небольшом расстоянии от него в дополнительном измерении. Однако я не думаю, что такой мир (брана) заслуживает названия параллельной вселенной, отдельной от нашей собственной, поскольку он может взаимодействовать с нами гравитационно во многом так же, как тёмная материя.

Параллельные вселенные остаются крайне спорным вопросом. Однако за последние десятилетия в научном сообществе наметился сдвиг: мультиверсы перестали быть предметом забот лишь безумцев. Теперь их обсуждают на физических конференциях и в рецензируемых статьях. Я думаю, что большую роль в этом сдвиге сыграл успех прецизионной космологии и теории инфляции, а также открытие тёмной энергии и неудачное объяснение иными способами её точной настройки. Даже те из моих коллег, кому не нравится идея мультиверса, теперь склонны признать, что основные аргументы в его пользу имеют смысл. В целом критика изменилась с «это не имеет смысла, и я это ненавижу» на «я это ненавижу».

Я считаю, работа учёных состоит не в том, чтобы указывать Вселенной, как ей функционировать, а в том, чтобы непредубеждённо исследовать её и пытаться понять, как она функционирует.

Мы склонны высокомерно изображать себя центром мира, где всё вращается вокруг нас. Постепенно мы усвоили, что вращаемся вокруг Солнца, которое вращается вокруг одной из бессчётного числа галактик. Благодаря прорывам в физике мы всё глубже познаём природу реальности. Пока мы поднялись только на два уровня мультиверсов. Предстоит пройти ещё два, и в следующей главе мы начнём изучать мультиверс III уровня. За всё это мы платим тем, что становимся скромнее (что, возможно, делает нас лучше), но обнаруживаем, что живём в реальности, которая величественнее всего, что могли себе представить предки в самых буйных фантазиях.

 

Резюме

• Параллельные вселенные — не теория, а предсказание некоторых теорий.

• Вечная инфляция предсказывает, что наша Вселенная (физическая область пространства, откуда свет успел дойти до нас за 14 млрд лет, с момента нашего Большого взрыва) — это лишь одна из бесконечного числа вселенных мультиверса I уровня, в котором происходит всё, что может произойти.

• Чтобы теория была научной, нам не обязательно иметь возможность наблюдать или проверять все её предсказания — достаточно хотя бы одного. Инфляция — это лучшая теория, объясняющая наше космическое происхождение, поскольку она выдерживает проверку наблюдениями, а параллельные вселенные, по-видимому, являются неотъемлемой частью этого теоретического пакета.

• Инфляция превращает потенциальное в реальное: если математические уравнения, описывающие однородное пространство, имеют множество решений, то вечная инфляция будет порождать бесконечные области пространства, реализующие каждое из этих решений. Так устроен мультиверс II уровня.

• Многие физические законы и постоянные в мультиверсе I уровня могут изменяться в мультиверсе II уровня, так что в параллельных вселенных I уровня студенты изучают одну и ту же физику, но разную историю, а в параллельных вселенных II уровня они изучают и разную физику.

• Это может объяснить, почему многие константы в нашей Вселенной настолько точно настроены для жизни, что если немного изменить их значения, то жизнь, какой мы её знаем, станет невозможной.

• Кроме того, это наделяет новым смыслом множество числовых параметров, измеряемых в физике: они не говорят нам ничего фундаментального о физической реальности, а описывают в основном нечто, относящееся к нашему местоположению в ней, и образуют наш космический почтовый индекс.

• Хотя эти параллельные вселенные остаются предметом споров, основная критика в их адрес поменялась с «Это не имеет смысла, и я это ненавижу» на «Я это ненавижу».