Кто-то сказал, что острый язык – это единственный инструмент, не теряющий своих режущих свойств при постоянном пользовании. Хочется оспорить эту мысль и указать еще на один инструмент такого рода – трещину. Пусть, например, на машиностроительном заводе возникла необходимость разрезать металл большого сечения, диаметром в полметра. Конечно, что можно сделать разными способами, например на станке или на мощной пиле. Однако потребуется много времени, энергетических затрат и окажется, что немалое количество металла превращено в стружку. Вот для таких-то случаев и выгодно использовать трещину. Во-первых, она не боится прочных сталей и сплавов. Наоборот, чем прочнее материал, тем чувствительнее он к концентрации напряжений, тем легче режется трещиной. Во-вторых, ни один резец не сделает это быстрее трещины – она молниеносна. В-третьих, энергоемкость хрупкого разрушения ничтожна. В-четвертых, при всей своей безжалостности трещина не съедает металл и не превращает его в стружку. И еще одно уникальное преимущество имеет трещина перед инструментом: ее не нужно затачивать. Вершина хрупкой закритической трещины в процессе разрушения не затупляется. Напротив:

Ржавеет сталь, Мертвеет плоть сердец, Но встретив на пути сопротивленье, Самозатачивается резец…

(Я- Белинский)

Все это заманчиво. Но вряд ли просто. Как известно все, что в науке было на поверхности, давно подобрано. Речь идет не просто об укрощении разрушения. Нет, о дружбе с трещиной. О сознательном использовании ее разрушающих качеств на благо человечества. Между

тем не надо забывать о «вздорном» характере трещины, ее беспринципности, поклонении богу напряжений, способности мгновенно менять направление движения и многих других малопривлекательных качествах. Словом, друг она ненадежный. И с ней надо постоянно быть настороже.

Это мы осознаем. Но какие же основные требования следует предъявить трещине, прежде чем попытаться использовать ее для резки металлов в машиностроении и металлургии? Прежде всего нужно, чтобы разрушение зарождалось возможно раньше, чтобы пластическая деформация, ему предшествующая, была предельно малой. Это важно для получения низкой энергоемкости всего процесса разделения и сохранения формы разрезаемого металла. Кроме того, трещина должна быть «послушной», она должна расти точно по заранее заданной нами траектории. В противном случае игра не стоит свеч. Ведь если трещина будет вилять, сохраняя требуемое направление лишь ориентировочно, потом для получения

хорошей поверхности придется обрабатывать деталь на металлорежущем станке. А этого нужно избежать.

Первый вопрос, возникающий перед нами: насколько быстро или или медленно должна расти трещина? Слишком медленное разрушение не годится: потому, что процесс будет непроизводительным, и в большей степени потому, что при низких скоростях слишком велика пластическая деформация металла, а следовательно, энергоемкость разрушения. Поэтому, хотелось бы видеть трещину быстрой, но не слишком! Оказывается, при умеренных скоростях разрушения (1000 м/с) поверхность скола достаточно ровна. Однако при больших скоростях, превышающих 1500 м/с, трещина начинает судорожно прыгать из стороны в сторону. На сколе появляются крупные изогнутые борозды и сложная система ступеней. Кроме того, одни части поверхности разрушения оказываются повернутыми под большими углами (до 10-12°)' по отношению друг к другу. С дальнейшим ростом скорости дело становится еще сложнее – при скорости 1800 м/с начинается ветвление. Поверхность разрушения, изобилующая дефектами и неровностями, да еще содержащая ответвления трещины, не пригодна для машиностроения.

Поэтому нетрудно сформулировать требования к режиму распространения трещины при холодной ломке металла. Скорость трещины должна быть возможно большей с целью понижения энергоемкости раскола. Она вместе с тем не должна быть чрезмерной во избежание появления сложного рельефа на поверхности разрушения. Предпочитают диапазон от 1000 до 1500 м/с. Здесь и энергоемкость низка и трещина еще достаточно устойчива. Это первое требование к трещине, важное для того, чтобы «жизни ключ взыграл из разрушенья».

Но это лишь начало. Совершенно необходимо, чтобы трещина была устойчивой, то есть чтобы ее траектория была такой, какая нужна нам. Между тем это не просто – уж слишком велика чувствительность разрушения, в частности к волнам различной природы. Хорошо, если эти упругие волны специально «организованы» нами для управления трещиной. Совсем иное дело, когда они появляются случайно и способны исказить заданную траекторию распространения трещины. Например, у границы образца поведение трещины часто становится необычным. Это связано главным образом с изменением на-

пряженного состояния и происходит по двум причинам. Прежде всего у границы образца составляющая упругих напряжений, перпендикулярная свободной поверхности, отсутствует. Остаются растягивающие напряжения, параллельные границе. Под их влиянием трещина старается распространиться ортогонально к кромке образца, под каким бы углом вначале она не двигалась. Но такому ходу вещей препятствует другой процесс. При разрушении по металлу движутся многочисленные группы упругих волн. Природа их различна и падать на поверхность образца они могут под любыми углами. Следовательно, и отражаются они произвольно. Потому взаимодействие их с трещиной в такой степени многовариант-но, что предсказать его с достоверностью очень трудно. В самом деле, в достаточно хрупких материалах трещина далеко не всегда выходит на поверхность под прямым углом. Нередко вблизи границы она способна совершать крутые пируэты, и не один. Особенно это проявляется при быстрых трещинах, потерявших равновесие и потому крайне чувствительных к различным, даже маломощным упругим импульсам. Такие трещины, возникшие, например, при ветвлении, способны с приближением к границе круто разворачиваться.

…взвивается, как гнев, но в перехлесте, свернувшись, как спираль, на полпути пружинит, разжимаясь в быстром росте…

(Р.-М. Рильке)

Иной раз трещина развивается, не выходя на поверхность тела. Но как только нагрузка достигает некоторых критических значений, она совершает мгновенный разворот и «выползает на свет». Столь необузданное и темпераментное ее поведение у поверхности заставляет принимать специальные меры. Суть их такова: если не предполагается сознательное использование отраженных волн, следует попробовать все возможные способы, чтобы исключить их влияние на растущую трещину. Иначе все надежды на устойчивое распространение трещины будут разрушены. И вместо гладкой поверхности раскола мы получим криволинейную и произвольно холмистую.

Что еще может помешать трещине быть такой, как ей «хочется»? Прежде всего внутренние остаточные напряжения, особенно если они меняются от точки к точке. На современном прокате, например, они не слишком

опасны. Сложнее переход трещины из зерна в зерно стали, создающий мелкую шероховатость раскола. Чувствительна трещина и к структурным составляющим. Здесь, однако, спасительно то, что с ростом скорости трещина становится всеядной и при 1000 м/с способна одинаково

успешно расти и по ферриту, и по перлиту. При таких скоростях трещина становится хрупкой и режет любые компоненты стали.

Ухудшают поверхность раскола дислокации, межзе-ренные границы и другие дефекты в стали. Однако с этим, пожалуй, ничего не поделаешь – это естественные ограничения метода. Можно считать, что самые мельчайшие неровности на сколе проката не могут быть меньше размера зерна в стали.

Очень важно вести холодную ломку металла так, чтобы не создавать в нем серьезной пластической деформации. Важно это только для того, чтобы металл можно было ломать легко, без больших затрат энергии. Нельзя допускать, чтобы деформация меняла структуру стали. Между тем опасность такого рода всегда есть, когда деформация велика. При этом могут возникнуть системы из многих микро- и макротрещин.

И если трещин много, то разрушение идет либо одновременно из многих центров, либо осложняется вследствие взаимодействия основной разделяющей магистральной трещины с другими. И в том, и в другом случае поверхность разрушения получается ущербной. Во избежание этого магистральной трещине намеренно дают «фору»; на прокат заранее наносят концентрацию напряжений. Он обеспечивает зарождение трещины там, где нужно, и облегчает ее подрастание до критических размеров. При этом другие трещины заранее обречены: они обязательно «проиграют» магистральной.

Мы уже знаем, что трещина неустойчива. И побуждений для этого у нее достаточно. Здесь и влияние структуры, и поля напряжения, и ветвление, и разнообразные волновые процессы и многое, многое другое.

Поэтому, если мы хотим использовать трещину в качестве инструмента и притом надежного, нужно создать такие условия, чтобы лишить ее подобных побуждений. Это совсем не исключает всех упомянутых ранее, часто случайных причин нестабильности разрушения. Нет, это означает лишь, что совершенно необходимо создать условия для стабилизации растущей микроскопической трещины, для чего есть два способа. Первый предполагает создание некоторого внешне наведенного макроскопического поля над всеми случайными упругими полями и эпизодами, которое, грубо говоря, подавляет все другие поля и обеспечивает однородное напряженное состо-

яние во всем районе распространяющегося разрушения.

Второй способ деликатнее. С его помощью не нужно накладывать эдакое суперполе на весь разрушаемый металл. Это ведь далеко не всегда удобно. Зачем деформировать весь массив, когда трещина пойдет лишь по какому-то небольшому его району. Не лучше ли в этом случае создать лишь узкий деформированный коридор, своего рода «волновод», обеспечивающий продвижение трещины в необходимом направлении и по определенной траектории. Такой метод потребует меньше энергии, а результаты не изменятся. Какие же есть фундаментальные идеи по переводу неуправляемой трещины-разбойницы в русло контролируемого и дисциплинированного труженика? Это напоминает мне известную шутливую рецензию: «Книга содержит интересные идеи. Обе идеи…» В нашем случае ситуация еще похлеще.

Идея, в сущности, одна. Предложена она была учеными Дж. Бенбоу и Ф. Реслером и заключается в следующем. Приложим вдоль направления распространения трещины сжимающие напряжения. Поскольку трещина растет под действием растягивающих напряжений, нормальных к ее берегам, сжимающие напряжения не мешают ей двигаться в нужном направлении. Но вдруг трещина «решила» проявить свойственную ей вздорность и повернула в сторону. Вот тут-то сжимающие напря-

жения и проявляют себя. Ведь при повороте трещина подставила свой фланг и напряжения попросту поглотили ее-в любом направлении, кроме магистрального, двигаться, таким образом, трещина не может. Что-то вроде знака ГАИ, запрещающего поворот. Но в отличие от знака сжимающие напряжения являются и физическим препятствием. В этих условиях трещина вынуждена подчиниться дисциплине. Надо лишь, чтобы приложенное поле сжатия наверняка превосходило любые другие упругие поля, способные «подбивать» трещину на «бесчинства».

Вот и пришло время рассказать о том, как воспользоваться положительным свойством трещины и с ее помощью разрезать продукцию металлургического производства – прокат на мерные заготовки. Ведь именно из них на машиностроительных заводах изготавливают реальные детали.

Займемся приложением идеи Бенбоу и Реслера к различным случаям разделки металла. Допустим, что мы хотим разломать сталь изгибом. Если не принять специальных мер, то трещина, стартуя, из надреза на растянутой стороне образца двинется в сжатую его часть.

Здесь-то и пойдут осложнения. Трещина начнет вилять, то есть будет стремиться отойти от магистрального направления. Да что там сталь! Сломайте сантиметровую деревянную палочку, карандаш, наконец. Из области растяжения трещина пойдет хорошо, а в конце, в районе сжатия, древесина расслоится параллельно своей оси. От монолитной трещины ничего не останется. Это и есть работа сжимающих напряжений, неизбежно возникающих при изгибе стержня. Чтобы их подавить, давайте обожжем стержень по его внешней поверхности. Для этого используем механическое обжатие. Его роль двояка. Во-первых, сжимающие напряжения, которые возникнут по всему сечению образца, наложат «табу» на любые «финты» трещины и заставят ее идти точно по заданному направлению. Во-вторых, проявится еще одна счастливая особенность такого напряженного состояния. У вас в кулаке пластилин. При сжатии он будет выдавливаться с торцов кулака. Сталь из кулака не потечет. Но при внешнем обжиме в ней возникают растягивающие напряжения, стремящиеся разорвать образец по оси. Они сравнительно невелики, но все же содействуют разрушению и подталкивают трещину. Благодаря этому двойственному благоприятному воздействию внешнего обжатия на металлический образец его можно ломать обычным изгибом и получать при этом отличную поверхность излома, содержащую лишь мелкие шероховатости. Это оказалось возможным благодаря победе над трещиной.

Как на практике осуществить подобное стабилизирующее обжатие? Это можно сделать чисто механическим путем. Но есть и другие способы. Например, перед разрушением изгибом металл на короткое время охлаждают в жидком азоте. Тогда его поверхность сжимается. Однако сердцевина металла, сохраняющая исходную температуру, этому препятствует. В итоге поверхность образца окажется растянутой, а внутренние слои – сжатыми. Растягивающие напряжения снаружи очень удобны, потому что способствуют зарождению исходной трещины. В то же время сжимающие напряжения в теле образца выполняют сторожевые функции, стабилизирующие трещину. В итоге трещина и легко образуется, и ровно распространяется, оставляя отличную поверхность раз* реза.

Очень эффективна ломка металла гидростатическим обжатием. Принцип здесь тот же. Но реализуется он не-

много иначе. Средой, организующей и передающей давление, является жидкость – вода или масло. Специальный компрессор сжимает ее до относительно высокого давления в десятки тысяч атмосфер. В итоге металл оказывается в гидравлическом «кулаке». При этом возникают напряжения и стабилизирующие трещину, и разрывающие образец. Последние направлены точно по оси. Поэтому поверхность разрушения здесь получается идеальной. Если вы разрушаете плексиглас, она зеркальна. Если идет речь о металле, ее шероховатость не превышает размера зерна стали. Особенность этого метода- чрезвычайная легкость зарождения исходной трещины. Для этого достаточно сделать ничтожный надрез на поверхности металлического образца. Жидкость под давлением проникнет в мельчайшие поры и создаст дополнительное расклинивание, содействующее появлению трещины1.

Это очень многообещающий метод, но… японская пословица говорит, что кто не знает, чего он хочет, должен по крайней мере знать, чего от него хотят другие. Мы хотим разработать эффективные методы резания металла. И другие этого хотят. Ведь не случайно же говорят, что дивиденды предприятий сидят на острие резца? Вместе с тем разрабатываемые методы должны быть не только эффективными, но и более простыми, нежели традиционное резание. В связи с этим надо указать на одно очень слабое место гидростатического обжатия. Ведь необходимо создать вполне надежное уплотнение между резервуаром с жидкостью под высоким давлением и поверхностью образца. Между тем образец этот – продукт прокатного производства с поверхностью очень неровной, да еще меняющейся от одного участка проката к другому. К сожалению, сегодня эта задача представляется невероятно сложной. Именно это и умаляет достоинства метода.

Чтобы устранить уплотнения и все же получить высокие давления, необходимые для ломки, удобно использовать импульсное гидравлическое обжатие. Идея заключается в том, что нагнетание давления в очаг ломки осуществляется со скоростью, намного превышающей его падение, за счет фонтанирования из неплотностей. Очень

1 Оба метода холодной ломки металла были разработаны Г А. Барышевым и Г. Б. Родюковым под руководством автора.

удобно для этого воспользоваться, например, взрывающейся проволочкой, окружающей образец кольцом. И образец, и проводник находятся в баке с водой. Под действием мощного электрического импульса проводник взрывается и окружает образец полем сжатия под давлением примерно в 100 МПа. Этого достаточно для разрушения плексигласа, но, к сожалению, не металла.

Более «экзотична» ломка металла, достигаемая в результате обжатия его мощным магнитным полем. Оно создается одновитковым соленоидом с полем, достигающим 700 кЭ. При этом в металле развиваются разрывающие напряжения в 0,8 ГПа.

Этот метод не нуждается в уплотнениях. Более того, с его помощью, повышая энергию конденсаторов, можно, в принципе, ломать любые металлы.

Но (как видите и здесь без «но» дело не обходится) метод этот не годится для массового производства из-за своей опасности и чисто технических неудобств работы с высокими электрическими напряжениями. Скорее это метод будущего.

Если же подвести итоги, то складывается впечатление, что оба метода все же чрезвычайно перспективны и надежны для стабилизации разрушения. Правда, они пригодны для сравнительно простых конфигураций проката в условиях прямолинейно растущей трещины.

Вероятно, читатель знаком с практикой стрельбы по танкам времен второй мировой войны – не снарядами, а сплошными металлическими болванками. При этом поражение было очень своеобразным. Болванка лобовую броню не пробивала, но вырывала металл из внутренней ее поверхности и швыряла его внутрь танка. Механизм этого процесса был следующим. Когда снаряд попадал в броню, он создавал в ней волну сжатия. Волна эта распространялась до второй поверхности и, отражаясь от нее, превращалась в волну растяжения. Грубо говоря, волна как бы отталкивалась от поверхности, заставляя ее двигаться внутрь кабины. При этом как раз и отрывался металл, поражавший экипаж. Группа исследователей (Ю. И. Головин, В. М. Умрихин, Г. Б. Родюков и автор этой книги) решили использовать этот принцип откола для резки металла

Для этого на стальной пруток длиной в несколько метров наносились концентраторы напряжений (столь громко названное – концентратор напряжений – на са-

мом деле представляло собой насечку простым зубилом). Затем на торец проката обрушивали короткий продольный удар. Это делается многими методами. Например, можно стрелять стальным бойком со скоростью полета до 70-100 м/с; можно разогнать боек магнитным полем. Возможны и другие варианты. Не важно, чем создана волна сжатия. Существенно то, что волна такого рода, как правило, быстро становится плоской. Это означает, что ее фронт по всему сечению проката ортогонален к его поверхности. Таков же и фронт волны растяжения. Поэтому возникающая на поверхности металла трещина распространяется точно перпендикулярно длине прутка, поверхность разрушения оказывается превосходной. При этом бегущая по образцу волна растяжения рвет металл по каждому концентратору. В итоге за один удар многометровый пруток оказывается разделенным на десяток заготовок.