Эффект микробиома. Как способ рождения ребенка влияет на его будущее здоровье

Харман Тони

Уэйкфорд Алекс

Глава 5

Роль бактерий в тренировке иммунной системы младенца

 

 

Что такое иммунная система?

Каждую секунду человеческий организм подвергается атакам чужеродных захватчиков, и самое удивительное, что мы даже не замечаем этого, по крайней мере пока мы здоровы. Эти постоянные бомбардировки встречают сопротивление работающей без устали армии, известной как иммунная система.

Иммунная система человека представляет собой сложную организацию органов, тканей и клеток, где каждый элемент исполняет ряд специфических функций, призванных защитить весь организм. Однако задачей иммунной системы является не только борьба с инфекциями и болезнями, но и поддержание стабильного состояния органов и тканей – гомеостаза.

Правильно функционирующая иммунная система поддерживает здоровье, а нарушения в ее работе могут приводить к заболеваниям. Таким образом, чрезвычайно важно, чтобы эта система защиты формировалась правильно в самом начале жизни.

В момент рождения ребенок попадает в мир, полный потенциально опасных бактерий, вирусов, грибов и паразитов. В самом начале жизни его иммунная система находится в неразвитом состоянии и не может отличить, кто друг, а кто враг. Первейшая задача в этот период жизни – как можно раньше грамотно обучить иммунную систему распознавать разницу между дружественными и патогенными микробами. Современные исследования позволяют заключить, что существенная часть этого процесса приходится на период родов и что ведущую роль здесь играют бактерии.

 

Как работает иммунная система?

Представьте себе укрепленный город, окруженный толстыми стенами и охраняемый изнутри вооруженными солдатами. Это прекрасная иллюстрация работы иммунной системы человека. Стены – это кожные покровы и слизистые оболочки, выстилающие желудочно-кишечный тракт и органы дыхания. Они представляют собой первую линию обороны и ежедневно выполняют важную работу по изгнанию захватчиков. Кожа и слизистые оболочки плотно населены дружественными бактериями, поэтому патогенам трудно найти себе место и закрепиться. Как только иммунная система вычисляет приближение опасных микробов, эпителиальные клетки выделяют антимикробные вещества, препятствующие росту патогенов. Если незваному гостю удается проникнуть в желудочно-кишечный тракт, соляная кислота желудка и пищеварительные ферменты с большой долей вероятности уничтожат захватчика.

Если вредоносные микробы все же проникают сквозь эпителиальные барьеры, они оказываются перед лицом второй линии защиты – перед фагоцитами (например, макрофагами). Эти клетки окружают и поглощают захватчиков, а затем выделяют пищеварительные ферменты, которые смогут переварить патогенные бактерии.

Сигналом, говорящим о том, что происходит иммунный ответ, служит воспаление, представляющее собой расширение близлежащих кровеносных сосудов в инфицированной ткани. Обычно мы ощущаем воспаление как небольшой отек на месте инфекции. Отек означает, что кровеносные сосуды стали проницаемыми и пропустили другие иммунные клетки к месту инфицирования для участия в борьбе.

Если фагоцитам не удается уничтожить захватчика, они, по крайне мере, держат его в заложниках, пока не подтянутся союзники в виде дендритных клеток. Их задача заключается в сопровождении захватчиков до ближайших лимфатических узлов, где живут специализированные белые кровяные клетки – В- или Т-лимфоциты. Лимфоциты изучают захватчика и начинают производить специфические антитела, необходимые для иммобилизации конкретного патогена.

Если особенно живучий захватчик не уничтожается на предыдущем этапе, специализированные Т-клетки (цитотоксические клетки) присоединяются к борьбе, часто при участии макрофагов и дендритных клеток. Обычно этой коллективной атаки бывает достаточно для окончательной нейтрализации патогена. Это постоянный, сложный и поистине достойный восхищения процесс!

 

Врожденный и приобретенный иммунные ответы

Описанный выше процесс представляет собой комбинацию врожденного и приобретенного (также известного как адаптационный) иммунных ответов. Имеющиеся у человека с рождения фагоциты (макрофаги и дендритные клетки) – это рядовые первой линии обороны. Они прибывают на поле боя и всегда выполняют одну и ту же работу, но не способны учиться на своем опыте. Лимфоциты (В- и Т-клетки) извлекают урок из каждой атаки патогенов. Они используют приобретенное знание и запоминают, что именно следует делать в случае возвращения того или иного врага.

И врожденный, и приобретенный иммунные ответы являются мощными элементами иммунной системы, но у каждого их них есть свои недостатки. Врожденный иммунный ответ эффективен благодаря своей неотложности, но фагоциты всегда атакуют без разбора. Это может привести к повреждению окружающих здоровых клеток. Эффективность приобретенного иммунного ответа достигается благодаря тому, что лимфоциты могут производить специфические антитела к конкретным патогенам. Однако процесс создания достаточного количества антител может занять от недели до двух. В то время, пока клетки приобретенного иммунного ответа методично варят «клеточный суп» для борьбы с инфекцией, мы можем ощущать симптомы простуды и лихорадки.

Если бы человек имел только врожденный иммунный ответ, грубое воздействие фагоцитов могло бы причинять слишком большой ущерб окружающим здоровым клеткам. Напротив, в случае лишь приобретенного иммунного ответа задержка по времени могла бы дать возможность особенно устойчивым бактериям развить глубокий инфекционный процесс, который очень трудно остановить.

Ключом к успеху в работе комбинированных сил защиты служит способность отдельных элементов взаимодействовать друг с другом, определяя адекватный ответ для каждого случая вторжения. Иногда достаточно активизации только одного типа клеток, а иногда необходима коалиция всех подразделений защиты.

 

Как иммунные клетки идентифицируют захватчика?

На поверхности каждой клетки есть белковые молекулы, известные как антигены. Они служат идентификационными метками, реализующими генетический материал, или ДНК, содержащийся внутри клетки, идет ли речь о человеке, бактерии или любом другом виде живых организмов. Антигены позволят иммунной системе узнавать клетки, принадлежащие организму хозяина. Они словно говорят: «Это я, и я должен быть здесь, оставьте меня в покое». Также они помогают иммунной системе узнавать то, что не принадлежит организму хозяина, а является чужеродным и потенциально опасным. И когда эти чужеродные антигены появляются в организме, иммунная система отправляет своих солдат к месту сражения. Некоторые Т-клетки (Т-хелперы) помогают В-клеткам производить антитела (белки), которые прикрепляются к чужеродным антигенам и держат их, пока другие иммунные клетки (например, фагоциты) не уничтожат их. Т-хелперы также руководят общей стратегией нападения. Другие Т-клетки (цитотоксические Т-клетки) могут убивать захватчика напрямую.

Таковы основные методы борьбы иммунной системы с чужеродными антигенами, но существует множество других методов, о которых мы не будем упоминать в рамках данной книги.

 

Когда развивается иммунная система?

Иммунная армия не укомплектована при рождении, ее развитие происходит вплоть до окончания полового созревания. В- и Т-клетки продолжают обучаться на протяжении всей жизни человека, приобретая и накапливая знания о каждом конкретном патогене, готовясь ответить на повторное появление, когда бы оно ни случилось.

Это постоянное «повышение квалификации» играет ключевую роль в способности армии защитников с полной боевой готовностью реагировать на атаки чужеродных антигенов на протяжении всей жизни человека, но любое нарушение в процессе обучения может сбить с толку иммунных солдат. В таком случае они даже могут направить свой разрушительный потенциал против здоровых клеток, тканей и органов самого организма, что приводит к аутоиммунным и воспалительным заболеваниям.

Что особенно важно в контексте нашего разговора о рождении – это то, что одно из важнейших событий в образовании иммунной системы начинается, как недвусмысленно сформулировал доктор Дитерт, «в короткий период, окружающий рождение». Это событие заключается во взаимодействии между микробами матери (из влагалища, кишечника и грудного молока) и иммунными клетками новорожденного.

 

Почему формирование иммунной системы не завершается к моменту рождения?

Одной из основных сфер ответственности иммунной системы является выявление и уничтожение чужеродных элементов (идентифицируемых по их ДНК). Тогда возникает закономерный вопрос: каким образом иммунная система беременной позволяет генетически чужеродному плоду расти и развиваться в матке беременной женщины? Клетки плода содержат ДНК и матери, и отца, а значит, клетки плода будут восприниматься организмом матери как частично чужеродные. В обычных условиях этого было бы достаточно, для того чтобы иммунная система матери начала атаковать плод.

К счастью, существует несколько умных механизмов, с помощью которых иммунной системе матери посылается информация, что плод не следует атаковать. Материнские Т-клетки, обычно нападающие на чужеродные клетки, не целятся на клетки плода благодаря небольшим «махинациям» с ДНК. Гены, в норме мобилизующие Т-клетки для атаки, выключены в децидуальной оболочке (структуре, окружающей плод и плаценту). Это не позволяет Т-клеткам матери проникать к плоду [77].

Кроме того, во время беременности некоторые из Т-хелперов матери, называемые клетками Th1, подавляются – с целью большей защиты плода от отторжения организмом матери. Клетки Th1 плода остаются неразвитыми вплоть до послеродового периода, что означает, что у новорожденного отсутствует жизненно важная часть иммунной системы.

Это может звучать пугающе, однако на деле очень важно знать, что иммунная система младенца находится в подавленном состоянии в течение первых недель жизни.

 

Почему необходимо, чтобы иммунная система новорожденного была подавлена в первые недели жизни?

Пока плод находится в матке, его иммунная система абсолютно безусловно-рефлекторна. Ключевыми силами защиты выступают рядовые «солдаты» (фагоциты), атакующие все чужеродные клетки, которые встречаются им на пути. Во время родов ребенок получает воздействие миллионов бактерий в родовом канале, и эти микроорганизмы начинают играть важнейшую роль в развитии ребенка и в его будущем здоровье. Если фагоциты новорожденного рассматривают все эти бактерии как чужеродные, почему же они не уничтожают их?

 

Почему иммунная система новорожденнго не атакует бактерии из влагалища матери?

Вагинальные бактерии матери (лактобактерии и кишечные бактерии, например, бифидобактерии) должны гарантированно безопасно пройти через весь желудочно-кишечный тракт новорожденного, чтобы заложить основу микробиома ребенка. Так как же им удается проскочить через рядовых «солдат» иммунной системы? Должно произойти что-то, что подавляет механизм уничтожения чужаков. И что-то действительно происходит.

На последних сроках гестации организм плода производит иммунносупрессоры – CD71+ эритроидные клетки. Они сдерживают фагоциты ребенка во время родов и некоторое время после, позволяя дружественным бактериям надежно обосноваться в кишечнике.

Известно, что преждевременно рожденные малыши нередко страдают воспалением в кишечнике, это знак того, что происходит иммунная атака. Иммунная система недоношенных детей еще не успела произвести достаточное количество CD71+ клеток, и поэтому, как только материнские микробы оказываются в кишечнике ребенка, запускается врожденный иммунный ответ в виде атаки на любые чужеродные клетки. Такая ситуация может привести к весьма тяжелому, потенциально смертельному состоянию – некротизирующему энтероколиту, при котором происходит разрушение тканей тонкого кишечника [78]. К трем неделям жизни CD71+ клетки уменьшаются в количестве, позволяя иммунной системе ребенка работать на полном ходу. И здесь опять ключевую роль играют бактерии.

 

Как иммунная система получает первые уроки во время родов?

Как мы упоминали ранее, рядовые солдаты иммунной системы не умеют учиться. Знание – кого и как атаковать – это функция приобретенных иммунных клеток. Самые первые уроки эти клетки получают от влагалищных бактерий матери и затем от бактерий, содержащихся в грудном молоке. Эти виды микробов (в том числе лактобактерии, бифидобактерии и бактероиды) посылают сигналы, которые начинают взаимодействовать с иммунными клетками ребенка и обучать его иммунную систему.

Как объясняет Родни Дитерт, профессор иммунотоксикологии в Корнеллском университете, «микробы, в особенности кишечные, помогают иммунной системе созревать и делают это с помощью различных химических веществ. Некоторые из этих веществ находятся в биологических жидкостях, некоторые – на поверхности клеток и на самих микробах, но все они важны в отношении созревания иммунной системы и ее обучения тому, что безопасно, а что нет».

Этот процесс называется иммунная толерантность. Здесь определяется, какие микробы организму человека следует принять, а какие – атаковать. Возвращаясь к нашей военной аналогии, часовые у стен города обучаются распознавать друзей и врагов.

Как мы узнали в третьей главе, грудное вскармливание обеспечивает ребенка еще большим разнообразием бактерий, а также сложными сахарами для их питания. Но также оно содержит антитела, помогающие защитить ребенка, пока его собственная иммунная система находится в подавленном состоянии, чтобы позволить всем материнским микробам начать эффективно работать в кишечнике.

Антитела из грудного молока помогают укрепить слизистую оболочку кишечника, горла и легких ребенка, а также защищают от патогенных бактерий и вирусов. Но эти антитела – лишь временный дар, постепенно пищеварительная система ребенка расщепляет их, и они выводятся из организма.

 

Как кесарево сечение влияет на обучение иммунной системы?

Если ребенок появляется на свет в результате планового кесарева сечения, первыми бактериями, с которыми он встретится, будут не материнские влагалищные и кишечные микробы. Вместо них это будут бактерии из воздуха операционной (такие как стрептококки и стафилококки), а также микробы с кожи медицинских работников и родителей. Таким образом, именно эти бактерии обеспечат первоначальное обучение иммунной системы новорожденного. И это может иметь негативные последствия.

Исследователи выдвигают предположение, что без естественной прививки материнскими бактериями во время родов иммунная система ребенка неправильно формируется, что может позднее привести к нарушениям в ее работе.

В канадском пилотном исследовании CHILD и последующих исследованиях (см. стр. 165–175) профессор Козирски выяснила, что дети, рожденные при помощи кесарева сечения, имеют иные бактериальные «отпечатки пальцев», нежели дети, рожденные вагинально. В частности, как вы помните из предыдущей главы, у них меньше бактерий вида бактероидов, причем эта закономерность прослеживается у детей как на грудном, так и на искусственном вскармливании. «В возрасте от трех до четырех месяцев у этих детей вид бактероидов представлен в меньшем количестве, чем у вагинально рожденных детей. Мы считаем, что этот вид бактерий – бактероиды – может быть одним из представителей микробиоты, играющих важную роль в развитии толерантности иммунной системы».

Если иммунная систем ребенка не получает правильной тренировки на самом раннем этапе жизни, есть вероятность того, что она не будет адекватно реагировать на различные воздействия позднее.

Вероятно, есть возможность со временем восстановить баланс микробиома, но трудность заключается в том, что, как утверждает доктор Дитерт, иммунная система детей, рожденных при помощи кесарева сечения, не получает правильной тренировки в самом начале жизни: «Нужные микробы отсутствовали в критический период, когда иммунная система должна была получить обучение. Незрелая, разбалансированная иммунная система останется с ребенком и в будущем, и во взрослом возрасте будет хаотично реагировать на безобидные воздействия, создавая почву для потенциального развития болезней».

И в то же время новые данные доктора Козирски отводят большую роль в балансировании иммунной системы грудному вскармливанию. Среди двухсот участвовавших в исследовании CHILD детей недостаточное содержание бактероидов в возрасте одного года не было зафиксировано у детей, получавших грудное молоко в первые три месяца жизни.

 

Что мы знаем на данный момент?

Мы успели обсудить важность оптимального посева и питания микробиома ребенка с точки зрения предотвращения развития хронических заболеваний в будущем. Как мы узнали, если оптимального посева и питания не происходит в критически важные моменты – во время и сразу после рождения, – это может повлечь за собой негативные последствия для здоровья на всю оставшуюся жизнь.

В то же время мы пока не рассмотрели более отдаленное по времени воздействие, а именно – на детей наших детей. Если ребенок рождается в результате кесарева сечения, существуют ли какие-то последствия для поколения, которое придет после него? И еще: имеет ли возросшее число оперативных родов возможность программировать будущее нашего вида в целом? Этим вопросам мы хотели бы посвятить следующую главу книги.

Вот основные идеи, изложенные в этой главе:

1. К моменту рождения иммунная система ребенка развита не полностью.

2. Во время беременности у матери происходит супрессия иммунных клеток Th1 для того, чтобы материнский организм не отторгал плод. Это означает, что и иммунные клетки Th1 плода также не развиваются.

3. В течение трех недель от момента появления на свет иммунные клетки плода CD71+ не работают, что позволяет бактериям беспрепятственно заселить кишечник новорожденного.

4. Во время вагинальных родов влагалищные и кишечные бактерии матери попадают в кишечник ребенка. Именно они запускают длительный процесс обучения иммунной системы ребенка.

5. Бактерии обучают иммунную систему определять, кто друг, а кто враг; иммунная система учится распознавать, какие бактерии нужны организму и должны быть приняты, а какие следует атаковать и изгонять из организма.

6. В течение всего срока гестации, рождения и раннего детства определенные процессы должны происходить в строго отведенное для них время. Каждое из событий случается лишь однажды. Если программа сбивается, и время оказывается упущенным (а кесарево сечение и искусственное вскармливание имеют потенциал приводить к пропуску нужного временного окна), иммунная система ребенка может начать функционировать некорректно.

Иммунная система и микробиом